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Abstract

In this paper, we introduce RELLISUR, a novel dataset of real low-light low-
resolution images paired with normal-light high-resolution reference image coun-
terparts. With this dataset, we seek to fill the gap between low-light image enhance-
ment and low-resolution image enhancement (Super-Resolution (SR)) which is
currently only being addressed separately in the literature, even though the visi-
bility of real-world images are often limited by both low-light and low-resolution.
Part of the reason for this, is the lack of a large-scale dataset. To this end, we
release a dataset with 12750 paired images of different resolutions and degrees of
low-light illumination, to facilitate learning of deep-learning based models that
can perform a direct mapping from degraded images with low visibility to sharp
and detail rich images of high resolution. Additionally, we provide a benchmark
of the existing methods for separate Low Light Enhancement (LLE) and SR on
the proposed dataset along with experiments with joint LLE and SR. The latter
shows that joint processing results in more accurate reconstructions with better
perceptual quality compared to sequential processing of the images. With this, we
confirm that the new RELLISUR dataset can be useful for future machine learning
research aimed at solving simultaneous image LLE and SR. The dataset is available
at: https://doi.org/10.5281/zenodo.5234969.

1 Introduction

Digital images can suffer from several different degradations that reduce the visibility and level of
details in the images. These degradations can occur both due to environmental factors in the scene,
and limitations of the hardware. Two common degradation types are under-exposure, due to poor
illumination of the scene, and low resolution, due to the limited spatial resolution of the image sensor.
However, with the recent advancements in Convolutional Neural Networks (CNNs), the performance
of image processing techniques, such as Low Light Enhancement (LLE) and image Super-Resolution
(SR), that can counteract these degradations have been consistently improving.

Imaging in low-light conditions is very challenging due to the low photon count, which leads to low
Signal-to-Noise Ratios (SNRs). While increasing the exposure time and ISO setting will result in
brighter images, this can also introduce unwanted motion blur and noise. As such, it is difficult to
capture high-quality recordings at typical video frame rates in low-light conditions without using
external illumination, which is not always a possibility. Simply increasing the brightness of a Low
Light (LL) image in postprocessing, will cause the artifacts introduced by the low SNR to be amplified
as well. LLE is an active research field that aims to convert degraded LL images to normally exposed
high-quality images. However, this is a challenging task as not only the brightness, but also more
complex degradations such as color distortion and noise needs to be considered.
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Figure 1: Example of a sequence of aligned images with different exposure (left) and scale levels
(right) from the Real Low-Light Image Super-Resolution (RELLISUR) dataset.

While the resolution of digital cameras has generally increased recently, many cameras are used in
combination with lenses with a wide field of view. This leaves very few pixels to resolve objects of
interest, such as faces or license plates which can be critical in forensics applications. Hence, it is
often desirable to increase the resolution of the Low-Resolution (LR) images to reveal more details.
Image SR aims at reconstructing a High-Resolution (HR) image from its LR counterpart. However,
most SR methods are trained and evaluated on datasets with synthetically created LR images, where
the degradation is assumed to be an ideal bicubic downsampling kernel. This makes these methods
unsuitable for real LR images where the degradation models are much more complex [1].

Even though the visibility of real images is often degraded simultaneously by multiple factors, such
as low illumination and low resolution, these problems have only been addressed separately in the
literature by dedicated LLE and SR methods. However, recent studies have investigated the effect of
jointly performing two image processing tasks, e.g. joint LLE and deblurring [2]], joint demosaicing
and SR [3]], and joint denoising and SR [4]]. In all of these works, it was found that the joint processing
outperforms sequential processing. The is mainly due to the accumulation of errors produced by
the individual methods, and the possibility of early algorithms removing information that could
be valuable for subsequent processing. We believe that part of the reason for why joint LLE and
SR of real images has not yet been investigated in the literature, is due to the lack of a large-scale
dataset of paired Low Light Low Resolution (LLLR) and Normal Light High Resolution (NLHR)
images. Hence, we argue that such a dataset is of major importance in the image processing, computer
vision, and machine learning community with the advent of deep-learning based methods which
performance is highly dependant on data [5]]. Furthermore, it is highly desired that such a dataset
consists of real-world LLLR and NLHR image pairs, as opposed to synthetic image pairs, in order to
allow algorithms to generalize to practical applications. However, constructing such a dataset is a
non-trivial task as real image pairs are difficult to obtain.

In this work, we present the REal Low-Light Image SUper-Resolution (RELLISUR) dataset which is
the first dataset to contain real LLLR and NLHR image pairs. The dataset is made publicly available
and contains a large number of in- and outdoor scenes captured by a Digital single-lens reflex (DSLR)
camera. There are more than 12000 image-pairs of diverse content and degradation strength in the
dataset, which is more than sufficient to train Deep neural networks (DNNs). Applications of the
dataset include remote sensing, surveillance, and forensics among others. Figure[T|shows an example
of a sequence from RELLISUR containing aligned LLLR and NLHR images of the same scene.
Our collection method is reproducible and easy to follow. We collect images of different resolutions
from the same static scene by changing the focal length of a zoom lens. An increasing amount
of details are obtained as the focal length is increased. Along with images of different resolution,
we also collect corresponding images of different low-light levels. We obtain the low-light images
by shortening the exposure time. As the changing focal lengths naturally introduce misalignment
between the image pairs, mainly due to varying lens distortion, we develop an effective post processing
pipeline to align the image pairs.

LLE or SR are both ill-posed problems, and as such, simultaneously reconstructing images degraded



by both LL and LR images is a highly challenging problem. To analyze the effectiveness of
RELLISUR in this regard, we train and evaluate both dedicated models for each task as well as
models for joint LLE and SR. The experimental results demonstrate the value of RELLISUR by
showing that joint processing outperforms sequential processing. Thus, we hope that the RELLISUR
can help facilitate further work in joint LLE and SR.

The contributions of our work are summarized as follows:

* We present the first large-scale dataset of paired and aligned low-light/low-resolution and
normal-light/high-resolution images of diverse content, which closes the gap between the
LLE and SR problems.

* We provide a comprehensive benchmark of existing methods for separate image LLE and
SR along with experiments on joint processing on the proposed dataset.

* We show that joint image LLE and SR leads to better results than sequential processing,
which highlights the need for new machine learning methods to handle the LLLR image
enhancement problem.

2 Related Work

2.1 Real-world super-resolution datasets

There exist several image datasets to facilitate training and evaluation of SR methods. These include
Set5 [6]], Set14 [[7], BSD100 [8]], and DIV2K [9] among others. However, these datasets only contain
the HR image, and the corresponding LR image then has to be created synthetically. The traditional
way of doing this is to downsample the HR image with bicubic interpolation. As the real-world image
degradation is much more complicated, SR models trained on such data often show poor performance
on real LR images due to the domain difference [[10,[1]. To overcome this issue, some researchers
recently started to collect real LR/HR image pairs. And overview of such datasets can be seen in
Table[T] Qu et al. used a beam splitter and two cameras to collect 31 paired LR/HR face images in an
indoor lab environment [[11]]. The City100 dataset by Chen et al. [[12] consists of 100 paired images
of postcards with cityscapes, captured by DSLR and smartphone cameras. Kohler et al. relied on
hardware binning to capture image-pairs of different resolution [[1]. The dataset contains 5670 HR
images, but the variance and application to real-world scenarios are limited as the dataset only depicts
14 different indoor lab scenes acquired in grayscale. Zhang et al. collected 500 scenes of LR/HR
resolution using a DSLR camera equipped with a zoom lens, which made it possible to obtain images
with varying degrees of detail [13]]. Images captured with a long focal length contain finer details
compared to an image of the same scene captured with a short focal length. However, the images
in this dataset are not pixel-wise aligned, which complicates the learning of a mapping from LR to
HR. Cai et al. [14] proposed an image registration algorithm to align 243 LR/HR pairs collected
with two DSLR cameras and using different focal lengths of a zoom lens. The images in the dataset
depict various outdoor scenes and objects located indoors. However, a limitation of this dataset is the
number of images, as there are only 175 pairs for the x4 scale. Most recently Wei et al. proposed the
DRealSR dataset [[15] which contains a total of 2507 LR/HR image pairs collected with five different
cameras using different zoom-lens focal lengths.

However, as all of the existing real SR dataset contains image pairs where the illumination of the HR
images is consistent with that of the LR images, SR models trained on such data naturally perform
poorly on low-light images.

2.2 Low/normal-light datasets

Only very few datasets of paired low/normal-light images captured in real scenes exist. The LOL
dataset [[L6] contains 500 low/normal-light image pairs which are all downscaled to a resolution of
600 x 400 pixels. The images are captured both in and outdoors at daylight, and the low-light images
are created by changing the ISO and exposure settings of the camera, which results in LL images with
low contrast, color distortion, and sensor noise due to the low SNR. Unfortunately, the downscaling
of the images reduces the natural sensor noise and changes other real-world characteristics [17]], such
that the images can no longer be considered real LL images. The SID dataset [ 18] contains 5094 short
exposure, and 424 long exposure RAW image pairs of either 12 and 24 MPIX resolution. All images
are captured outside at nighttime or indoors in rooms with low illumination. The normal-light images



Table 1: Overview of real-world super-resolution datasets of paired real LR and HR images.

Name Year LR/HR Pairs Type HR resolution Method Content
Quetal. [11] 2016 31 RAW 2.3MPIX Beam-splitter Faces
RealSR [[14] 2019 595 RGB 0.48 to 5.28MPIX Zoom lens In/outdoor scenes
City100 [12] 2019 100 RGB 1.06MPIX Zoom + translation  Postcards
SupER [1] 2019 5,670 Grayscale 2.2MPIX Hardware binning  Indoor lab
SR-RAW [13] 2019 500 RAW 12MPIX Zoom lens In/outdoor scenes
DRealSR [15] 2020 2,507 RGB 20 to 24MPIX Zoom lens In/outdoor scenes
Ours 2021 2,250 RGB 0.39 to 6.25MPIX Zoom lens In/outdoor scenes

are created by capturing long exposure images of the same static scenes. However, this method leads
to Normal Light (NL) images with less vibrant colors than actual daylight images and the risk of
locally overexposed areas and excessive noise. In [19] a collection of HDR images along with their
SDR counterparts are presented. The HDR sequence contains both under- and over-exposed images.
All the existing LLE datasets contain LL and NL image pairs of the same spatial resolution, which
means that they are not feasible to use for jointly handling the LLE and SR problem. An overview of
the datasets can be seen in Table 2l

Table 2: Overview of low-light image datasets with LL and NL pairs.

Name Year GTimages LL/NL Pairs Type Resolution Method
LOL [16] 2018 500 500 RGB 0.24MPIX Normal + under-exposure
SID [18] 2018 424 5,094 RAW  12/24MPIX Under + long-exposure
SICE [19] 2018 589 4,413 RGB 6 to 24MPIX HDR
Ours 2021 2,250 12,750 RGB 0.39 to 6.25MPIX Normal + under-exposure

3 RELLISUR Dataset

This section introduces the RELLISUR dataset. We discuss in detail the data collection process,
preprocessing, statistics, and present a suggested train/validation/test split.

3.1 Collection method

The RELLISUR dataset is a novel collection of image sequences containing real x1, x2, and x4
NL images, together with five real LL images. The x 1 and x2 scale levels represent the LR images
while the x4 scale level represents the high-resolution Ground-Truth (GT) reference images. The LL
images are acquired at scale x 1 and are also considered low-resolution.

The dataset is collected with a Canon EOS 6D camera equipped with a Canon 70-300mm L IS USM
zoom lens. Since the size of an object depicted on the image sensor is approximately linear to the
focal length [20]], a doubling of the scale level can be obtained by doubling the focal length. Hence,
to capture images of different scale levels, we used a focal length of 70mm, 140mm, and 280mm to
capture the x1, X2 and x4 scale levels, respectively.

All normal light images are captured using auto-exposure, auto-white-balance, and auto-focus using
the center focus point only. The exposure metering is set to partial metering. The ISO value is set
between 100 and 400 to ensure low noise levels in the NL images. To avoid misalignment issues,
we aim at capturing static scenes and minimize camera movement due to wind, which is essential
when using a telephoto lens. To minimize camera shake, the camera is mounted on a sturdy tripod,
and hence the lens stabilization feature is disabled. To obtain a high depth-of-field we use an f-stop
setting of f/22. The camera is triggered remotely to avoid movement.

In photography, the Exposure value (EV) is defined as logs NT2, where N and ¢ are the camera lens
f-stop number and exposure time in seconds, respectively. Hence, a decrease of -1.0 EV corresponds
to half as long exposure time, or one-stop, in our case as the f-stop is kept fixed. To capture LLLR
images with different degrees of under-exposure, we used the camera’s auto bracketing mode to



obtain five successive images that are under-exposed in different levels from the auto exposure setting.
We used two different ranges going from from -4.5 to -2.5 and -5.0 to -3.0 EV steps. The resulting
average exposure times for both the in- and outdoor scenes can be seen in Table[3] This wide range
of under exposure levels can help to improve the generalization abilities of models trained on the
RELLISUR dataset.

The images in the dataset are collected in natural scenes, both in- and outdoors, and depict architecture,
signs, plants, common office items, art, etc. The number of in- and outdoor scenes are nearly identical
with a 49% and 51% distribution, respectively. We decided not to collect images that could enable
identification of individuals, by avoiding faces, persons, license plates, or other personally identifiable
information. Likewise, we avoided capturing images with content that could be considered offensive,
insulting, or threatening. We have manually screened the dataset to ensure that all images apply to
these requirements.

In total, the RELLISUR dataset consists of 850 distinct sequences. An example of a sequence can
be seen in Figure[I] With three different scale levels, the total number of normal light LR and HR
pairs is 2550. As the five under-exposed images in a sequence corresponds to the same NL reference
image, the resulting number of LL / NL image pairs is 4250 for each of the three scale levels. Hence,
the total number of LL / NL images pairs in the RELLISUR is 12750.
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Figure 2: Examples of the noise and color distortion in the under-exposed images in RELLISUR. To
aid visualization, the -5.0 EV LL images have been histogram stretched to match the NL images

Full image, scale x 1 Scale x 1 Scale x2 Scale x4

Figure 3: Examples of the difference in image quality between the scale levels in RELLISUR. To aid
visualization we show image crops.



3.2 Preprocessing

During the collection of image sequences, multiple factors can unintentionally affect the images
quality negatively. First, the lens characteristics change when zooming, resulting in different levels
of warping and distortion of the image. Next, external factors, such as wind, can affect the camera
causing a slight shift in the scene or motion blur. To mitigate this, we apply a carefully designed
preprocessing scheme to the collected images.

First, we manually screen the collected sequences and discard ones that contain images which are
out-of-focus, incorrectly exposed, contain moving objects, or other undesired defects. Next, we
apply lens correction in Adobe Lightroom [21] using the appropriate lens and camera profiles. This
removes chromatic aberration and corrects the lens distortion. However, as the corner regions of the
images are difficult to undistort, and also less sharp than the center part, we center crop the x4 NLHR
reference images to the center 2500 x 2500 pixels. Although the images are now distortion-free,
the individual images in a sequence are not guaranteed to be pixel-wise aligned due to inability to
accurately adjust the zoom lens at the exact desired focal lengths. Furthermore, the optical center of
the lens might shift slightly during zooming [22]. To register all images in a sequence to match the
x4 NLHR reference image, we first detect and match SURF [23] features between the x1 and x4
NL images for a given sequence. To maintain the spatial resolution difference of the three scale levels
we use a downsampled version of the x4 NLHR as target. Then, we use the matched coordinates
to estimate a homography using MSAC [24]]. Using the translation parameters, we crop and align
both the x1 LL and NL images to the x4 NLHR reference image. Lastly, we use the same method to
register the X2 NL image to the x4 NLHR reference image. As such, the resolution of the x1 and x2
images become 625 x 625 and 1250 x 1250 pixels, respectively. An overview of the preprocessing
pipeline can be seen in Figure[d One limitation of RELLISUR is that the LL images are so dark
that it is impossible to verify if something undesired has entered the scene, such as a bird flying by.
Furthermore, changes in environmental lighting conditions can affect the brightness of the images
within a sequence. Considering that this does not affect a model’s ability to learn to solve the LLE
problem, we do not attempt to match the brightness levels.

Lastly, we partition the dataset into train, validation, and test splits, with a 85%/5%/10% distribution,
respectively. This results in 722 train, 43 validation, and 85 test sequences. We encourage researchers
to use this split to enable direct comparison with future works.
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Figure 4: Overview of the preprocessing pipeline.

3.3 Analysis of dataset content

As seen in Figure 3] the three different scale levels of the NL images in RELLISUR are all properly
exposed and noise free, but have a clear difference in details and sharpness. In comparison, the LL
images lacks contrast and contains strong color distortion and sensor noise, as illustrated in Figure 2]
The average pixel value of the LL and NL images is shown in Figure[5] Here it can be seen that most
of the pixel values of the LL images are below 50, while the ones of the NL image are more evenly
distributed across the range. This is supported by the average mean p and standard deviation o values



computed on grayscaled versions of the images in the dataset. As seen in Table[d] the average pixel
values of the LL images in RELLISUR are lower and less spread compared to the ones in the widely
used LOL dataset [[16]], which indicates that the LLE task on RELLISUR is more challenging. To
quantify how the different levels of under-exposure degrades the image quality, we have computed
the average Peak Signal-to-Noise Ratio (PSNR), Structural Similarity index (SSIM) [25]] and LPIPS
[26] quality scores for each of the different EV ranges against the properly exposed images. As
seen in Table[3] both the fidelity and perceptual quality drops significantly as the exposure time is
decreased. Furthermore, the average exposure times for indoor scenes are longer than the ones for
outdoors scenes, mainly due to differences in available light.
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Figure 5: Average RGB histograms of the low light and normal light reference images in RELLISUR.
The horizontal axis represents the pixel value and the vertical axis the number of occurrences.

Table 3: Average decrease in image quality and exposure
time for the different under-exposure levels in RELLISUR

Exposure PSNR {1 SSIM1 LPIPS| Indoor Outdoor

Table 4: Average mean . and
Auto 00 00 00 17225 0.095s standard deviation o values.
-2.5EV 10.35 0.30 0.46 0.505s  0.025s

30EV 940 022 057 0212s  0.013s Name LOL[16] Ours
35EV  8.82 016 067 01525 0.009s LWLL 1548 10.59
40EV 842 0.11 076  0.107s 0.006s oLL 1040 8.14

45EV  8.13 007 084  0.077s 0.004s uNL 11692 9635
50EV  7.87 005 089  0.03Is 0.003s oNL 4596 4773

4 Experiments

We conduct several experiments on the RELLISUR dataset to evaluate its usefulness for future
research on the development of machine learning models for end-to-end mapping from LLLR to
NLHR. All experiments are done using the splits defined in section 3.2}

Since no publicly available methods for joint LLE and SR of real images currently exist, we first
separately benchmark ten different State-of-the-Art (SoTA) LLE and SR methods by training and
evaluating them on the RELLISUR dataset. Next, we select the best performing LLE and SR methods,
in terms of reconstruction accuracy and perceptual quality, and combine these to sequentially process
the LLLR images to obtain NLHR images. Lastly, to verify that the dataset can also be used to learn
an end-to-end mapping from LLLR to NLHR, we train an SR model and an LLE model with an
added upscaling module. All experiments involving SR are conducted on both scale levels in the
dataset (x2 and x4).

4.1 Baseline methods for end-to-end learning

While SR models are not aimed at enhancing LL images, the ESRGAN [27] is a very capable model
with more than 16 million parameters. Furthermore, this model produces HR reconstructions with
the best perceptual quality of all the evaluated methods. Hence, we chose this SR model to learn
the full end-to-end mapping directly from LLLR to NLHR. As LLE methods are not capable of



increasing the resolution of the input images, these have to be modified in order to be able to learn the
end-to-end mapping. For this we choose the MIRNet model it has the LLE performance in terms of
reconstruction accuracy. To enable the MIRNet to transform LR to HR images, we add the learnable
upsampling module from [28] to the end of the model. This module utilizes sub-pixel convolution
[29] for efficient upsampling.

LLLR KinD GLADNet MIRNet MBLLEN GT

Figure 6: LLE results on the RELLISUR test set by different methods trained on the training set.
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Figure 7: SR results (x4) on the RELLISUR test set by different methods trained on the training set.

LLLR MIRNet + DBPN MBLLEN + DBPN  MIRNet + upscaling ESRGAN GT

Figure 8: Simultaneous LLE and SR results on the RELLISUR test set by different methods trained
on the training set.

4.2 Implementation details

All supervised models have been re-trained using the hyperparameter settings described by the
authors. The modified MIRNet model was trained for 1000 epochs. We used a single NVIDIA V100
card to perform the training. To evaluate the reconstruction accuracy of the different methods, we



first crop 4 border pixels to avoid boundary artifacts, and calculate the average PSNR and SSIM [25]
values on the test set using MATLAB [30]]. While these metrics are typically used in LLE and SR
research to measure the similarity to GT images, the resulting scores often correlate poorly with
perceived similarity. To this end, we also include the more recent LPIPS [26] metric which has shown
to correlate better with human judgment. We use the LPIPS implementation provided by the authors
and used the weights from the pre-trained AlexNet [31] for evaluation.

4.3 Results

Table 5: LLE results for different methods trained and tested on the RELLISUR dataset.

Name PSNR1 SSIM{ LPIPS]
Zero-DCE [32] 1299 044 0.79
Retinex-Net [16] 1543 034 0.68
LECARM [33] 10.04 025 0.53
RUAS [34] 11.92 034 0.51
LIME [35] 1495 045 0.42
EnlightenGAN [36] 11.61  0.39 0.39
KinD [37] 1584 049 0.33
GLADNEet [38] 21.09  0.69 0.30
MIRNet [39] 21.62  0.77 0.28
MBLLEN [40] 1752 0.60 0.23

Table 6: SR results for different methods trained and tested on the RELLISUR dataset.

Name X2 x4
PSNR1+ SSIM1 LPIPS, PSNR1T SSIMt LPIPS|

Bicubic 28.70 0.91 0.20 23.97 0.82 0.43
SRCNN [41]] 29.92 0.92 0.16 24.90 0.83 0.35
SRFBN [42]] 29.78 0.92 0.16 24.77 0.84 0.33
RDN [43] 28.48 0.92 0.17 22.96 0.84 0.33
SRResNet [44] 29.82 0.92 0.15 24.52 0.84 0.32
EDSR [45] 29.69 0.92 0.16 24.06 0.85 0.32
DBPN [46]] 29.99 0.92 0.15 24.98 0.84 0.30
Real-ESRGAN [47] 27.73 0.89 0.16 23.14 0.80 0.29
SRGAN [44] 29.42 0.90 0.11 24.29 0.80 0.22
ESRGAN [27] 29.79 0.91 0.10 24.71 0.80 0.21

Table 7: Simultaneous LLE and SR results for different approaches trained and tested on the
RELLISUR dataset.

Type Name X2 x4
PSNR+ SSIM{ LPIPS| PSNRt SSIM{ LPIPS |

= MIRNet + DBPN [39/l46] 20.73 0.73 0.49 19.85 0.74 0.58
g MIRNet + ESRGAN [39]127] 20.67 0.72 0.47 19.81 0.71 0.56
= MBLLEN + DBPN [40/}46] 17.89 0.60 0.38 17.15 0.58 0.50
A MBLLEN + ESRGAN [40]27] 17.74 0.56 0.40 17.03 0.50 0.52
E MIRNet [39] + Upscaling module  21.33 0.75 0.41 20.62 0.75 0.53
<2 ESRGAN [27] 17.67 0.68 0.35 17.28 0.66 0.39

As seen in Table 5] the best performing LLE method, according to the hand-crafted PSNR and SSIM
metrics, is the MIRNet [39], while the method resulting in the best perceptual quality according to
LPIPS [26] is the MBLLEN [40]. A visual comparison can be seen in Figure[6] For the SR methods,
as seen in Table@, the best performing models are the DBPN [46]] and ESRGAN [27]] in terms of
fidelity and perceptual quality, respectively. A visual comparison can be seen in Figure



Regarding simultaneous LLE and SR, we see that sequential processing with the respectively best
performing methods, in terms of either PSNR and LPIPS is worse than joint processing. Interestingly,
the LLLR images reconstructed with the ESRGAN [27] have the best perceptual quality even though
this model is not designed for LLE. At the same time the ESRGAN results in the lowest PSNR value,
but this is expected due to the perception distortion tradeoff [48]], since this model is optimized to
produce visually pleasing images. Conversely, the MIRNet [39] model with the added upscaling
module and optimized for low distortion with Charbonnier loss [49]], results in the best PSNR and
SSIM values. The qualitative results and examples of reconstructed images can be seen in Table 7]
and Figure 8| respectively.

5 Conclusion

We have argued for the need for a dataset to fill the gap between LLE and SR. To this end, we
have introduced the RELLISUR dataset to the community, a novel large-scale collection of paired
LLLR and NLHR reference images. We offer the dataset as free and open-source with the purpose
of advancing machine learning applications in the area of image processing. We also provided an
extensive benchmark of the existing methods for LLE and SR, and highlighted the need for new
methods to reconstruct images that are degraded by both low light and low resolution. Additionally,
we have experimentally demonstrated that this dataset can be used to train deep-learning-based
methods for joint LLE and SR, that outperform sequential processing. As such, we believe the
RELLISUR dataset will be valuable for the community.

Broader impact As this dataset contains image data that can be used to improve the performance
of LLE and SR algorithms, there is a risk that malicious parties could harness this to develop more
capable surveillance systems for monitoring and tracking of people. However, we have carefully
screened the dataset to remove any personal information, such as persons and faces, which greatly
reduce the possible negative uses of the data. On the positive side, our dataset enables reproducible
research on image restoration problems which will aid in advancing these by consistent and reliable
baselines.

Disclosure of Funding This research was funded by Milestone Systems A/S, Brgndby Denmark
and the Independent Research Fund Denmark, under grant number 8022-00360B.
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