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ABSTRACT

Bootstrapping bias problem is a long-standing challenge in temporal-difference
(TD) methods in off-policy reinforcement learning (RL). Multi-step return backups
can alleviate this issue but require delicate importance sampling to correct their
off-policy bias. Recent work has proposed to use chunked critics, which estimate
the value of short action sequences (“chunks”) rather than individual actions,
enabling unbiased multi-step backup. However, extracting policies from chunked
critics is challenging: policies must output the entire action chunk open-loop,
which can be sub-optimal for environments that require policy reactivity and also
challenging to model especially when the chunk length grows. Our key insight
is to decouple the chunk length of the critic from that of the policy, allowing the
policy to operate over shorter action chunks. We propose a novel algorithm that
achieves this by optimizing the policy against a distilled critic for partial action
chunks, constructed by optimistically backing up from the original chunked critic
to approximate the maximum value achievable when a partial action chunk is
extended to a complete one. This design retains the benefits of multi-step value
propagation while sidestepping both the open-loop sub-optimality and the difficulty
of learning action chunking policies for long action chunks. We evaluate our
method on challenging, long-horizon offline goal-conditioned benchmarks and
shows that it reliably outperforms prior methods.

1 INTRODUCTION

A reinforcement learning (RL) agent can in principle solve any task with a well-defined reward
function, but training an RL agent from scratch can be sample inefficient. In many practical problems,
we instead have access to an offline dataset of trajectories that serves as a great prior to accelerate
learning. Temporal-difference (TD)-based RL algorithms, which learn a value network to perform
approximate dynamic programming via value backups, are particular suitable in this setting because
they are designed to handle off-policy data. A well-known yet long-lasting bottleneck, however, is the
bootstrapping bias problem (Jaakkola et al., 1993; Sutton et al., 1998; De Asis et al., 2018; Park et al.,
2025)—as the value network regresses towards its own estimates, any error compounds across time
steps, making accurate value propagation challenging especially in long-horizon, sparse reward tasks.

Multi-step return backups (such as n-step return (Sutton et al., 1998)) can alleviate bootstrapping
bias by effectively reducing the time horizon, but naively applying them can result in another form
of bias that causes the value estimates to be overly conservative/pessimistic. While it is possible to
correct such systematic biases with importance sampling (Munos et al., 2016), they often require
additional heuristics and truncations to balance a delicate scale between bias and variance that that
is often tricky to tune. Recent works (Seo & Abbeel, 2024; Li et al., 2025a; Tian et al., 2025; Li
et al., 2025b) leverage chunked value functions, which estimate the value of short action sequences
(““chunks”) rather than a single action. This formulation allows n-step return backup without the
pessimistic bias (under the open-loop consistency condition, which we will formalize in Section 4).
However, directly optimizing a policy over full action chunks is difficult, particularly as the chunk
size grows, and it is still unclear how to best extract a policy from a chunked critic.

In this work, we develop a simple, novel technique to address this challenge. We train a policy to
predict a shorter, partial action chunk against the chunked critic that takes in longer, complete action
chunks. The key design that enables such an optimization is a ‘distilled’ chunked critic with a chunk
size that matches the policy: it optimistically regresses to the original chunked critic to approximate
the maximum value that the partial action chunk can achieve after being extended into a full action
chunk. Conceptually, while the action optimization is still done for the longer, complete action
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chunks, the policy network is only trained to output the the partial action chunk of an optimized
complete action chunk. This way, the policy only needs to predict a much shorter action chunk (e.g.,
in the extreme case, only one action), which often admits a much simpler distribution, while enjoying
the value learning benefits from the use of chunked critics.

Our main contributions are two-fold. On the theoretical side, we provide a formal analysis of Q-
learning with action chunking, identifying the open-loop value learning bias and characterizing the
conditions under which action chunking critic backup is preferable over n-step return backup with
a single-step critic. On the empirical side, we propose a novel technique, Decoupled Q-chunking
(DQC), that addresses the policy learning challenge in action chunking Q-learning by decoupling the
policy chunk size from the critic chunk size. DQC trains a policy to only predict a partial action chunk,
significantly reducing the policy learning challenge, while retaining the value learning benefits of the
chunked critic. We instantiate this technique as a practical offline RL algorithm that outperforms the
previous state-of-the-art method on the hardest set of environments in OGBench (Park et al., 2024a),
a challenging, long-horizon goal-conditioned RL benchmark.

2 RELATED WORK

Offline and offline-to-online reinforcement learning methods assume access to an offline dataset to
learn a policy without interactions with the environment (offline) (Kumar et al., 2020; Kostrikov et al.,
2021; Tarasov et al., 2024) or with as little online interaction with the environment as possible (offline-
to-online) (Lee et al., 2022; Ball et al., 2023; Nakamoto et al., 2024). Q-learning or TD-based RL
algorithms have been a popular choice for these problem settings as they naturally handle off-policy
data without the need for on-policy rollouts, and also exhibit great online sample-efficiency (Chen
etal., 2021; D’Oro et al., 2022). A large body of literature in these two problem settings has been
focusing on tackling the distribution shift challenge by appropriately constraining the policies with
respect to the prior offline data, and most of them use the standard 1-step TD backup for Q-learning,
which has been known to suffer from the bootstrapping bias problem in the RL literature (Jaakkola
et al., 1993; Sutton et al., 1998). To tackle this, recent work (Jeong et al., 2022; Park & Lee, 2024;
Park et al., 2025; Li et al., 2025b) has shown that multi-step return backups are effective for improving
offline/offline-to-online Q-learning agents. These methods either use a standard single-step critic
network (Park et al., 2025) that suffers from the off-policy bias, or use a ‘chunked,” multi-step critic
network (Li et al., 2025b) that does not have such bias but poses a huge policy learning challenge
when the chunk size is too large. Our method brings the best of both worlds—it uses action chunking
to avoid the off-policy bias while simultaneously avoiding the policy learning challenge by extracting
a simpler policy that predicts a shorter action chunk from the full-chunk-sized critic.

Multi-step return backups are computed with multi-step off-policy rewards that can lead to system-
atic value underestimation (Sutton et al., 1998; Peng & Williams, 1994; Konidaris et al., 201 1; Thomas
et al., 2015), and there has been a rich literature (Precup et al., 2000; Munos et al., 2016; Rowland
etal., 2020) dedicated to fix these biases via importance sampling (Kloek & Van Dijk, 1978) with trun-
cation (lonides, 2008). These approaches often require a careful balance between bias and variance
that can be tricky to tune. More recently, Seo & Abbeel (2024); Li et al. (2025a); Tian et al. (2025);
Li et al. (2025b) group temporally extended sequences of actions as chunks and directly estimate the
value of an action chunk rather than a single action. Such a formulation allows the value backup to op-
erate directly in the chunk space, which allows multi-step return backup without the systematic biases
from the sub-optimal off-policy data. Despite their empirical success, we still lack a good theoretical
understanding of the convergence of TD-learning with ‘chunked’ critics, as well as when it should be
favored over more traditional multi-step returns. Our work lays out the theoretical foundation for Q-
learning with critic chunking, and identifies an important yet subtle, often overlooked bias in the TD-
backup. We quantify such bias and provide the condition under which TD backup using critic chunk-
ing is guaranteed to perform better than the standard n-step return backup with a single-step critic.

See additional discussions for related work in hierarchical reinforcement learning in Appendix G.

3 PRELIMINARIES

Reinforcement learning can be formalized as a Markov decision process, M = (S, A, T, r, p,7),
where S is the state space, A is the action space, T' : S x A — A4 is the transition kernel
that defines the next state distribution conditioned on the current state and the current action (e.g.,
s ~T(-]s,a)),r:Sx.A—[0,1] is the reward function, p € Ag is the initial state distribution,
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and v € [0,1) is the discount factor. We also assume we have access to a prior offline dataset
D = {(s},ap,rf, 51, 01,717, ,si)HP! where the goal is to learn a policy, 7 : S — A4 that
maximizes its return, 7(m) = B, o7 |s,a1),00mm(|s1),50p Dot V' T(St; a¢)], the cumulative
discounted sum of rewards that the policy receives in expectation.

Temporal difference learning. Modern value-based reinforcement learning methods often learn a
critic network, @ : S x A — R to approximate the maximum discounted cumulative reward starting
from state s and action a, and the critic is often trained using the temporal-difference (TD) loss:

L((b) = }ES,IMS’ND [(Q(p(& a) - T(Sa a) - 7@(3/7 al*))Q] ) (1)

where () is the target critic that is set to the same critic with its parameters set to an exponential
moving average of ¢, and a’™* = argmax, Q(s’,a’) (often approximated by a policy 7p).

Implicit value learning with implicit maximization loss function. Instead of using Q(s’, a™* ~
mp(s')) as the TD target, we can use what we refer to as an implicit maximization loss function fimy,
to learn a value function V(s) that approximates the maximum value Q(s, a*) (Kostrikov et al.,
2021; Hansen-Estruch et al., 2023):

L(&) = Eg.anp [fiip(Q(s,a) — Ve(s))] - )

K K

Two popular choices of ffi, are (1) expectile: ff . ie(c) = |k — Le<oc?, and (2) quantile:
foantie(€) = [k — Le<ollc|, for any real value k € [0.5,1). At the optimum of L(§), Ve(s)
approximates the x-expectile/quantile of the distribution of the critic values evaluated at Q(s, a),
induced by the data distribution D. With this implicit maximization technique, we no longer need to
explicitly find the action a that maximizes (s, a) and can use Vg(s) as the backup target:

L(¢) = Ega.5~op [(Qols,a) — r(s,a) — yVe(s'))?] . 3)

Multi-step return backup. TD learning can sometimes struggle with long-horizon tasks due to
the well-known bootstrapping bias problem, where regressing the value network towards its own
potentially inaccurate value estimates amplifies the value estimation errors further. To tackle this

challenge, we can instead sample a trajectory segment, (S¢, @y, S¢+1,° -+ , Qt4n—1, St-+n), L0 CcONstruct
an n-step return backup target from states h steps ahead:
= 2
LHS(¢) = Estyatw'“ ;St4n |:(Q¢(St7 at) - RtttJrn - ’ynQ(StJrn? a:Jrn)) :| ) (4)
where ay,, = argmax,,  Q(Sttn,Ain)s Rityn = ol =ty (54, ayr). The n-step return

value estimate of reduces the effective horizon by a factor of n, alleviating the bootstrapping bias
problem. However, such value estimate is always biased towards the off-policy data distribution, and
is also commonly referred to as the uncorrected n-step return estimator (Fedus et al., 2020; Kozuno
et al., 2021). While there are ways to correct this value estimator via importance sampling (Precup
et al., 2000; Munos et al., 2016; Rowland et al., 2020), they require additional tricks (e.g., importance
ratio truncation) for numerical stability and re-introduce biases into the estimator, ultimately resulting
in a delicate trade-off between variances and biases that must be carefully balanced.

Action chunking critic. Alternatively, one may learn an action chunking critic to estimate the
value of a short sequence of actions, as.typ, := (@¢, Ge1, -+, Ge4n—1) (OF an action chunk) instead:
Q(8¢,ap4n) (Seo & Abbeel, 2024; Li et al., 2025a; Tian et al., 2025; Li et al., 2025b). The TD
backup loss for such a critic is naturally multi-step:

— * 2
LQC (¢) = Est;t+h+1,(lt:t+h [(Q¢(Stv at1t+h) = Rityn — "YhQ(St+h7 at+h:t+2h)) } ) (%)

where again a§+h:t+2h = arg maXaHh:t“hQ(SHha atth:t+2r). On the one hand, unlike n-step
return estimate for single-action critic that is pessimistic, the n-step return estimate (with n = h)
for the action chunking critic is unbiased as long as the action chunk ay.; 1, is independent of the
intermediate states S;11..+n+1, While enjoying the reduction in effective horizon (Li et al., 2025a;b).
On the other hand, action chunking critic implicitly imposes a constraint on the policy that the actions
are predicted and executed in chunks. As a result, the policy extracted from the action chunking critic
needs to predict the entire action chunk all at once, posing a big learning challenge, especially for
environments with complex transition dynamics.

In the following two sections, we offer theoretical insights that characterize the conditions when using
action chunking critic is more preferable over n-step return backup with a single critic (Section 4), and
develop a practical method that tackles the action chunking policy extraction challenge (Section 5).
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4  WHEN SHOULD WE USE ACTION CHUNKING FOR Q-LEARNING?

In this section, we build a theoretical foundation for Q-learning with action chunking critic functions.
We start by formalizing the setup of our analysis in Section 4.1, quantifying the value estimation bias
incurred from backing up on non-action chunking data (Theorem 4.4) and the optimality of action
chunking policy (Theorem 4.6) in Section 4.2. Using these result, we derive the condition when we
prefer action chunking Q-learning over the standard n-step return learning in Section 4.3. We also
include some examples in which the condition holds in Appendix D in hope to facilitate theoretical
analysis of action chunking policy learning in future work.

4.1 ASSUMPTIONS

To build the foundation of our analysis, we start by describing the trajectory data distribution that we
use for Q-learning and the trajectory distribution induced by open-loop action chunking policy. In
particular, we assume that the trajectory data distribution obeys the transition dynamics 7"

Assumption 4.1 (Data Distribution Obeys Dynamics). D € Ay is a trajectory distribution generated
by rolling out a behavior policy from a distribution of s; ~ p. The behavior policy can be non-
Markovian (i.e., m(ai+k | Stitk+1,Gretk)). Each subsequent state is generated obeying the
dynamics of the MDP M: siipi1 ~ T(- | St4k,ae1k),Vk € {0,1,--- [ h — 1}. The resulting
trajectory is {4, St11,*+ » Stthy Aty Api1, > aern} € T = S x AN

Next, we formally define the open-loop trajectory distribution that we would obtain if we take the
same actions in the data and rollout them out open-loop in the environment.

Definition 4.2 (Open-loop Trajectory). From any trajectory distribution D, we can extract an open-
loop policy with a horizon of h by marginalizing out all intermediate states. We use 73 " : S — A 4n
to denote such policy and is formally defined as:

Tronen(at:t+h ‘ St) = P'D(at;t-i-h | St). (6)

By using this open-loop policy to roll-out trajectories in the MDP M, it induces a trajectory
open

distribution Ppy""" € Agni1 an that is generally different from D. We can decompose this open-

loop policy step-by-step with the following factorization 73y " (as.t+r | s¢) = Z;é T " (artk |

St, Qpp+k) which allows us to define the induced trajectory distribution PpY™" recursively (for
ke{1,2,--- ,h}):

P'Zc;pen(st+k7at:t+k | St) = @)

ngen(StJrkfh Qt:t+k—1 | St)T(3t+k | St+k—1, at+k71)ﬂ%pen(at+k | 3t7at:t+k)- (®)

4.2  OPEN-LOOP VALUE BIAS OF ACTION CHUNKING Q-LEARNING

As what we have elucidated in our definition above, replaying the actions from the trajectory data
distribution Pp in an open-loop manner, in general, can result in a different trajectory distribution,
PZP". This discrepancy between Pp and Pp has not been carefully analyzed by prior work (e.g.,
Q-chunking (Li et al., 2025b)) but can play a huge role in the optimal policy that action chunking
Q-learning converges to. This is because TD-backup is only unbiased when it is done under the open-
loop trajectory distribution P2"". Naively running TD-backup on Pp (as done in Li et al. (2025b))
may lead to a biased Q-target. We now formalize the discrepancy and analyze such bias.

Definition 4.3 (Open-Loop Consistency). D is £,-open-loop consistent if for every s; € S,h’ €

{1,-+- ,h}, as long as s; € S has non-zero probability in the data (i.e., Pp(s;) > 0),
2DTV(ngen(St+h’,at+h’ \ St) || PD(5t+h’aat+h’ | St)) < 5h;Vh/ S {1,27 o h— 1}, 9
2DTV(P103pen(St+h | St) H PD(St+h | St)) < eép. (10)

We say D is strongly ep-open-loop consistent if additionally for h' € {1,2,---  h}, for every
Aptn € A with non-zero probability in the data (i.e., Pp(agtyp,t) > 0),

2Dy (T (Stan | 8t5aern) || Po(Stans | Sty arernr)) < €n- (11)
Intuitively, D is e-open-loop consistent if, when executing the same sequence of actions from it open-

loop from sy, the resulting marginal distribution of the state-action & steps into the future (i.e., S;45)
deviates from the corresponding distribution in the dataset by at most € in total variation distance.
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The strong version (Equation (1 1)) requires the total variation distance bound to hold for every action
sequence in the support, whereas the weak version (Equation (9)) only requires the bound to hold
in expectation. Having weak open-loop consistency of D is sufficient to show that behavior value
iteration of an action chunking critic results in a nominal value function with a bounded bias from the

true value of the open-loop policy 73 ™"

Theorem 4.4 (Bias of Action Chunking Critic). Let Vo : S — [0,1/(1 — )] be a solution of

Vac(st) = E5t+1:t+h+1vat:t+hNPD('|5t) [Rt:tJrh + 'VhVaC(st+h) ) (12)

. t+h 4 .
with Ryt yp = th_:'t YTt (sp, ap) and Vag is the true value of m3 " = sy +— Pp(agitn | st). If
D is ep,-open-loop consistent, then under supp(D),

En

Ve Vel < ==

The proof of Theorem 4.4 is available in Appendix E. A direct consequence of this result is that the
true value of the optimal action chunking policy is close to that of the optimal closed-loop policy:

‘/ac - Vac (13)

Corollary 4.5 (Optimal Action Chunking Policy). Let 7* : S — A 4 be an optimal policy in M and
D* be the data collected by *. If D* is ep,-open-loop consistent, then under supp(D*),

<____ tn
o = (L=a")(1=9)
where V* is the value of the optimal policy w*, VX is the true value of the optimal action chunking
policy, and V. is the true value of the action chunking policy from cloning the data D*:

”Va*c - V*”oo < ' ‘N/ac -V

(14)

ﬁac(at;t+h | St) LSt PD*(' | St). (15)

The proof of Corollary 4.5 (available in Appendix E) builds on the observation that the nominal
(biased) value of the action chunking critic obtained from behavior value iteration on an optimal
data D™ (i.e., the data collected from an optimal policy 7*) recovers the value of the optimal policy.
This allows us to use Theorem 4.4 to show that the value of the action chunking policy obtained by
behavior cloning on such optimal data is close to the nominal (biased) value of its critic, and thus
close to the optimal value of the closed-loop policy.

Next, we analyze the performance of the action chunking policy obtained by Q-learning. In particular,
we analyze the Q-function obtained as a solution of the following equation under supp(D):

+ _ h +
QaC(St’at:t+h)_E5t+1:t+h+1~P‘D(‘lstyat:t+h) Rt:t+h+’y atf’;li)izh Qac(st+hyat+h:t+2h) . (16)

The corresponding action chunking policy is
Tl s arg maxat:HhQ:{C(st,at:t+h). (17)

It turns out that with the weak version of the open-loop consistent condition, the worst case perfor-
mance of the action chunking policy may be arbitrarily low (see an example in Appendix F). For-
tunately, as long as the data D satisfies the strongly open-loop consistency (Equation (11)), we can
show that the learned policy 7. is provably near-optimal by combining all the results above together:

Theorem 4.6 (Q-Learning with Action Chunking Policy on Off-policy Data). If D is strongly €y, -
open-loop consistent and supp(D) D supp(D*), with D* being the data distribution of an arbitrary
optimal policy ™ under M), then the following bound holds under supp(D*):

3€h
Vi = VMo £ ————,
o =Vl = T =)

where V* is the value of an optimal policy under M.

(18)

The implication of Theorem 4.6 (proof available in Appendix E) is that as long as D satisfies the
strongly open-loop consistency condition and contains the behavior in D*, Q-learning with action
chunking is guaranteed to converge to a near-optimal action chunking policy regardless of how sub-
optimal the data D might be. As we will show in the following section, this is in contrast to n-step
return policy where its performance depends on the sub-optimality of the data.

5
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4.3 COMPARING TO 1n-STEP RETURN Q-LEARNING
We now characterize the condition when action chunking Q-learning should be preferred over the
standard n-step return backup. We start by introudcing a notion of sub-optimality of the data D:

Definition 4.7 (Sub-optimal data). D is §,,-suboptimal for backup horizon length n € N* if
Q*(Sm ag) — EPD(-|st,at) [Rt:t+n + 'y"V*(an)] > 0n,Vsy € S,a4 € A. (19)

Intuitively, J,, captures how much worse the n-step return policy can get compared to the optimal
policy incurred by the backup bias. Under such condition, we can show that the action chunking
policy is provably better than the n-step return policy as long as &, is large.

Theorem 4.8. Let D be strongly y,-open-consistent, 0,,-suboptimal, and supp(D) D supp(D*). Let
7 be the optimal n-step return policy learned from D, as the solution of

Q;;(St, at) =Ep, [Rt:t+n + 'y”Q;(an, W;(Swn))] ) W; IS¢ arg Ir;ax Q:L(St7at)~ (20)

As long as 6, > 35*‘(177")), then from all s € supp(D*), the action chunking policy, 7. (Equa-

(I-7) (1"
tion (17)), is better than the n-step return policy, T, (Equation (20)) (i.e., V.t (s) > V.*(s)).

The proof of Theorem 4.8 is available in Appendix E. Notably, for n = h, the condition on d,, and &y,
reduces to d,, > 3ej, H with effective horizon H (i.e., H = 1/(1 — v)). As long as D is more than
O(ep H) sub-optimal, the action chunking policy performs provably better than n-step return policy.

5 DECOUPLED Q-CHUNKING

We propose a new algorithm that enjoys the benefits of value backup speedup of Q-chunking while
avoiding the difficulty of learning an open-loop action chunking policy with a large chunk size.

Our core idea is to decouple the chunk size of the critic from that of the policy. In particular, we train a
policy 7(as.t4p, | St) to output an action chunk (with a size of h, < h) with the following objective:

L(ﬂ—) = _Eat:t+h,a"’77("3t) [Q¢(87 [a‘tit+ha>a’:+ha:t+h])}7 (21)

where [as.;yp, ay Syt h] represents the concatenation of two partial action chunks (size h, and size
h — h,) into a full action chunk ay.;p, of size h, and af, ;, ., is the best ‘second-half” of the action
chunk that maximizes the critic value under Q4:

A hostpn = argmax, o Qo(S, [Qtttn,s Gtth,it+n))- (22)

Essentially, we want our policy to predict the partial action chunk (of size h,) within an optimal
action chunk of size h, rather than the entire optimal action chunk. This lowers the policy expressivity
requirement and hence the learning challenges associated with it with h, < h.

However, directly optimizing this objective (Equation (21)) does not lead to a novel algorithm because
taking the maximization over a4 p,,:++p seemingly requires us to learn a policy of the original chunk
size anyways. To address this issue, we learn a separate partial critic Q{Z , which only takes in the
partial action chunk (of size h,,) as input, to approximate the maximum value this partial action chunk
can achieve when it is extended to the full action chunk (of size h):

Qu (5, atirn,) = Qo (s, [atsn, af hsyn)) (23)

To train Qf; , we can use an implicit maximization loss function (as described in Equation (2)):

L(y) = fi'fﬁip(QMSta At:th) — Qf;(st, At:t4h,))s (24

where s;, a4 are sampled from D. As a result, the partial critic, Qi , is distilled from
the original critic via an optimistic regression, where its optimum pr(s, Gt.4+h,) approximates
Q¢,(‘.97 [t 11, aFy Bt ) in Equation (21), conveniently removing the need for training a policy to
predict the whole optimal action chunk entirely. This allows us to simplify the policy objective as

L(ﬂ') = _Eat;t+ha~7r(»|st) [Qi(sa at:t+h,a)] . (25)

In summary, DQC trains a policy to predict a partial chunk, as.+4p, (of size h,), by hill climbing the
value of a partial critic Qi (S, Ge:14h, ) that is distilled from the original chunked critic Q4 (s, Gy:1+h)
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Algorithm 1 Decoupled Q-chunking (DQC).

Given: D7Q¢(St7at:t+h)aQi(Styat:t+hQ)7 %(St),ﬂﬁ(at:t+ha | St)

1. Agent Update:

(Stit+h+1, Qtstth, Tet+n) ~ D. > sample trajectory chunk from the offline dataset
_ 2

Optimize Q4 with L(¢) = (Q¢(31, Qtit+h) — Zz;é Yoree — thg(stJrh)) .

Optimize QfZ with L(y) = f;f,wﬂe (Q¢(5t7 Qtitth) — Qi(sh a’t3t+ha))‘

Optimize V¢ with L(&) = f;gmile(Qi(stv af:tJrha) — Ve(st))s af:tJrha ~ (| se)

2. Policy Extration:

Alitghy s Qtangs s Qppan, ~ (| 8t) > sample N actions from behavior policy
af.4p, < arg max{ai }N QL (s, atit+hy,) > take the action with the highest Q-value
titthg [

via an implicit maximization loss. This allows our policy to fully leverage the chunked critic Q)
(and thus the value speedup benefits associated with Q-chunking) without the need to predict the full
action chunk (of size h), mitigating the learning challenge of an action chunking policy.

Practical considerations for offline RL. Finally, we describe several implementation details that
we find to work well in the offline RL setting, which our experiments primarily focus on. Our
implementation draws inspirations from a prior method, IDQL (Hansen-Estruch et al., 2023).

We first train a behavior cloning flow policy g using a standard flow-matching objective (Liu et al.,
2022) on the offline dataset D. Then, we approximate the policy optimization objective in DQC
(Equation (25)) using best-of-N sampling without explicitly modeling 7:

Ypip, & argmax{a;. " }N Qf;(st, ag:tth,), Wwhere a%tha’ .. ,ai\:’Hha ~7g(- | s¢). (26)

titrha Ji=1

where ay,, ,;, is output of the policy that we extract from Q7T for state s;. Essentially, this sampling
procedure is a test-time approximation of the objective in Equation (25), where it outputs action
(chunk) that maximizes sz , subject to the behavior prior, as modeled by g.

For TD learning of () 4, directly computing the TD backup target from either ()5 or Qfg is computation-
ally expensive, as either requires samples from the current policy, which is approximated via the best-
of-N sampling procedure as described above. Instead, we use the implicit value backup (Kostrikov
et al., 2021) (i.e., as described in Equation (2)) to approximate the target:

L) = fglll)antile(Qi(shatB:H»ha = Ve(se)), atﬁ:tJrha ~ (- | st) 27

where we pick the quantile regression loss as the implicit maximization loss function. This is
because the Q-value obtained from best-of-N sampling can be seen as the largest order statistic of
a random batch (of size N) of the behavior Q-values (i.e., {Q(s,a)}¥.;,a* ~ ms(- | s)). Such

statistic estimates the behavior Q-value distribution’s ; N ~ -quantile, which is the same as V¢ (s) at
the optimum of L(§) if we set kj, = % In practice, we use a larger x;, for numerical stability.

Finally, we pick the expectile regression loss for training the distilled partial critic Qi because prior
work has found it to work the best among all implicit maximization loss functions (Hansen-Estruch
etal., 2023). A summary of the algorithm is available in Algorithm 1.

6 EXPERIMENTAL SETUP

We conduct experiments to evaluate the benefits of decoupling the policy chunk size and the critic
chunk size on OGBench (Park et al., 2024a)—a challenging long-horizon, goal-conditioned offline
RL benchmark consisting of a diverse set of environments (from manipulation to locomotion). In
particular, we use the more difficult environments introduced by Park et al. (2025) (Figure 4), where
multi-step return backups are crucial. These environments require highly complex, long-horizon
reasoning. For example, the puzzle tasks require stitching up to 24 atomic motions to solve a
combinatorial puzzle with a robot arm, and the humanoidmaze task requires controlling a high-
dimensional humanoid robot over 3000 environment steps to navigate a maze. These environments
serve as an ideal testbed for our algorithm, which improves upon n-step returns and Q-chunking. We
now describe our main comparisons. To start with, we consider several direct ablation baselines:
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Figure 1: Offline goal-conditioned RL results. Our method (DQC) uses a decoupled critic and policy chunk
sizes, which allows it to consistently outperform our baselines: QC: Q-chunking (Li et al., 2025b); NS: n-step
return backup; OS: 1-step TD-backup.

QC (Lietal., 2025b) uses a single critic that has the same chunk length as that of the policy (i.e.,
h = hg). This baseline tests whether having decoupled chunk sizes is important.

NS: n-step return TD backup. This baseline uses a single one-step critic (i.e., Q(s¢, a;)). Compared
to DQC with h = n and h, = 1, this baseline tests whether using a chunked critic is important.

OS: Standard 1-step TD backup. This is the same as NS but with n = 1.
Beyond the ablation baselines, we also consider the following strong goal-conditioned baselines:

FBC/HFBC: Goal-conditioned and hierarchical goal-conditioned flow behavior cloning baselines
considered in Park et al. (2025).

IQL/HIQL (Kostrikov et al., 2021; Park et al., 2023): These are strong goal-conditioned RL methods
that train a goal-conditioned value function with implicit value backups and extract a flat (IQL) or
hierarchical (HIQL) policy from the value function.

SHARSA (Park et al., 2025): The previous state-of-the-art method on the long-horizon environments
that we evaluate on. The method uses a combination of n-step return and bi-level hierarchical policies.

In our ablation study, we also consider an additional baseline, QC-NS, that uses the idea of decoupled
policy chunking and critic chunking (h, < h), but without using a distilled critic. This baseline
simply uses n-step return targets to directly train a critic with a chunk size of h, without implicit
maximization (Equation (24)). The performance of this baseline helps determine how important it is
to learn a separate distilled critic for partial action chunks with implicit maximization. For all our
main results, we run 3 seeds and report the means and the 95% confidence intervals.

Task FBC HFBC IQL HIQL SHARSA oS NS QC DQC

cube-triple-100M 5345 57] 5isus 1] 64,59 68] - 8274 55 1 2] 42 - 1] 14 28] 9895 05
cube-quadruple-100M 32, 33) 385, 1] 5355 54 - 67, - 0 0 20, 52] 23, 4] 90 .5 o0
cube-octuple-1B 0%.0) 2077 55 0%.0) 12 2071920 0/0.0) 85.0) 0/0.0) 24055 25
humanoidmaze-giant 17 3 197, 29) 3% N 22ﬁ\_2/ 1815 55 0, 1 59, 64) 0, 0 72057 75
puzzle-4x5 07\ 0] 47*1 6] 19% 20 5?; 7] Lo 147«; 15) 91]/(1 94] 207\4! 20 96795 97
puzzle-4x6-1B 0%.0] 2 9 610 8fan 567, 17014,19] 46860 20020 T2(63.80

Table 1: Comparisons with prior methods. Our method outperforms SHARSA (the previous state-of-the-
art method on this benchmark) on all environments. (x) indicates that we take the results from the original
paper (Park et al., 2025), where we take the results with larger 10M-sized datasets for humanoidmaze-giant
(originally 4M) and puzzle-4x5 (originally 3M). We omit HIQL results on cube-{triple, quadruple}
given its high computational cost and poor performance on the other tasks.

7 RESULTS

In this section, we present our experimental results to answer the following three questions:
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Figure 2: Distilled critic ablations. Each group in the legend contains DQC and its non-distilled counterpart
with the same configuration (i.e., same backup horizon and same policy chunk size). Our method (DQC)
performs on par or better than the non-distilled counterpart across all configurations.
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Figure 3: Hyperparameter sensitivity analysis on cube-quadruple-100M. Best-of-N (N): the number
of action samples drawn from 7z (- | s) during policy evaluation; Implicit Backup Method: the implicit
maximization loss function for the implicit value backup; Backup Quantile (ky): the coefficient for the implicit
value backup; Distillation Expectile (kq): the coefficient for training the distilled critic.

(Q1) Does DQC improve upon n-step return, Q-chunking? Figure | compares DQC (ours) to
both n-step and QC across six challenging long-horizon GCRL tasks, with our method performing
on par or better across the board. Table | shows DQC also consistently outperforms the previous
state-of-the-art method on this benchmark, SHARSA (Park et al., 2025), on all environments. For
each environment, we pick the best configuration (in terms of h, i, and n). See Appendix C (DQC:
Table 6, SHARSA/QC/NS: Table 7) for the environment-specific hyperparameters used in Figure |
and Table 1. For the results on all configurations, see the complete table in Appendix A.

(Q2) Is training a separate distilled critic Qi’ necessary? In Figure 2, we compare DQC to DQC

without using the distilled critic across three different (h, h,) configurations: (h = 25, h, = 5),
(h =25,h, = 1),and (h = 5, h, = 1). For configurations with h, = 1, the baseline without using
the distilled critic is the same as the n-step return baseline (with n = h) and for the configuration
with h, = 5, it is the same as combining Q-chunking and n-step return. Across three configurations,
DQC performs on par or better than its non-distilled counterpart. This highlights that the use of a
separate distilled critic for the partial action chunk is necessary for the effectiveness of DQC.

(Q3) How sensitive is DQC to its hyperparameters? Figure 3 shows that our method is neither
sensitive to the implicit backup method (quantile or expectile), nor sensitive to the backup coefficient
kp. The important hyperparameters are the N in best-of-N policy extraction and the distillation
expectile coefficient, k4. Making sure the number of action samples /N is large enough (e.g., N = 32)
is crucial for good performance, though a larger NV (N = 128) does not lead to better performance.

8 DISCUSSION

We provide a theoretical foundation for action chunking Q-learning and demonstrate how to effec-
tively extract policies from chunked critics. Theoretically, we provide a formal analysis of action
chunking Q-learning, identifying the TD backup bias that arises from open-loop inconsistency and
characterizing the conditions under which action chunking Q-learning is preferred over n-step re-
turn learning. Empirically, we develop a novel technique that enables effective policy extraction
from chunked critics with long action chunks, scaling up action chunking Q-learning to much harder
environments. Together, these contributions advance the goal of tackling bootstrapping bias in TD-
learning. Several challenges remain, indicating promising avenues for future research. Our method
still inherits the open-loop value bias identified in Theorem 4.4, and developing techniques to ac-
tively correct for this bias could further improve performance. Moreover, our method relies on a
fixed policy action chunk size h, and critic action chunk size h across all states, even though the
optimal action chunk size may vary by state. Developing practical methods that can support flexible,
state-dependent chunk sizes would be a natural next step.
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REPRODUCIBILITY STATEMENT

To facilitate future research, we include our source code as part of the supplementary materials,
along with example scripts for both our method and our baselines. We describe our environments
in Appendix B and hyperparameters in Appendix C. For our theoretical results, we fully state our
assumption in Assumption 4.1 and provide complete proofs in Appendix E.
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A FULL RESULTS

Table 2 reports the performance of our method (DQC) and baselines for all hyperparameter configu-
rations. All of them use the same hyperparameters in Table 4 with the only exception that SHARSA
handles goal-sampling for training behavior cloning policies separate as we discuss in more details in
Appendix C.

DQC  QCNS  DQC NS QC DQC QcC NS 0S SHARSA HIQL IQL  HFBC  FBC
Task (h=25) (=25 (h=25) (n=25) (ha=25) (h=5) (hy=5) (n="5)

(ha=5) (ha=5) (ha=1) (ha = 1)
cube-triple-100M 98,00 69,00 T3 42, 23, TS0y 4.0 35, 1. 82 . - 64, o 5T . B3
cube-quadruple-100M 90, .o 37, ., 46, ., 20, 2, 58, ., 24 27,4 0, 67, - - 53 38, ., 32,
cube-octuple-1B 2., 28, ., 13, 8. 1 0,, 0,, 0, 0, 20, 1 0% 200, 0%,
humanoidmaze-giant 32, ., 21, T2, 59, B 0,, 0,, 0, 0, 18 224 3 197, 1%
puzzle-4x5 96, 0r Mpsow 890 0s Il - 19, 200, 1900, 14, 1, 5%, 19 L 47 07
puzzle-4x6-1B 6505 690 T20000 T - 23,00 20,000 220, 17, ., 565, 8 1T, 2 0

Table 2: Complete results for all configurations. All means and 95% bootstrapped confidence intervals are
computed over 3 seeds. (x) indicates that we take the results from the original paper (Park et al., 2025), where
we take the results with larger 10M-sized datasets for humanoidmaze-giant (originally 4M) and puzzle-4x5
(originally 3M). We omit HIQL results on cube-{triple, quadruple} given its high computational cost and
poor performance on the other tasks.

B ENVIRONMENTS AND DATASETS

To evaluate our method, we consider 8 goal-conditioned environments in OGBench with varying
difficulties (Figure 4). The dataset size, episode length, and the action dimension for each environment
is available in Table 3. We describe each of the environments and the datasets we use as follows.

Environment cube-*: We consider three cube environments (cube-triple, cube-quadruple,
cube-octuple). As the names suggest, the goal of these environments involve using a robot arm
to manipulate 3/4/8 cubes from some initial configuration to some specified goal configuration. We
use the same five evaluation tasks used in OGBench (Park et al., 2024a) for cube-triple and
cube-quadruple and the same five evaluation tasks used in Park et al. (2025) for cube-octuple.
We refer the environment detail to the corresponding references.

Environment Dataset Size Episode Length  Action Dim. (A)
cube-triple-100M 100M 1000 5
cube-quadruple-100M 100M 1000 5
cube-octuple-1B 1B 1500 5
humanoidmaze-giant 4M (default) 4000 21
puzzle-4x5 3M (default) 1000 5
puzzle-4x6-1B 1B 1000 5

Table 3: Environment metadata. For both humanoidmaze-giant and puzzle-4x5, we use the default
dataset that is released in the original OGBench benchmark (Park et al., 2024a). For the other environments, we
use larger datasets as we find them to be essential for achieving good performances on these environments.

Environment humanoidmaze-*: We also consider the hardest locomotion environment available
in OGBench. The goal of the environment is to control and navigate a humanoid agent from some
initial location to some specified goal location in a 16 x 12 maze. This environment also has the
longest episode length (4000, more than twice as long as the second longest episode length as used in
cube-octuple). We refer the environment detail to Park et al. (2024a).

Environment puzzle-*: Finally, we consider two environments that involve solving a combinatorial
puzzle with a robot arm. The puzzle consists of a board of 4 x 5 or 4 x 6 buttons, organized as a
regular grid (4 rows and 5 or 6 columns). Each button has a binary state. Whenever the end-effector
of the arm touches a button, the button and all its adjacent four buttons (three or two if the button
is on the edge of the grid or in the corner) flip its binary state. The goal of the environment is to
transform the board from some initial state to some specified goal state. We refer the environment
detail to Park et al. (2025).

14
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At the test-time/evaluation-time, the goal-conditioned agent is tested on five evaluation tasks for each
of the six environments we consider. The overall success rate is the average over 5 tasks with 50
evaluation trials each.

Datasets. We use play datasets for all cube-* and puzzle-* environments and navigate
dataset for humanoidmaze-*. We use the original datasets available for humanoidmaze-giant and
puzzle-4x5 because they are sufficient for solving the environments. Using larger datasets on these
environments do not help differentiating among different methods/baselines. For each of the other
environments, we use the largest dataset available from Park et al. (2025) as we find it to be neces-
sary to solve these environments (or achieve non-trivial performance on the hardest cube-octuple
environment).

cube-triple cube-quadruple cube-octuple

humanoidmaze-giant puzzle-4x5 puzzle-4x6

Figure 4: Visualization of environments.

C HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Hyperparameters. Table 4 describes the common hyperparameters used in all our experiments
(except for the ones with T where the numbers are directly taken from prior work). Table 6 (for our
method) and Table 7 (for baselines) describe the environment-specific hyperparameters.

Goal-conditioned RL implementation details. While we have described in the main body of the
paper how DQC works as a general RL algorithm, we have not touched on how DQC and similarly
all our baselines works with the goal-condition RL (GCRL) setting. We consider the setting where
we have access to an oracle goal representation ¥ : S — G where G is the goal space (see Table 5
for the oracle goal representation description for each environment). The goal-conditioned reward
function r : (s, g) +— Iy (5)—g is a binary reward function where its output is 1 if the goal g is reached

by the current state s. We can treat g as part of an extended state § = [s, g] € S =8 x G and learn
value functions (e.g., Q4 (3, a)) normally with such extended state.

A common trick in the GCRL setting is to use goal relabeling. That is, during training for each (s, a)
pair in the training batch, a goal g is sampled from some distribution (i.e., pP (- | s, a)) and the reward

15
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Parameter Value
Batch size 4096
Discount factor (v) 0.999
Optimizer Adam
Learning rate 3x 1074
Target network update rate (\) 5x 1073
Critic ensemble size (K) 2

min(Q1, Q2) for cube-*

Critic target (Q1 + Q2)/2 for puzzle-* and humanoid-*
0.9

Implicit Backup Quantile (k)

Value loss type binary cross entropy
Best-of-N sampling (V) 32
Number of flow steps 10
Number of training steps 108
Network width 1024
Network depth 4 hidden layers
Value goal sampling (W¢yy,, Wyeoms Wrajs Wyand) (0.2,0,0.5,0.3)

DQC/QC/NS/OS: mg is not goal-conditioned
P SHARSA (cube): (0,1,0,0)
rand SHARSA (puzzle): (0,0, 1,0)
SHARSA (humanoidmaze): (0,0, 1,0)

Actor goal sampling (wp,,., w?,

p
geom>? wtraj » W

Table 4: Common hyperparameters. For the GCRL goal-sampling distribution we follow the same hyperpa-
rameters used in Park et al. (2025).

Environment Goal Representation (V) Goal Domain (G)
cube-triple (x,y, z) of three cubes (rel. to center) R?
cube-quadruple (z,y, z) of four cubes (rel. to center) R!2
cube-octuple (z,y, z) of eight cubes (rel. to center) R4
humanoidmaze-giant (x,7) of the humanoid R?
puzzle-4x5 the binary state for each button {0,1}%°
puzzle-4x6 the binary state for each button {0,1}*

Table 5: Oracle goal representation description for each environment. Following Park et al. (2025), we
assume access to an oracle goal representation for each environment. More detailed definition of these oracle
goal representations is available in OGBench (Park et al., 2024a).

of the transition is relabeled with the goal-conditioned reward function. Following Park et al. (2025),
the goal distribution P9(- | s,a) : S x A — Ag is a mixture of four distributions, conditioned on
the training state-action example:

g — g g . p9
PI = wcurpcur + wgeompgeom + Weraj Ptraj

+ Wrand Prg (28)

and’

where

1. P%.(-| s,a) = 0g(s): the goal is the same as the current state;

2. ngeom(- | s,a): geometric distribution over the future states in the same trajectory that (s, a)
is from;
3. P,;(- | s,a): uniform distribution over the future states in the same trajectory that (s, a) is

from; and finally

4. P (-] s,a) = ¥U(Up(s)): uniform distribution over the dataset (D(s) is the distribution

of states in the dataset).

and Weyr,; Wgeom, Weraj, Wrand > 0 are the corresponding weights for each of the distribution compo-
nents with wey, + Wgeom t Wtraj + Wrand = 1.

16
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Distillation Expectile Critic Chunk Size Policy Chunk Size

Environment (k) h) (ha)
cube-triple-100M 0.8 25 5
cube-quadruple-100M 0.8 25 5
cube-octuple-1B 0.8 25 5
humanoidmaze-giant 0.5 25 1
puzzle-4x5 0.5 25 5
puzzle-4x6-1B 0.5 25 1

Table 6: Environment-specific hyperparameters for DQC. We use a distillation expectile of 0.8 for all cube
environments and a distillation expectile of 0.5 for all other environments. For all cube-* environments, we
use a policy chunk size of 5 (i.e., h, = 5). For all other environments, we use 1-step policy (i.e., ho = 1). All
environments use a critic chunk size of h = 25.

Environment QC(h=hs) NS(mn) SHARSA (n)
cube-triple-100M ) 25 25
cube-quadruple-100M ) 25 25
cube-octuple-1B ) 25 25
humanoidmaze-giant-4M ) 25 50
puzzle-4x5-3M ) 25 50
puzzle-4x6-1B ) 25 50

Table 7: Environment-specific hyperparameters for QC, NS, SHARSA . For QC, we find h = h, = 5
works the best for all environments. For NS, we find n = 25 works the best for all environments. For SHARSA,
we follow the hyperparameters in the original paper (Park et al., 2025).

In practice, it has been found to be beneficial to use a separate set of goal sampling weights
for TD backup (Park et al., 2024a) (i.e., (Weyrs Wyeom» Wiraj: Wrana)) and for policy learning (i.e.,
(WEiars Wheoms Wirajs Wrana))- However, in our implementation of DQC/QC/NS/OS, we do not train a
goal-conditioned policy, as our policy extraction is done entirely at test-time by best-of-N sampling
from an unconditional (i.e., not goal-conditioned) behavior policy 7g. In particular, we use an uncon-
ditioned flow policy 7s(- | s) that is parameterized by a velocity field vz : S x R4 x [0,1] — R4
that is trained with the standard flow-matching objective:

LFM(B) = EuNM[O,l],ZNN,(s,a)ND [Huﬁ(& (1 - u)z + ua, u) —a+ Z”%] (29)

For SHARSA, we use the official implementation where both flow policies (high-level and low-
level) are goal-conditioned (and thus are trained with the goal distribution mixture specified by
WErs Wheom: wfraj, w? ). The goal sampling distribution for training the value networks (for all

methods) and the goal sampling distribution for the policy networks (for SHARSA only) are provided
in Table 4.

D EXAMPLES OF OPEN-LOOP CONSISTENT DATA

In this section, we provide some examples of open-loop consistent data that could serve as a useful
basis for theoretical analyses in future work. The first example is any data collected from a near-
deterministic dynamics, as formally defined as follows:

Definition D.1 (Near-deterministic Dynamics). A transition dynamics T is e-deterministic if there
exists a deterministic transition dynamics represented by function f : S x A — S and another
transition dynamics T : S X A — Ag, and T is a combination of f and T ':

T(s'|s,a) = (1 —&)0f(s.a)(s") +€T(s" | 5,a),Vs,8' € S,a € A (30)

Theorem D.2 (Deterministic Dynamics are Open-loop Consistent). If a transition dynamics M is
e-deterministic, then any data D is e, -open-loop consistent with respect to M for any h € NT as
long as ey, > 3(1 — (1 —e)h=1).

17



Under review as a conference paper at ICLR 2026

The proof of Theorem D.2 is available in Appendix E.

In addition to deterministic dynamics, any data collected by open-loop policies are also open-loop
consistent.

Definition D.3 (Data Collected by Open-loop Policies). A policy is open-loop if its action distribution
does not depend on the state (i.e., T(a.4+n | St-t4+n) is the same for all sy.41p).

Remark D.4. [f the data D is collected with an open-loop policy, then D is strongly open-loop
consistent.

E PROOFS

Theorem 4.4 (Bias of Action Chunking Critic). Let Vo : S — [0,1/(1 — )] be a solution of

Vac(st) = E5t+1:t+h+lvat:t+h'\‘PD('lst) |:Rtit+h + ’thaC(sH*h) ) (12)

with Ry.4vn = Ei,iht A =t (sp, ap) and Vye is the true value of Ty ¢ st v Pp(apisn | se). If

D is ep-open-loop consistent, then under supp(D),

Proof. Since D is ep/-open-loop consistent in state-action for A’ < h, the state-action distribution
leading up to step h admits the following bound:

€h

Vac - Vac m

< (13)

2DTV(PD(St+h>at+h ‘ St) || ngen(StJrh,(ltJrh ‘ St)) <ep (3D

Let Rypqn = ZZ;é Y*7 (8441, as11) be the h-step reward distribution. Then the difference in h-step
reward is bounded by

‘EPD(.‘St)[Rt:tJrh] - ]EPg"e“(~\st)[Rt:t+h] (32)
h—1

< Z [2’Yh Drv(Pp (st avsns | 8¢) || P (St arsn | St))} @3
h'=0
h—1

<, )
h'=0

Since D is £,-open-loop consistent for £ in state, we have

DTV(PD(St+h | St) H ngen(SHh | St) <ep (35)
E8t+h~PD(St+h\St) |:‘7€LC(St4‘h):| - E5t+hNP$pEI)(St+h,‘St) [Vac(3t+h)]’ (36)
< 2Dy (Pp(sitn | s¢) | Py (Setn | $t))Eq, ~Popen(s,) [VRC(St+h):| 37

+ ‘ESH}LNPD(SHM&) [Vac(st+h) - Vac(st+h)] ‘ (38)
e ~
< Vi = Vaelloo (39)

The first term in the last line works because even though P2’“" can go out of the support of D, the

value of Vj. is uniformly bounded by its range [0,1/(1 — +)]. The second term works because the
support of s¢1 | ¢ is a subset of the support for s; as part of Assumption 4.1.
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For all s; € supp(Pp(s¢)),
= ’EPDMst) [Bectn] = Epgren (o) Rest+n] ’ o

Vac(st) - Vac(st)

+ 7h ‘E5t+h~PD(3t+h|3t) [Vac(st'*'h)} - E5t+hNP;7pe]l(5t+h|5t) [Vac(st'*‘h)}‘

(41)
h—1 ’th
<> [v" 5h] e 7 Vo = Vacllo- (42)
h'=0 -7

Therefore, under the same support,

which can be simplified to be

Vac - Vac

1 h—1 , ’YhEh
ooglf')/h <Z |}7h€h:|+17 )7 “43)

€h

ST ()

O

Corollary 4.5 (Optimal Action Chunking Policy). Let 7* : S — A 4 be an optimal policy in M and
D* be the data collected by *. If D* is ep,-open-loop consistent, then under supp(D*),

~ €h
V=Vl . < ’ Vac = V* < —mF 77—
|| ac ”oo = ac o (1_,7h)(1_7)’
where V* is the value of the optimal policy *, V. is the true value of the optimal action chunking
policy, and V. is the true value of the action chunking policy from cloning the data D*:

Tac(@et4h | 8t) 0 8¢ > Pp(- | 5¢). (15)

(14)

Proof. Let Vac be the fixed point of the following equation:
Vac(8t> = ]Est+1:t+h+1,at:t+h,~PD* (“|s¢) Rt:tJrh + 'yhvac<st+h) (45)

where again Ry.;4p = Zi,iht vt/_tr(st,7 ay ). The value of the optimal policy is the fixed point of
the following equation:

V*(St) - E(qt+17a/tNPD*('|Sf,) [T(Sta at) + ’)’V*(Stﬂﬂ (46)
= Est:t+2aat:t+l’\‘PD* (-st) [’I"(St, at) + 'YT(StJrl’ atJrl) + /YV*(St+2)] 47)

(48)

= E3t+1:t+h+17at:t+h"‘PD* (Is¢t) [Rt:tJrh + ,yhv* (stJrh)] (49)

which is equivalent to fixed-point equation for Vac. Therefore Voo = V*. By Theorem 4.4, we know
that the true value V. of the action chunking policy 7, that clones D* is close to V,:
€h

Vie — V. < 50
IVae = Vaclloe < 7= (50)
which means that
~ Eh
V*Vaelloo € m—————— (5D
I R T [y

Since the optimal action chunking policy, by definition, attains equally good or better values (over
S) represented by V., and the optimal policy 7* also attains equally good or better value (i.e., V*)
compared to that of the optimal action chunking policy 7. (i.e., V,5), the following inequality holds
under supp(D*):

V*>VE > Ve (52)

Therefore,
Eh

VE -V < Ve =VH|| € —— 1
Vi =V < Ve = VI € =)
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Theorem 4.6 (Q-Learning with Action Chunking Policy on Off-policy Data). If D is strongly €y, -
open-loop consistent and supp(D) 2 supp(D*), with D* being the data distribution of an arbitrary
optimal policy 7 under M), then the following bound holds under supp(D*):

35h
(1=9"(1 =)

where V* is the value of an optimal policy under M.

[Vak = V¥ oo < (18)

*
ac’

Proof. We start by constructing a bound between Q;ﬁ; and Q
equation:

the solution of the following bellman

h
Qhc(8t: Qrtrn) = ]Esmzm,ﬂ~P;;P°“(-\st,at:f,+h) Rion+7 " f}ai(y Qhc(St+h, Attnittan) | -
t+h:t v
(53)
Intuitively, Q% is the Q-function of the optimal action chunking policy 7. that can be learned from
D. Because supp(D) D supp(D*), w2, is at least as good as 7., the action chunking policy obtained

by behavior cloning D*. Bounding the difference between QAjC and @}, allows us to leverage the
bound in Corollary 4.5 to form a bound between V.. and V*.

Since D is strongly €5,-open-loop consistent,
DTV(ngen(StJrh’ | st; apern) || Po(Seen | 3t7at:t+h’))th/ €{0,1,--- ,h =1} (54)

Now, for the h-step reward, we have

‘Eppust,amh) [Ret+n] — Eporen s, aniin) [Ret+h] (55)
h—1
< Z [DTV(P;pen(SHh’ | 5t7at:t+h’) || PD(StJrh/ | Staat:tJrh’))] (56)
h’=0
1— h
< ( 7")en (57)
1—v

Similarly, for the value h-step into the future, we have

* ot
Eq, P2 (spinlse) Vae(Stths Gtniton)] — B,y Pp(siqn)se) [Vac(5t+h7 at+h:t+2h)} ’

(58)
< 2Dy (PR (st4nr | st aern) | Po(stean | e asern ) Viclloo + IVae — ‘7;E||oo (59)
£ ~
<70 IV - Vil (60)
Combining the bound for the h-step reward and the bound on the value for s;, we get
~ £ . ~
|Qie (8t rtn) — Qae(sts arern)| < ﬁ + 9"Vt = Vit lloo (61)
which can be recursively expanded to get
~ Eh
Ve =Vall € ===, (62)
: =aam
By Theorem 4.4, we have
Vat - Va—ic_ < h (63)
‘ o ” (1=7)(1=7")
By Corollary 4.5, we have
~ é‘h
V-V, < ——— 64
e e ey 9
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Since supp(D) D supp(D*), we know that V%, is at least as good as V. uniformly.

Combining the three inequalities above, we get

36}
[V =Vl < ( ' (65)

=7
O

Theorem 4.8. Let D be strongly y,-open-consistent, 0,,-suboptimal, and supp(D) D supp(D*). Let
mr be the optimal n-step return policy learned from D, as the solution of

Qr(st,a1) = Epy [Repyn + 7" Qi (Stqn, T (8e4m))], 7y © S¢ = arg max Qr(s¢,at).  (20)

As long as 6, > 38"(1_"’”,)1), then from all s € supp(D*), the action chunking policy, 7}, (Equa-

I-7) (1"
tion (17)), is better than the n-step return policy, m, (Equation (20)) (i.e., V.5 (s) > V.*(s)).

To prove Theorem 4.8, we first prove the following helper Lemma E.1 to quantify sub-optimality for
n-step return policy.

Lemma E.1. Let Q} be the solution of the uncorrected n-step return backup equation:

Qn(st,a:) = Epy(s;,ar) |Rectan +7" max Qn(8t4ns Qtin) (66)
The following inequality holds as long as D is §,,-suboptimal:
On
Q*(3t7at) ZQ;(St,at)—F 1_Lvn,Vst ES,at c A (67)

where Q* is the Q-function of the optimal policy in M. For the n-step return policy

T ¢ sy argmax Qp (st ), (68)
t
its corresponding value admits a similar bound:

on
V*(st) > Vir(se) + 1= , sy (69)

Proof. Using the definition of suboptimal data (Definition 4.7), we have

Qr(st;at) =Eppy(s,.a0) | Bestn + 7" max Qy (Stn, at+n)] (70)
QAt4n
< Q*(st,a) — 0 + ’YhEPD(-\st,at) {{lﬂfX Q;(St+n7 atyn) — V¥ (5t4n) (71)

Rearranging the inequality above yields
Qr(st,a) — Q" (s1,a1) < =0 + Y Epp (s Vi (8140) = V¥ (8t40)], Vst € S,ar € A (72)

By recursively applying the inequality above, we have

on
Q*(3t7at) > Q;(St,at) + mﬁst S S,at cA (73)

By choosing a} = 75 (st), we see that

V*(s1) = Q% (s, ar) (74)

> Qr(st,a7) + T—n (75)
V*(s¢) + On (76)

=V, St 17771
O
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Now we are ready to prove the main Theorem 4.8.

Proof of Theorem 4.8. From Lemma E.1 and Theorem 4.6, we have

5n 35}1

Vi(s) + <V*(s) < ViE(8) + (77)
O T =SV S b r s
Rearranging the terms give
(5n 3Eh

Vi (s) = Vii(s) > - >0 (78)

=) 2 T T T
O

Theorem D.2 (Deterministic Dynamics are Open-loop Consistent). If a transition dynamics M is
e-deterministic, then any data D is e-open-loop consistent with respect to M for any h € NT as
long as e, > 3(1 — (1 —g)h=1).

Proof. Since T is e-deterministic, it can be represented as T'(- | 5,a) = (1 — €)d5(s,q) + eT(- | s,a)
forsome f : Sx A — Sand T : Sx A — As. Let f(s,a1,--- ,an) = f(--- f(f(s,a1),a2)---ap)
Let I € {0, 1} a binary indicator variable that is 1 if and only if

St+k+1 = f(8t+k7at+k)7Vk € {071727"' 7h’_ 1} (79)

Intuitively I = 1 when the trajectory is generated deterministically until but not including the last
state sy, in the trajectory chunk.

From the fact that 7" is e-deterministic, we know that
Pp(I, =1) > (1 —¢g)t! (80)
We also have
Pp(agiyn | s¢) = Po(In = 1)Pp(atttn | st,In = 1) + Pp(Ip, = 0)Pp(at.t+h | st I = 0) (81)
Then we have
2D 1y (Pp(arirn | 1) || Po(asn | se,0n=1)) < (1—(1—e)") (82)

If we transform each distribution of a;.;1, deterministically by f(s;, -), by data processing inequality
we have

2D1v (Ba,,psnmPoCls) [07(sanien)) || BavonmPoClstn=1) 0f(snanesn)]) < 1= (1 =)
(83)

Similarly, we have
2D1v(Pp(asesnit | se) | Pp(asesnst | st Inpr = 1)) < (1= (1—¢)") (84)
which can be also deterministically transformed by taking as.;+p+1 — (f (8¢, ), arrp) to obtain
2Dy (Eat#wlﬁo(wsa (75 ™ (arsn | sty arasn)p(siaein)] | (85)

Eat;HhNPD('\StJhH:l) [TFODpcn(aH'h | 8¢, Qtittn, Inv1 = 1)]If(5taat:t+h)] ) <(1-(01- 5)h) (86)

Now, if we analyze the distribution of s;;, subject to the open-loop execution of the action sequence
from Pp(- | s¢) and break it up into the deterministic and the non-deterministic case, we get

Tat:t+h(' | St)] = PT(I = 1)Eat:t+hNPD("5t) [6f(st,at:t+h,)] + (87)
Pr(I =0)Eq,, .~Po(ls)) [Taseon (| $t:In = 0)] (88)

Note that Pr(I = 1) denotes the probability that an open-loop executed trajectory using a4 ~
Pp(- | s¢) is deterministic. This is different from Pp(I;, = 1) because the latter is based on

E

at.t+n~Pp(-|st) [
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Pp(St:t4ht1,art+n) Whereas Pp(I, = 1) is based on the open-loop trajectory distribution: Pp(- |
St) Hz;é T(st+k | St,as4+%). They both admit the same lower bound of (1 — (1 — g)h~1).

Therefore,

2Drv (Eat:t+h~PD('\St) [Tat;t+h(' | St)] || Eat:t+h~PD('|5t) [6f(5t7at:t+h):|) < (1 - (1 - E)hil)

(89)

Similarly for the state-action case, we can multiply both side by the same conditional distribution
7y " (atn | Sty artn) Which preserves the TV bound. For the left-hand side, we have

PR (stany arrn | 8t) = Bayynmpols) 70 (@trn | Sty arsn) Tap, o (sevn | 1)) (90)

Therefore, we get
2Dy (PR (st4hs aran | 5¢) || BaypnmPoCls) [T (@sn | St atan)Li(sranen])  OD

<@A-@1-9"h ©

We also have
Pp(sien | 8t) = (1 —&)" ' Pp(sign | 56, T =1)+ (1 — (1 —&)" V) Pp(sisn | 86,1 = 0) (93)
Similarly, we have
2Dvv(Pp(si+n | st) || Po(setn | st, In = 1)) 94)
= 2Dvv (Po(sttn | 51) || Bayynmpolsin=1) [0f(spanien]) < (1 —(1=)"1) (95

For state-action, we can also get

Pp(Stin,atn | st) = (1 — 5)th(st+h,at+h | sty Int1 =1) (96)
+ (1= (1= &)")Pp(t4ns assn | 86, Int1 = 0) 97

which can be turned into the TV distance bound:
2D7v (Pp(St+h, atin | st) | Po(Sths aryn | st Iny1 = 1)) (98)
= 2Dpy (Po(senarn | 50) | (99)
EavinmPoClsotngi=1) (75 (@t+n | St attin: It = Dgisaniin)] ) (100)
<(- (-2 (1o

Connecting all three total variation inequality (Equations (83), (89) and (94)) together, we get
2Dy (Pp(sth | 56) || Bavusnmpo(lse) [Tanin (1 50]) <3(1—(1—)*"!) <en (102)

Connecting all three total variable inequality for state-action (Equations (85), (90) and (98)) together,
we get

2Dy (PR (stgn—1, atpn—1 | 80) || Pp(Sean, arqn | ) <3 —=2(1—e)" 71— (1 —¢)"?

(103)

<3(1—(1—¢)h (104)

<eén (105)

Therefore, D is €p,-open-loop consistent as desired. O

F A PATHOLOGICAL FAILURE OF ACTION CHUNKING POLICIES WITHOUT THE
STRONG OPEN-LOOP CONSISTENCY ASSUMPTION

In this section, we show an example where the optimal action chunking policy defined in Equation (17)
can be highly suboptimal in the absence of the strong open-loop consistency condition.
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We define an MDP as follows. Let S = {A, B,C, D, E, F, G} and A = {1, 2}. Define the transition
dynamics and reward function as shown in the diagram below:

a=1—— D (r=+41)

-
-
-
-
L
Jun
|

S

a=2—C —a=1—— F(r=0)

N

a=2 —— G (r=+c)

where p, ¢ € (0,1) are real numbers and dotted lines denote stochastic transitions. For simplicity,
assume that the MDP has a length-2 finite horizon with v = 1, and the reward function depends only
on states (r(A) = r(B) =r(C) =r(E) =r(F) =0,r(D) = 1, and (G) = ¢). Assume that the
dataset is collected by a policy 7p defined as wp(A) = 1 (with probability 0.5) or 2 (with probability
0.5), 7p(B) = 1 (with probability 1), and 7p(C) = 2 (with probability 1).

Then, we have the following:

Pp(A,(1,1)) = D, R(A, (1,1)) =1, (106)
Pp(A, (1,2) = G, R(A,(1,2)) =, (107)
Pp(A,(2,2)) =G, R(A,(2,2)) =, (108)

where we denote action chunks as a tuple and slightly abuse notation to denote deterministic outputs
of Pp(- | s0,a0:2) (e.g., Pp(A,(1,1)) = D indicates that all length-2 trajectories in D from state A

with ag = a1 = 1 have so = D with probability 1). From this, we can compute QA; as follows:

QL(A,(1,1) =1, (109)
)L(A,(1,2) = ¢, (110)
Qi.(4,(2,2) =c. (111)

Then, assuming the missing data has a Q-value of 0 (i.e., QF.(A, (2,1)) = 0), the optimal action
chunking policy is defined as 7 (A) = (1, 1) (Equation (17)).

The true value of this action chunking policy is p. However, if p is small enough and c is large enough,
the optimal strategy in this MDP is to always choose (ag,a1) = (2,2), in which case the agent
receives a constant return of c. The suboptimality in this example is therefore ¢ — p, which can be
made arbitrarily close to 1 (the maximum possible regret in any finite, length-2 sparse-reward MDP
with a terminal reward bounded by [0, 1]). This shows a pathological failure of an action chunking
policy without the strong open-loop consistency assumption.

G ADDITIONAL RELATED WORK ON HIERARCHICAL REINFORCEMENT
LEARNING

Hierarchical reinforcement learning methods (Dayan & Hinton, 1992; Dietterich, 2000; Peng et al.,
2017; Riedmiller et al., 2018; Shankar & Gupta, 2020; Pertsch et al., 2021; Gehring et al., 2021; Xie
et al., 2021) solve tasks by typically leveraging a bi-level structure: a set of low-level/skill policies that
directly interact with the environment and a high-level policy that selects among low-level policies.
The low-level policies can also be learned via online RL (Kulkarni et al., 2016; Vezhnevets et al.,
2016; 2017; Nachum et al., 2018) or offline pre-training on a prior dataset (Paraschos et al., 2013;
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Merel et al., 2018; Ajay et al., 2021; Pertsch et al., 2021; Touati et al., 2022; Nasiriany et al., 2022;
Hu et al., 2023; Frans et al., 2024; Chen et al., 2024; Park et al., 2024b). In the options framework,
these low-level policies are often additionally associated with initiation and termination conditions
that specify when and for how long these actions can be used (Sutton et al., 1999; Menache et al.,
2002; Chentanez et al., 2004; Simsek & Barto, 2007; Konidaris, 2011; Daniel et al., 2016; Srinivas
et al., 2016; Fox et al., 2017; Bacon et al., 2017; Bagaria & Konidaris, 2019; Bagaria et al., 2024;
de Mello Koch et al., 2025). A long-lasting challenge in HRL is optimization stability because the
high-level policy needs to optimize for an objective that is shaped by the constantly changing low-
level policies (Nachum et al., 2018). Prior work (Ajay et al., 2021; Pertsch et al., 2021; Wilcoxson
et al., 2024) avoided this by first pre-train low-level policies and then keep them frozen during the
optimization of the high-level policy. Macro-actions (McGovern & Sutton, 1998; Durugkar et al.,
2016), or action chunking (Zhao et al., 2023) is another form of temporally extended action, a special
case of the low-level policies often considered in HRL, options literature, where a short horizon of
actions are predicted all at once and executed in open loop. Such approach collapses the bi-level
structure, conveniently side stepping optimization instability, and when combined with Q-learning,
has shown great empirical successes in offline-to-online RL setting (Seo et al., 2024; Li et al., 2025b).
Action chunking policies need to predict multiple actions open-loop, which can be difficult to learn
and sacrifice reactivity. Our approach regains policy reactivity by predicting and executing only a
partial action chunk, while still learning with the fully chunked critic for TD-backup. This design
preserves the value propagation benefits of chunked critic without relying on fully open-loop action
chunking policies, allowing our approach to work well on a wider range of tasks.
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