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Abstract

Reinforcement learning with general utilities (RLGU) offers a unifying framework
to capture several problems beyond standard expected returns, including imitation
learning, pure exploration, and safe RL. Despite recent fundamental advances
in the theoretical analysis of policy gradient (PG) methods for standard RL and
recent efforts in RLGU, the understanding of these PG algorithms and their scope
of application in RLGU still remain limited. In this work, we establish global
optimality guarantees of PG methods for RLGU in which the objective is a general
concave utility function of the state-action occupancy measure. In the tabular
setting, we provide global optimality results using a new proof technique building
on recent theoretical developments on the convergence of PG methods for standard
RL using gradient domination. Our proof technique opens avenues for analyzing
policy parameterizations beyond the direct policy parameterization for RLGU. In
addition, we provide global optimality results for large state-action space settings
beyond prior work which has mostly focused on the tabular setting. In this large
scale setting, we adapt PG methods by approximating occupancy measures within
a function approximation class using maximum likelihood estimation. Our sample
complexity only scales with the dimension induced by our approximation class
instead of the size of the state-action space.

1 Introduction

Reinforcement learning with general utilities (RLGU) has emerged as a general framework to unify a
range of RL applications where the objective of the RL agent cannot be simply cast as a standard
expected cumulative reward (Zhang et al., 2020). For instance, in imitation learning, the objective is
to learn a policy minimizing the divergence between the induced state-action occupancy measure and
expert demonstrations (Ho and Ermon, 2016). In pure exploration, the goal is to learn a policy to
explore the state space in a reward-free setting by maximizing the entropy of the state occupancy
measure induced by the agent’s policy (Hazan et al., 2019). Other examples include risk-averse and
constrained RL (Garcıa and Fernández, 2015), diverse skills discovery (Eysenbach et al., 2019), and
experiment design (Mutny et al., 2023).

It is well known that the standard RL objective can be written as a linear functional of the occupancy
measure. To capture all the aforementioned applications, the RLGU objective is a possibly nonlinear
functional of the state action occupancy measure induced by the policy (Zhang et al., 2020). Due
to non-linearity, policy gradient algorithms for solving RLGU problems face the major bottleneck
of occupancy measure estimation. Prior works (Hazan et al., 2019; Zhang et al., 2020) have mostly
focused on the tabular setting where the state-action occupancy measure needs to be estimated for
each state-action pair using Monte Carlo estimation via sampling trajectories. However, this setting
is restrictive for larger state and action spaces where tabular methods become intractable due to
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the curse of dimensionality. This scalability issue stands as an important challenge to overcome to
establish RLGU as a general unified framework for which efficient algorithms exist to solve its larger
state-action space instances.

The understanding of PG methods and their scope of application still remains limited despite recent
fundamental advances in the theoretical understanding of PG methods for standard RL and recent
efforts in RLGU. Specifically:

• In the tabular setting, existing global optimality results rely on hidden convexity which consists in
seeing the problem as a convex problem in the occupancy measure. This approach leaves unclear
and open the question of the connection of existing analysis with the recent advances in the analysis
of PG methods for standard expected return RL as highlighted as future work in Zhang et al. (2020).

• Most existing results focus on the tabular setting. Beyond this restrictive setting, few recent results
propose to approximate the occupancy measure using function approximation and either Mean
Square Estimation (MSE) (Barakat et al., 2023) or Maximum Likelihood Estimation (MLE) (Huang
and Jiang, 2024). However these works only establish first-order stationarity guarantees and hence
fall short of providing global convergence guarantees for RLGU beyond standard RL. Moreover,
they have several other limitations that render them either inefficient in addressing large state-action
space settings due to a dependence on the state action space or suboptimal even for standard
expected return objective function. We refer the reader to our related work section below and
section 4.4 for a more detailed discussion.

Main contributions. In this work, we investigate the question of global optimality of PG methods
for RLGU. Our contributions are summarized as follows:

• In the tabular setting, we establish a new structural property of the RLGU objective in the form of a
gradient domination inequality (cf. Sec. 3). This result generalizes existing results for standard
expected return objectives in RL and enables global optimality guarantees for PG methods in
RLGU within the tabular setting.

• We address the scalability challenge by proposing a simple algorithm for the general and flexible
RLGU framework with global optimality guarantees. In this algorithm, an actor performs policy
parameter updates whereas a critic approximates the state-action occupancy measure via maximum
likelihood estimation (MLE) within a function approximation class (cf. Sec. 4). We analyze the
sample complexity of our algorithm under suitable assumptions. Our analysis relies on a total
variation performance bound for occupancy measure approximation via MLE which scales with
the dimension of the parameters of the function approximation class rather than the state-action
space size. Using this result, we establish first-order stationarity and global optimality guarantees
for our algorithm for nonconcave and concave utilities respectively (cf. Sec. 4.3).

Related Works. The general framework of RLGU, also known as convex RL, has been recently
introduced in the literature (Hazan et al., 2019; Cheung, 2019; Zhang et al., 2021; Zahavy et al., 2021;
Geist et al., 2022; Bai et al., 2022). Hazan et al. (2019) initially focused on the particular instance of
maximum entropy exploration problem and Zhang et al. (2020) proposed a variational policy gradient
method to solve the RLGU problem. Zhang et al. (2021) then introduced a simpler (variance-reduced)
policy gradient method to solve the (possibly nonconcave) RLGU problem using a simpler policy
gradient theorem (see also Kumar et al. (2022)). Later, Barakat et al. (2023) proposed an even simpler
single-loop normalized policy gradient algorithm to solve RLGU. Zahavy et al. (2021) leveraged
Fenchel duality to cast the convex RL problem into a saddle-point problem that can be solved using
standard RL algorithms. In a line of works, Mutti et al. (2022b,a, 2023) formulated the convex
RL problem in finite trials instead of infinite realizations and considered an objective which is any
convex function of the empirical state distribution computed from a finite number of realizations.
Ying et al. (2023a) introduced policy-based primal-dual methods for solving convex constrained
CMDPs and Ying et al. (2023b) further addressed a multi-agent RL problem with general utilities.
All the aforementioned works focus on the tabular setting. In particular, most of these works use a
count-based Monte Carlo estimate of the occupancy measure that cannot scale to large state-action
spaces. More recently, Huang et al. (2023) provided sample-efficient online/offline RL algorithms
with density features in low-rank MDPs for occupancy estimation. Only few recent works (Barakat
et al., 2023; Huang and Jiang, 2024) propose to go beyond the tabular setting, we discuss them in
more details in section 4.4. See also appendix B for a more detailed related work discussion.
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Notation. For a given finite set X , we use the notation |X | for its cardinality and ∆(X ) for the
space of probability distributions over X . We equip any Euclidean space with its standard inner
product denoted by ⟨·, ·⟩ . The notation ∥ · ∥ refers to both the standard 2-norm for vectors and the
spectral norm for matrices. We interchangeably denote functions f : X → R over a finite set X as
vectors f ∈ R|X | with components f(x) with a slight abuse of notations.

2 Problem Formulation

MDP with General Utility. Consider a discrete-time discounted Markov Decision Process
(MDP) (S,A,P, F, ρ, γ), where S andA are finite state and action spaces respectively, P : S×A →
∆(S) is the state transition probability kernel, F : Λ→ R is a general utility function defined over
the space Λ of probability measures on the product state-action space X := S × A, ρ is the initial
state distribution, and γ ∈ (0, 1) is the discount factor. A stationary policy π : S → ∆(A) maps each
state s ∈ S to a distribution π(·|s) over the action spaceA. The set of all stationary policies is denoted
by Π . At each time step t ∈ N in a state st ∈ S , the RL agent chooses an action at ∈ A with probabil-
ity π(at|st) and then environment transitions to a state st+1 ∈ S with probability P(st+1|st, at) . We
denote by Pρ,π the probability distribution of the Markov chain (st, at)t∈N induced by the policy π
with initial state distribution ρ. We use the notation Eρ,π (or often simply E) for the associated
expectation. We define for any policy π ∈ Π the (normalized) state and state-action occupancy
measures dπ ∈ ∆(S), λπ ∈ ∆(S ×A) respectively1:

dπ(s) := (1− γ)
+∞∑
t=0

γtPρ,π(st = s) , λπ(s, a) := dπ(s)π(a|s) . (1)

The general utility function F assigns a real to each occupancy measure λπ induced by a
policy π ∈ Π . We note that λπ will also be seen as a vector of the Euclidean space R|S|·|A| . In the
rest of this work, we will consider a class of policies parametrized by a vector θ ∈ Rd for some fixed
integer d ∈ N . We shall denote by πθ ∈ Π such a policy in this class.

Policy optimization. The goal of the RL agent is to find a policy πθ solving the problem:

max
θ∈Rd

F (λπθ ) , (2)

where λπθ is defined in (1), F is a smooth function supposed to be upper bounded and F ⋆ is used to
denote the maximum in (2). The agent has access to trajectories of finite length H generated from the
MDP under the initial distribution ρ and the policy πθ . In particular, provided a time horizon H and
a policy πθ with θ ∈ Rd, the learning agent can simulate a trajectory τ = (s0, a0, · · · , sH−1, aH−1)
from the MDP when the state transition kernel P is unknown. This general utility problem was
described, for instance, in Zhang et al. (2021) (see also Kumar et al. (2022)). Recall that the standard
RL problem corresponds to the particular case where the general utility function is a linear function,
i.e., F (λπθ ) = ⟨r, λπθ ⟩ for some vector r ∈ R|S|·|A|, in which case we recover the expected return
function as an objective:

V πθ (r) := Eρ,πθ

[
+∞∑
t=0

γtr(st, at)

]
. (3)

Remark 1. We prefer the terminology of ‘RL with general utilities’ to ‘convex RL’ since the objective
may even be nonconvex in the occupancy measure in full generality. Although our focus in this work
is on concave utilities, we provide first-order stationarity theoretical guarantees for the nonconcave
case. While the convex RL literature exclusively focuses on the case of concave utilities, a lot of
applications of interest do not fall under this umbrella and inherently involve nonconcave utilities.
We provide several such examples in Appendix D.

3 Global Optimality in the Tabular Setting

In this section, our main goal is to establish a structural property of the RLGU objective as a
function of its policy parameters depending on the policy parameterization. Recall that even when

1We mostly drop the dependence on the initial distribution ρ in the notation throughout the paper, except for
the statement and proof of Theorem 1.
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the functional F is concave in the occupancy measure, the RLGU objective is in general nonconcave
in the policy parameters. Recent works in the last few years (Agarwal et al., 2021; Bhandari and
Russo, 2024; Mei et al., 2020) have shown that the expected return in standard RL, which is also
nonconcave in the policy parameters, satisfies a gradient domination inequality. This interesting
property implies that any stationary point of the objective is actually a globally optimal point. In this
section we extend this result to RLGU and show that the RLGU objective function also satisfies a
similar, but different, gradient domination inequality when the functional F is concave. Our results
open an avenue for going beyond expected return objectives by exploiting the underlying dynamic
programming structure of occupancy measures which is key to our results.

In view of our analysis, we recall how to derive the policy gradient for the general utility objective.
For convenience, we use the notation λ(θ) for λπθ . Since the cumulative reward can be rewritten
more compactly V πθ (r) = ⟨λπθ , r⟩, it follows from the policy gradient theorem that:

[∇θλ(θ)]T r = ∇θV πθ (r) = Eρ,πθ

[
+∞∑
t=0

γtr(st, at)

t∑
t′=0

∇ log πθ(at′ |st′)

]
, (4)

where ∇θλ(θ) is the Jacobian of the vector-valued mapping λ(θ) . Using the chain rule, we have

∇θF (λ(θ)) = [∇θλ(θ)]T∇λF (λ(θ)) = ∇θV πθ (r)|r=∇λF (λ(θ)) . (5)

The classical policy gradient in the standard RL setting uses rewards which are obtained via interaction
with the environment. In RLGU, there is no reward function but rather a pseudoreward ∇λF (λ(θ))
depending on the unknown occupancy measure induced by the policy. We assume that the gradient of
F w.r.t. its variable λ is a known function to the agent. This is the case in most prior works, e.g. when
F is the negative entropy function in pure exploration (Hazan et al., 2019), or a KL divergence in
imitation learning (Ho and Ermon, 2016), a penalized objective in constrained RL, or other objectives
in experiment design (Mutny et al., 2023). The policy gradient identity (5) shows that the gradient
of the RLGU objective with respect to its policy parameters coincides with the standard expected
return policy gradient evaluated at the reward function ∇λF (λ(θ)). This observation is essential for
our development and we believe it could be of independent interest in settings involving varying
rewards as a function of policy parameters. Using this key insight, the next result shows that the
RLGU objective satisfies a gradient domination inequality when the policy parametrization is tabular,
extending the structural result for standard expected return (Agarwal et al., 2021; Bhandari and Russo,
2021; Xiao, 2022).

Assumption 1 (Concavity). The utility function F : Λ→ R is concave.

Theorem 1. (RLGU objective gradient domination) Let Assumption 1 hold. Consider a direct
policy parametrization (πθ(a|s) = θs,a for all (s, a) ∈ S ×A). Then for every θ ∈ Rd,

F (λ(θ∗))− F (λ(θ)) ≤ 1

1− γ

∥∥∥∥∥dπ
⋆(∇λF (λ(θ)))
ρ

µ

∥∥∥∥∥
∞

max
π̄∈Π
⟨π̄ − πθ,∇θF (λ(θ))⟩ , (6)

where d = |S| · |A|, π⋆(r) ∈ argmaxπ∈Π V
π(r) for any r ∈ R|S|·|A|, θ∗ is an optimal policy

parameter and µ is any state distribution s.t. µ(s) > 0 for all states s ∈ S.

A few comments are in order regarding this result:

• The gradient domination inequality depends on a distribution mismatch coefficient which itself
depends on the pseudo-reward function ∇λF (λ(θ)) . Theorem 1 recovers the standard gradient
domination result in linear RL, as in Lemma 4.1 of Agarwal et al. (2021), when the pseudo-reward
is constant and equal to the true reward.

• The mismatch coefficient is finite for any θ, provided the reference distribution µ has full support.
• If one seeks a uniform upper bound over all θ, the coefficient can be large. However, this worst-case

bound is still finite, and can be upper-bounded by the state space size if µ is uniform. It can also
be upper bound by its maximum over the reward functions which are bounded by the range of
pseudo-rewards (see e.g. Assumption 3).
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Remark 2. Recall that we assume throughout the paper that the state and action spaces are finite
as mentioned in section 2. In particular, Theorem 1 holds under this setting. While we mention the
applicability of our algorithm to continuous state spaces in practice (in remark 3 below), the current
analysis does not readily extend to that setting. Ensuring boundedness of the distribution mismatch
coefficient can be challenging beyond our finite setting, as mentioned in e.g. Koren et al. (2025)
showing that policy gradient methods can then converge to locally (in contrast to globally) optimal
policies (in classical linear RL).

Proof. We introduce a few useful notations for the state action value functions induced by any fixed
reward functions r ∈ R|S|·|A| and any θ ∈ Rd for (s, a) ∈ S ×A:

Qπθs,a(r) := Eρ,πθ

[
+∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
, V πθs (r) :=

∑
a∈A

πθ(a|s)Qπθs,a(r) . (7)

Proof. First, using the gradient domination result (Agarwal et al., 2021, Lemma 4) for standard
expected return and any fixed reward function r, we obtain for every tabular policy π,

V π
⋆(r)(r)− V π(r) ≤ 1

1− γ

∥∥∥∥∥dπ
⋆(r)
ρ

µ

∥∥∥∥∥
∞

max
π̄∈∆(A)|S|

⟨π̄ − π,∇πV π(r)⟩ . (8)

Plugging in r = rθ := ∇λF (λ(θ)) and using (5), we get

V π
⋆(rθ)(rθ)− V π(rθ) ≤

1

1− γ

∥∥∥∥∥dπ
⋆(rθ)
ρ

µ

∥∥∥∥∥
∞

max
π̄∈∆(A)|S|

⟨π̄ − π,∇θF (λ(θ))⟩ . (9)

As π⋆(r) ∈ argmaxπ V
π(r), we have V π

⋆(r)(r) ≥ V π(r) for every policy π . Using this inequality
with π = π⋆ ∈ argmaxπ F (λ

π) gives

V π
⋆(rθ)(rθ)− V π(rθ) ≥ V π

⋆

(rθ)− V πθ (rθ) = ⟨rθ, λπ
⋆

− λπθ ⟩ ≥ F (λ(θ⋆))− F (λ(θ)) , (10)

where the identity stems from the definition of a value function using occupancy measures and the last
inequality follows from using concavity of F w.r.t. its occupancy measure argument (Assumption 1).
Combining (9) and (10) concludes the proof.

Note that in the last step, we have only used concavity at a given point λπ
⋆

which means that only a
weaker version of Assumption 1 is needed. This means that we can potentially go beyond standard
objectives in RLGU. We leave such investigations for future work.

Gradient domination inequalities can be readily used to show O(1/k) iteration complexity results
for policy gradient methods using similar techniques to Xiao (2022) for instance (see also more
recently Kumar et al. (2024) for actor-critic methods). Zhang et al. (2021) previously provided
global optimality results for a PG algorithm using hidden convexity. However their technique has
several limitations: (a) it does not connect to structural properties of standard expected returns and
standard policy gradients. In particular they do not show gradient domination for RLGU objectives
as developed above and this is explicitly mentioned in their work; and (b) it requires a restrictive
assumption (see (5) below) that is not easily verifiable beyond the tabular policy. We believe that our
proof technique can be extended to the case of the softmax policy building on the results of Mei et al.
(2020) (Lemma 8 specifically). We leave this question for future work.

4 Global Optimality Beyond the Tabular Setting

In this section, we propose a policy gradient algorithm to solve the policy optimization problem (2)
with general utilities for larger state-action spaces. We start by elaborating on the challenges faced
to solve such a large-scale problem. Section 4.1 mainly contains known material from the recent
literature (Zhang et al., 2021), we report it here separately from the problem formulation in section 2
to motivate our algorithmic design. The rest of the section presents our algorithmic contributions.
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4.1 Challenges for Large-scale RLGU

One of the main challenges in solving the general utility problem (2) via a policy gradient algorithm
based on (5) is to estimate the unknown state-action occupancy measure λ(θ) in large scale settings
involving huge state and action spaces. This problem is arguably more delicate than that of estimating
action-value functions in cumulative expected reward RL problems. First, while action-value functions
satisfy a forward Bellman equation, occupancy measures satisfy a backward Bellman flow equation.
This fundamental difference makes it hard to design stochastic algorithms minimizing mean-square
Bellman errors as it is customary in algorithms using function approximation to solve standard RL
problems (see end of appendix B for further explanations). Second and foremost, while prior work
has used Monte Carlo estimates for this quantity, such count-based estimates are not tractable beyond
small tabular settings. Indeed, for very large state-action spaces, it is not tractable to compute and
store a table of count-based estimates of the true occupancy measure containing all the values for all
the state-action pairs. In the next section, we propose an approach to tackle this issue.

Stochastic Policy Gradient. In view of performing a stochastic policy gradient algorithm, we would
like to estimate the policy gradient∇θF (λ(θ)) in (5). We can use the standard reinforce estimator
suggested by Eq. (4). Define for every reward function r (which is also seen as a vector in R|S|×|A|),
every θ ∈ Rd and every H-length trajectory τ simulated from the MDP with policy πθ and initial
distribution ρ the (truncated) policy gradient estimate:

g(τ, θ, r) =

H−1∑
t=0

(
H−1∑
h=t

γhr(sh, ah)

)
∇ log πθ(at|st) . (11)

Given (5), we also need to estimate the state-action occupancy measure λ(θ) (when F is nonlinear)2.
Prior work has exclusively focused on the tabular setting using a Monte-Carlo estimate of this occu-
pancy measure λπθ = λ(θ) (see (1)) truncated at the horizon H by λ(τ) =

∑H−1
h=0 γ

hδsh,ah where
for every (s, a) ∈ S×A, δs,a ∈ R|S|×|A| is a vector of the canonical basis of R|S|×|A|, i.e., the vector
whose only non-zero entry is the (s, a)-th entry which is equal to 1, and τ = {(sh, ah)}0≤h≤H−1 is
a trajectory of length H generated by the MDP controlled by the policy πθ .

Remark 3. (Extension to continuous state-action spaces) Our algorithm can be used in the
continuous (compact) state-action space setting since it only relies on using policy gradients and
MLE which are both scalable. We stick to the discrete state action space notation for simplicity.

4.2 Occupancy Measure Estimation

In this section, we address the challenge of occupancy measure estimation in large state action spaces.
Given a policy πθ, our goal is to estimate the unknown occupancy measure dπθ induced by this policy
using state samples obtained from executing the policy. Since the normalized occupancy measure is a
probability distribution, we propose to perform maximum likelihood estimation. Before presenting
this procedure, we elaborate on the motivation behind approximating the occupancy measure by a
parametrized distribution in a given function class of neural networks for example.

Motivation. Besides the practical motivation of using distribution approximation to scale to larger
state-action space settings, we provide some theoretical motivation. Recall that action-value functions
are linear in the feature map for linear (or low-rank) MDPs for solving standard cumulative sum
RL problems (see Proposition 2.3 in Jin et al. (2020)). Similarly, it turns out that state-occupancy
measures are linear (or affine in the discounted setting) in density features in low-rank MDPs. We
refer the reader to Appendix C for a proof of this statement (see also Lemma 16, 17 in Huang et al.
(2023)). Therefore, in this case, it is natural to approximate occupancy measures via linear function
approximation using some density features. More generally, for an arbitrary MDP, we propose to
approximate the (normalized) state occupancy measure dπθ induced by a policy πθ directly by a
probability distribution in a certain parametric class of probability distributions:

Λ := {pω ∈ ∆(S) |ω ∈ Ω ⊆ Rm } , (12)

where for instance m ≪ |S| . An example of such a parametrization for a given ω ∈ Rm is
the softmax σω defined over the state space by σω(s) := exp(ψω(s))/Z(ω) , where Z(ω) :=

2In the cumulative reward setting, the utility F is linear w.r.t. λ and ∇λF (λ(θ)) is independent of λ(θ) .
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∑
s′∈S exp(ψω(s

′)) and where ψω : S → R is a given mapping which can be a neural network
in practice. For continuous state spaces, practitioners can consider for instance Gaussian mixture
models with means and covariance matrices encoded by trainable neural networks.

Maximum Likelihood Estimation (MLE). For simplicity, we suppose we have access to i.i.d. state
samples following the distribution dπθ throughout our exposition. We refer the reader to Appendix E.1
for a discussion about how to sample such states. Given the parametric distribution class Λ defined
in (12) and a data set D := {si}i=1,··· ,n ∈ Sn of n i.i.d. state samples following the distribution dπθ
induced by the current policy πθ, we construct the standard MLE

d̂πθ := pω∗ , ω∗ ∈ argmax
ω∈Ω

1

n

n∑
i=1

log pω(si) . (13)

An estimator of the state-action occupancy measure λπθ is then given by λ̂πθ (s, a) = d̂πθ (s)πθ(a|s)
for any s ∈ A, a ∈ A (see (1)). Using MLE is important for our scalability goal. Barakat et al. (2023)
recently proposed a different procedure based on mean square error estimation. Please see appendix B
for a detailed comparison with this work highlighting the merits of our approach. In practice, a neural
network learns the parameters of a chosen parametrized distribution class for approximating the
true occupancy measure by maximizing the log-likelihood loss (13) over the samples generated (see
appendix E.1 for sampling).

Proposed Algorithm. Based on sections 4.1 and 4.2, we propose a stochastic policy gradient
algorithm which consists of two main steps: (i) Compute an approximation of the unknown state-
action occupancy measure λπθ ∈ R|S|×|A| for a fixed parameter θ ∈ Rd with MLE using collected
state samples (see (13)); (ii) Perform stochastic policy gradient ascent using the stochastic policy
gradient defined in (11) using the estimated occupancy measure computed in step (i). The resulting
algorithm is Algorithm 1 which is model-free as we do not estimate the transition kernel.

Algorithm 1 PG for RLGU with Occupancy Measure Approximation (PG-OMA)
1: Input: θ0 ∈ Rd, T,N ≥ 1, α > 0, H .
2: for t = 0, . . . , T − 1 do

//Occupancy approximation for pseudo-reward learning
3: Compute the MLE estimator λ̂t = d̂πθt · πθt using policy πθt (see (13)).
4: r̂t = ∇λF (λ̂t)

//Policy parameter update
5: Sample a batch of N independent trajectories (τ (i)t )1≤i≤N of length H using πθt .
6: θt+1 = θt +

α
N

∑N
i=1 g(τ

(i)
t , θt, r̂t) (see (11))

7: end for
8: Return: θT

Remark 4. When running Algorithm 1, note that the vector λ̂t ∈ R|S|×|A| (and hence the vec-
tor rt) is not computed for all state-action pairs. Indeed, at each iteration, one does only need to
compute (rt(s

(t)
h , a

(t)
h ))0≤h≤H−1 where τt = (s

(t)
h , a

(t)
h )0≤h≤H−1 to obtain the stochastic policy

gradient g(τt, θt, rt−1) as defined in (11).

Our occupancy measure estimation step can be seen as a critic for pseudo-reward learning. Notice
though that this critic is not approximating a value function like in standard RL but rather the
occupancy measure which is a distribution.

4.3 Global Optimality for Policy Gradient with Occupancy Measure Approximation

Statistical Complexity of Occupancy Estimation. In this section, we suppose we are given a data
set of i.i.d. state-action pair samples following the (normalized) occupancy measure λπ induced by a
fixed given policy π . As previously explained, we approximate λπ by a function (or parametrized
density) in the function class Λ defined in (12). We make the following assumption to control the
complexity of our function approximation class.
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Assumption 2 (Function approximation class regularity). The following holds true:

(i) (parameter compactness) The set Ω is compact, we denote by Bω := maxω∈Ω ∥ω∥∞;

(ii) (realizability) The (normalized) occupancy measure to be estimated satisfies: λπ ∈ Λ;

(iii) (Lipschitzness) ∀ω, ω̄ ∈ Ω,∀x ∈ X ,∃L(x) ∈ R s.t. |pω(x)−pω̄(x)| ≤ L(x)∥ω̄−ω∥∞
with BL :=

∫
X L(x)dx < +∞ .

Assumption 2 is satisfied for instance for the class of generalized linear models, i.e. Λ := {pω(x) =
g(ωTϕ(x)),∀x ∈ X : pω ∈ ∆(X ), ω ∈ Ω} where g : R → [0, 1] is an increasing Lipschitz
continuous function and ϕ : X → Rd is a given feature map s.t.

∫
∥ϕ(x)∥1dx ≤ BL for someBL > 0.

Notice that features can be normalized appropriately to satisfy the assumption. A similar assumption
has been made in the case of linear MDPs in Huang et al. (2023) (Assumption 1). The realizability
assumption holds in the case of low-rank MDPs since state occupancy measures are linear in
density features in low-rank MDPs (see discussion in section 4.2 and Appendix C). This realizability
assumption can be relaxed at the price of incurring an error due to function approximation that cannot
vanish if the true occupancy measures do not belong to our function approximation class.

We now state our sample complexity result for occupancy measure estimation via MLE in view of our
PG sample complexity analysis. This result relies on arguments developed in the statistics literature
Van de Geer (2000); Zhang (2006). These techniques were adapted to the RL setting for low-rank
MDPs in e.g. Agarwal et al. (2020). Our proof builds on Huang et al. (2023) which we slightly adapt
for our purpose (see Appendix E.2).

Proposition 1. Let Assumption 2 hold true. Then for any δ > 0, the MLE λ̂πθ defined using

(13) satisfies with probability at least 1− δ, ∥λ̂πθ − λπθ∥1 ≤ 6

√
12m log

(
2⌈BωBLn⌉

δ

)
n .

The above result translates into a sample complexity of Õ(mε−2) to guarantee an ε-approximation
of the true occupancy measure (in the l1-norm distance) using samples. We highlight that our sample
complexity only depends on the dimension m of the parameter space and does not scale with the
size of the state-action space. Hence the MLE procedure we use is the key ingredient to scale our
algorithm to large state-action spaces. To the best of our knowledge, existing algorithms for solving
the RLGU problem (with nonlinear utility) are limited to the restrictive tabular setting.

Global convergence guarantees. Now we establish sample complexity guarantees for Algorithm 1.
We start by introducing the assumptions required for our results and discuss their relevance.

Assumption 3 (Policy parametrization). The following holds for every (s, a) ∈ S × A . For
every θ ∈ Rd, πθ(a|s) > 0 . Moreover, the function θ 7→ πθ(a|s) is continuously differentiable
and the score function θ 7→ ∇ log πθ(a|s) is bounded by some positive constant B.

This standard assumption is satisfied for instance by the common softmax policy parametrization
defined for every θ ∈ Rd, (s, a) ∈ S×A by πθ(a|s) = exp(ψ(s,a;θ))∑

a′∈A exp(ψ(s,a′;θ)) ,whereψ : S×A×Rd →
R is a smooth function such that the map ψ(s, a; ·) is twice continuously differentiable for every
(s, a) ∈ S × A and for which there exist lψ, Lψ > 0 s.t. (i) maxs∈S,a∈A supθ ∥∇ψ(s, a; θ)∥ ≤ lψ
and (ii) maxs∈S,a∈A supθ ∥∇2ψ(s, a; θ)∥ ≤ Lψ .
We now make a smoothness assumption on the utility function which is standard in the RLGU
literature (Hazan et al., 2019; Zhang et al., 2020, 2021; Barakat et al., 2023; Ying et al., 2023a). This
assumption captures most of the problems of interest in RLGU including pure exploration (using the
smoothed entropy), learning from demonstrations (using the smoothed KL) as well as standard linear
RL and CMDPs. Other entropic measures or l2 (quadratic) losses are also possible. For instance,
the smoothed entropy defined as Hσ(x) = −x log(x+ σ) (for σ > 0) is 1/(2σ)-smooth w.r.t. the
infinity norm and has been used in RLGU, see e.g. Lemma 4.3 in Hazan et al. (2019).

Assumption 4 (General utility smoothness). There exist constants lλ, Lλ > 0 s.t. for
all λ1, λ2 ∈ Λ, ∥∇λF (λ1)∥2 ≤ lλ and ∥∇λF (λ1)−∇λF (λ2)∥2 ≤ Lλ∥λ1 − λ2∥2 .
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Under Assumptions 3 and 4, the function θ 7→ F (λπθ ) is Lθ-smooth (see Lemma 3 for the
expression). Using this property, the next result shows that our algorithm enjoys a first-order
stationary guarantee in terms of the non-convex general utility objective.

Theorem 2. (Nonconcave general utility) Let Assumptions 3, 4 hold. Then the iterates generated
by Algorithm 1 with step sizes αt ≤ 1/(2Lθ) and T ≥ 1 iterations satisfy:

E[∥∇θ F (λπθτ )∥2] ≤
16(F ⋆ − E[F (λπθ1 )])

αT
+
C1

N
+ C2E[∥λ̂τ − λπθτ ∥22] , (14)

where τ is a uniform random variable over {1, · · · , T} and expectation is w.r.t. all randomness
(in (θt) and τ ).

The above upper bound shows a decomposition of the first order stationarity error into three terms:
the first two are the typical errors incurred by PG methods whereas the third one is due to occupancy
measure approximation. In particular, choosing the number of iterations T , the batch size N (of
sampled trajectories) appropriately and the number n of samples used in MLE for occupancy measure
approximation, we obtain the following sample complexity result.

Corollary 1. Let Assumptions 2, 3, 4 hold. Setting the number of iterations to T = O(ϵ−1),
the batch size for PG to N = O(ϵ−1), the horizon to H = O( 1

1−γ log(
1
ϵ )) and the number of

samples for occupancy measure MLE to n = O(mϵ−1) for some precision ϵ > 0 in Theorem 2,
it holds that E[∥∇θ F (λπθτ )∥2] ≤ ϵ . The total sample complexity is T (N+n)H = Õ(mϵ−2) .a

aThe notation O(·) hides polynomial and logarithmic dependence on problem parameters independent
of the desired accuracy ϵ and the dimension m, Õ(·) hides in addition logarithmic dependence on ϵ.

In several applications in RLGU, the utility function F is concave w.r.t. its occupancy measure
variable. We now turn to proving global performance bounds in this setting.

Notice that the general utility objective is in general nonconcave w.r.t. the policy parameter θ.
Despite this non-concavity, we can exploit the so-called hidden convexity (concavity in our setting)
of the problem Zhang et al. (2021). We require an additional regularity assumption on the policy
parametrization which has been previously made in Zhang et al. (2021); Ying et al. (2023a); Barakat
et al. (2023). This is a local assumption relating parameterized policies and their corresponding
occupancy measures, maintaining the hidden convexity structure. While this assumption holds for a
tabular policy parametrization, it is delicate to relax it further, see e.g. Appendix C in Barakat et al.
(2023) for a discussion.

Assumption 5 (Policy overparametrization). For the softmax policy defined above, the following
three requirements hold: (i) For any θ ∈ Rd, there exist relative neighborhoods Uθ ⊂ Rd
and Vλ(θ) ⊂ Λ respectively containing θ and λ(θ) s.t. the restriction λ|Uθ forms a bijection
between Uθ and Vλ(θ) ; (ii) There exists l > 0 s.t. for every θ ∈ Rd, the inverse (λ|Uθ )−1

is l-Lipschitz continuous; (iii) There exists η̄ > 0 s.t. for every positive real η ≤ η̄, (1−η)λ(θ)+
ηλ(θ∗) ∈ Vλ(θ) where πθ∗ is an optimal policy.

The following result makes use of the concavity of the utility function F to obtain a global optimality
guarantee for the iterates of our algorithm under the assumption that the occupancy measures induced
by the policies encountered during the run of the algorithm are uniformly well-approximated.

Theorem 3. (Concave general utility) Let Assumptions 3 to 5 hold. Assume further that there
exists ϵMLE > 0 s.t. E[∥λ̂t − λ(θt)∥22] ≤ ϵMLE uniformly over T ≥ 1 iterations of Algorithm 1
with step sizes αt ≤ 1/(2Lθ). Then the iterate output θT of Algorithm 1 satisfies for any η < η̄,

E[F ⋆ − F (λ(θT ))] ≤ (1− η)T δ0 + C3
η

α
+ C4

α

η

(
1

N
+ ϵMLE

)
, (15)

for some positive constants C3, C4 explicit in Appendix E.4, (53) and δ0 := E[F ⋆−F (λ(θ0))] .

The above bound shows how the global optimality function value gap depends on the estimation
error ϵMLE of occupancy measures. In the next result, we use Proposition 1 to reduce the estimation
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error. Since occupancy measures are supposed to be realizable, we can approximate them arbitrarily
well using enough samples (see Proposition 1). Indeed by picking the number of samples n =
O(m/ϵ2), the error ϵMLE is smaller than the desired function value gap accuracy ϵ.

We obtain the following sample complexity by specifying the step size and number of iterations of
our algorithm as well as large enough batch size and number of samples for MLE using Proposition 1.

Corollary 2. Let Assumptions 2 to 5 hold. For any given precision ϵ > 0, set T =
1
η log(

δ0
ϵ ), α = O(ϵ), η = O(ϵ2), N = O(ϵ−2), H = O( 1

1−γ log(
1
ϵ )) and n = O(mϵ−2),

then the total sample complexity to obtain E[F ⋆ − F (λ(θt))] ≤ ϵ is T (N + n)H = Õ(mϵ−4) .

4.4 Novelty and Comparison to Prior Work

In this section, we discuss the two most relevant works (Barakat et al., 2023; Huang and Jiang, 2024).

Comparison to Huang and Jiang (2024). They focus primarily on the finite-horizon, expected
return setting, with a brief extension to general utilities leaving global optimality for future work. In
contrast, our work directly targets infinite-horizon discounted RLGU. Furthermore, we establish a
last-iterate global convergence guarantee with a rate for RLGU, improving upon their best-iterate
rate for expected returns. Their analysis does not immediately extend to RLGU. Finally, although we
both use MLE occupancy measure estimation, their method requires estimating both occupancy and
log-gradient occupancy via recursive regression, introducing additional estimation error. Focusing on
the online setting, our method only requires MLE occupancy estimation.

Comparison to Barakat et al. (2023, section 5). Before commenting on the limitations in the
MSE approach of Barakat et al. (2023) for scaling to large spaces, we highlight first two preliminary
points: (a) Global convergence. In contrast to our work which establishes global convergence
guarantees (see Theorem 3, Corollary 2), Barakat et al. (2023) only provide a first-order stationarity
guarantee; (b) Technical analysis. Our occupancy measure MLE estimation combined with our PG
algorithm requires a different analysis even for our first-order stationarity guarantee. We exploit
hidden convexity (similarly to Zhang et al. (2021)) to obtain global optimality and we isolate and
propagate errors induced by occupancy measure approximation in the PG method. This leads to a
function value gap recursion with errors satisfied by the optimality function value gap. See appendix E.
Furthermore, Barakat et al. (2023) propose to approximate the occupancy measure using a specific
mean square error loss estimation procedure whereas we use an MLE procedure. This difference is
important given the main goal and motivation of scaling to larger state action spaces. We argue that
their MSE formulation has important limitations for occupancy measure approximation in terms of
scalability and other fundamental aspects (see appendix B for a detailed discussion).

5 Conclusion

In this paper, we have investigated the question of global optimality of PG algorithms for RLGU
beyond the standard expected return RL setting in both the tabular and large state action space
settings. Promising future directions include extensions to more general policy parameterizations,
continuous state–action spaces, and average reward settings building on recent analysis of policy
gradient methods (Kumar et al., 2025). We hope this work will stimulate further research in view of
designing efficient and scalable algorithms for solving real-world problems.
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B Extended Related Work Discussion

Table 1: Comparison to closest related works about RLGU.
Reference First-order Global Beyond No state space

stationarity rate1 optimality rate2 tabular3 size dependence4

Hazan et al. (2019) ✘ Õ(ϵ−3)& ✘ ✘

Zhang et al. (2020) Õ(ϵ−2)* Õ(ϵ−1)* ✘ ✘

Zhang et al. (2021) Õ(ϵ−3)# Õ(ϵ−2)# ✘ ✘

Zahavy et al. (2021) ✘ Õ(ϵ−3)& ✘ ✘

Barakat et al. (2023) (sec. 4) Õ(ϵ−3)# Õ(ϵ−2)# ✘ ✘

Barakat et al. (2023) (sec. 5) Õ(ϵ−4) ✘ ✓ ✘

Mutti et al. (2023)+ ✘ Õ(ϵ−2)& ✓ ✘

This paper Õ(mϵ−4)§ Õ(mϵ−4)§ ✓ ✓

Õ hides logarithmic factors in the accuracy ϵ, mainly due to the horizon length in the infinite horizon
discounted reward setting.

1 refers to the number of samples (or number of iterations in the deterministic case when specified) to achieve a
given first-order stationarity ϵ, i.e. E[∥∇θF (λ(θ̄T ))∥] ≤ ϵ where θ̄T is sampled uniformly at random from
the iterates of the algorithm {θ1, · · · , θT } until timestep T .

2 refers to the number of samples (or number of iterations in the deterministic case when specified) to achieve
global optimality under convexity of the general utility function F w.r.t. its occupancy measure variable, i.e.
F ∗ −F (λ(θT )) ≤ ϵ where F ∗ is the maximum utility achieved for an optimal policy and θT is the last iterate
of the algorithm generated after T steps.

3 means that the large scale state action space is discussed and addressed, i.e., the work is not restricted to
the tabular setting in which occupancy measures are estimated using a simple Monte Carlo (count-based)
estimator for each state s ∈ S . For a more extended discussion regarding this point and comparison to prior
work, please see the rest of this section below.

4 means that the performance bounds provided for first-order stationarity or global optimality do not depend on
the state space size.

& These results do not hold for the last iterate like for the other results but rather for a mixture of policies in
Hazan et al. (2019) (Theorem 4.4), an averaged occupancy measure over the iterates in Zahavy et al. (2021)
(Lemma 2) and an average regret guarantee leading to a statistical (rather than computational) complexity in
Mutti et al. (2023) (Theorem 5).

* This is for the deterministic setting only, i.e. only reporting the number of iterations required. The rate is
further improved to be linear under strong convexity of the general utility function. Other results provided
report sample complexities.

# These results make use of variance reduction in the tabular setting to obtain improved sample complexities
compared to vanilla PG algorithms.

+ This result considers a different (single trial) problem formulation compared to ours (and other works in the
literature), see detailed discussion below for a comparison.

§ m refers to the dimension of the function approximation class parameter for occupancy measure approximation,
see eq. (12) and section 4.3. It should be noted here that we suppose access to a maximizer of the log-
likelihood (13) (which requires some computational complexity that we do not discuss here), this is common
in sample complexity analysis. Note also that all the other results suffer from a dependence on the size of the
state space (explicit or hidden in the statements).

Comparison to Barakat et al. (2023). The work of Barakat et al. (2023) is mostly focused on the
tabular setting (secs. 1 to 4). Section 5 therein is the only relevant section to our work which focuses
on the large state action space setting. We list here several fundamental differences with our work
and crucial improvements in terms of scalability:

(a) MSE vs MLE. The aforementioned work we compare to here uses a mean squared error
estimator (MSE) whereas we use a maximum likelihood estimator (MLE), this difference
turns out to be crucial for scalability. This is because mean square error estimation for
occupancy measure estimation fails to scale to large state action spaces. To see this, consider
an even simpler setting: suppose we have an unknown distribution p⋆ over a space X and
i.i.d. samples Xi ∼ p⋆ with i = 1, · · · , n. MLE provides a TV bound ∥p− p⋆∥1 ≤ ϵ where
the accuracy ϵ is some |X |-independent quantity that only depends on the sample size and
complexity of the hypothesis class. In stark contrast, mean square regression would lead to
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Ex∼p⋆ [(p(x)− p⋆(x))2] ≤ ϵ. By the Cauchy-Schwartz inequality (which is tight if the error
p(x)− p⋆(x) is relatively uniform over the space), we obtain Ex∼p⋆ [|p(x)− p⋆(x)|] ≤

√
ϵ.

While this bound is close to the TV error bound above, it has an extra p⋆(x) which implies
an extra |X | dependence compared to the MLE approach if p⋆ is close to uniform. This is
fundamentally not scalable. Note that MLE works even for densities over continuous spaces
as it is already extensively used in the statistics literature. Please see also below (in the same
section) for an extended discussion regarding MLE vs MSE;

(b) Dependence on the state space size. Their results do not make the dependence on the state
space explicit and do not show an (exclusive) dependence on the dimension d of the state
action feature map. It is required in their Theorem 5.4 that ρ(s) ≥ ρmin. Notice that if ρ
covers the whole state space like in the uniform distribution case, then 1/ρmin scales as the
state space size. The dependence on this quantity is not made explicit in Theorem 5.4. After
a close investigation of their proof, one can spot the dependence on 1/ρmin (which scales
with S) in their constants (see e.g. in the constant C̃2 in eq. (130) p. 41 in the detailed
version of the theorem, see also eq. (139) p. 42 and eq. (143) p. 43 for more details).

(c) Global convergence. In contrast to our work (see our theorem 2 and corollary 2), they
only provide a first-order stationarity guarantee and they do not provide global convergence
guarantees;

(d) Technical analysis. From the technical viewpoint, our occupancy measure MLE estimation
procedure combined with our PG algorithm requires a different theoretical analysis even for
our first order stationarity guarantee. Please see appendix E below;

(e) Experiments. They do not provide any simulations testing their algorithm in section 5 for
large state action spaces, Fig. 1 therein is only for the tabular setting.

More about MSE vs MLE. It is known that MSE is equivalent to MLE when the errors in a linear
regression problem follow a normal distribution. However, as first preliminary comments regarding
the comparison to the approach in Barakat et al. (2023), we additionally note that: (a) they only
discuss the finite state action space setting for which this connection to MLE is not relevant and
(b) there is no discussion nor any assumption about normality of the errors or any extension to the
continuous state action space setting, we also observe that the occupancy measure values are bounded
between 0 and 1/(1− γ) (or 0 and 1 for the normalized occupancies) which is a finite support that
cannot be the support of a Gaussian distribution.

Beyond these first comments, let us now elaborate in more details on their approach and its potential
regarding scalability to provide further clarifications. Our goal is to learn the (normalized) state
occupancy measure dπθ induced by a given policy πθ which is a probability distribution. In the
discrete setting, this boils down to estimate dπθ (s) for every s ∈ S. Note first that this quantity can
be extremely small for very large state space settings which are the focus of our work, making the
probabilities hard to model especially when using a regression approach.

The approach adopted in Barakat et al. (2023) consists in seeing this estimation problem as a regression
problem. In more details, since the whole distribution needs to be estimated, they propose to consider
an expected mean square error over the state space (rather than solving |S| regression problems - one
for each λπθ (s) - which is not affordable given the scalability objective). Hence the mean square
loss they define is an expected error over a state distribution ρ to obtain an aggregated objective.
This is less usual and specific to our occupancy measure estimation problem (this aggregation is not
the mean over observations). This introduces a scalability issue as we recall that we would like to
estimate dπθ (s) for every s ∈ S , so the aggregated MSE objective considered there (see eq. (11) p. 7
therein) introduces a discrepancy w.r.t. the initial objective of estimating the whole distribution.

We do not exclude that a mean square error approach under suitable statistical model assumptions
might address the occupancy measure estimation problem in a scalable way for large state action
spaces for the continuous setting. However, this is not addressed in Barakat et al. (2023), their
regression approach needs to be amended to address issues we mentioned above to be applicable and
relevant to occupancy measure estimation and we are not sure that can be even achieved to tackle the
problem for both discrete and continuous settings as we do.

Illustrative example for the limitations of MSE vs MLE for probability distribution estimation.
We provide a simple illustrative example. Consider a simple case where the distribution p∗(x) to
be estimated is uniform (p∗(x) = 1/|X | where |X | is the size of the state space). The estimated
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distribution p(x) = 2/|X | on one half of the space and 0 on the other-half i.e this distribution is
non-uniform, assigning a higher probability to events in one part of the space and zero probability to
events in the other part. The expected loss thus incurred in this scenario using regression (namely∑
x∈X p

∗(x)(p(x)− p∗(x))2) scales as O(1/|X |2) after a simple computation. This means that with
large cardinality of the space, it becomes impossible to detect the difference between the two models
even with infinite data when doing regression, whereas MLE does not suffer from this issue.

The primary difference between regression and MLE is that MLE results in a useful TV error bound
(see Zhang (2006) and Huang et al. (2023) (Lemma 12) which we make use of in our analysis) i.e
∥p− p∗∥1 ≤ ϵ, where ϵ is independent of the cardinality of the space |X | and depends only on the
sample size and complexity of the hypothesis class. In contrast, in the case of regression (MSE)
where the expected loss is optimized, we get

Ex∼p∗∥p− p∗∥2 ≤ ϵ,Ex∼p∗∥p− p∗∥ ≤
√
ϵ, (16)

where the second inequality stems from an application of the Cauchy-Schwartz inequality. Note that
we can write the left-hand side of the above last inequality as

∑
x∈X |p(x) − p∗(x)| · p∗(x) ≤ ϵ,

which would eventually lead to the total variation norm upper-bounded by
√
ϵ × |X |, assuming

p∗(x) = 1/|X | to be uniform for illustration, thus incurring a large error while estimating the
distribution.

Comments about limitations of their formulation.

The expected loss is over the initial state distribution (defining the MDP). Take the extreme case
where we initialize at a single state (note that this is also realistic, e.g. a robot starting at a given
deterministic state). Then this means that the expected loss boils down to estimating the occupancy
measure only at that state. However we need to estimate it as accurately as possible for all states and
there is no reason why the occupancy measure should be supported by the same set of states as the
initial distribution (which we should have freedom about). Note also that the occupancy measure
itself depends on the initial distribution. In principle, the distribution used for defining the expected
loss (over state action pairs) should be different from the initial state distribution defining the MDP.

Coverage and scalability problem. Now you may argue that it is enough to take an initial distribution
(or just ρ distribution for the expected loss if one assumes it is unrelated to the initial distribution)
that just needs to cover the support of the occupancy measure we want to estimate. Note that the
occupancy measure is unknown and we want to estimate it so we have a priori no clue about its
support. One might then think about just taking the uniform distribution as an initial distribution
to be sure to cover the whole state space equally. This choice is problematic for several reasons:
(a) First, this introduces a bias: Why would we need to estimate the occupancy measure equally
well in all the states if the occupancy measure is concentrated on a specific set of states which is not
necessarily the entire state space? (b) Second and most importantly, if we make such a choice, we
have now ρmin = 1/|S| (say in the discrete state space setting) and the first order stationarity bound
in Barakat et al. (2023) scales with 1/ρmin, this makes the result not scalable to large state spaces.
You might argue that we do not need the uniform distribution but just to take a distribution covering
the entire state space (not necessarily equally well), i.e. which has a support equal to the entire state
space. Then again, this introduces a bias as the loss minimization might focus on states which are
irrelevant to the occupancy measure we want to estimate. Furthermore, note that MSE might not be
the best metric for comparing distributions because it focuses on pointwise differences (in our case
states or state-action pairs). In our setting, how the weights of the MSE loss are chosen for fitting our
probability distribution of interest is important.

Shortcomings of using MSE compared to MLE. There are a number of shortcomings of using
MSE compared to MLE for fitting a probability distribution in general, we summarize them here:

Consistency and efficiency. MLE maximizes the likelihood function, ensuring the estimator is
consistent (i.e. converges to the true parameter value as the sample size increases) and asymptotically
efficient (i.e. achieves the lowest possible variance among unbiased estimators for large samples). In
contrast, as MSE minimizes mean squared errors, it does not guarantee properties like consistency or
efficiency unless under specific assumptions on the data such as normality of the errors in which case
both coincide. Note that the approach in Barakat et al. (2023) does not fit a Gaussian distribution to the
normalized occupancy measure. We use favorable statistical properties of MLE (see Proposition 1).
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Sensitivity to scaling. MLE operates on probabilities and likelihoods, these are normalized and
scale-invariant. This makes MLE suitable for probability distribution fitting in general. MSE is
rather better used for pointwise estimation in statistics (which is also indirectly used for distribution
estimation via estimating parameters such as Gaussian means), MSE depends on the scale of the
observations which might make it less robust in some settings.

Robustness to outliers. As MLE models probabilities directly, it might be more robust to outliers
depending on the distribution. MSE can be more sensitive to outliers and extreme values as it relies
on squared errors which amplify such outliers. In our setting, this is also relevant as we are interested
in estimating occupancy measures on large state spaces, this induces small probability values (even
extremely small for some of them) and squaring differences makes it worse, see a discussion in
appendix B.

Satisfying distribution constraints. MLE naturally adapts to the distribution’s shape and constraints
to satisfy them. In contrast, MSE can lead to estimates that violate distribution constraints such
as probability normalization or predicting a negative variance for a normal distribution. Therefore,
post-processing might be required to ensure these are satisfied.

Comparison to Theorem 5, section 3 in Mutti et al. (2023). We enumerate the differences between
our results and settings in the following:

1. Problem formulation. As mentioned in the short related work section in the main part,
Mutti et al. (2023) consider a finite trial version of the convex RL problem which has its own
merits (for settings where the objective itself only cares about the performance on the finite
number of realizations the agent can have access to instead of an expected objective which
can be interpreted as an infinite realization access setting, see discussion therein) but this
formulation is different from ours. Both coincide when the number of trials they consider
goes to infinity. Although the problem formulations are different, let us comment further on
some additional differences in our results.

2. Assumptions. They assume linear realizability of the utility function F with known feature
vectors (Assumption 4, p. 17 therein). Our setting differs for two reasons: (1) We do
not approximate the utility function itself but rather the occupancy measure and (2) we
train a neural network to learn an occupancy measure approximation by maximizing a
log-likelihood loss. In our case, our analog (similar but different in formulation and nature)
assumption would be our function approximation class regularity assumption (Assump-
tion 2). We do not suppose access to feature vectors which are given. Nevertheless, we do
suppose that we can solve the log-likelihood optimization problem to optimality (which is
approximated in practice and widely used among practitioners).

3. Algorithm. The algorithm they use is model-based, they repeatedly solve a regression
problem to approximate the utility function F using samples and use optimism for ensuring
sufficient exploration. Our policy gradient algorithm is model-free and we rather rely on
MLE for approximating occupancy measures rather than regression.

4. Analysis. Under concavity of the utility function, we provide a last iterate global optimality
guarantee whereas Mutti et al. (2023) establish an average regret guarantee which is different
in nature. Their proof relies on a reduction to an online learning once-per-episode framework.
Our proof ideas are different: We combine a gradient optimization analysis exploiting hidden
convexity with a statistical complexity analysis for occupancy measure estimation. Overall,
our results combine optimization and statistical guarantees whereas their results focus purely
on the statistical complexity (as their problem is computationally hard).

Comparison to Mutti et al. (2023). Let us list first a few advantages/differences w.r.t. the aforemen-
tioned work:

Advantages of our analysis/approach.

No planning oracle access. We do not suppose access to a planning oracle able to solve any convex
MDP efficiently. This is precisely the point of our optimization guarantees for our PG algorithm
which updates policies incrementally. Nevertheless, we point out here that Mutti et al. (2023) address
a slightly different (finite-trial) convex RL problem which is computationally intractable. Our problem
coincides with their infinite trial variant of the problem.
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No access required to feature vectors for function approximation. We learn occupancy measure
approximations rather than supposing access to a set of features to approximate utilities (i.e. F (λ) in
our notations), i.e. we do not suppose access to a set of basis feature vectors for our approximation.

Model-free and no dependence on state action space size. We do not estimate the transition kernel,
our algorithm is model-free as we only require access to sampled trajectories. In particular, we do
not require to go through the entire state action space to estimate each entry of the transition kernel.
Therefore, our performance bounds do not have dependence on the state action space sizes as their
regret bound.

Policy parameterization. We consider policy parameterization instead of tabular policies which results
in a practical algorithm. We do require a strong assumption though (Assumption 5) to obtain our
global optimality result.

Advantages of our model-free PG algorithm. We inherit the usual advantages of model-free vs
model-based algorithms: (a) Model-free are often simpler to implement because they do not require
learning or using a model of the environment. Our algorithm directly focuses on learning a policy
(even if we do also approximate the occupancy measures but not the transitions themselves like in
model-based approaches); (b) Robustness: Inaccuracies in environment modeling propagate to policy
optimization and can significantly degrade performance. Model-free methods directly learn policies
from interaction with the environment; (c) PG methods are particularly suitable for complex and
high-dimensional environments settings. Of course, model-based methods may also have advantages
over model-free ones.

About hardness of occupancy measure estimation. We comment here on one of the challenges
discussed in the main part as for estimating the occupancy measure. An occupancy measure induced
by a policy π satisfies the identity λπ(s, a) = µ0(s, a) + γ

∑
s′∈S,a′∈A P(s|s′, a′)π(a|s′)λπ(s′, a′)

where µ0 is the initial state action distribution. Notice that the sum is not over the next action s
in transition kernel P but rather the ’backward’ state actions (s′, a′). In contrast, an action value
function in standard RL rather satisfies a ‘forward’ Bellman equation. In contrast to the standard
Bellman equation which can be written using an expectation and leads to a sampled version of the
Bellman fixed point equation, the equation satisfied by the occupancy measure cannot be written
under an expectation form and does not naturally lead to any stochastic algorithm. This issue is
recognized in the literature in Huang et al. (2023) (see also Hallak and Mannor (2017)).

More about assumptions. Besides the points above, we provide a few comments regarding assump-
tions:

1. Some of our assumptions are quite similar. For instance, Mutti et al. (2023) assume linear
realizability of the utility function with known feature vectors (Assumption 4, p. 17 therein)
and then assume access to a regression problem solver with cross-entropy loss to approximate
the utility function. We rather have a similar but different function approximation class
regularity assumption (Assumption 1) and we suppose access to an optimizer which solves
our log-likelihood loss maximization problem to approximate occupancy measures (see Eq.
(8)). We both assume concavity of the utility function.

2. We require smoothness assumptions on the utility function (Assumption 3) whereas Mutti
et al. (2023) only require Lipschitzness of the same function (Assumption 1 therein). This
is because smoothness is important for deriving optimization guarantees as we make use
of gradient information whereas Lipschitzness is enough for developing their statistical
analysis.

3. Mutti et al. (2023) assume access to an optimal planner (as mentioned above), we do not
need such a requirement as we provide optimization guarantees using our PG algorithm.

4. We need policy parametrization assumptions as previously discussed, Mutti et al. (2023) do
not consider policy parametrization.

Recently, Prajapat et al. (2024) and De Santi et al. (2024) proposed to go beyond linear and convex
rewards by considering rewards which are defined globally over trajectories instead of locally over
states.

For more recent work concerning the analysis of policy gradient methods in classical linear RL, we
refer the reader to Liu et al. (2024, 2025).

18



C Occupancy Measures in Low-Rank MDPs

In this section, we show that occupancy measures have a linear structure in the so-called density
features in low-rank MDPs. We provide a proof for completeness. Similar results were established in
Lemma 16, 17 in Huang et al. (2023) for the finite-horizon setting. Throughout this section, we use
the same notations as in the main part of this paper.
Definition C.1 (Low-rank MDPs). An MDP is said to be low-rank with dimension d ≥ 1 if there
exists a feature map ϕ : S × A → Rd and there exist d unknown measures (µ1, · · · , µd) over the
state space S such that for every states (s, s′) ∈ S and every action a ∈ A it holds that

P (s′|s, a) = ⟨ϕ(s, a), µ(s′)⟩ , (17)

with ∥ϕ∥∞ ≤ 1 without loss of generality.

Before stating the result, recall that for any policy π ∈ Π, a state-occupancy measure is defined for
every state s ∈ S as follows:

dπ(s) :=

∞∑
t=0

γtPρ,π(st = s) . (18)

Lemma 1. Consider a low-rank infinite horizon discounted MDP. Then, for any policy π ∈ Π,
there exists a vector ωπ ∈ Rd such that the state-action occupancy measure dπ induced by the
policy π satisfies for any state s ∈ S,

dπ(s) = ρ(s) + ⟨ωπ, µ(s)⟩ , (19)

where we use the notation µ(s) := (µ1(s), · · · , µd(s))T .

Proof. Let π ∈ Π . It follows from the definition of the state-occupancy measure dπ induced by the
policy π that it satisfies the following (backward) Bellman flow equation for every state s ∈ S:

dπ(s) = ρ(s) + γ
∑

s′∈S,a′∈A
P (s|s′, a′)π(a′|s′)dπ(s′) . (20)

Using the definition of a low-rank MDP and (17) in particular, we obtain:

dπ(s) = ρ0(s) + γ
∑

s′∈S,a′∈A
⟨ϕ(s′, a′), µ(s)⟩π(a′|s′)dπ(s′) (21)

= ρ0(s) +

〈
γ

∑
s′∈S,a′∈A

ϕ(s′, a′)π(a′|s′)dπ(s′), µ(s)

〉
(22)

= ρ0(s) + ⟨ωπ, ϕ(s)⟩ , (23)

where we define ωπ := γ
∑
s′∈S,a′∈A ϕ(s

′, a′)π(a′|s′)dπ(s′) .

D Examples of Nonconcave RLGU Problems

Nonconvexity is ubiquitous in real-world applications and we provide below a few examples where
it naturally arises beyond the standard convex RL examples in the literature. First of all, we would
like to mention risk-sensitive RL with non-convex risk measures inspired by Cumulative Prospect
Theory (CPT) (with S-shaped utility curves). Nonconvex criteria are important for modeling human
decisions. See e.g. (Lin and Marcus, 2013; Lin et al., 2018) for a discussion about their relevance
and importance. See also Remark 1 and figure 2 p. 3 in Prashanth et al. (2016).

Applications include for instance:

• Robotics control: in control tasks, it is common to deal with nonconvex objectives such as
minimizing energy consumption while achieving a task or maximizing the success rate of a
manipulation task.

• Portfolio Management: Utility functions in finance may be non-convex due to risk measures
or transaction costs for example.

19



• Traffic Control: RL can be used to optimize traffic flow and minimize congestion. The
utility function may involve non-convex terms such as travel time, queue lengths, and safety
constraints.

• Supply Chain Management: RL can be applied to inventory control, pricing, and logistics
optimization. The utility function may include non-convex components such as demand
forecasting, supply chain disruptions, and dynamic pricing.

We leave the experimental investigation of those applications for future work. We hope our work will
foster more research in this direction.

E Proofs for Section 4.3

E.1 State Sampling for MLE

In this section, we briefly discuss how to sample states following the (normalized) state occupancy dπθ
for a given policy πθ . In particular, these states are used for the MLE procedure described in
section 4.2. The idea consists in sampling states following the transition kernel P and the policy πθ
for a random horizon following a geometric distribution of parameter γ where γ is the discount factor,
starting from a state drawn from the initial distribution. The detailed sampling procedure is described
in Algorithm 2, borrowed and adapted from Yuan et al. (2023) (Algorithm 3 p. 22) which provides a
clear presentation of the idea as well as a simple supporting proof (see Lemma 4 p. 23 therein). This
procedure has been commonly used in the literature, see e.g. Algorithm 1 p. 30 and Algorithm 3
p. 34 in Agarwal et al. (2021).

Algorithm 2 Sampler for s ∼ dπθρ
1: Input: Initial state distribution ρ, policy πθ, discount factor γ ∈ [0, 1)
2: Initialize s0 ∼ ρ, a0 ∼ πθ(·|s0), time step h, t = 0, variable X = 1
3: while X = 1 do
4: With probability γ:
5: Sample sh+1 ∼ P(· | sh, ah)
6: Sample ah+1 ∼ πθ(·|sh+1)
7: h← h+ 1
8: EndWith
9: Otherwise with probability 1− γ:

10: X = 0 (Accept sh)
11: EndOtherwise
12: end while
13: Return: sh

E.2 Proof of Proposition 1

Proposition 1 and its proof are largely based on the work of Huang et al. (2023): We follow and
reproduce their proof strategy here. Since the latter paper deals with a more complex setting that does
not exactly fit our current focus, we provide a proof for clarity and completeness.

We start by defining the concept of l1 optimistic cover. This cover will be immediately useful to
quantify the complexity of our (possibly infinite) approximating function class Γ defined in (12).

In the following, we denote by {X → R} the set of functions defined on X with values in R .
Definition E.1 (Definition 3 in Huang et al. (2023)). For a given function class Λ ⊆ ∆(X ), the
function class Λ̄ ⊆ (X → R) is said to be an l1 optimistic cover of Λ with scale κ > 0 if:

∀λ ∈ Λ, ∃ λ̄ ∈ Λ̄ s.t. ∥λ− λ̄∥1 ≤ κ, and λ(x) ≤ λ̄(x),∀x ∈ X . (24)

Remark 5. Notice that Λ̄ does not need to be a set containing only probability distributions if Λ is a
set of probability distributions, namely the set of (normalized) occupancy measures as we will be
considering in the rest of this section.
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We now provide a general statistical guarantee for the maximum likelihood estimator (MLE) defined
in (13) supposing we have access to an optimistic cover of the space of distributions used for
computing the MLE estimator.

Proposition 2 (Lemma 12 in Huang et al. (2023)). LetD := {xi}ni=1 be a dataset of state-action
pairs drawn i.i.d from some fixed probability distribution λ∗ ∈ ∆(X ) . Let Λ ⊆ ∆(X ) be a
function class such that:

(i) (realizability) λ∗ ∈ Λ ,

(ii) (probability distribution class) ∀λ ∈ Λ, λ ∈ ∆(X ) ,

(iii) (covering) Λ has a finite l1-optimistic cover Λ̄ ⊆ {X → R≥0} with scale κ (see
Definition E.1).

Then, for any δ > 0, we have with probability at least 1− δ,

∥λ̂− λ∗∥1 ≤ κ+

√√√√12 log
(

|Λ̄|
δ

)
n

+ 6κ , (25)

where λ̂ is the MLE estimator defined in (13) computed using the dataset D and |Λ̄| is the
cardinality of the finite cover Λ̄ .

In view of using Proposition 2, the next lemma constructs an l1 optimistic cover for the function
approximation class Λ used to computed the MLE. For the reader’s convenience, we recall that

Λ := {pω : ω ∈ Ω ⊆ Rd, pω ∈ ∆(X )} . (26)

Lemma 2. Let Assumption 2 hold. Then there exists a finite l1-optimistic cover Λ̄ ⊆ {X →
R≥0} of the function class Λ with scale κ > 0 and size at most 2⌈BωBLκ ⌉m where m is the
dimension of the parameter space Ω ⊆ Rm .

Proof. The proof follows the same lines as the proof of Lemma 22 p. 41 in Huang et al. (2023). Let
λ ∈ Λ , i.e., λ = pω for some ω ∈ Ω . Let κ′ > 0. Define the set B(ω, κ′) := κ′⌊ ωκ′ ⌋ + [0, κ′]m

which is a cubic κ′-neighborhood of the point ω ∈ Ω. Now define the function fω for every x ∈ X
as follows:

fω(x) := max
ω̄∈B(ω,κ′)

pω̄(x) . (27)

By construction, we immediately have fω(x) ≥ pω(x) ≥ 0 . Note that fω might not be a probability
distribution though. Then using Assumption 2 we also have

∥fω − pω∥1 =

∫
|fω(x)− pω(x)|dx

=

∫
| max
ω̄∈B(ω,κ′)

pω̄(x)− pω(x)|dx

≤
∫

max
ω̄∈B(ω,κ′)

|pω̄(x)− pω(x)|dx ≤
∫

max
ω̄∈B(ω,κ′)

|L(x)| · ∥ω̄ − ω∥∞dx ≤ BLκ′ .

(28)

To conclude, we observe that there are at most 2 ⌈Bωκ′ ⌉m unique functions in the l1-optimistic cover Λ̄
of Λ which is of scale BLκ′ . Setting κ′ = κ

BL
concludes the proof.

End of Proof of Proposition 1. We conclude the proof by using Proposition 2 together with Lemma 2
above, choosing a scale κ = 1

n where n is the number of samples used for computing the MLE and
plugging |Λ̄| ≤ 2⌈BωBLn⌉m . We obtain after simple upper-bounding inequalities,

∥d̂πθ − dπθ∥1 ≤ 6

√√√√12m log
(

2⌈BωBLn⌉
δ

)
n

. (29)
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E.3 Proof of Theorem 2

The proof follows similar lines to the proof of Theorem 5.4 in Barakat et al. (2023). However, our
occupancy measure estimation procedure is different in the present case. We provide a full proof here
for completeness.

We introduce the shorthand notation ḡt := 1
N

∑N
i=1 g(τ

(i)
t , θt, rt) for this proof. Using the smooth-

ness of the objective function θ 7→ F (λ(θ)) (see Lemma 3 in Appendix E.5) and the update rule of
the sequence (θt), we have

F (λ(θt+1)) ≥ F (λ(θt)) + ⟨∇θF (λ(θt)), θt+1 − θt⟩ −
Lθ
2
∥θt+1 − θt∥2

= F (λ(θt)) + α⟨∇θF (λ(θt)), ḡt⟩ −
Lθα

2

2
∥ḡt∥2

= F (λ(θt)) + α⟨∇θF (λ(θt))− ḡt, ḡt⟩+ α

(
1− Lθα

2

)
∥ḡt∥2

≥ F (λ(θt))−
α

2
∥∇θF (λ(θt))− ḡt∥2 −

α

2
∥ḡt∥2 + α

(
1− Lθα

2

)
∥ḡt∥2

= F (λ(θt))−
α

2
∥∇θF (λ(θt))− ḡt∥2 +

α

2
(1− Lθα)∥ḡt∥2

(i)

≥ F (λ(θt))−
α

2
∥∇θF (λ(θt))− ḡt∥2 +

α

4
∥ḡt∥2

= F (λ(θt))−
α

2
∥∇θF (λ(θt))− ḡt∥2 +

α

8
∥ḡt∥2 +

α

8
∥ḡt∥2

(ii)

≥ F (λ(θt)) +
α

16
∥∇θF (λ(θt))∥2 −

5

8
α∥∇θF (λ(θt))− ḡt∥2 +

α

8
∥ḡt∥2 , (30)

where (i) follows from the condition α ≤ 1/2Lθ and (ii) from 1
2∥∇θF (λ(θt))∥

2 ≤ ∥ḡt∥2 +

∥∇θF (λ(θt))− ḡt∥2 .

We now control the last error term in the above inequality in expectation. Recalling that∇θF (λ(θ)) =
∇θV πθ (r)|r=∇λF (λ(θ)) for any θ ∈ Rd, we have

E[∥∇θF (λ(θt))− ḡt∥2] = E[∥∇θV πθ (r)r=∇λF (∇(θt)) − ḡt∥
2]

≤ 2E[∥∇θV πθ (r)|r=∇λF (λ(θt)) −∇θV
πθ (r)|r=∇λF (λ̂t)

∥2] + 2E[∥∇θV πθ (r)|r=∇λF (λ̂t)
− ḡt∥2] .

(31)

Now, we upper bound each one of the two terms above separately. For convenience, we introduce the
notations rt := ∇λF (λ(θt)) and r̂t := ∇λF (λ̂t) .
Upper bound of the term E[∥∇θV πθ (rt) − ∇θV πθ (r̂t)∥2] in (31). Using the policy gradient
theorem (see (4)) yields

∇θV πθ (rt)−∇θV πθ (r̂t) = E

H−1∑
t′=0

γt
′
[∇λF (λ(θt)))−∇λF (λ̂t)]st′ ,at′ ·

 t′∑
h=0

∇θ log πθ(ah, sh)

 .
(32)
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Notice that the above expectation is only taken w.r.t. the state action pairs in the random trajectory of
length H . Taking the norm, we obtain

∥∇θV πθ (rt)−∇θV πθ (r̂t)∥2
(a)

≤ E

H−1∑
t′=0

γt
′
∥∇λF (λ(θt)))−∇λF (λ̂t)∥∞

∥∥∥∥∥∥
t′∑
h=0

∇θ log πθ(ah, sh)

∥∥∥∥∥∥
2


(b)

≤ E

[
H−1∑
t′=0

2lψ(t
′ + 1)γt

′
∥∇λF (λ(θt)))−∇λF (λ̂t)∥∞

]
(c)

≤ E

[
H−1∑
t′=0

2lψLλ(t
′ + 1)γt

′
∥λ(θt)− λ̂t∥2

]
(d)

≤ 2lψLλ
(1− γ)2

∥λ(θt)− λ̂t∥2 , (33)

where (a) follows from using the triangle inequality together with the definition of the sup norm,
(b) uses Lemma 3 (i) in Appendix E.5, (c) is a consequence of Assumption 4 together with the
fact that ∥x∥∞ ≤ ∥x∥2 for any x ∈ Rd , and (d) stems from the upper bound

∑H−1
t′=0 (t

′ + 1)γt
′ ≤∑∞

t′=0(t
′ + 1)γt

′
= 1

(1−γ)2 . Hence we have shown that

E[∥∇θV πθ (rt)−∇θV πθ (r̂t)∥22] ≤
4l2ψL

2
λ

(1− γ)4
E[∥λ(θt)− λ̂t∥22] . (34)

Upper bound of the term E[∥∇θV πθ (r̂t)− ḡt∥2] in (31). Recalling the definition of ḡt, we have

E[∥∇θV πθ (r̂t)− ḡt∥2] = E

∥∥∥∥∥ 1

N

N∑
i=1

(∇θV πθ (r̂t)− g(τ (i)t , θt, r̂t))

∥∥∥∥∥
2


(a)
=

1

N
E[∥g(τ (i)t , θt, r̂t)−∇θV πθ (r̂t)∥2]

(b)

≤ 1

N
E[∥g(τ (i)t , θt, r̂t)∥2]

(c)

≤
4l2λl

2
ψ

(1− γ)4N
, (35)

where (a) follows from the fact that the expectation of g(τ (i)t , θt, r̂t) w.r.t. the random trajectory τ (i)t
conditioned on θt and r̂t is precisely given by∇θV πθ (r̂t) by the policy gradient theorem (see (4)),
notice also that all the N trajectories are drawn i.i.d. As for (b), use the fact that the variance of a
random variable is upper bounded by its second moment. Finally (c) stems from using the expression
of g(τ (i)t , θt, r̂t) in (11) together with Assumptions 3, 4 and Lemma 3 (i) in Appendix E.5. The proof
of this last point follows similar lines to (33).

Combining both the previous upper bounds we have now established above, we obtain

E[∥∇θF (λ(θt))− ḡt∥2] ≤
C̃1

N
+ C̃2 · E[∥λ(θt)− λ̂t∥22] , (36)

where C̃1 :=
8l2λl

2
ψ

(1−γ)4 and C̃2 :=
8l2ψL

2
λ

(1−γ)4 .

End of Proof of Theorem 2. We are now ready to conclude the proof of our result. Going back to
(30), rearranging the terms and taking expectation, we obtain

E[∥∇θF (λ(θt))∥2] ≤
16

α
E[F (λ(θt+1))− F (λ(θt))] + 10E[∥∇θF (λ(θt))− ḡt∥2]. (37)

Plugging the bound (36) into the previous inequality, we obtain

E[∥∇θF (λ(θt))∥2] ≤
16

α
E[F (λ(θt+1))− F (λ(θt))] +

10C̃1

N
+ 10C̃2 · E[∥λ(θt)− λ̂t∥22] , (38)
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Summing the previous inequality for t = 1 to T , telescoping the right hand side and using the upper
bound F ⋆ on the objective function leads to

1

T

T∑
t=1

E[∥∇θF (λ(θt))∥2] ≤
16(F ⋆ − E[F (λ(θ1))])

αT
+

10C̃1

N
+

10C̃2

T

T∑
t=1

E[∥λ(θt)− λ̂t∥22] . (39)

Setting C1 := 10C̃1 and C2 := C̃2 gives the desired result.

E.4 Proof of Theorem 3

The proof of this result borrows some ideas from Zhang et al. (2021) and Barakat et al. (2023).
However the algorithm we are analyzing is different and the proof deviates from the aforementioned
results accordingly.
Remark 6. A different technical analysis can be found in Fatkhullin et al. (2023) by considering a
particular case of their theorem 5 dealing with stochastic optimization under hidden convexity. How-
ever, their general setting is not focused on our specific RLGU setting using policy parametrization
and specifying the assumptions needed as a consequence. More importantly, we are considering
a context in which unknown occupancy measures are approximated via function approximation
using relevant collected state samples and our theorem accounts for the induced error. In contrast,
Fatkhullin et al. (2023) assume access to an unbiased estimate of the gradient of the utility function
which is not readily available in our RLGU setting since occupancy measures are unknown and
estimated via function approximation with a supporting sample complexity guarantee. Besides these
differences, we conduct a different analysis which is rather inspired by the proofs in Zhang et al.
(2021) and Barakat et al. (2023) as previously mentioned.

It follows from smoothness of the objective function θ 7→ F (λ(θ)) (see (30)) that for every iteration t,

F (λ(θt+1)) ≥ F (λ(θt)) +
α

16
∥∇θF (λ(θt))∥2 −

5

8
α∥∇θF (λ(θt))− ḡt∥2 +

α

8
∥ḡt∥2 . (40)

For any η < η̄, the concavity reparametrization assumption implies that (1− η)λ(θt) + ηλ(θ∗) ∈
Vλ(θt) and therefore we have

θη := (λ|Uθt )
−1((1− η)λ(θt) + ηλ(θ∗)) ∈ Uθt . (41)

It also follows from the smoothness of the objective function θ 7→ F (λ(θ)) that

F (λ(θt)) ≥ F (λ(θη))− ⟨∇θF (λ(θt)), θη − θt⟩ −
Lθ
2
∥θη − θt∥2 . (42)

Combining (40) and (42), we obtain

F (λ(θt+1)) ≥ F (λ(θη))− ⟨∇θF (λ(θt)), θη − θt⟩ −
Lθ
2
∥θη − θt∥2

+
α

16
∥∇θF (λ(θt))∥2 −

5

8
α∥∇θF (λ(θt))− ḡt∥2 +

α

8
∥ḡt∥2 . (43)

Now, pick a ≤ 1
16 , using Young’s inequality gives

⟨∇θF (λ(θt)), θη − θt⟩ ≤ aα∥∇θF (λ(θt))∥2 +
1

aα
∥θη − θt∥2 . (44)

Plugging this inequality into (43) yields

F (λ(θt+1)) ≥ F (λ(θη)) + (
α

16
− aα)∥∇θF (λ(θt))∥2 +

α

8
∥ḡt∥2

−
(
Lθ
2

+
1

aα

)
∥θη − θt∥2 −

5

8
α∥∇θF (λ(θt))− ḡt∥2 . (45)

Therefore, since a ≤ 1
16 , we obtain

F (λ(θt+1)) ≥ F (λ(θη))−
(
Lθ
2

+
1

aα

)
∥θη − θt∥2 −

5

8
α∥∇θF (λ(θt))− ḡt∥2 . (46)

Using the definition of θη and the concavity of F (Assumption 1), we now control each one of the
terms F (λ(θη)) and ∥θη − θt∥2 .
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(i) By concavity of F (Assumption 1) and using the definition of θη , we have

F (λ(θη)) = F ((1− η)λ(θt) + ηλ(θ∗)) ≥ (1− η)F (λ(θt)) + ηF (λ(θ∗)) . (47)

(ii) Using the uniform Lipschitzness of the inverse mapping (λ|Uθt )
−1 (see Assumption 5), we

have

∥θη − θt∥2 = ∥(λ|Uθt )
−1((1− η)λ(θt) + ηλ(θ∗))− (λ|Uθt )

−1(λ(θt))∥2

≤ l2θη2∥λ(θt)− λ(θ∗)∥2

≤ 4l2θη
2

(1− γ)2
. (48)

Injecting (47) and (48) into (46) yields

F (λ(θt+1)) ≥ (1−η)F (λ(θt))+ηF (λ(θ∗))−
(
Lθ
2

+
1

aα

)
4l2θ

(1− γ)2
η2−5

8
α∥∇θF (λ(θt))−ḡt∥2 .

(49)
Rearranging the above inequality, adding F ∗ to both sides, taking expectation and using the nota-
tion δt := E[F ∗ − F (λ(θt))], we obtain

δt+1 ≤ (1− η)δt +
(
Lθ
2

+
1

aα

)
4l2θ

(1− γ)2
η2 +

5

8
αE[∥∇θF (λ(θt))− ḡt∥2] . (50)

Recall then from (36) that

E[∥∇θF (λ(θt))− ḡt∥2] ≤
C̃1

N
+ C̃2 · E[∥λ(θt)− λ̂t∥22] . (51)

Since E[∥λ(θt)− λ̂t∥22] ≤ ϵMLE uniformly over the iterations, we get by combining (50) and (51) that

δt+1 ≤ (1− η)δt +
(
Lθ
2

+
1

aα

)
4l2θ

(1− γ)2
η2 +

5

8
α

(
C̃1

N
+ C̃2ϵMLE

)
. (52)

Finally, unrolling this recursion gives

δT ≤ (1− η)T δ0 +
(
Lθ
2

+
1

aα

)
4l2θ

(1− γ)2
η +

5

8

α

η

(
C̃1

N
+ C̃2ϵMLE

)
. (53)

E.5 Useful technical result
Lemma 3 (Lemma 5.3, Zhang et al. (2021)). Let Assumptions 3 and 4 hold. Then, the following
statements hold:

(i) ∀θ ∈ Rd ,∀(s, a) ∈ S×A, ∥∇ log πθ(a|s)∥ ≤ 2lψ , ∥∇2
θ log πθ(a|s)∥ ≤ 2(Lψ+ l

2
ψ) ,

and ∥∇θF (λ(θ))∥ ≤ 2lψlλ
(1−γ)2 .

(ii) The objective function θ 7→ F (λπθ ) is Lθ-smooth with Lθ =
4Lλ,∞l2ψ
(1−γ)4 +

8l2ψlλ
(1−γ)3 +

2lλ(Lψ+l
2
ψ)

(1−γ)2 .

F Future Work

We comment here on a few future directions of improvement:

• In our PG algorithm, the estimations of the state occupancy measure need to be relearned for
each policy parameter θt. We believe a regularized policy optimization approach could lead
to a more efficient procedure. Indeed, by enforcing policy parameters to be not too far from
each other, it would allow to reuse estimations of the occupancy measure from previous
iterations to obtain better and more reliable estimations.
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• The state-occupancy measure can be very complicated and hence difficult to estimate, espe-
cially in complex high-dimensional state settings. The use of massively overparametrized
neural networks for occupancy measure approximation might therefore be of much help in
such complex settings as practice shows that overparametrized neural networks do perform
well in general. Establishing theoretical guarantees in this regime is certainly an interesting
question to extend our work.

• It would definitely be interesting to conduct experiments in very large scale environments
such as DMLab or Atari. Our work makes progress towards solving larger scale real-world
RLGU problems and offers a promising approach supported by theoretical guarantees.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide clear statements in line with the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of some of our assumptions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide complete proofs in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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