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Abstract
Sharpness-aware minimisation (SAM) aims to improve the generalisation of gradient-based learn-
ing by seeking out flat minima. In this work, we establish connections between SAM and mean-
field variational inference (MFVI) of neural network parameters. We show that both these methods
have interpretations as optimizing notions of flatness, and when using the reparametrisation trick,
they both boil down to calculating the gradient at a perturbed version of the current mean param-
eter. This thinking motivates our study of algorithms that combine or interpolate between SAM
and MFVI. We evaluate the proposed variational algorithms on several benchmark datasets, and
compare their performance to variants of SAM. Taking a broader perspective, our work suggests
that SAM-like updates can be used as a drop-in replacement for the reparametrisation trick.

1. Introduction

The training loss of overparametrized models often has several equally low minima, which may
differ widely in their performance at test time. The most salient effort to characterise which minima
lead to better generalisation is the one that links flatness to generalisation [3–5, 9–11]. Motivated by
this, SAM aims to directly bias optimization towards flat regions leading to substantial improvement
in generalisation while only doubling the computational cost per iteration.

Other methods, such as MFVI and Evolution Strategies (ES) also have flatness-seeking interpre-
tations. The pursuit of flat minima was originally motivated by a Bayesian, minimum description
length (MDL) argument [9]. Thus, it is not surprising that minimizing a variational Bayesian ob-
jective, itself an estimate of the description length of training data [8], favours flat minima. This
connection between variational Bayesian deep learning and SAM has remained largely unexplored.
In this work we show that the connections between MFVI and SAM are more than philosophical.

Concrete implementations of SAM and MFVI (with the reparametrization trick) both calculate
gradients at a perturbed point around the current parameter. While SAM takes the worst-case pertur-
bation, MFVI uses a random Gaussian perturbation. In this sense, the SAM update can be thought
of as a biased deterministic approximation replacing the unbiased but high-variance single-sample
Monte Carlo gradient in MFVI. Exploring this further, we make the following contributions:
1. We establish connections between SAM and MFVI, characterising and comparing their flatness-

seeking inductive biases (Appendix A, B).
2. We propose the algorithm VariationalSAM, which combines aspects of SAM and MFVI (C).
3. We compare all methods on benchmark datasets (CIFAR-10 and CIFAR-100).
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2. Sharpness-Aware Minimization and Mean-Field Variational Inference

2.1. Sharpness-Aware Minimization (SAM)

In this section, we present SAM with a slight change in notation relative to original works in order
to make connections to variational methods more apparent later. Denoting the parameter by µ, and
the number of parameters by p, the idealized loss function SAM aims to minimize can be written as

LSAM(µ,Σ) = L(µ) + max
ϵTΣ−1ϵ≤p

[L(µ+ ϵ)− L(µ)] + α∥µ∥22 (1)

Σ is any positive definite matrix. Setting Σ = ρ2

p I , where ρ is a constant parameter recovers the
standard SAM [6], while setting Σ as a function of µ, recovers newer variants e.g. Adaptive SAM
(ASAM) [15] and Fisher SAM (FSAM) [12]. The parameter α > 0 controls L2 regularization.
Computing gradients of (1) with respect to µ is intractable in general, hence an approximation is
used. Taking a first-order Taylor expansion of L we can approximate the optimal ϵ [6, 12, 15]:

ϵ∗(µ) =
√
p

Σ∇⊤
θ L(µ)√

∇⊤
θ L(µ)Σ∇θL(µ)

(2)

where ∇⊤
θ L(µ) denotes the gradient of the loss evaluated at µ. For reasons that will be clear later,

we introduce new notation η(µ) and re-express ϵ∗ from η as follows:

ϵ∗(µ) = Σ
1
2 η(µ), where η(µ) =

√
pg̃(µ)

∥g̃(µ)∥2
and g̃(µ) = Σ

1
2∇⊤

θ L(µ) (3)

The SAM update direction is obtained by plugging this estimate back into (1) and ignoring the
dependence of η on µ when differentiating the resulting expression:

∇⊤
µLSAM ≈ ∇⊤

θ L(µ+Σ
1
2 η(µ)) + 2αµ (4)

Note that computing this update direction requires backpropagation twice - first to calculate η(µ),
and second to evaluate∇⊤

θ L - thus doubling the computational cost.

2.2. Mean-Field Variational Inference (MFVI)

We can also take an approximate Bayesian approach to inferring model parameters from data. We
start with a prior distribution, p(θ) over the parameters θ, which we choose to beN (0, σ0I). We then
attempt to infer the posterior distribution of weights using the Bayes’ rule, p(θ|D) ∝ e−NL(θ)p(θ),
where N denotes the number of data points and we assumed that the loss function L calculates the
average negative log likelihood of i. i .d. observations. This operation being intractable, we use an
approximate posterior q(θ), chosen to be Gaussian with mean µ and covariance Σ.

Minimizing the KL-divergence between this approximate q and the true posterior yields the
following objective function for µ and Σ:

LMFVI(µ,Σ) = Eθ∼N (µ,Σ)L(θ) +
1

N
KL

[
N (µ,Σ)∥N (0, σ2

0I)
]

(5)

When Σ is chosen to be diagonal, the minimization of (5) is called mean-field variational inference
(MFVI). Here, we liberally extend this name to algorithms where Σ is non-diagonal. Dropping the
KL term from (5) yields variational optimization (VO) [22] and evolution strategies [7, 19, 23].
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We can estimate the gradients of LMFVI using the reparametrization trick [13]. We also expand
the KL divergence term, and substitute α := 1

Nσ2
0

to obtain:

∇⊤
µLMFVI(µ,Σ) = Eη∼N (0,I)∇⊤

θ L(µ+Σ
1
2 η) + 2αµ. (6)

We approximate this by a single-sample Monte Carlo estimate and get the update direction:

∇⊤
µLMFVI(µ,Σ) ≈ ∇⊤

θ L(µ+Σ
1
2 η) + 2αµ, where η ∼ N (0, I) (7)

Note the similarity between Eqns. (4) and (7). They are of precisely the same form except for the
perturbation η: in SAM, η is chosen to be the worst-case perturbation calculated deterministically
from µ by taking a gradient, while in MFVI, η is drawn from a standard normal. Throughout this
work, we will refer to the variant of MFVI where we fix Σ = ρ2

d I as RandomSAM, or LRSAM(µ).

2.3. Exploring the relationship

Name perturbation covariance Σ = Penalty

SAM [6] worst-case fixed ρ2

p I KL =L2

Random SAM (MFVI µ only) Gaussian fixed ρ2

p I KL

MFVI Gaussian learned diag(σi) KL

Variational SAM worst-case learned diag(σi) KL

Adaptive SAM [15] worst-case µ-adaptive diag(| 1µi
|) L2

Fisher SAM [12] worst-case µ-adaptive diag(F (µ)) L2

Evolution Strategy (ES) [2, 19] Gaussian fixed ρ2

p I none
CMA-ES [7], VO [22], NES [23] Gaussian learned diag(σi) none

Table 1: An overview of methods mentioned in this work. All methods can be related to MFVI or
SAM by changing the perturbation type, shape of Σ, or penalty terms. Random SAM is
a variation of MFVI with fixed Σ = ρ2

p I and Variational SAM is the version of MFVI,
where we learn Σ.

SAM as an upper bound on the Variational Objective: The similarity between the SAM and
MFVI updates is not surprising given that LSAM can be considered as a loose upper bound on
LMFV I when the variance Σ is sufficiently small, and the number of parameters, p is sufficiently
large. This is because in high dimensions, samples from N (µ,Σ) concentrate around the ellipsoid
(x − µ)⊤Σ−1(x − µ) = p. Thus, any expectation over the N (µ,Σ) can be upper bounded by the
maximum value within the ellipsoid i. e. max(x−µ)⊤Σ−1(x−µ)≤p L(θ)

This upper bound relationship is exploited in the proof of theorems used to justify SAM[6],
ASAM[15] and FSAM [12]. Those proofs therefore imply an even stronger theoretical justification
for MFVI as a means to achieve good generalisation.

Implicit regularization As discussed, both SAM and MFVI have flatness-seeking inductive bi-
ases. But can we compare these biases, or connect them to notions of sharpness we understand
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better? Here, we characterize the implicit regularization towards flat minima in terms of higher
order derivatives, borrowing techniques from [1, 20, 21]. We summarise these in the following four
propositions (we set α = 0 ignoring the L2 or KL penalties for readability): In the first row

SAM MFVI
Analysis of idealized loss
(what it says on the box)

L(µ) +
√
p||g(µ)||Σ L(µ) + 1

2Tr[ΣH(µ)]

Analysis SGD dynamics
(what the algorithm does)

L(µ) +
√
p||g(µ)||Σ + δ

4 ||g(µ)||
2
2 L(µ) + δ

4Tr[ΣH(µ)2] + δ
4 ||g(µ)||

2
2

Table 2: Summary of the flatness-seeking regularization properties of SAM and MFVI.

we approximate the idealized loss functions of SAM (Eqn. (1)) and MFVI (Eqn. (5)) in terms of
higher order derivatives. SAM approximately penalizes the norm of the gradient, while MFVI pe-
nalizes the trace of the Hessian. Near minima, Tr[ΣH(µ)] is a good measure of sharpness, but it can
take negative values around saddle points and local maxima. In the second row we approximate
the implicit regularization properties of stochastic gradient descent with SAM (Eqn. (4)) or MFVI
gradients (Eqn. (7)), with small but finite learning rate δ. The δ

4∥g(µ)∥ term represents the implicit
bias of GD with finite step size as in as in [21]. SAM’s flatness penalty is the same as the idealized,
but for MFVI the penalty contains the trace of the Hessian squared, which is now always positive.
These results show us the regularizing properties of both SAM and MFVI. The detailed theorems
and proof can be found in Appendix A, B. In Figure 1 we illustrate the sharpness-avoidance of
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Figure 1: Illustration of MFVI’s and SAM’s bias towards flatter minima on a 2D toy example. A:
The original loss L [12], has two minima, a sharp and a wide one. B: in MFVI, averaging
over the Gaussian variational posterior smoothes out the sharper minimum, increasing
the attraction basin of the flat one. C: considering the worst-case within a Euclidean ball
achieves a similar transformation D: the SAM update relies on a Taylor approximation,
which does not apply in highly non-linear regions. (in all cases ρ = 8).

LSAM and LRSAM on a 2D toy example originally introduced in [12]. We can see that both trans-
formations are effective at reducing the attraction basin of the sharp minimum. However, it is still a
question which translates better to high-dimensional problems we encounter in deep learning, and
which one leads to better generalization.

The above connections between MFVI and SAM motivate our two main research questions
which we investigate in the rest of this report:
1. All things being equal, is SAM or RandomSAM (MFVI with fixed Σ = ρ2

p I more effective at
finding minima that generalise well?
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2. It is possible to learn Σ in SAM via gradient descent along with µ as in MFVI. This results in an
algorithm we call VariationalSAM. Does this have advantages over SAM where Σ is fixed.
(Details of the algorithm are in Appendix C, E with a PAC-Bayes.)

3. Image Classification Experiments

In this section, we empirically assess the generalisation performance of the mentioned algorithms:
vanilla SGD, SAM, RandomSAM (RSAM) and VariationalSAM (VSAM). Our implementations of
these methods is open source, and can be accessed in this repository. Details of the parameters of
the experiments can be found in Appendix D.

CIFAR-10 CIFAR-100
WideResNet 28-2 WideResNet 28-10 WideResNet 28-2 WideResNet 28-10

SGD 95.90±0.07 96.97±0.12 74.32±0.12 80.23±0.0040

SAM 96.10±0.11 97.20±0.07 76.25±0.27 83.26±0.0004

VSAM 94.18±0.11 96.95±0.42 74.74±0.29 81.72±0.0200

RSAM 96.08±0.13 97.11±0.05 75.78±0.05 80.58±0.0006

Table 3: Image Classification

SAM visibly outperforms all other methods in all experiments. However, on CIFAR-10, Ran-
domSAM performs almost as well as SAM. Given that RandomSAM is a much simpler method
operating with random noise and only one backpropagation, this result somewhat weakens the ad-
vantages of SAM. It raises the question whether the superior results of SAM on larger datasets could
be reproduced by other methods using random perturbations in the parameter space. On CIFAR-100
we see a significant gap in performance, however this may be due to our limited computing budget
not allowing for more extensive grid search of parameters.

Our adaptive version of SAM, Variational SAM, does not appear to work better than SAM.
This may be because during training, Σ starts to increase, and often reaches a magnitude where the
Taylor approximation underlying SAM no longer holds. This raises the question whether random
MFVI would have an advantage over SAM when more flexible covariance structures are used.

Although the evaluation of Adaptive SAM and Fisher SAM are not in the focus of this paper,
we have included a limited set of results in Appendix G for comparison.

4. Summary and Future Work

In this work, we have provided a novel interpretation of SAM, from the angle of Variational In-
ference. This led to the comparison of SAM with methods taken from Variational Inference: Ran-
domSAM (Variational Optimization) and Variational SAM. The latter method performed rather
unpromisingly. Interestingly, RandomSAM performed similarly to SAM on the CIFAR-10 dataset.
This raises questions about optimality of SAM in biasing the optimisation against sharp minima,
which we would like to explore in the future. For example, one could construct an algorithm that
interpolates between SAM and RandomSAM by adding random noise to the SAM perturbation.
In most experiments, a limitation of computational power has prevented extensive grid-searches on
the hyperparameters in our models. Therefore, the reported test accuracies can likely be improved
with further parameter calibration.

5

https://github.com/zsiga007/Rethinking-SAM


RETHINKING SHARPNESS-AWARE MINIMIZATION AS VARIATIONAL INFERENCE

References

[1] David G. T. Barrett and Benoit Dherin. Implicit gradient regularization. CoRR,
abs/2009.11162, 2020. URL https://arxiv.org/abs/2009.11162.

[2] H.G. Beyer and HP. Schwefel. Evolution strategies - a comprehensive introduction. Natural
Computing, 1(1):3–52, March 2002. doi: 10.1023/A:1015059928466.

[3] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Chris-
tian Borgs, Jennifer T. Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Bi-
asing gradient descent into wide valleys. CoRR, abs/1611.01838, 2016. URL http:
//arxiv.org/abs/1611.01838.

[4] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can general-
ize for deep nets. CoRR, abs/1703.04933, 2017. URL http://arxiv.org/abs/1703.
04933.

[5] Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters than training data. CoRR,
abs/1703.11008, 2017. URL https://arxiv.org/abs/1703.11008.

[6] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware
minimization for efficiently improving generalization. CoRR, abs/2010.01412, 2020. URL
https://arxiv.org/abs/2010.01412.

[7] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9(2):159–195, 2001. doi: 10.1162/
106365601750190398.
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5. Appendix

A. Implicit regularization of SAM

Proposition 1 The following approximation holds for the SAM objective (Σ = ρ2

p I)

LSAM(µ) ≈ L(µ) + ρ∥∇θL(µ)∥2. (8)

Furthermore, for general Σ, this takes the form

LSAM(µ,Σ) ≈ L(µ) +
√
p∥∇θL(µ)∥Σ = L(µ) +

√
p
√
∇⊤

θ L(µ)Σ∇θL(µ). (9)

Proof Plugging the solution ϵ∗ in (Eqn. (2)) into the SAM objective and performing a first-order
Taylor approximation, we arrive at

LSAM(µ,Σ) = maxϵTΣ−1ϵ<pL(µ+ ϵ)

= L(µ+ ϵ∗)

= L(µ) + ϵ∗⊤∇θL(µ) +O(ϵ∗⊤ϵ∗)

= L(µ) +
√
p

∇⊤
θ L(µ)Σ√

∇⊤
θ L(µ)Σ∇θL(µ)

∇θL(µ) +O(ϵ∗⊤ϵ∗)

= L(µ) +
√
p
√
∇⊤

θ L(µ)Σ∇θL(µ) +O(ϵ∗⊤ϵ∗),

where we have used that Σ is a symmetric matrix. In order to show that the error term is controlled,
let us use express ϵ∗ as in (Eqn. (3)) as ϵ∗ = Σ

1
2 η. Then

ϵ∗⊤ϵ∗ = η⊤Ση. (10)

From (Eqn. (3)), we see that ∥η∥2 =
√
p, which means that as long as the largest (in magnitude)

eigenvalue of Σ, λmax < K 1
p for some K constant, we have η⊤Ση < K. In the special case of

SAM, we have Σ = ρ2

p I , hence the error term scales with ρ2.

Proposition 2 Full batch gradient descent using the SAM step follows a path that is closest to the
exact continuous path given by µ̇ = −∇µL̃SAM(µ), where L̃SAM(µ) is given by

L̃SAM(µ) ≈ L(µ) +
√
p∥∇θL(µ)∥Σ +

δ

4
||∇θL(µ)||22, (11)

where δ is the stepsize of the gradient descent algorithm.

Proof In the proof, we follow [1, 21] in finding a modified loss surface, along which the exact path
of gradient flow is closer to the discrete steps of gradient descent on the approximated gradient of
the SAM objective (Eqn. (4)). The general formula in [1, 21] of the modified loss surface for loss
function E(µ) := LSAM(µ) is

L̃SAM(µ) = LSAM(µ) +
δ

4
||∇θLSAM(µ)||22. (12)
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Now we can use the approximation in Proposition 1. In the following, we concentrate on the general
case (general Σ). For readability, we use the notation∇θLSAM(µ) = g(µ).

L̃SAM(µ) = L(µ) +
√
p∥g(µ)∥2 +

δ

4

∣∣∣∣∣∣g(µ) +√p∇θ∥g(µ)∥Σ
∣∣∣∣∣∣2
2
. (13)

We can approximate the rightmost term as∣∣∣∣∣∣g(µ) +√p∇θ∥g(µ)∥Σ
∣∣∣∣∣∣2
2
=

(
g⊤(µ) +

√
p∇⊤

θ ∥g(µ)∥Σ
)(
g(µ) +

√
p∇θ∥g(µ)∥Σ

)
≈ ∥g(µ)∥22,

(14)

since the first two of the remaining terms scale with
√
pΣ

1
2 , which can be made smaller than ρ for

sufficiently small Σ. The last remaining term scales with pΣ, which can be made smaller than ρ2.
Since we also have the scaling factor δ in (Eqn. (13)), we may neglect these terms.

B. Sharpness avoidance of variational optimization

Proposition 3 The following approximation holds for the RandomSAM with constant Σ = ρ2

p I:

LRSAM(µ) ≈ L(µ) +
ρ2

2p
TrH(µ) (15)

where H(µ) denotes the Hessian. For MFVI with general (but symmetric positive definite) Σ we
have the following approximation:

LMFVI(µ,Σ) ≈ L(µ) +
Tr [ΣH(µ)]

2
(16)

Proof Recall the objective of MFVI

LMFVI(µ) = L(µ) +
[
Eη∼N (0,I)L(µ+Σ

1
2 η)− L(µ)

]
, (17)

where, similarly as in (Eqn. (1)), the term in brackets can be interpreted as a sharpness penalty.
Note that we have fixed Σ = σ2I for a constant σ. Using a second-order Taylor expansion around
µ, where H(µ) is the Hessian at µ,

LMFVI(µ) ≈ Eη∼N (0,I)

[
L(µ) + η⊤(Σ

1
2 )⊤∇θL(µ) +

1

2
η⊤(Σ

1
2 )⊤H(µ)Σ

1
2 η

]
(18)

= L(µ) +
1

2
E
[
Tr(η⊤(Σ

1
2 )⊤H(µ)Σ

1
2 η)

]
(19)

= L(µ) +
1

2
E
[
Tr(ηη⊤(Σ

1
2 )⊤H(µ)Σ

1
2 )
]

(20)

= L(µ) +
1

2
Tr
[
E(ηη⊤)(Σ

1
2 )⊤H(µ)Σ

1
2

]
(21)

= L(µ) +
1

2
Tr
[
ΣH(µ)

]
. (22)

If Σ = ρ2

p I , we recover the first part of the theorem.
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Since the MFVI objective in (Eqn. (17)) is not typically available in closed form, in practice
one uses a single-sample Monte Carlo estimate based on the reparametrization trick. This yields a
stochastic objective as follows.

LMFVI(µ) ≈ L(µ+Σ
1
2 η), η ∼ N (0, I) (23)

We can follow the method of [? ] to see that SGD on the single-sample Monte Carlo estimates of
the gradient display additional implicit regularisation towards wider minima. This is carried out in
Proposition 4.

Proposition 4 Gradient descent with MFVI step follows a path that is closest to gradient flow path
on L̃MFVI(µ,Σ), where L̃MFVI(µ,Σ) is the following

L̃MFVI(µ,Σ) ≈ Eη∼N (0,I)

[
L(µ+Σ

1
2 η) +

δ

4
||∇θL(µ+Σ

1
2 η)||22

]
(24)

≈ L(µ) +
δ

4
||g(µ)||22 +

δ

4
Tr[ΣH(µ)2] (25)

where g(µ+Σ
1
2 η) = ∇θL(µ+Σ

1
2 η).

Proof
By [1, 21], we have the first approximation, i.e.

L̃MFVI(µ,Σ) ≈ Eη∼N (0,I)

[
L(µ+Σ

1
2 η) +

δ

4
||∇θL(µ+Σ

1
2 η)||22

]
(26)

Now with Taylor expansion we get

L(µ+Σ
1
2 η) = L(µ) + (Σ

1
2 η)Tg(µ) +O(||Σ

1
2 η||22) (27)

and

g(µ+Σ
1
2 η) = g(µ) +H(µ)Σ

1
2 η +O(||Σ

1
2 η||22) (28)

Now by using (26), (27) and (28) we obtain

L̃MFVI(µ,Σ) ≈ Eη∼N (0,I)

[
L(µ) + (Σ

1
2 η)⊤g(µ) +

δ

4
(g(µ) +H(µ)Σ

1
2 η)⊤(g(µ) +H(µ)Σ

1
2 η)

]
(29)

= L(µ) +
δ

4
Eη∼N (0,I)

[
g(µ)⊤g(µ) + 2g(µ)⊤H(µ)Σ

1
2 η + (H(µ)Σ

1
2 η)⊤(H(µ)Σ

1
2 η)

]
(30)

= L(µ) +
δ

4
g(µ)⊤g(µ) +

δ

4
E
[
Tr

[
(H(µ)Σ

1
2 η)⊤(H(µ)Σ

1
2 η)

]]
(31)

= L(µ) +
δ

4
g(µ)Tg(µ) +

δ

4
E
[
Tr

[
ηηTΣ

1
2H(µ)2Σ

1
2

]]
(32)

= L(µ) +
δ

4
||g(µ)||22 +

δ

4
Tr

[
E
[
ηηTΣ

1
2H(µ)2Σ

1
2

]]
(33)

= L(µ) +
δ

4
||g(µ)||22 +

δ

4
Tr

[
E
[
ηηT]Σ 1

2H(µ)2Σ
1
2

]
(34)

= L(µ) +
δ

4
||g(µ)||22 +

δ

4
Tr

[
ΣH(µ)2

]
. (35)

10
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This shows that Mean Field Variational Inference implicitly regularizes the trace of the square
of the Hessian, and hence it also regularizes the magnitude of its eigenvalues. A way of defining
sharpness is via the local curvature of the loss function around the minimum given that it is a
critical point [4]. Since local curvature is encoded in the Hessian eigenvalues, this means that
MFVI penalizes a notion of sharpness at critical points of the loss landscape

C. Algorithms

Algorithm 1 Random SAM Algorithm - Variational Optimization
Input : Training set S = {(xi, yi)}, parameter σ0
Initialize: µ
for t = 1, 2, · · · do

(1) Sample batch B ∼ S
(2) Take a sample of η ∼ N(0, 1)
(3) Compute the gradient of the loss of µ on batch B, i.e. [∇µLB]µ+σ0η
(4) Update µ, i.e.
µ←− µ− η1 [∇µLB]µ+σoη

end

Algorithm 2 Mean Field Variational Inference Algorithm
Input : Training set S = {(xi, yi)}, parameter σ0
Initialize: Σ and µ
for t = 1, 2, · · · do

(1) Sample batch B ∼ S
(2) Take a sample of η ∼ N(0, 1)
(3) Compute the gradient of the loss of µ on batch B, i.e. [∇µLB]

µ+Σ
1
2 η

(4) Compute the loss of Σ on batch B, i.e. [∇ΣLB]
µ+Σ

1
2 η

+∇ΣKL[(µ,Σ)||(0, σ0I)]
(5) Update µ and Σ, i.e.
µ←− µ− η1 [∇µLB]

µ+Σ
1
2 η

Σ←− Σ− η2

(
∇Σ [LB]

µ+Σ
1
2 η

+∇ΣKL[(µ,Σ)||(0, σ0I)]
)

end

11
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Algorithm 3 VariationalSAM Algorithm
Input : Training set S = {(xi, yi)}, parameters α and β,

learning rates η1 and η2.
Initialize: Σ and µ
for t = 1, 2, · · · do

(1) Sample batch B ∼ S
(2) Compute the gradient of the loss on batch B, i.e. ∇µLB(µ)
(3) Compute ϵ∗VSAM(µ) using (2)
(4) Compute gradient approximation for the VSAM loss,
i.e. ∇µLVSAM(µ,Σ) ≈ ∂L

∂µ |µ+ϵ∗VSAM(µ)

(5) Update µ←− µ− η1
∂L
∂µ |µ+ϵ∗VSAM

(6) Compute the gradient of VariationalSAM loss on batch B, i.e. ∇ΣLVSAM(µ,Σ)
(7) Update Σ←− Σ− η2∇ΣLVSAM(µ,Σ)

end

D. Details of Experiments

We use WideResNets [24] on the CIFAR-10/100 datasets [14]. Following prior work [6, 12, 15]
we calibrate the SGD optimiser with momentum 0.9, weight decay 0.0005 and initial learning rate
0.1. We use stepwise decreasing learning rate scheduling as we have found this more effective
than cosine learning rate scheduling. Using batch size 128, we train the optimizers requiring two
backpropagations per step (SAM, VSAM, MixSAM) for up to 200 epochs, while those with only
one backpropagation (SGD and RandomSAM) are trained for up to 400 epochs. For CIFAR-10, we
employ label smoothing [18] with factor 0.1.

We follow [6] in setting ρ = 0.05 in the SAM optimizer. Random SAM requires the standard
deviation of the noise σ be specified. After exploration of the hyperparameter space, we have set
this to 5e − 5. In VariationalSAM, we used a learning rate of 0.01 on Σ. We set values for ρ and
the penalty coefficients in order to match the KL-divergence of the prior and posterior distributions.
The matrix Σ was taken to be diagonal and was initialized in order to render the perturbation size
around 0.05. For details see Appendix E. The results are summarized in Table 3.

E. Information theoretic motivation for VariationalSAM

The SAM, ASAM and FSAM algorithms all modify the loss function to penalise the maximum loss
value within a small neighbourhood around the current weights. The considered neighbourhood is
an Euclidean ball in SAM, a weight dependent ellipsoid in ASAM, and an ellipsoid defined by the
Fisher information matrix in FSAM. What we suggest is a generalization of these approaches: our
method omits any constraint on the ellipsoid defining the neighbourhood, and treats it as an object
to learn. Specifically, besides µ the algorithm also optimizes a symmetric positive-definite matrix
Σ, because for such matrix ϵ⊤Σϵ ≤ p describes an ellipsoid.

Following the ideas of the previously mentioned algorithms, the modified loss function would
be

LVSAM(µ,Σ) = max
ϵ⊤Σ−1ϵ≤p

L(µ+ ϵ). (36)

Our intention is to do coordinate descent on LVSAM(µ,Σ) w.r.t. µ and Σ. However, minimizing
the loss in Σ would lead to the null matrix, which is undesirable, therefore we would like to add

12
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additional terms to the loss. The idea is motivated by the Variational Bayesian methods, specifically
the maximization of the Evidence Lower Bound (ELBO) and equivalently, the minimization of the
negative ELBO. Consider a prior p(Z), a likelihood p(X|Z), and an arbitrary distribution qθ(Z),
then the posterior p(Z|X) and the evidence p(X) can be computed, and the minimization of the
negative ELBO has the form of

argmin
θ
−LELBO = argmin

θ
KL(qθ(Z)||p(Z|X))− log p(X)

= argmin
θ

Eqθ − log p(X|Z) + KL(qθ(Z)||p(Z))
(37)

When the loss function is defined as the negative log-likelihood, the expectation can be considered
as the expectation of the loss.

argmin
θ
−LELBO = argmin

θ
Ez∼qθL(z) +

1

N
KL(qθ(Z)||p(Z)) (38)

Choosing p(Z) = N (0, σ2
0I) and qθ(Z) = N (µ,Σ) as k-dimensional Gaussians, the KL-divergence

can be rewritten as

KL
[
N (µ,Σ)||N (0, σ2

0I)
]
=

1

2

[
1

σ2
0

TrΣ + log detΣ−1 + log σ2k
0 +

1

σ2
0

∥µ∥2 − k

]
. (39)

By slightly rephrasing Ez∼qµL(z) as Eϵ∼N (0,Σ)L(µ+ ϵ) we get

argmin
µ
−LELBO = argmin

µ
Eϵ∼N (0,Σ)L(µ+ϵ)+

1

2Nσ2
0

TrΣ+
1

2N
log detΣ2+

1

2Nσ2
0

∥µ∥2 (40)

The expectation above can be bounded with maxϵ⊤Σ−1ϵ≤p L(µ+ ϵ) in a similar way to the deriva-
tions in SAM and FSAM, if ρ is sufficiently large. This motivates the minimization of

max
ϵ⊤Σ−1ϵ≤p

L(µ+ ϵ) +
1

2Nσ2
0

TrΣ +
1

2N
log detΣ−1 +

1

2Nσ2
0

∥µ∥2. (41)

We note that the derivations of SAM, ASAM, FSAM also use the same approach, but they
bound the KL term further. Instead, we found these terms interesting to keep.

Using Appendix A, we can approximate the loss as

LVSAM(µ,Σ) = L(µ) +
√
p
√
∇⊤l(µ)Σ∇L(µ) + 1

2Nσ2
0

TrΣ +
1

2N
log detΣ−1 +

1

2Nσ2
0

∥µ∥2.

(42)
We take gradient descent steps w.r.t. µ and Σ alternately.
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F. PAC-Bayes bound for VariationalSAM

Theorem 5 For a parameter spaceM (with later described properties) and for any (µ,Σ) ∈M×
Θ we have with probability at least 1− δ, that

Eϵ∼N(0,Σ)[LD(µ+ ϵ)] ≤ maxϵTΣ−1ϵ≤γ2LS(µ+ ϵ) +

√
O(m+ log n

δ )

n− 1
(43)

where LD is the generalization loss, and maxϵTΣ−1ϵ≤γ2LS(µ + ϵ) is the empirical SAM loss,
with the geometry provided by Σ, i.e. the VSAM loss without the KL divergence term and γ =
m(1 +

√
log n/m)

Proof To build our PAC-Bayes bound we follow the steps laid out in the PAC-Bayes bound for
Fisher SAM [12], and we omit some details which can be found there. Let’s take the parameter
spaces µ ∈ M ⊂ Rm and Σ ∈ Θ, where Θ is the subset of the diagonal, positive definite matrices.
Also assume, that diam(M) ≤ M and 1/λ ≤ |Σk,k| ≤ λ for any Σ ∈ Θ and k. We will take the
set of ellipsoids P1,1, · · · , Pt,s, where

Pi,j = {(µ,Σ) ∈M×Θ :(µ− µi)
TΣ−1

j (µ− µi) ≤ r2 and
[Σj ]k,k
Σk,k

= 1 + ck, (44)

where ck ∈ [−c, c] ∀k} (45)

There exists a finite set of these ellipsoids, that coverM×Θ.

1. Let’s take the following subset of Rm

Pi,j |µ = {µ : µ ∈ Pi,j}

vol(Pi,j |µ) ∝ rm × Σ
1
2
j

thus t = O(Mm/rm) =, so log(t) = O(m).

2. We also assumed 1
λ ≤ Σk,k ≤ λ. Let’s think about Θ as a subset of Rm. Then as in part (1)

we can define

Pi,j |Σ = {Σ : Σ ∈ Pi,j}
vol(Pi,j |Σ) ∝ (2c)m

thus s = O((λ+ 1
λ)

m/(2c)m), so log(s) = O(m)

Now we use the PAC-Bayes Theorem of McAllester [17] as follows. For any prior distribution
P (µ,Σ), posterior distribution Q(µ,Σ) and training set S we have with probability at least 1− δ

EQ(µ,Σ)[LD(µ,Σ)] ≤ EQ(µ,Σ)[LS(µ,Σ)] +

√
KL[Q(µ,Σ)||P (µ,Σ)] + log n

δ

2(n− 1)
(46)

14
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LD(µ,Σ) and LS(µ,Σ) are generalization and empirical losses. We choose Q(µ,Σ) = N(µ0,Σ0),
where (µ0,Σ0) ∈ M× Θ and choose our set of priors as P1,1, · · · , Pt,s, where Pi,j = N(µi,Σj).
Then as in (46) for each i, j we have with probability 1− δi,j , that

∀Q(µ,Σ) EQ(µ,Σ)[LD(µ,Σ)] ≤ EQ(µ,Σ)[LS(µ,Σ)] +

√
KL[Q(µ,Σ)||Pi,j(µ,Σ)] + log n

δi,j

2(n− 1)

(47)

In the intersection (47) holds for every Pi,j . So by Union bound theorem the intersection is at
least 1−

∑
i,j δi,j , so if we take δi,j =

δ
st , we have with probability at least 1− δ

∀Q(µ,Σ) EQ(µ,Σ)[LD(µ,Σ)] ≤ EQ(µ,Σ)[LS(µ,Σ)]+ (48)

+

√
KL[Q(µ,Σ)||Pi,j(µ,Σ)] + log n

δ + log(s) + log(t)

2(n− 1)
∀i, j (49)

If we choose the prior closes to Q(µ,Σ) we get the following:

KL[Q||Pi,j ] =
1

2

(
Tr(ΣjΣ

−1
0 ) + (µ0 − µi)

TΣ−1
j (µ0 − µi) + log

|Σ0|
|Σj |

−m

)
(50)

From our assumptions Tr(ΣjΣ
−1
0 ) ≤ m(1+ c), log |Σ0|

|Σj | ≤
∑

k log(1+ ck) ≤
∑

k ck ≤ mc and

(µ0 − µi)
TΣ−1

j (µ0 − µi) ≤ r2. Thus we get

KL[Q||Pi,j ] ≤
1

2
(m+mc+ r2 +mc−m) = mc+

r2

2
(51)

Lets rephrase 48 as we plug in µ+ ϵ instead of µ where ϵ N(0,Σ). Thus we get:

∀µ,Σ Eϵ∼N(0,Σ)[LD(µ+ ϵ)] ≤ Eϵ∼N(0,Σ)[LS(µ+ ϵ)] +

√
mc+ r2/2 + log n

δ + log(s) + log(t)

2(n− 1)

(52)

Let u = Σ−1/2ϵ, so u ∼ N(0, 1) using the result from Laurent & Massart [16] we get that with
probability at least 1− 1√

n

|u|22 = ϵTΣ−1ϵ ≤ m(1 +
√
log n/m)2 = γ2 (53)

Let’s partition the space into two parts. One where (53) holds, where we take the maximum loss
and on where (53) does not hold, where we choose the loss bound Lmax. So we have
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Eϵ∼N(0,Σ)[LS(µ+ ϵ)] ≤ (1− 1/
√
n)maxϵTΣ−1ϵ≤γ2LS(µ+ ϵ) +

Lmax√
n

= (54)

= maxϵTΣ−1ϵ≤γ2LS(µ+ ϵ) +
Lmax√

n
(55)

Plugging (54) into (52) we get:

Eϵ∼N(0,Σ)[LD(µ+ ϵ)] ≤ maxϵTΣ−1ϵ≤γ2LS(µ+ ϵ) +
Lmax√

n
+ (56)

+

√√√√ r2(
√
m+

√
logn)2

2γ2 +mc+ log n
δ + log(st)

2(n− 1)
= maxϵTΣ−1ϵ≤γ2LS(µ+ ϵ) +

√
O(m+ log n

δ )

n− 1

(57)

Note, that similar bounds can be build for Random SAM and MFVI.

G. Further Experiments

WideResNet 28-2
SGD 95.90±0.07

SAM 96.10±0.11

ASAM 96.17±0.07

FSAM 96.23±0.06

VSAM 94.18±0.11

RSAM 96.08±0.13

Table 4: CIFAR-10

For these experiments, we have set additional hyperparameters to the value reported in [15] and
[12]. Namely, in ASAM we use γ = 0.5, η = 0.01 for CIFAR-10, γ = 1.0, η = 0.1 for CIFAR-100
and in FSAM γ = 0.1, η = 1.0 for both datasets.
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