
Accelerating Search-Based Planning for Multi-Robot Manipulation by Leveraging
Online-Generated Experiences

Primary Keywords: (3) Robotics; (7) Multi-Agent Planning;

Abstract

An exciting frontier in robotic manipulation is the use of
multiple arms at once. However, planning concurrent mo-
tions is a challenging task using current methods. The high-
dimensional composite state space renders many well-known
motion planning algorithms intractable. Recently, multi-5

agent path finding (MAPF) algorithms have shown promise
in discrete 2D domains, providing rigorous guarantees. How-
ever, widely used conflict-based methods in MAPF assume an
efficient single-agent motion planner. This poses challenges
in adapting them to manipulation cases where this assump-10

tion does not hold, due to the high dimensionality of con-
figuration spaces and the computational bottlenecks associ-
ated with collision checking. To this end, we propose an ap-
proach for accelerating conflict-based search algorithms by
leveraging their repetitive and incremental nature – making15

them tractable for use in complex scenarios involving multi-
arm coordination in obstacle-laden environments. We show
that our method preserves completeness and bounded sub-
optimality guarantees, and demonstrate its practical efficacy
through a set of experiments with up to 10 robotic arms.20

Introduction
The synchronous use of multiple robotic arms may enable
new application domains in robotics and enhance the effi-
ciency of tasks traditionally carried out by a single arm. For
example, in pick-and-place tasks, multiple arms can poten-25

tially be more efficient than a single one, and in a manufac-
turing setting, multiple arms can be used to assemble a prod-
uct collaboratively, unlocking the capability to perform tasks
that are beyond the scope of a single arm. However, the in-
herent complexity of single-agent motion planning for robot30

manipulation (Canny 1988) makes it challenging to plan for
multiple arms while ensuring collision-free paths, and thus
has left the Multi-Robot-Arm Motion Planning (M-RAMP)
problem a relatively under-explored frontier in robotics.

To enable the use of multiple arms in more complex sce-35

narios, we propose a method for accelerating multi-robot-
arm motion planning. Our approach capitalizes on a key ob-
servation: widely-used multi-agent path-finding algorithms
exhibit a significant degree of repetitive planning. We exploit
this repetitiveness by developing an approach that leverages40

experiences gathered during the planning process. Unlike
previous approaches that utilize incremental search tech-
niques (Boyarski et al. 2021), we allow the use of bounded

Figure 1: A team of 8 robotic manipulators, each of 7-DOF,
collaborating in a shelf-rearrangement task. Planning con-
current motions for all arms requires a motion planner capa-
ble of efficiently exploring the high-dimensional state space
of a single arm, and also reasoning about the motions of mul-
tiple robots operating in the shared task space.

sub-optimal search techniques, which are crucial for explor-
ing high-dimensional state spaces. To this end, we accel- 45

erate the single-agent planning process by reusing online-
generated path experiences to speed up multi-agent search,
ensuring both completeness and solution quality guarantees

Our contributions in this paper are threefold. First, we
introduce a novel method for multi-robot-arm motion plan- 50

ning. Second, we provide a comprehensive theoretical anal-
ysis of our proposed framework, demonstrating its bounded
sub-optimality guarantees. Third, we offer an empirical eval-
uation of our method and other algorithms in various multi-
arm manipulation scenarios that include deadlock avoid- 55

ance, cluttered environments, and closely interacting goals.

Related Work
The literature has extensively examined path planning for
both single and multi-agents. In the context of single-agent
search, decades of research have yielded algorithms capable 60

of scaling successfully to high-dimensional and computa-
tionally expensive search spaces. However, efforts in multi-
agent path planning have generally been applied to domains



Figure 2: An illustration of our proposed algorithm accelerating a single agent search on a four-connected grid via reusing
previous search efforts. (a) A single-agent path from S to G computed in a previous iteration. (b) Upon imposing a new
constraint on the agent, shown in red, replanning is required. The previous path is drawn in light gray. (c) Upon expansion of
node S, a prefix {A,B,C} of the experience path is added to OPEN alongside all other successors of S. (c) shows two steps:
node C is selected for expansion from OPEN, and in the following iteration node J is expanded from OPEN. Upon expanding
J , a segment of the experience is added to OPEN since one of J’s successors is equivalent to a node in the experience. (e)
Finally, G is expanded from OPEN and the search terminates and recovers a path. In this example, the work done by xWA*
(Alg. 2) is smaller than that of its previous iteration. By reusing experience, the intermediate nodes expanded are C and J .

such as 2D-grid worlds, resulting in algorithms that often
rely on assumptions such as fast single-agent planning and65

informative heuristics. These assumptions may not always
hold in other scenarios such as robotic manipulation. In this
study, we introduce a method aimed at speeding up multi-
agent path planning in contexts where single-agent planning
is hard.70

Planning for Multi-Arm Manipulation
In practice, planning for multi-arm manipulation is often
done with coupled methods or prioritization methods. In
coupled methods, the state of all arms is seen as a sin-
gle composite state, and the search is performed in this75

space with algorithms such as A* (Nilsson 1980), Rapidly-
exploring Random Trees (RRT)(Karaman and Frazzoli
2011), and their variants (e.g., weighted A*, RRT* (Kara-
man and Frazzoli 2011), RRT-Connect (Kuffner and LaValle
2000), etc.). With the addition of more arms the search space80

grows exponentially, and in general, coupled methods are
not scalable to large numbers of arms.

In scenarios where coupled planning is rendered in-
tractable due to the exponential growth of the search space,
prioritization methods may be effective in reducing its di-85

mensionality. In prioritized planning (PP)(Erdmann and
Lozano-Perez 1987), each arm is assigned a priority, and
the lower-priority arms must respect the plans of all higher-
priority arms. In the general case, solving the prioritized
planning problem is more efficient than the coupled case,90

as the search space is reduced to the space of each single
arm. However, the price paid for this dimensionality reduc-
tion is the loss of completeness. In scenarios requiring close
coordination between arms completeness may be important.

Recently, planning algorithms have been proposed for95

teams of high-dimensional agents and applied to multi-arm
settings. These methods explore the search space via pre-
constructed single-agent roadmaps (probabilistic roadmaps
(PRM)(Kavraki et al. 1996) and potentially task-informed
roadmaps (Solano et al. 2023)), which may need to be ar-100

bitrarily resampled (Solis et al. 2021) to find collision-free

paths in complex environments. In (Shome et al. 2020), the
authors present dRRT*, a method for exploring the com-
posite state-space of agents by traversing individual agents’
roadmaps towards sampled configurations with goal bias. In 105

(Solis et al. 2021), the authors present CBS-MP, a variant
of Conflict Based Search (CBS)(Sharon et al. 2015) that im-
poses new constraints on the search space to resolve con-
flicts between agents. Specifically, to resolve a conflict be-
tween two agents, CBS-MP requires one agent to avoid the 110

colliding configuration of the other at the time of conflict.

Multi-Agent Path Finding
Multi-agent path finding (MAPF) is the problem of finding
collision-free paths for a set of agents on a graph (e.g., on
a grid world)(Stern 2019). MAPF has been studied exten- 115

sively, and optimal (e.g., CBS (Sharon et al. 2015)), bounded
sub-optimal (e.g., ECBS (Barer et al. 2014)), and sub-
optimal but effective (e.g., MAPF-LNS2 (Li et al. 2022))
algorithms have been proposed. Some work has also been
done to generalize MAPF algorithms to non-point robots 120

(Li et al. 2019), however, the most common domain is still
in 2D. Arguably, the most influential family of algorithms is
CBS and its extensions (Sharon et al. 2015; Barer et al. 2014;
Li, Ruml, and Koenig 2021). CBS is a two-level search al-
gorithm, where at the low level, each agent is assigned a 125

single-agent path planning problem. At the high level, con-
flicts between single-agent solutions are resolved by impos-
ing constraints on the low-level planners.

CBS is known to provide completeness and optimality
guarantees. However, CBS is also known to be computa- 130

tionally expensive as it requires repeated low-level searches
upon additions of constraints. Given this inefficiency, CBS
is often regarded as impractical for domains, like in manipu-
lation, where planning for a single agent requires the explo-
ration of a high-dimensional space and does not enjoy in- 135

formed heuristics. In this work, we capitalizing on this rep-
etition and propose a method for accelerating multi-agent
path finding algorithms by reusing online-generated previ-
ous search solutions.



Leveraging Experience in Planning140

Streamlining motion planning from experience encompasses
a wide range of motion planning algorithms. These gener-
ally benefit from either utilizing offline-generated data (i.e.,
precomputation), from leveraging online-generated data, or
both.145

Precomputation as Experience The utilization of offline
computations for enhancing online search efficiency is well
exemplified by the PRM algorithm and its variants. An-
other novel approach is found in the Constant-time Mo-
tion Planners (CTMP) family of algorithms, which oper-150

ates on precomputed data structures to achieve constant-time
path generation in online scenarios (Islam, Salzman, and
Likhachev 2021; Islam et al. 2021b,a; Mishani, Feddock,
and Likhachev 2023). In recent research, a significant focus
has been on the offline decomposition of the configuration155

space into collision-free convex sets (Dai et al. 2023). This
decomposition enables planning smooth trajectories within
these sets using optimization methods (Marcucci et al. 2023,
2022). Furthermore, various algorithms based on precom-
puted trajectories (Phillips et al. 2012; Berenson, Abbeel,160

and Goldberg 2012), have been employed to expedite the
search process. When extending these techniques to plan
for multi-arm setups, it becomes essential to decompose the
composite configuration space for computing collision-free
trajectories. However, challenges arise when the environ-165

ment or the robot undergoes changes, which can be as simple
as rotating a bin or altering the robot’s geometry by grasping
an item. These changes may require resource-intensive oper-
ations like redoing pre-computation or propagating changes,
emphasizing a drawback inherent to using offline-generated170

experiences.

Online-Generated Experiences Anytime algorithms,
like Anytime Repairing A* (ARA*) (Likhachev et al.
2008), can be seen as methods that utilize online-generated
experiences to enhance solution quality over time. ARA*175

carries out a sequence of searches that, given enough time,
converge to the optimal solution. A recent anytime approach
inspired by (Likhachev et al. 2008; Phillips et al. 2012),
and presented in (Mishani, Feddock, and Likhachev 2023),
employs both precomputation and online experience. Their180

algorithm computes an initial, potentially sub-optimal, path
within a (short) constant time and improves the quality of
the path using the current best solution as an experience.

Drawing inspiration from the way the approach in (Mis-
hani, Feddock, and Likhachev 2023) capitalizes on the flexi-185

bility seen in online-generated experiences, and with the ob-
servation that CBS-based algorithms inherently exhibit rep-
etition in the form of nearly identical single-agent planning
queries, we propose a method for accelerating multi-agent
path finding algorithms by reusing online-generated experi-190

ences.

Preliminary
In this paper, we propose a method for solving the M-RAMP
problem by extending the CBS algorithm and its variants to

reuse search efforts. We first describe the problem formula- 195

tion and then detail the CBS algorithm.

M-RAMP: Problem Formulation
Consider Qi ⊆ Rd as the configuration space of a single
robotic arm Ri with d degrees of freedom (DoF), and let the
composite configuration space of n robotic manipulators be 200

Q = Q1 × Q2 × · · ·Qn. With all manipulators operating
within the same environment W ⊂ R3, let Qfree be the set of
all collision-free configurations (both with the environment
and between robots):

Qfree = {q ∈ Q | q is collision-free}

Given an initial composite configuration qstart ∈ Qfree and a 205

composite goal configuration qgoal ∈ Qfree, we want to find
a valid path Π : [0, T ] → Qfree where Π(0) = qstart and
Π(T ) = qgoal. A discrete analog of the problem is to find
a sequence of configurations Π = {q0, q1, · · · , qT } such
that ∀t ∈ [0, T ], qt ∈ Qfree, each interpolated configura- 210

tion between qt and qt+1 is collision-free, and q0 = qstart
and qT = qgoal.

Instead of addressing the motion planning problem in the
high-dimensional composite state space, it is possible to
decompose the problem into a set of single-agent motion 215

planning problems and locally resolve conflicts between the
paths of agents. The resulting solution can be represented as
Π = {π1, π2, · · · , πn}, where

πi = {qi0, qi1, . . . , qiT | qit ∈ Qi
free ∀t = 0, . . . , T}

is a path for agent Ri from its start qistart ∈ Qi to its goal
qigoal ∈ Qi configuration. 220

Conflict Based Search
CBS is a complete and optimal two-level best-first search al-
gorithm solving the MAPF problem. It utilizes single-agent
planners, also known as low-level planners, to compute indi-
vidual paths for each agent and employs a high-level search 225

to resolve conflicts between the proposed paths.
CBS begins by querying a path πi for a given agent Ri

between its start and goal configurations without regard to
other agents. This solution Π is a candidate solution for
the problem, and it is stored in the OPEN list of the high- 230

level search. A high-level node, called a constraint-tree (CT)
node, holds within it a set of paths Π for all agents, and a set
of constraints C imposed on the low-level planners. The cost
of a CT node is the sum of the costs of its stored paths.

CBS proceeds iteratively, selecting least-cost solutions 235

from OPEN and evaluating them for conflicts. If there are no
conflicts found in a solution, then it is accepted as valid and
the algorithm terminates. Otherwise, the conflict is used to
create two new CT nodes, which are added to OPEN. Given
a conflict between two agents Ri and Rj at time t, for exam- 240

ple, because their configurations qit and qjt are in collision,
then two vertex-constraints are created. Either ⟨i, qit, t⟩, for-
bidding Ri from being at qit at time t, or ⟨j, qjt , t⟩, forbid-
ding Rj from being at qjt at time t. If a conflict is found
during a transition between times t and t + 1, then edge- 245

constraints are created and take the form ⟨i, qit, qit+1, t⟩ or



⟨j, qjt , q
j
t+1, t⟩. Each edge-constraint forbids Ri or Rj from

moving between qit and qit+1 at time t.
Given the two new constraints created from the detected

conflict, CBS and its variants create two new CT nodes. In250

each, the new constraint is added to the constraint set C,
and the low-level planners are invoked to find a new path for
each newly constrained agent. The new paths are stored in
the new CT node, and the two created nodes are added to
OPEN.255

Enhanced CBS (ECBS) (Barer et al. 2014) is a widely
used bounded sub-optimal variant that minimizes conflicts
within a specified suboptimality bound. It employs focal-
lists in low- and high-level searches, ordering nodes based
on conflict minimization.260

In CBS and its variants, new low-level planner invoca-
tions closely resemble previous ones. Initially invoked with
constraints Ci = {c ∈ C | c involves Ri} for agent Ri, the
next invocation includes Ci∪

{
⟨i, qit, t⟩

}
when an additional

vertex constraint is introduced. This slight difference sug-265

gests potential benefits from reusing parts of the previous
solution. Iterative-Deepening CBS (IDCBS)(Boyarski et al.
2021) leverages this insight in the 2D case using Lifelong
Planning A* (LPA*)(Koenig, Likhachev, and Furcy 2004).
However, this approach faces challenges in manipulation270

cases where bounded sub-optimal search is employed to
navigate the high-dimensional search space (Likhachev and
Koenig 2005).

Algorithmic Approach
Our main contribution in this work is an experience-275

acceleration framework for CBS-based algorithms. We in-
stantiate this framework in two incarnations, xCBS and
xECBS, accelerating CBS and ECBS, respectively. In this
section, we present the general form of our acceleration
method in an intuitive manner grounded by Algorithm 1 and280

Algorithm 2, and then provide a theoretical analysis of its
performance alongside its instantiations xCBS and xECBS.

Experience-Acceleration Framework
Our framework follows the CBS structure and informs new
low-level planner calls with the experience generated in pre-285

vious search efforts. In the high-level search (Alg. 1), each
node, called a CT node, contains a set of paths Π, one for
each manipulator, and a set of constraints. Upon obtaining
a new node from OPEN it is checked for conflicts (line 13).
If there are none, the node is a goal node and the paths are290

returned (line 15). Otherwise, a set of constraints is derived
from the conflicts (line 16). Usually, CBS proceeds by cre-
ating a new CT node, one with an added constraint from
the constraint set (lines 18-19), and replans a single-agent
path for each affected agent from scratch (line 21). How-295

ever, we recognize that a considerable portion of the previ-
ously generated paths remains valid and can be effectively
reused. Thus, to speed up the search, we cache a copy of the
previously computed paths as experience, which are in turn
passed to the low-level motion planner (lines 17, 21). The300

experiences are time-agnostic, meaning that they do not in-
clude a time dimension but only the topology of the path. We

Algorithm 1: High-level Planner
Input : n: Number of manipulators (agents)

qstart = {q0start, . . . q
n
start}

qgoal = {q0goal, . . . q
n
goal}

Output: Path Π = {π1, π2, · · · , πn} from start to goal
states

1 Procedure InitRootNode()
2 RootNode.constraints← ∅
3 RootNode.paths← invoke Planner for each agent
4 RootNode.cost← GetCost (RootNode.paths)
5 return RootNode

6 Procedure Plan(n, qstart, qgoal)
7 RootNode← InitRootNode()
8 Insert RootNode to OPEN
9 while OPEN not empty do

10 FOCAL← {n|f1(n)· ≤ w · min
n′∈OPEN

f1(n
′)}

11 Node = argmin
n∈FOCALf2(n)

12 OPEN.pop(Node)
13 conflicts← FindConflicts (Node.paths)
14 if conflicts = ∅ then
15 return Node.paths
16 constraints← GetConstraints (conflicts.first)
17 Experiences← RemoveTime (Node.paths)

// Removing time from path
states, so we could use them as
experiences

18 for c ∈ constraints do
19 Create new CT node NewNode
20 NewNode.constraints← Node.constraints ∪ c
21 NewNode.paths← {

Planner.Solve (Experiences[i], qistart, qigoal)
if i ∈ c else Node.paths[i]
} // Invoke Planner for each
agent involved

22 NewNode.cost← GetCost (succ.paths)
23 OPEN.insert(NewNode)
24 return ∅

have experimented with reusing experiences from the previ-
ous search effort, from all previous search efforts on the CT
branch, and globally from the CT, and seen that reusing the 305

previous path yields the best performance.
The low-level of our acceleration framework, namely

xWA∗, is detailed in Algorithm 2 and illustrated in Fig. 2.
Each node expansion (lines 17-32) adds a set of succes-
sors to the OPEN list. Additionally, upon a node expansion, 310

xWA* attempts to accelerate the search by also adding a sub-
set of the experience path to the OPEN list.

Upon a choice of a node for expansion (line 17), the
search terminates if it is a goal state (lines 18-21). Other-
wise, we check if the expanded state belongs to the experi- 315

ence path (line 23). The experience and the goal are strictly
spatial, so state equivalence does not include time. If the ex-
panded state belongs to the experience, and at least one con-
secutive state in the experience is feasible, we say that the
state satisfies the addition-condition. Subsequently, starting 320

from that state, we aim to add as much of the experience



as possible to the OPEN list (line 25). This process is also
applied to the start state (line 14) and essentially provides a
“warm start” to the search effort.

Given an expanded state s that satisfies the addition-325

condition, we first propagate the time and cost of the expe-
rience to begin at the values of s (line 3). Then, we attempt
to add consecutive states from the experience (line 5) until
we encounter the termination-condition, namely, violating
constraints.330

The effect of adding an experience path to the OPEN
list of a bounded sub-optimal search algorithm, such as
weighted A*, could be a rapid exploration of states that are
closer to the end of the experience path (and consequently,
closer to the goal). Figure 2 illustrates this effect. Such ex-335

ploration results in the algorithm “jumping” over previously
explored regions and avoiding redundant search efforts, di-
recting its focus closer to the end of the experience.

Collision checking against the static environment, a sig-
nificant factor in the slowness of planning for manipulation,340

can also be directly accelerated with experience. To this end,
our acceleration framework also keeps track of the configu-
rations (qit, q

i
t+1) in all valid transitions (st, st+1) for each

robot Ri. With this information, the successors set (line 26)
can be computed more rapidly by only checking the valid-345

ity of edges previously unseen. Since it is possible for one
single-agent search to revisit the same configuration at dif-
ferent times, such experience reuse also speeds up the first
search.

Theoretical Analysis350

In this section, we discuss the theoretical foundation of our
algorithm. We show that it is complete and provide bounded
sub-optimality guarantees. First, we define the CBS frame-
work using focal-search and introduce some of the proper-
ties of CBS and its bounded sub-optimal variants. Subse-355

quently, we demonstrate that our accelerated variant main-
tains these properties.

We formally define the problem for both levels of CBS
as a focal-search (Cohen et al. 2018). Focal search em-
ploys two priority queues: OPEN and FOCAL. OPEN mir-360

rors the A* queue using f1 as its priority function, while
FOCAL comprises a subset of OPEN defined as FOCAL =
{n|f1(n) ≤ w · f1min

}, where w denotes the sub-optimality
factor. Then, FOCAL utilizes the priority function f2 to or-
der its nodes. Assuming the admissibility of f1, we are guar-365

anteed that the returned solution is at most wC∗, where C∗ is
the cost of the optimal solution (Pearl and Kim 1982). Con-
sequently, to reason about the total sub-optimality bound of
CBS variants, it would suffice to formulate their high- and
low-level planners as instances of focal search each con-370

tributing a factor to the total sub-optimality bound. In the
following paragraphs, we define the sub-optimality factor
contribution by a focal search, detail the total sub-optimality
bound of a two-level focal search, and finally show the com-
pleteness and sub-optimality bounds of xCBS and xECBS.375

Definition 1. We say that a sub-optimality factor con-
tributed by a focal-search with admissible f1 function is a

Algorithm 2: xWA∗: Low-level Planner
Input : qstart: start state (qstart ∈ Qfree)

qgoal: goal state (qgoal ∈ Qfree)
π̃: Experience path (without time)
w1, w2: sub-optimality bounds for WA* and focal
list.

Output: Path π

1 Procedure PushPartialExperience(π̃, OPEN, s)
2 π̂ ← π̃.suffix(s); // Slicing the

experience to extract all states
beginning from s.

3 π̂ ← PropagagteTimeAndCost (π̂, s.time, s.g)
4 for st ∈ π̂ do
5 if IsEdgeValid (s, st) ∧ IsStateValid (st) then
6 insert st to OPEN
7 s← st
8 else
9 break

10 Procedure Solve(qstart, qgoal, π̃)
11 π = ∅ ; CLOSED = ∅ ; FOCAL = ∅ ;

f1(s) := g(s) + w1h(s)
12 s← (qstart, 0); // Adding time to state.
13 OPEN = {s} ; remove qstart from π̃
14 PushPartialExperience(π̃, OPEN, s)
15 while OPEN ̸= ∅ do
16 FOCAL← {s|f1(s) ≤ w2 min

s′∈OPEN
f1(s

′)}

17 smin = argmin
s∈FOCALf2(s)

18 if IsGoalCondition(smin) // The state is
at qgoal and there are no future
constraints.

19 then
20 π ← ExtractPath()
21 break
22 insert smin into CLOSED
23 if RemoveTime(smin) ∈ π̃ then
24 s = smin

25 PushPartialExperience(π̃, OPEN, s)
26 for s′ ∈ Successors(smin) do
27 if s′ was not visited before then
28 g(s′) =∞
29 if g(s′) > g(smin) + c(s, s′) then
30 g(s′) = g(smin) + c(s, s′)
31 if s′ /∈ CLOSED then
32 insert s′ into OPEN

33 return π

constant w, such that for every expanded node N :

f1(N) ≤ wC∗

Let us first define the high-level search as focal search
with f1 = fH

1 = g(n), where g(n) is the cost of the CT 380

node (sum of agents’ path costs), and f2 = fH
2 to be some

priority function. Such a focal search contributes a given
sub-optimality factor wH .

Lemma 1. Let wH , wL be the sub-optimality factor con-
tributed by the high- and low-level focal searches, respec- 385

tively. For any wH , wL ≥ 1, the cost of the solution is at
most wHwLC

∗.



Proof. Let N be a node in FOCAL of the high-level search.
Additionally, Let k be the number of agents (manipulators)
each having a returned cost. We denote the returned cost of390

the ith agent low-level planner as cost(i) and its optimal cost
as cost∗(i). Lastly, let fL

1,i(s|n) be the ith agent low-level
planner’s priority function, within a given high-level node
n, and let sg,i be the goal state for agent i.

N.cost = g(N) = fH
1 (N) ≤ wH min

n∈OPEN
fH
1 (n)

395

= wH min
n∈OPEN

k∑
i=1

cost(i) = wH min
n∈OPEN

k∑
i=1

fL
1,i(sg,i|n)

≤ wH

k∑
i=1

wLcost
∗(i) = wHwLC

∗

Lemma 1 implies that proving the bounded sub-optimality
of our approach necessitates showing that both the high-
level search and the low-level search are focal searches each400

contributing a sub-optimality factor.
We commence by establishing the bounded sub-

optimality of the low-level planner xWA∗, which leverages
past experiences and contributes a factor of wL. To allow for
the use of inflated heuristics using a weighted OPEN (Veer-405

apaneni, Kusnur, and Likhachev 2023) list, which is com-
mon in manipulation, we expand our analysis to low-level
planners with w1-admissible (Pearl and Kim 1982) priority
function f1.
Lemma 2. Considering a focal search that employs a410

w1-admissible function f1(s) (w1 ≥ 1) and FOCAL=
{s|f1(s) ≤ w2 min

s′∈OPEN
f1(s

′)}, the contributed sub-

optimality factor is w1 · w2.

Proof. Let n0 be a node on an optimal path which resides in
OPEN. For every expanded node N :415

f1(N) ≤ w2 min
n∈OPEN

f1(n) ≤ w2f1(n0) =

= w2(g(n0)+w1h(n0) ≤ w2w1(g(n0)+h(n0) ≤ w2w1C
∗

Hence, our remaining task is to show that incorporating
experiences in xWA∗ does not impact the contributed sub-
optimality factor, nor sacrifices completeness.420

Lemma 3. Consider a best-first search storing frontier
states in an OPEN list. When systematically incorporating
successors into OPEN, if additional nodes are introduced
along with their associated f values, the properties of com-
pleteness and bounded sub-optimality persist.425

Proof. As we introduce new nodes to OPEN, the original
OPEN of weighted A∗ becomes a subset of the modified
OPEN. Moreover, the algorithm maintains its systematic
nature, ensuring completeness. Furthermore, we also know
that FOCAL will only be populated by nodes from OPEN430

that are within the specified sub-optimality bound. Conse-
quently, when a goal state is expanded, the solution remains
bounded sub-optimal.

Theorem 1. xWA∗ is complete and bounded sub-optimal,
contributing wL = w1w2. 435

Proof. Since xWA∗ is a focal search, which employs a
weighted OPEN (w1-admissible f1), the proof follows di-
rectly from Lemma 2 and 3

We initially assumed that the high-level search is given
and that it is bounded sub-optimal contributing factor of wH . 440

In what follows we will discuss the conditions under which
the high-level search algorithm presented in Alg. 1 is com-
plete and bounded sub-optimal.

To show the completeness of the high-level search of
CBS-variants, we turn our attention to the way they impose 445

constraints on the low-level searches. A CBS-variant’s high-
level search is complete if, when it creates constraints c1 and
c2 for resolving a conflict, then there exists no valid solution
that invalidates c1 and c2. Otherwise, valid solutions with
respect to conflicts will be marked as invalid with respect 450

to constraints. Interestingly, by viewing the high-level com-
pleteness of CBS variants in this way, it can be shown that
some CBS variants, such as CBS-MP, gain efficiency by sac-
rificing completeness despite initially claiming otherwise1.

Theorem 2. Our proposed acceleration framework is com- 455

plete and bounded sub-optimal.

Proof. Assuming the use of valid constraints, the focal list
on the high-level is complete and bounded sub-optimal with
a factor of wH , as shown in (Barer et al. 2014). From The-
orem 1, we have that xWA∗ is complete and bounded sub- 460

optimal by wL. Therefore, Lemma 1 shows a sub-optimality
upper bound of wHwLC

∗ for xCBS.

Under this structure, we will show that CBS and ECBS
are complete and (bounded sub-) optimal and show that
xCBS and xECBS are complete and bounded sub-optimal. 465

CBS the suboptimality factor contributed by the low-level
search is wL = 1 since it is usually an optimal search (e.g.,
A*), and the high-level search does not employ a focal-list
and prioritizes CT nodes according to their sum-of-costs.
CBS is complete since it imposes constraints only on the 470

vertex or edge that was in conflict (Sharon et al. 2015); in-
validating both constraints leads back to the conflicting con-
figuration found in the first place. Thus, we restate that CBS
is complete and optimal.

ECBS the suboptimality factor contributed by the low- 475

level search is a user-defined constant wL, implemented as
a focal-list. In the high-level, an adaptive focal list steers the
search but does not contribute an additional sub-optimality
factor (i.e., wH = 1) due to its dependence on the lower
bound of the low-level searches (Barer et al. 2014). ECBS is 480

complete since it imposes similar constraints to CBS.

xCBS At the high-level, xCBS is identical to CBS in both
its CT node prioritization (according to their sum-of-costs)
and its constraint generation function. Thus, it contributes a
wH = 1 and maintains completeness. At the low level, our 485

1We have discussed CBS-MP’s theoretical guarantees with the
authors and reached this conclusion.



xWA* is complete and contributes a sub-optimality factor of
wL, as shown in Theorem 1.

xECBS At the low level, xWA* contributes a sub-
optimality factor of wL = w1w2. At the high-level, the
contributed sub-optimality factor is wH = 1 owing to the490

adaptive bound used in ECBS. Completeness is guaranteed
for the same reasons as xCBS. xECBS terminates the addi-
tion of experiences at detected collisions with other agents
traveling on their previously computed paths. Since ECBS
prioritizes low-level search states based on their added con-495

flicts, we refrain from creating new conflicts when reusing
experiences.

In this light, we have shown that xCBS and xECBS main-
tain completeness and bounded sub-optimality guarantees
while also being accelerated.500

Experiments
To evaluate xECBS and xCBS, we created collaborative ma-
nipulation tasks with varying numbers of robots, obstacle
density, and robot-robot interaction complexity. Each robot
in our experiments is a Franka Panda manipulator with 7-505

DOF. The experiments were conducted on an Intel Core i9-
12900H with 32GB RAM (5.2GHz).

Experiments Setup
Our experiments focus on testing the scalability of algo-
rithms as well as their applicability for real-world use. We510

set up 7 scenes, each with 50 planning problems defined by
starts qstart ∈ Qfree and goals qgoal ∈ Qfree.

To test the applicability of algorithms for real-world sce-
narios, we evaluated algorithms in two sample tasks: shelf
rearrangement with 8 arms and bin-picking with 4 arms. For515

each scene, we randomly sampled 50 start and goal states
from a set of task-specific configurations (e.g., pick and
place configurations at different bins or positions in between
shelves). Given that the robots operate within the same task-
space, these configurations require motion plans with sub-520

stantial proximity between arms.
To shed light on how algorithms scale with the number of

arms, we tested their performance in free or lightly cluttered
scenes with 2, 4, 6, 8, and 10 arms as shown in Figure 4. The
starts and goals for each agent are in the shared workspace525

region. In each setup, robots were organized in a circle, and
in the cases with 6, 8, and 10 robots, a thin obstacle was
placed in the circle to encourage interaction.

Baselines
To show the efficacy of our method, we compare it both530

to ubiquitous algorithms commonly used to solve the M-
RAMP problem, as well as to other algorithms recently ap-
plied to M-RAMP.

Sampling-Based Methods We include PRM and RRT-
Connect, which are arguably the most commonly used al-535

gorithms for planning in manipulation. For both, the search
space is the composite state space Q. We use the OMPL
(Sucan, Moll, and Kavraki 2012) implementation of PRM
and RRT-Connect. Additionally, we include dRRT*(Shome

et al. 2020), a more recent algorithm applied to M-RAMP 540

that explores the composite state space via transitions on
single-agent roadmaps. In our implementation, the single-
agent roadmaps contain a minimum of 1500 nodes, with in-
crements of 1000 more being sampled if the roadmap cannot
be connected to the start or goal configurations. 545

Search-Based Methods We include PP, CBS, ECBS, and
CBS-MP in our comparison, as well as our proposed meth-
ods xCBS and xECBS. For all, the single agent planners
are weighted A* with a uniform cost for transition and an
L2 joint-angle distance as a heuristic. The heuristic infla- 550

tion value is 50 and in ECBS and xECBS the sub-optimality
bound is set to 1.3. Our implementation of CBS-MP differs
slightly from the original in that, here, agents plan on uni-
formly discretized implicit graphs and not on precomputed
roadmaps. This has been done to compare all search algo- 555

rithms on the same planning representation. All edge transi-
tions on the implicit graphs are said to take one timestep.

Evaluation Metrics and Postprocessing
We are interested in the scalability and solution quality of
algorithms. To this end, for each scene, we report the mean 560

and standard deviation for planning time and solution cost
across all segments, alongside the success rate of each algo-
rithm in the scene. All algorithms were allocated 60 seconds
for planning, after which a plan was considered a failure.
The cost is the total motion carried out by the joints, in radi- 565

ans. In our scalability analysis, we also add metrics for the
number of collision checks carried out by a subset of the
algorithms.

All solutions are post-processed with a single pass of a
simple incremental shortcutting algorithm. One by one, each 570

agent’s solution path is shortcutted without creating new
conflicts. Starting from the beginning of the path, the al-
gorithm attempts to replace path segments by linear inter-
polations while avoiding obstacles and other agents. This
standard shortcutting algorithm is often used to refine paths 575

yielded by sampling-based planners.

Experimental Results
We observe that xECBS solves real-world multi-arm ma-
nipulation planning problems faster and with a higher suc-
cess rate compared to other evaluated methods while keep- 580

ing solution costs low. Figure 3 (middle) illustrates this re-
sult. The figure shows the pairwise relative cost and run-
time of all successful algorithms, where the values are
computed over jointly successful problems. xECBS demon-
strates faster planning speed (values above 100%) while de- 585

livering low-cost solutions comparable to those achieved by
other conflict-based approaches (values around to 100%).
Comprehensive statistics for all runs are provided in the ac-
companying tables.

Our scalability analysis shows that xECBS scales to 590

scenes with many agents better than competing methods,
consistently finding solutions for more problems. We note
that xCBS improves on CBS in general, however, xECBS
offers a much larger boost in performance and is more suit-
able for planning for multi-arm manipulation. 595



Success Runtime (sec) Cost (rad)
xECBS 84% 13.6 ± 12.1 41.9 ± 8.3
ECBS 40% 26.9 ± 17.9 37.1 ± 6.3
PP 40% 30.0 ± 19.7 58.1 ± 50.6
RRT-Con. x x x
PRM x x x
xCBS 4% 34.8 ± 25.4 41.5 ± 8.9
CBS 4% 39.8 ± 21.9 32.1 ± 4.9
CBS-MP 22% 25.7 ± 20.0 38.0 ± 4.6
dRRT* x x x

Success Runtime (sec) Cost (rad)
xECBS 96% 4.4 ± 3.4 24.1 ± 3.5
ECBS 82% 18.4 ± 16.9 23.3 ± 3.3
PP 84% 14.5 ± 17.1 25.4 ± 14.1
RRT-Con. 42% 16.8 ± 14.2 42.0 ± 22.4
PRM 16% 9.3 ± 18.5 73.4 ± 46.2
xCBS 48% 8.6 ± 10.7 22.5 ± 2.9
CBS-MP 64% 14.4 ± 11.0 22.2 ± 2.6
CBS 28% 12.8 ± 11.2 21.8 ± 2.4
dRRT* 14% 6.1 ± 8.9 56.4 ± 20.8

Figure 3: Evaluating the real-world applicability of planning algorithms. Left: evaluation scenes, with 8-arm shelf rearrange-
ment and 4-arm bin-picking. Middle: Comparing runtime and cost ratios between methods. Values are the ratio (vertical to
horizontal) between methods averages in jointly solved problems. xECBS is faster and finds short paths. Right: Statistics.

Figure 4: Scalability analysis. Top: an illustration of our test scenes with 2, 4, 6, 8, and 10 robots. Bottom left: the success rate
of methods among the 50 planning problems in each scene. xECBS scales better than the competing method. Bottom middle:
the average cost per robot of successful runs. We observe that all conflict-based methods maintain similar costs while PP and
sampling-based methods produce worse paths even after shortcutting. Bottom right: the number of collision checks carried out
on average by each one of the methods.

Conclusion

Popular multi-agent motion planning algorithms like CBS
and ECBS assume fast single-agent planners, which may
not be available in multi-arm manipulation tasks. To address
this, we propose to accelerate conflict-based algorithms by600

reusing online-generated path experiences and demonstrate
their benefits in xCBS and xECBS. These adaptations im-
prove performance in multi-arm manipulation tasks while
ensuring bounded sub-optimality guarantees. Our experi-
ments demonstrate the proposed method’s effectiveness in605

various multi-arm manipulation tasks with up to 10 arms.
We observe that xECBS is particularly effective in real-
world scenarios such as pick and place and shelf rearrange-
ment, achieving higher success rates and lower planning
times than currently available methods. 610

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Proceedings of



the International Symposium on Combinatorial Search, vol-615

ume 5, 19–27.

Berenson, D.; Abbeel, P.; and Goldberg, K. 2012. A robot
path planning framework that learns from experience. In
2012 IEEE International Conference on Robotics and Au-
tomation, 3671–3678.620

Boyarski, E.; Felner, A.; Harabor, D.; Stuckey, P. J.; Cohen,
L.; Li, J.; and Koenig, S. 2021. Iterative-deepening conflict-
based search. In Proceedings of the Twenty-Ninth Interna-
tional Conference on International Joint Conferences on Ar-
tificial Intelligence, 4084–4090.625

Canny, J. 1988. The complexity of robot motion planning.
MIT press.

Cohen, L.; Greco, M.; Ma, H.; Hernández, C.; Felner, A.;
Kumar, T. S.; and Koenig, S. 2018. Anytime Focal Search
with Applications. In IJCAI, 1434–1441.630

Dai, H.; Amice, A.; Werner, P.; Zhang, A.; and Tedrake, R.
2023. Certified Polyhedral Decompositions of Collision-
Free Configuration Space. arXiv:2302.12219.

Erdmann, M.; and Lozano-Perez, T. 1987. On multiple mov-
ing objects. Algorithmica, 2: 477–521.635

Islam, F.; Paxton, C.; Eppner, C.; Peele, B.; Likhachev, M.;
and Fox, D. 2021a. Alternative paths planner (app) for prov-
ably fixed-time manipulation planning in semi-structured
environments. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), 6534–6540. IEEE.640

Islam, F.; Salzman, O.; Agarwal, A.; and Likhachev, M.
2021b. Provably constant-time planning and replanning for
real-time grasping objects off a conveyor belt. The Interna-
tional Journal of Robotics Research, 40(12-14): 1370–1384.

Islam, F.; Salzman, O.; and Likhachev, M. 2021. Provable645

Indefinite-Horizon Real-Time Planning for Repetitive Tasks.
Proceedings of the International Conference on Automated
Planning and Scheduling, 29(1): 716–724.

Karaman, S.; and Frazzoli, E. 2011. Sampling-based algo-
rithms for optimal motion planning. The international jour-650

nal of robotics research, 30(7): 846–894.

Kavraki, L.; Svestka, P.; Latombe, J.-C.; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4): 566–580.655

Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
planning A. Artificial Intelligence, 155(1-2): 93–146.

Kuffner, J.; and LaValle, S. 2000. RRT-connect: An ef-
ficient approach to single-query path planning. In Pro-
ceedings 2000 ICRA. Millennium Conference. IEEE Inter-660

national Conference on Robotics and Automation. Symposia
Proceedings (Cat. No.00CH37065), volume 2, 995–1001.
IEEE. ISBN 978-0-7803-5886-7.

Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig,
S. 2022. MAPF-LNS2: fast repairing for multi-agent path665

finding via large neighborhood search. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,
10256–10265.

Li, J.; Ruml, W.; and Koenig, S. 2021. Eecbs: A bounded-
suboptimal search for multi-agent path finding. In Proceed- 670

ings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, 12353–12362.
Li, J.; Surynek, P.; Felner, A.; Ma, H.; Kumar, T. S.; and
Koenig, S. 2019. Multi-agent path finding for large agents.
In Proceedings of the AAAI Conference on Artificial Intelli- 675

gence, volume 33, 7627–7634.
Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2008. Anytime search in dynamic graphs. Artifi-
cial Intelligence, 172(14): 1613–1643.
Likhachev, M.; and Koenig, S. 2005. A Generalized Frame- 680

work for Lifelong Planning A* Search. In ICAPS, 99–108.
Marcucci, T.; Petersen, M.; von Wrangel, D.; and Tedrake,
R. 2022. Motion planning around obstacles with convex op-
timization. arXiv preprint arXiv:2205.04422.
Marcucci, T.; Umenberger, J.; Parrilo, P. A.; and Tedrake, 685

R. 2023. Shortest Paths in Graphs of Convex Sets.
arXiv:2101.11565.
Mishani, I.; Feddock, H.; and Likhachev, M. 2023.
Constant-time Motion Planning with Anytime Refinement
for Manipulation. arXiv:2311.00837. 690

Nilsson, N. 1980. Principles of Artificial Intelligence Tioga
Publishing. Palo Alto, CA.
Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-4(4): 392–399. 695

Phillips, M.; Cohen, B.; Chitta, S.; and Likhachev, M. 2012.
E-Graphs: Bootstrapping Planning with Experience Graphs.
In Proceedings of Robotics: Science and Systems. Sydney,
Australia.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015. 700

Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Shome, R.; Solovey, K.; Dobson, A.; Halperin, D.; and
Bekris, K. E. 2020. drrt*: Scalable and informed
asymptotically-optimal multi-robot motion planning. Au- 705

tonomous Robots, 44(3-4): 443–467.
Solano, A.; Sieverling, A.; Gieselmann, R.; and Orthey, A.
2023. Fast-dRRT*: Efficient Multi-Robot Motion Planning
for Automated Industrial Manufacturing. arXiv preprint
arXiv:2309.10665. 710

Solis, I.; Motes, J.; Sandström, R.; and Amato, N. M. 2021.
Representation-optimal multi-robot motion planning using
conflict-based search. IEEE Robotics and Automation Let-
ters, 6(3): 4608–4615.
Stern, R. 2019. Multi-agent path finding–an overview. Arti- 715

ficial Intelligence: 5th RAAI Summer School, Dolgoprudny,
Russia, July 4–7, 2019, Tutorial Lectures, 96–115.
Sucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. IEEE Rob. & Aut. Mag., 19(4):
72–82. 720

Veerapaneni, R.; Kusnur, T.; and Likhachev, M. 2023. Ef-
fective Integration of Weighted Cost-to-Go and Conflict
Heuristic within Suboptimal CBS. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(10): 11691–11698.


