
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DECOUPLED Q-CHUNKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Bootstrapping bias problem is a long-standing challenge in temporal-difference
(TD) methods in off-policy reinforcement learning (RL). Multi-step return backups
can alleviate this issue but require delicate importance sampling to correct their
off-policy bias. Recent work has proposed to use chunked critics, which estimate
the value of short action sequences (“chunks”) rather than individual actions,
enabling unbiased multi-step backup. However, extracting policies from chunked
critics is challenging: policies must output the entire action chunk open-loop,
which can be sub-optimal in environments that require policy reactivity and also
challenging to model especially when the chunk length grows. Our key insight
is to decouple the chunk length of the critic from that of the policy, allowing the
policy to operate over shorter action chunks. We propose a novel algorithm that
achieves this by optimizing the policy against a distilled critic for partial action
chunks, constructed by optimistically backing up from the original chunked critic to
approximate the maximum value achievable when a partial action chunk is extended
to a complete one. This design retains the benefits of multi-step value propagation
while sidestepping both the open-loop sub-optimality and the difficulty of learning
policies over long action chunks. We evaluate our method on challenging, long-
horizon offline goal-conditioned benchmarks and show that it reliably outperforms
prior methods.

1 INTRODUCTION

A reinforcement learning (RL) agent can in principle solve any task with a well-defined reward
function, but training an RL agent from scratch can be sample inefficient. In many practical problems,
we have access to an offline dataset of trajectories that serves as a great prior to accelerate learning.
Temporal-difference (TD)-based RL algorithms, which learn a value network to perform approximate
dynamic programming via value backups, are particularly suitable in this setting because they are
designed to handle off-policy data. A well-known yet long-lasting bottleneck, however, is the
bootstrapping bias problem (Jaakkola et al., 1993; Sutton et al., 1998; De Asis et al., 2018; Park et al.,
2025)—as the value network regresses towards its own estimates, any error compounds across time
steps, making accurate value propagation challenging especially in long-horizon, sparse reward tasks.

Multi-step return backups (such as n-step return (Sutton et al., 1998)) can alleviate bootstrapping
bias by effectively reducing the time horizon, but naïvely applying them can result in another form
of bias that causes the value estimates to be overly conservative/pessimistic. While it is possible to
correct such systematic biases with importance sampling (Munos et al., 2016), they often require
additional heuristics and truncations to balance a delicate scale between bias and variance which
is often tricky to tune. Recent works (Seo & Abbeel, 2024; Li et al., 2025a; Tian et al., 2025; Li
et al., 2025b) leverage chunked value functions, which estimate the value of short action sequences
(“chunks”) rather than a single action. This formulation allows n-step return backup without the
pessimistic bias (under the open-loop consistency condition, which we will formalize in Section 4).
However, directly optimizing a policy over full action chunks is difficult, particularly as the chunk
size grows, and it is still unclear how to best extract a policy from a chunked critic.

In this work, we develop a simple, novel technique to address this challenge. We train a policy to
predict a shorter, partial action chunk using the chunked critic that takes in longer, complete action
chunks. The key idea enabling this approach is a ‘distilled’ chunked critic with a chunk size that
matches the policy: it optimistically regresses to the original chunked critic to approximate the
maximum value that the partial action chunk can achieve after being extended into a full action chunk.
Conceptually, while optimization is still performed for the longer, complete action chunks, the policy

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

network is only trained to output the partial action chunk of an optimized complete action chunk.
This way, the policy only needs to predict a much shorter action chunk (e.g., in the extreme case,
only one action), which often admits a much simpler distribution, while enjoying the value learning
benefits from the use of chunked critics.

Our main contributions are two-fold. On the theoretical side, we provide a formal analysis of Q-
learning with action chunking, identifying the open-loop value learning bias and characterizing the
conditions under which action chunking critic backup is preferable over n-step return backup with
a single-step critic. On the empirical side, we propose a novel technique, Decoupled Q-chunking
(DQC), that addresses the policy learning challenge in action chunking Q-learning by decoupling the
policy chunk size from the critic chunk size. DQC trains a policy to only predict a partial action chunk,
significantly reducing the policy learning challenge, while retaining the value learning benefits of the
chunked critic. We instantiate this technique as a practical offline RL algorithm that outperforms the
previous state-of-the-art method on the hardest set of environments in OGBench (Park et al., 2024a),
a challenging, long-horizon goal-conditioned RL benchmark.

2 RELATED WORK

Offline and offline-to-online reinforcement learning methods assume access to an offline dataset to
learn a policy without interactions with the environment (offline) (Kumar et al., 2020; Kostrikov et al.,
2021; Tarasov et al., 2024) or with as little online interaction with the environment as possible (offline-
to-online) (Lee et al., 2022; Ball et al., 2023; Nakamoto et al., 2024). TD-based RL algorithms
have been a popular choice for these problem settings as they naturally handle off-policy data while
requiring no on-policy rollouts, and they also exhibit good online sample-efficiency (Chen et al.,
2021; D’Oro et al., 2022). A large body of literature in these areas has been focusing on tackling the
distribution shift challenge by appropriately constraining the policies with respect to the prior offline
data, and most of them use the standard 1-step TD backup for Q-learning, which has been known to
suffer from the bootstrapping bias problem in the RL literature (Jaakkola et al., 1993; Sutton et al.,
1998). To tackle this, recent work (Jeong et al., 2022; Park & Lee, 2024; Park et al., 2025; Li et al.,
2025b) has shown that multi-step return backups are effective for improving offline/offline-to-online
Q-learning agents. These methods either use a standard single-step critic network (Park et al., 2025)
that suffers from the off-policy bias, or use a ‘chunked,’ multi-step critic network (Li et al., 2025b)
that does not have such bias but poses a huge policy learning challenge when the chunk size is too
large. Our method brings the best of both worlds—it uses action chunking to avoid the off-policy
bias while simultaneously avoiding the policy learning challenge by extracting a simpler policy that
predicts a shorter action chunk from the full-chunk-sized critic.

Multi-step return backups are computed with multi-step off-policy rewards that can lead to system-
atic value underestimation (Sutton et al., 1998; Peng & Williams, 1994; Konidaris et al., 2011; Thomas
et al., 2015), and there has been a rich literature (Precup et al., 2000; Munos et al., 2016; Rowland
et al., 2020) dedicated to fix these biases via importance sampling (Kloek & Van Dijk, 1978) with trun-
cation (Ionides, 2008). These approaches often require a careful balance between bias and variance
that can be tricky to tune. More recently, Seo & Abbeel (2024); Li et al. (2025a); Tian et al. (2025);
Li et al. (2025b) group temporally extended sequences of actions as chunks and directly estimate the
value of an action chunk rather than a single action. Such a formulation allows the value backup to op-
erate directly in the chunk space, which allows multi-step return backup without the systematic biases
from the sub-optimal off-policy data. Despite their empirical success, we still lack a good theoretical
understanding of the convergence of TD-learning with ‘chunked’ critics, as well as when it should be
favored over more traditional multi-step returns. Our work lays out the theoretical foundation for Q-
learning with critic chunking, and identifies an important yet subtle, often overlooked bias in the TD-
backup. We quantify such bias and provide the condition under which TD backup using critic chunk-
ing is guaranteed to perform better than the standard n-step return backup with a single-step critic.

See additional discussions for related work in hierarchical reinforcement learning in Appendix I.

3 PRELIMINARIES

Reinforcement learning can be formalized as a Markov decision process,M = (S,A, T, r, ρ, γ),
where S is the state space, A is the action space, T : S × A → ∆A is the transition kernel
that defines the next state distribution conditioned on the current state and the current action (e.g.,
s′ ∼ T (· | s, a)), r : S × A → [0, 1] is the reward function, ρ ∈ ∆S is the initial state distribution,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and γ ∈ [0, 1) is the discount factor. We also assume we have access to a prior offline dataset
D = {(si0, ai0, ri0, si1, ai1, ri1, · · · , siH)}|D|

i=1 where the goal is to learn a policy, π : S → ∆A that
maximizes its return, η(π) = Est+1∼T (·|st,at),at∼π(·|st),s0∼ρ [

∑∞
t=0 γ

tr(st, at)], the cumulative
discounted sum of rewards that the policy receives in expectation.

Temporal difference learning. Modern value-based reinforcement learning methods often learn a
critic network, Q : S ×A → R to approximate the maximum discounted cumulative reward starting
from state s and action a, and the critic is often trained using the temporal-difference (TD) loss:

L(ϕ) = Es,a,s′∼D
[
(Qϕ(s, a)− r(s, a)− γQ̄(s′, a′⋆))2

]
, (1)

where Q̄ is the target critic that is set to the same critic with its parameters set to an exponential
moving average of ϕ, and a′⋆ = argmaxa′ Q(s′, a′) (often approximated by a policy πθ).

Implicit value learning with implicit maximization loss function. Instead of using Q(s′, a′⋆ ∼
πθ(s

′)) as the TD target, we can use what we refer to as an implicit maximization loss function fimp

to learn a value function Vξ(s) that approximates the maximum value Q(s, a⋆) (Kostrikov et al.,
2021; Hansen-Estruch et al., 2023):

L(ξ) = Es,a∼D
[
fκimp(Q̄(s, a)− Vξ(s))

]
. (2)

Two popular choices of fκimp are (1) expectile: fκexpectile(c) = |κ − Ic<0|c2, and (2) quantile:
fκquantile(c) = |κ − Ic<0||c|, for any real value κ ∈ [0.5, 1). At the optimum of L(ξ), Vξ(s)
approximates the κ-expectile/quantile of the distribution of the critic values evaluated at Q(s, a),
induced by the data distribution D. With this implicit maximization technique, we no longer need to
explicitly find the action a that maximizes Q(s, a) and can use Vξ(s) as the backup target:

L(ϕ) = Es,a,s′∼D
[
(Qϕ(s, a)− r(s, a)− γVξ(s′))2

]
. (3)

Multi-step return backup. TD learning can sometimes struggle with long-horizon tasks due to
the well-known bootstrapping bias problem, where regressing the value network towards its own
potentially inaccurate value estimates amplifies the value estimation errors further. To tackle this
challenge, we can instead sample a trajectory segment, (st, at, st+1, · · · , at+n−1, st+n), to construct
an n-step return backup target from states h steps ahead:

Lns(ϕ) = Est,at,··· ,st+n

[(
Qϕ(st, at)−Rt:t+n − γnQ̄(st+n, a

⋆
t+n)

)2]
, (4)

where a⋆t+n = argmaxat+n
Q(st+n, at+n), Rt:t+n :=

∑t+n−1
t′=t γt

′−tr(st′ , at′). The n-step return
value estimate of reduces the effective horizon by a factor of n, alleviating the bootstrapping bias
problem. However, such value estimate is always biased towards the off-policy data distribution, and
is also commonly referred to as the uncorrected n-step return estimator (Fedus et al., 2020; Kozuno
et al., 2021). While there are ways to correct this value estimator via importance sampling (Precup
et al., 2000; Munos et al., 2016; Rowland et al., 2020), they require additional tricks (e.g., importance
ratio truncation) for numerical stability and re-introduce biases into the estimator, ultimately resulting
in a delicate trade-off between variances and biases that must be carefully balanced.

Action chunking critic. Alternatively, one may learn an action chunking critic to estimate the
value of a short sequence of actions, at:t+h := (at, at+1, · · · , at+h−1) (or an action chunk) instead:
Q(st, at:t+h) (Seo & Abbeel, 2024; Li et al., 2025a; Tian et al., 2025; Li et al., 2025b). The TD
backup loss for such a critic is naturally multi-step:

LQC(ϕ) = Est:t+h+1,at:t+h

[(
Qϕ(st, at:t+h)−Rt:t+h − γhQ̄(st+h, a

⋆
t+h:t+2h)

)2]
, (5)

where again a⋆t+h:t+2h = argmaxat+h:t+2h
Q(st+h, at+h:t+2h). On the one hand, unlike n-step

return estimate for single-action critic that is pessimistic, the n-step return estimate (with n = h)
for the action chunking critic is unbiased as long as the action chunk at:t+h is independent of the
intermediate states st+1:t+h+1, while enjoying the reduction in effective horizon (Li et al., 2025a;b).
On the other hand, action chunking critic implicitly imposes a constraint on the policy that the actions
are predicted and executed in chunks. As a result, the policy extracted from the action chunking critic
needs to predict the entire action chunk all at once, posing a big learning challenge, especially for
environments with complex transition dynamics.

In the following two sections, we offer theoretical insights that characterize the conditions when using
action chunking critic is more preferable over n-step return backup with a single critic (Section 4), and
develop a practical method that tackles the action chunking policy extraction challenge (Section 5).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 WHEN SHOULD WE USE ACTION CHUNKING FOR Q-LEARNING?
In this section, we build a theoretical foundation for Q-learning with action chunking critic functions.
We start by formalizing the setup of our analysis in Section 4.1, quantifying the value estimation bias
incurred from backing up on non-action chunking data (Theorem 4.4) and the optimality of action
chunking policy (Theorem 4.6) in Section 4.2. Using these result, we derive the condition under which
we prefer action chunking Q-learning over the standard n-step return learning in Section 4.3. We
also include some examples in which the condition holds in Appendix F.5 in the hope of facilitating
theoretical analysis of action chunking policy learning in future work.

4.1 ASSUMPTIONS

To build the foundation of our analysis, we start by describing the trajectory data distribution that we
use for Q-learning and the trajectory distribution induced by an open-loop action chunking policy. In
particular, we assume that the trajectory data distribution obeys the transition dynamics T :
Assumption 4.1 (Data Distribution Obeys Dynamics). D ∈ ∆T is a trajectory distribution generated
by rolling out a behavior policy from a distribution of st ∼ µ. The behavior policy can be non-
Markovian (i.e., πβ(at+k | st:t+k+1, at:t+k)). Each subsequent state is generated obeying the
dynamics of the MDP M: st+k+1 ∼ T (· | st+k, at+k),∀k ∈ {0, 1, · · · , h − 1}. The resulting
trajectory is {st, st+1, · · · , st+h, at, at+1, · · · , at+h} ∈ T = Sh ×Ah.

Next, we formally define the open-loop trajectory distribution that we would obtain if we take the
same actions in the data and roll them out open-loop in the environment.
Definition 4.2 (Open-loop Trajectory). From any trajectory distribution D, we can extract an open-
loop policy with a horizon of h by marginalizing out all intermediate states. We use π◦

D : S → ∆Ah

to denote such policy which is formally defined as:

π◦
D(at:t+h | st) := PD(at:t+h | st). (6)

By using this open-loop policy to roll-out trajectories in the MDP M, it induces a trajectory
distribution P ◦

D ∈ ∆Sh+1,Ah that is generally different from D. We can decompose this open-loop
policy step-by-step with the following factorization π◦

D(at:t+k | st) =
∏h−1
k=0 π

◦
D(at+k | st, at:t+k)

which allows us to define the induced trajectory distribution P ◦
D recursively (for k ∈ {1, 2, · · · , h}):

P ◦
D(st+k, at:t+k | st) := (7)
P ◦
D(st+k−1, at:t+k−1 | st)T (st+k | st+k−1, at+k−1)π

◦
D(at+k | st, at:t+k). (8)

4.2 OPEN-LOOP VALUE BIAS OF ACTION CHUNKING Q-LEARNING

As what we have elucidated in our definition above, replaying the actions from the trajectory data
distribution PD in an open-loop manner, in general, can result in a different trajectory distribution,
P ◦
D. This discrepancy between P ◦

D and PD has not been carefully analyzed by prior work (e.g., Q-
chunking (Li et al., 2025b)) but can play a huge role in the optimal policy that action chunking Q-
learning converges to. This is because TD-backup is only unbiased when it is done under the open-
loop trajectory distribution P ◦

D. Naïvely running TD-backup on PD (as done in Li et al. (2025b))
may lead to a biased Q-target. We now formalize the discrepancy and analyze such bias.
Definition 4.3 (Open-Loop Consistency). D is εh-open-loop consistent if for every st ∈ S, h′ ∈
{1, · · · , h}, as long as st ∈ S has non-zero probability in the data (i.e., PD(st) > 0),

DTV(P
◦
D(st+h′ , at+h′ | st) ∥ PD(st+h′ , at+h′ | st)) ≤ εh,∀h′ ∈ {1, 2, · · · , h− 1}, (9)

DTV(P
◦
D(st+h | st) ∥ PD(st+h | st)) ≤ εh. (10)

We say D is strongly εh-open-loop consistent if additionally for h′ ∈ {1, 2, · · · , h}, for every
at:t+h ∈ Ah with non-zero probability in the data (i.e., PD(at:t+h, st) > 0),

DTV(T (st+h′ | st, at:t+h′) ∥ PD(st+h′ | st, at:t+h)) ≤ εh. (11)

Intuitively, D is ε-open-loop consistent if, when executing the same sequence of actions from it open-
loop from st, the resulting marginal distribution of the state-action h steps into the future (i.e., st+h)
deviates from the corresponding distribution in the dataset by at most ε in total variation distance.
The strong version (Equation (11)) requires the total variation distance bound to hold for every action

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

sequence in the support, whereas the weak version (Equation (9)) only requires the bound to hold
in expectation. Having weak open-loop consistency of D is sufficient to show that behavior value
iteration of an action chunking critic results in a nominal value function with a bounded bias from the
true value of the open-loop policy π◦

D:

Theorem 4.4 (Bias of Action Chunking Critic). Let V̂ac : S → [0, 1/(1− γ)] be a solution of

V̂ac(st) = Est+1:t+h+1,at:t+h∼PD(·|st)

[
Rt:t+h + γhV̂ac(st+h)

]
, (12)

with Rt:t+h =
∑t+h
t′=t γ

t′−tr(st′ , at′) and Vac is the true value of π◦
D : st 7→ PD(at:t+h | st). If D is

εh-open-loop consistent, then under supp(D),∥∥∥Vac − V̂ac∥∥∥
∞
≤ εhγ

(1− (1− εh)γh)(1− γ)
≤ εh

(1− γh)(1− γ)
. (13)

The proof of Theorem 4.4 is available in Appendix G.2. We also show this bound is tight in
Appendix F.1. A direct consequence of this result is that the true value of the optimal action chunking
policy is close to that of the optimal closed-loop policy:
Corollary 4.5 (Optimal Action Chunking Policy). Let π⋆ : S → ∆A be an optimal policy inM and
D⋆ be the data collected by π⋆. If D⋆ is εh-open-loop consistent, then under supp(D⋆),

∥V ⋆ac − V ⋆∥∞ ≤
∥∥∥Ṽac − V ⋆∥∥∥

∞
≤ εhγ

(1− (1− εh)γh)(1− γ)
≤ εh

(1− γh)(1− γ)
, (14)

where V ⋆ is the value of the optimal policy π⋆, V ⋆ac is the true value of the optimal action chunking
policy, and Ṽac is the true value of the action chunking policy from cloning the data D⋆:

π̃ac(at:t+h | st) : st 7→ PD⋆(· | st). (15)

We again show that this bound is tight in Appendix F.2. The proof of Corollary 4.5 (available in
Appendix G.4) builds on the observation that the nominal (biased) value of the action chunking critic
obtained from behavior value iteration on an optimal data D⋆ (i.e., the data collected from an optimal
policy π⋆) recovers the value of the optimal policy. This allows us to use Theorem 4.4 to show that
the value of the action chunking policy obtained by behavior cloning on such optimal data is close to
the nominal (biased) value of its critic, and thus close to the optimal value of the closed-loop policy.

Next, we analyze the performance of the action chunking policy obtained by Q-learning. In particular,
we analyze the Q-function obtained as a solution of the following equation under supp(D):

Q̂+
ac(st, at:t+h) = Est+1:t+h+1∼PD(·|st,at:t+h)

[
Rt:t+h + γh max

at+h:t+2h

Q̂+
ac(st+h, at+h:t+2h)

]
. (16)

The corresponding action chunking policy is

π+
ac : st 7→ argmaxat:t+h

Q̂+
ac(st, at:t+h). (17)

It turns out that with the weak version of the open-loop consistent condition, the worst case perfor-
mance of the action chunking policy may be arbitrarily low (see an example in Appendix H). For-
tunately, as long as the data D satisfies the strongly open-loop consistency (Equation (11)), we can
show that the learned policy π+

ac is provably near-optimal by combining all the results above together:
Theorem 4.6 (Q-Learning with Action Chunking Policy on Off-policy Data). If D is strongly εh-
open-loop consistent and supp(D) ⊇ supp(D⋆), with D⋆ being the data distribution of an arbitrary
optimal policy π⋆ underM), then the following bound holds under supp(D⋆):

∥V +
ac − V ⋆∥∞≤

εhγ

1− γ

[
2

1− (1− 2εh)γh
+

1

1− (1− εh)γh

]
≤ 3εh

(1− γ)(1− γh)
. (18)

where V ⋆ is the value of an optimal policy underM.

This bound is also tight (as shown in Appendix F.3). The implication of Theorem 4.6 (proof available
in Appendix G.6) is that as long as D satisfies the strongly open-loop consistency condition and
contains the behavior in D⋆, Q-learning with action chunking is guaranteed to converge to a near-
optimal action chunking policy regardless of how sub-optimal the data D might be. As we will show
in the following section, this is in contrast to n-step return policy where its performance depends on
the sub-optimality of the data.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 COMPARING TO n-STEP RETURN Q-LEARNING

We now characterize the condition when action chunking Q-learning should be preferred over the
standard n-step return backup. We start by introudcing a notion of sub-optimality of the data D:
Definition 4.7 (Sub-optimal data). D is δn-suboptimal for backup horizon length n ∈ N+ if

Q⋆(st, at)− EPD(·|st,at) [Rt:t+n + γnV ⋆(st+n)] ≥ δh,∀st ∈ S, at ∈ A. (19)

Intuitively, δn captures how much worse the n-step return policy can get compared to the optimal
policy incurred by the backup bias. Under such condition, we can show that the action chunking
policy is provably better than the n-step return policy as long as δn is large.
Theorem 4.8. Let D be strongly εh-open-consistent, δn-suboptimal, and supp(D) ⊇ supp(D⋆). Let
π⋆n be the optimal n-step return policy learned from D, as the solution of

Q⋆n(st, at) = EPD [Rt:t+n + γnQ⋆n(st+n, π
⋆
n(st+n))] , π⋆n : st 7→ argmax

at
Q⋆n(st, at). (20)

As long as δn >
3εh(1−γn)

(1−γ)(1−γh)
, then from all s ∈ supp(D⋆), the action chunking policy, π+

ac (Equa-
tion (17)), is better than the n-step return policy, πn (Equation (20)) (i.e., V +

ac (s) > V ⋆n (s)).
The proof of Theorem 4.8 is available in Appendix G.9. Notably, for n = h, the condition on δn and
εh reduces to δn > 3εhH with effective horizon H (i.e., H = 1/(1− γ)). As long as D is more than
O(εhH) sub-optimal, the action chunking policy performs provably better than n-step return policy.

4.4 CLOSED-LOOP EXECUTION OF ACTION CHUNKING POLICY

Under the same strongly εh-open-loop consistency assumption, we can guarantee that closed-loop
execution of the action chunking policy is also near-optimal. This is based on the intuition that in order
for action chunking policy to be near-optimal, the first action in the chunk cannot be too sub-optimal:
Proposition 4.9 (Optimality of Closed-loop Execution of Action Chunking Policy). Let V • be the
value of the one-step policy, π•, defined as the closed-loop execution of the action chunking policy
π+
ac learned from D. That is, for each st ∈ supp(PD(st)),

π•(st) = a+t , where a+t:t+h = π+
ac(st). (21)

If we assume D and D⋆ are both strongly εh-open-loop consistent and supp(PD(st, at:t+h)) ⊇
supp(PD⋆(st, at:t+h)), then under supp(D⋆),

∥V ⋆ − V •∥∞ ≤
εhγ

(1− γ)2

[
2

1− (1− 2εh)γh
+

1

1− (1− εh)γh

]
≤ 3εh

(1− γ)2(1− γh)
. (22)

The proof is available in Appendix G.8. This result demonstrates that closed-loop execution is also
near-optimal as long as the action chunking policy is near-optimal, though we might have to pay up to
a horizon factorH (i.e., 1/(1−γ)) in sub-optimality gap in the worst case. Can we do better than this?

In practical applications, the data distributions that we are dealing with often have more structures.
For example, it is common to have a dataset consisting of multiple sources where each data source is
collected by either human expert or scripted policy that exhibits a somewhat predictable behavior
(e.g., after a robot arm picks up a cube, it will always move up rather than dropping it right away).
We formalize this kind of structure as the notion of optimality variability:
Definition 4.10 (Optimality Variability). We say D exhibits ϑh-variability in optimality conditioned
on an event X if

max
supp(PD(·|X))

[
Rt:t+h + γhV ⋆(st+h)

]
− min

supp(PD(·|X))

[
Rt:t+h + γhV ⋆(st+h)

]
≤ ϑh. (23)

See more discussion of this the definition in Appendix J. We can now formalize our results as follows:
Theorem 4.11 (Closed-loop AC Policy under Bounded OV). Let D⋆ be the data distribution col-
lected by an optimal policy. Assume D can be decomposed into a mixture of data distributions
{D⋆,D1,D2, · · · DN} such that each data distribution component satisfies Assumption 4.1 and for
some ϑLh , ϑ

G
h ≥ 0, they satisfy the following two conditions:

1. Locally bounded optimality variability condition: every Di (including D⋆) exhibits ϑLh -bounded
variability in optimality conditioned on st, at for all (st, at) ∈ supp(PDi(st, at)), and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2. Globally bounded optimality variability condition: D as a whole exhibits ϑGh -variability in
optimality conditioned on st, at:t+h for all (st, at:t+h) ∈ supp(PD(st, at:t+h)).

Then for all st ∈ supp(PD⋆(st)),

V ⋆(st)− V •(st) ≤
ϑLh

1− γ
+
ϑGh + γhmin(ϑLh , ϑ

G
h)

(1− γ)(1− γh)
≤ ϑLhH + 2ϑGhHH̄ (24)

This bound is also tight up to the exact value (as shown in Appendix F.4). It is worth noting that
although the global optimality variability condition looks similar to the strong open-loop consistency
condition, they have completely different properties. For instance, a nearly strong open-loop consistent
data distribution D can have unbounded global optimality variability and a data distribution that
exhibits zero optimality variability can also have large open-loop inconsistency. The implication of
this is that even when the closed-loop execution of an action chunking policy is near-optimal, the same
action chunking policy executed in chunks can be very sub-optimal (formalized in Appendix F.4).
Furthermore, executing the first action of the original action chunk also brings practical benefits: it
removes the need to explicitly train a policy to predict the full action chunk all at once, which is hard
when the chunk size grows big. Can we develop a practical method that realizes such potential?

5 DECOUPLED Q-CHUNKING

We propose a new algorithm that enjoys the benefits of value backup speedup of Q-chunking while
avoiding the difficulty of learning an open-loop action chunking policy with a large chunk size.

Our core idea is to decouple the chunk size of the critic from that of the policy. In particular, we train a
policy π(at:t+ha

| st) to output an action chunk (with a size of ha ≪ h) with the following objective:

L(π) := −Eat:t+ha∼π(·|st)[Qϕ(s, [at:t+ha
, a⋆t+ha:t+h])], (25)

where [at:t+ha
, a⋆t+ha:t+h

] represents the concatenation of two partial action chunks (size ha and size
h− ha) into a full action chunk at:t+h of size h, and a⋆t+ha:t+h

is the best ‘second-half’ of the action
chunk that maximizes the critic value under Qϕ:

a⋆t+ha:t+h := argmaxat+ha:t+h
Qϕ(s, [at:t+ha , at+ha:t+h]). (26)

Essentially, we want our policy to predict the partial action chunk (of size ha) within an optimal
action chunk of size h, rather than the entire optimal action chunk. This lowers the policy expressivity
requirement and hence the learning challenges associated with it with ha < h.

However, directly optimizing this objective (Equation (25)) does not lead to a novel algorithm because
taking the maximization over at+ha:t+h seemingly requires us to learn a policy of the original chunk
size anyways. To address this issue, we learn a separate partial critic QPψ , which only takes in the
partial action chunk (of size ha) as input, to approximate the maximum value this partial action chunk
can achieve when it is extended to the full action chunk (of size h):

QPψ (s, at:t+ha) ≈ Qϕ(s, [at:t+ha , a
⋆
t+ha:t+h]) (27)

To train QPψ , we can use an implicit maximization loss function (as described in Equation (2)):

L(ψ) := fκd

imp(Q̄ϕ(st, at:t+h)−Q
P
ψ (st, at:t+ha)), (28)

where st, at:t+h are sampled from D. As a result, the partial critic, QPψ , is distilled from
the original critic via an optimistic regression, where its optimum Q⋆ψ(s, at:t+ha

) approximates
Qϕ(s, [at:t+ha

, a⋆t+ha:t+h
]) in Equation (25), conveniently removing the need for training a policy to

predict the whole optimal action chunk entirely. This allows us to simplify the policy objective as

L(π) := −Eat:t+ha∼π(·|st)
[
QPψ (s, at:t+ha

)
]
. (29)

In summary, DQC trains a policy to predict a partial chunk, at:t+ha
(of size ha), by hill climbing the

value of a partial critic QPψ (s, at:t+ha
) that is distilled from the original chunked critic Qϕ(s, at:t+h)

via an implicit maximization loss. This allows our policy to fully leverage the chunked critic Qϕ
(and thus the value speedup benefits associated with Q-chunking) without the need to predict the full
action chunk (of size h), mitigating the learning challenge of an action chunking policy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1 Decoupled Q-chunking (DQC).

Given: D,Qϕ(st, at:t+h), QPψ (st, at:t+ha), Vξ(st), πβ(at:t+ha | st)
1. Agent Update:
(st:t+h+1, at:t+h, rt:t+h) ∼ D. ▷ sample trajectory chunk from the offline dataset

Optimize Qϕ with L(ϕ) =
(
Qϕ(st, at:t+h)−

∑h−1
k=0 γ

krt+k − γhV̄ξ(st+h)
)2

.

Optimize QPψ with L(ψ) = f
κd
expectile

(
Q̄ϕ(st, at:t+h)−QPψ (st, at:t+ha)

)
.

Optimize Vξ with L(ξ) = f
κb
quantile(Q̄

P
ψ (st, a

β
t:t+ha

)− Vξ(st)), aβt:t+ha
∼ πβ(· | st)

2. Policy Extration:
a1t:t+ha

, a2t:t+ha
, · · · , aNt:t+ha

∼ πβ(· | st) ▷ sample N actions from behavior policy
a⋆t:t+ha

← argmax{
ai
t:t+ha

}N

i=1

QPψ (st, at:t+ha) ▷ take the action with the highest Q-value

Practical considerations for offline RL. Finally, we describe several implementation details that
we find to work well in the offline RL setting, which our experiments primarily focus on. Our
implementation draws inspirations from a prior method, IDQL (Hansen-Estruch et al., 2023).

We first train a behavior cloning flow policy πβ using a standard flow-matching objective (Liu et al.,
2022) on the offline dataset D. Then, we approximate the policy optimization objective in DQC
(Equation (29)) using best-of-N sampling without explicitly modeling π:

a⋆t:t+ha
← argmax{ait:t+ha

}N
i=1

QPψ (st, at:t+ha
), where a1t:t+ha

, · · · , aNt:t+ha
∼ πβ(· | st). (30)

where a⋆t:t+ha
is output of the policy that we extract from QPψ for state st. Essentially, this sampling

procedure is a test-time approximation of the objective in Equation (29), where it outputs action
(chunk) that maximizes QPψ , subject to the behavior prior, as modeled by πβ .

For TD learning ofQϕ, directly computing the TD backup target from eitherQϕ̄ orQP
ψ̄

is computation-
ally expensive, as either requires samples from the current policy, which is approximated via the best-
of-N sampling procedure as described above. Instead, we use the implicit value backup (Kostrikov
et al., 2021) (i.e., as described in Equation (2)) to approximate the target:

L(ξ) = fκb

quantile(Q̄
P
ψ (st, a

β
t:t+ha

− Vξ(st)), aβt:t+ha
∼ πβ(· | st) (31)

where we pick the quantile regression loss as the implicit maximization loss function. This is
because the Q-value obtained from best-of-N sampling can be seen as the largest order statistic of
a random batch (of size N) of the behavior Q-values (i.e., {Q(s, ai)}Ni=1, a

i ∼ πβ(· | s)). Such
statistic estimates the behavior Q-value distribution’s N

1−N -quantile, which is the same as Vξ(s) at
the optimum of L(ξ) if we set κb = N

1−N . In practice, we use a larger κb for numerical stability.

Finally, we pick the expectile regression loss for training the distilled partial critic QPψ because prior
work has found it to work the best among all implicit maximization loss functions (Hansen-Estruch
et al., 2023). A summary of the algorithm is available in Algorithm 1.

6 EXPERIMENTAL SETUP

We conduct experiments to evaluate the benefits of decoupling the policy chunk size and the critic
chunk size on OGBench (Park et al., 2024a)—a challenging long-horizon, goal-conditioned offline
RL benchmark consisting of a diverse set of environments (from manipulation to locomotion). In
particular, we use the more difficult environments introduced by Park et al. (2025) (Figure 6), where
multi-step return backups are crucial. These environments require highly complex, long-horizon
reasoning, and serve as an ideal testbed for our algorithm, which improves upon n-step returns and
Q-chunking. We now describe our main comparisons, starting with direct ablation baselines:

DQC-naïve is a naïve attempt at decoupling the critic chunk size from the policy chunk size, where
it takes the QC policy to predict full action chunks of size h but only execute the first ha actions.

QC (Li et al., 2025b) uses a single critic that has the same chunk length as that of the policy (i.e.,
h = ha). This baseline tests whether having decoupled chunk sizes is important.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-triple-100M

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-quadruple-100M

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-octuple-1B

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

humanoidmaze-giant

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

puzzle-4x5

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

puzzle-4x6-1B

Training Steps (×106)

Ov
er

al
l S

uc
ce

ss
 R

at
e

DQC DQC-naïve QC NS OS

Figure 1: Offline goal-conditioned RL results. Our method (DQC) uses a decoupled critic and policy chunk
sizes, which allows it to outperform our baselines by a large margin on cube-* and competitive on others. QC:
Q-chunking (Li et al., 2025b); DQC-naïve: QC but only executing a partial action chunk open-loop; NS: n-step
return backup; OS: 1-step TD-backup.

NS: n-step return TD backup. This baseline uses a single one-step critic (i.e., Q(st, at)). Compared
to DQC with h = n and ha = 1, this baseline tests whether using a chunked critic is important.

OS: Standard 1-step TD backup. This is the same as NS but with n = 1.

Beyond the ablation baselines, we also consider the following strong goal-conditioned baselines:

FBC/HFBC: Goal-conditioned and hierarchical goal-conditioned flow behavior cloning baselines
considered in Park et al. (2025).

IQL/HIQL (Kostrikov et al., 2021; Park et al., 2023): These are strong goal-conditioned RL methods
that train a goal-conditioned value function with implicit value backups and extract a flat (IQL) or
hierarchical (HIQL) policy from the value function.

SHARSA (Park et al., 2025): The previous state-of-the-art method on the long-horizon environments
that we evaluate on. The method uses a combination of n-step return and bi-level hierarchical policies.

In our ablation study, we also consider an additional baseline, QC-NS, that uses the idea of decoupled
policy chunking and critic chunking (ha < h), but without using a distilled critic. This baseline
simply uses n-step return targets to directly train a critic with a chunk size of ha without implicit
maximization (Equation (28)). The performance of this baseline helps determine how important it is
to learn a separate distilled critic for partial action chunks with implicit maximization. For all our
main results, we run 3 seeds and report the means and the 95% confidence intervals.

Task FBC HFBC IQL HIQL SHARSA OS NS QC DQC-naïve DQC

cube-triple-100M 53[48,57] 57[54,61] 64[59,68] 36[27,45] 82[78,88] 56[48,64] 56[37,71] 17[8,25] 36[24,49] 98[97,99]

cube-quadruple-100M 32[30,33] 38[34,41] 53[53,53] 24[18,30] 67[62,74] 0[0,0] 22[9,36] 29[22,36] 36[28,44] 93[91,95]

cube-octuple-1B 0[0,0] 28[27,28] 0[0,0] 18[14,21] 33[30,35] 0[0,0] 7[3,11] 0[0,0] 2[0,4] 31[29,33]

humanoidmaze-giant 1[0,3] 4[2,5] 4[2,6] 24[20,28] 18[13,25] 0[0,0] 97[95,98] 34[16,51] 81[79,83] 92[90,94]
puzzle-4x5 0[0,0] 0[0,0] 20[20,20] 0[0,0] 1[0,2] 18[17,19] 88[86,90] 22[20,26] 31[26,35] 96[95,97]

puzzle-4x6-1B 0[0,0] 5[3,5] 7[2,13] 10[3,17] 62[57,71] 19[19,20] 95[92,98] 43[36,50] 42[37,48] 81[77,86]

Table 1: Comparisons with prior methods. Our method outperforms SHARSA (Park et al., 2025) (the previous
state-of-the-art method on this benchmark) on most tasks except cube-octuple where our performance is
on par with SHARSA. In contrast, our n-step return baseline (NS), Q-chunking baseline (QC), and naïvely
executing partial action chunks from QC (naïve DQC) all fail to outperform SHARSA on cube-*.

7 RESULTS

In this section, we present our experimental results to answer the following three questions:

(Q1) Does DQC improve upon n-step return, Q-chunking? Figure 1 compares DQC (ours) to
both n-step and QC across six challenging long-horizon GCRL tasks, with our method performing
on par or better across the board. Table 1 shows DQC also consistently outperforms the previous
state-of-the-art method on this benchmark, SHARSA (Park et al., 2025), on all environments. For
each environment, we tune DQC (ours), QC, NS, OS (see the tuning range in Table 8) and pick the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-triple-100M

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-quadruple-100M

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-octuple-1B

Training Steps (×106)

Ov
er

al
l S

uc
ce

ss
 R

at
e backup horizon = 5, ha = 1

DQC (h = 5, ha = 1)
NS (n = 5)

backup horizon = 25, ha = 1
DQC (h = 25, ha = 1)
NS (n = 25)

backup horizon = 25, ha = 5
DQC (h = 25, ha = 5)
QC-NS (n = 25, ha = 5)

Figure 2: Distilled critic ablations. Each group in the legend contains DQC and its non-distilled counterpart
with the same configuration (i.e., same backup horizon and same policy chunk size). Our method (DQC)
performs on par or better than the non-distilled counterpart across all configurations.

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

Best-of-N Policy Extraction (N)

128
64
32 (Ours)
16
8
4

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

Implicit Loss Type

quan. distill, quan. backup
exp. distill, exp. backup
exp. distill, quan. backup (ours)

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

Implicit Parameters (d, b)

b = d = 0.5
b = 0.5, d = 0.8
b = 0.93, d = 0.5
b = 0.93, d = 0.8 (ours)

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

Batch Size

256
1024
4096 (Ours)

Training Steps (×106)

Ov
er

al
l S

uc
ce

ss
 R

at
e

Figure 3: Hyperparameter sensitivity analysis on cube-quadruple-100M. Best-of-N: the number of action
samples drawn from πβ(· | s) during policy evaluation; Implicit loss type: the implicit maximization loss
function used for distillation and value backup; Batch size: the number of examples used in each gradient step.

best configuration (Table 7) for hyperparameters used in Figure 1 and Table 1. For all baselines from
prior work (SHARSA, HIQL, IQL, HFBC, FBC), we directly use their tuned hyperparameters and
run with the same batch size (i.e., 4096) as used in our method and other baselines. See the complete
table for all combinations of h, n, ha in Appendix A.

(Q2) Is training a separate distilled critic QPψ necessary? In Figure 2, we compare DQC to DQC
without using the distilled critic across three different (h, ha) configurations: (h = 25, ha = 5),
(h = 25, ha = 1), and (h = 5, ha = 1). For configurations with ha = 1, the baseline without using
the distilled critic is the same as the n-step return baseline (with n = h) and for the configuration
with ha = 5, it is the same as combining Q-chunking and n-step return. Across three configurations,
DQC performs on par or better than its non-distilled counterpart. This highlights that the use of a
separate distilled critic for the partial action chunk is necessary for the effectiveness of DQC.

(Q3) How sensitive is DQC to its hyperparameters? Figure 3 shows that our method is not
sensitive to the implicit backup method (quantile or expectile), and somewhat sensitive to the implicit
parameters κb, κd. In particular, DQC is still reasonably effective as long as some form of optimistism
is employed (i.e., either κb ̸= 0.5 or κd ̸= 0.5). Using no optimism (κb = κd = 0.5) results in a big
performance drop. The other important hyperparameters are N in best-of-N policy extraction and
the batch size. Having large enough batch size (i.e., 4096) and N (e.g., N = 32) is crucial for good
performance, though a larger N (N = 128) does not lead to better performance.

8 DISCUSSION

We provide a theoretical foundation for action chunking Q-learning and demonstrate how to effec-
tively extract policies from chunked critics. Theoretically, we provide a formal analysis of action
chunking Q-learning, identifying the TD backup bias that arises from open-loop inconsistency and
characterizing the conditions under which action chunking Q-learning is preferred over n-step re-
turn learning. Empirically, we develop a novel technique that enables effective policy extraction
from chunked critics with long action chunks, scaling up action chunking Q-learning to much harder
environments. Together, these contributions advance the goal of tackling bootstrapping bias in TD-
learning. Several challenges remain, indicating promising avenues for future research. Our method
still inherits the open-loop value bias identified in Theorem 4.4, and developing techniques to ac-
tively correct for this bias could further improve performance. Moreover, our method relies on a
fixed policy action chunk size ha and critic action chunk size h across all states, even though the
optimal action chunk size may vary by state. Developing practical methods that can support flexible,
state-dependent chunk sizes would be a natural next step.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate future research, we include our source code as part of the supplementary materials,
along with example scripts for both our method and our baselines. We describe our environments
in Appendix D and hyperparameters in Appendix E. For our theoretical results, we fully state our
assumption in Assumption 4.1 and provide complete proofs in Appendix G.

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. OPAL: Offline
primitive discovery for accelerating offline reinforcement learning. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=V69LGwJ0lIN.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Akhil Bagaria and George Konidaris. Option discovery using deep skill chaining. In International
Conference on Learning Representations, 2019.

Akhil Bagaria, Ben Abbatematteo, Omer Gottesman, Matt Corsaro, Sreehari Rammohan, and George
Konidaris. Effectively learning initiation sets in hierarchical reinforcement learning. Advances in
Neural Information Processing Systems, 36, 2024.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR, 2023.

Boyuan Chen, Chuning Zhu, Pulkit Agrawal, Kaiqing Zhang, and Abhishek Gupta. Self-supervised
reinforcement learning that transfers using random features. Advances in Neural Information
Processing Systems, 36, 2024.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated reinforcement
learning. Advances in neural information processing systems, 17, 2004.

Imre Csiszár. On information-type measure of difference of probability distributions and indirect
observations. Studia Sci. Math. Hungar., 2:299–318, 1967.

Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hierarchical relative entropy
policy search. Journal of Machine Learning Research, 17(93):1–50, 2016.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural information
processing systems, 5, 1992.

Kristopher De Asis, J Hernandez-Garcia, G Holland, and Richard Sutton. Multi-step reinforcement
learning: A unifying algorithm. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Anita de Mello Koch, Akhil Bagaria, Bingnan Huo, Zhiyuan Zhou, Cameron Allen, and George
Konidaris. Learning transferable sub-goals by hypothesizing generalizing features. 2025.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-
tion. Journal of artificial intelligence research, 13:227–303, 2000.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and Aaron
Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In Deep
Reinforcement Learning Workshop NeurIPS 2022, 2022.

Ishan P Durugkar, Clemens Rosenbaum, Stefan Dernbach, and Sridhar Mahadevan. Deep reinforce-
ment learning with macro-actions. arXiv preprint arXiv:1606.04615, 2016.

11

https://openreview.net/forum?id=V69LGwJ0lIN

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International
conference on machine learning, pp. 3061–3071. PMLR, 2020.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options.
arXiv preprint arXiv:1703.08294, 2017.

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Unsupervised zero-shot reinforcement
learning via functional reward encodings. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the
41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 13927–13942. PMLR, 21–27 Jul 2024. URL https://proceedings.
mlr.press/v235/frans24a.html.

Jonas Gehring, Gabriel Synnaeve, Andreas Krause, and Nicolas Usunier. Hierarchical skills for
efficient exploration. Advances in Neural Information Processing Systems, 34:11553–11564, 2021.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Hao Hu, Yiqin Yang, Jianing Ye, Ziqing Mai, and Chongjie Zhang. Unsupervised behavior extraction
via random intent priors. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=4vGVQVz5KG.

Edward L Ionides. Truncated importance sampling. Journal of Computational and Graphical
Statistics, 17(2):295–311, 2008.

Tommi Jaakkola, Michael Jordan, and Satinder Singh. Convergence of stochastic iterative dynamic
programming algorithms. Advances in neural information processing systems, 6, 1993.

Jihwan Jeong, Xiaoyu Wang, Michael Gimelfarb, Hyunwoo Kim, Baher Abdulhai, and Scott Sanner.
Conservative bayesian model-based value expansion for offline policy optimization. arXiv preprint
arXiv:2210.03802, 2022.

Teun Kloek and Herman K Van Dijk. Bayesian estimates of equation system parameters: an
application of integration by monte carlo. Econometrica: Journal of the Econometric Society, pp.
1–19, 1978.

George Konidaris, Scott Niekum, and Philip S Thomas. TDγ : Re-evaluating complex backups in
temporal difference learning. Advances in Neural Information Processing Systems, 24, 2011.

George Dimitri Konidaris. Autonomous robot skill acquisition. University of Massachusetts Amherst,
2011.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit Q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Tadashi Kozuno, Yunhao Tang, Mark Rowland, Rémi Munos, Steven Kapturowski, Will Dabney,
Michal Valko, and David Abel. Revisiting Peng’s Q (λ) for modern reinforcement learning. In
International Conference on Machine Learning, pp. 5794–5804. PMLR, 2021.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic Q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

12

https://proceedings.mlr.press/v235/frans24a.html
https://proceedings.mlr.press/v235/frans24a.html
https://openreview.net/forum?id=4vGVQVz5KG

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ge Li, Dong Tian, Hongyi Zhou, Xinkai Jiang, Rudolf Lioutikov, and Gerhard Neumann. TOP-ERL:
Transformer-based off-policy episodic reinforcement learning. In The Thirteenth International
Conference on Learning Representations, 2025a. URL https://openreview.net/forum?id=
N4NhVN30ph.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. arXiv
preprint arXiv:2507.07969, 2025b.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Amy McGovern and Richard S Sutton. Macro-actions in reinforcement learning: An empirical
analysis. 1998.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut—dynamic discovery of sub-goals in
reinforcement learning. In Machine Learning: ECML 2002: 13th European Conference on
Machine Learning Helsinki, Finland, August 19–23, 2002 Proceedings 13, pp. 295–306. Springer,
2002.

Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne,
Yee Whye Teh, and Nicolas Heess. Neural probabilistic motor primitives for humanoid control.
arXiv preprint arXiv:1811.11711, 2018.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. Advances in neural information processing systems, 29, 2016.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-QL: Calibrated offline RL pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Soroush Nasiriany, Tian Gao, Ajay Mandlekar, and Yuke Zhu. Learning and retrieval from prior data
for skill-based imitation learning. In Conference on Robot Learning, 2022.

Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Probabilistic movement
primitives. Advances in neural information processing systems, 26, 2013.

Kwanyoung Park and Youngwoon Lee. Model-based offline reinforcement learning with lower
expectile q-learning. arXiv preprint arXiv:2407.00699, 2024.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. HIQL: Offline goal-
conditioned RL with latent states as actions. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=cLQCCtVDuW.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. ArXiv, 2024a.

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations.
In Forty-first International Conference on Machine Learning, 2024b. URL https://openreview.
net/forum?id=LhNsSaAKub.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon reduction makes RL scalable. arXiv preprint arXiv:2506.04168, 2025.

Jing Peng and Ronald J Williams. Incremental multi-step Q-learning. In Machine Learning Proceed-
ings 1994, pp. 226–232. Elsevier, 1994.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning. Acm transactions on graphics
(tog), 36(4):1–13, 2017.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021.

13

https://openreview.net/forum?id=N4NhVN30ph
https://openreview.net/forum?id=N4NhVN30ph
https://openreview.net/forum?id=cLQCCtVDuW
https://openreview.net/forum?id=LhNsSaAKub
https://openreview.net/forum?id=LhNsSaAKub

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Doina Precup, Richard S Sutton, and Satinder Singh. Eligibility traces for off-policy policy evaluation.
In ICML, volume 2000, pp. 759–766. Citeseer, 2000.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In International conference on machine learning, pp. 4344–4353.
PMLR, 2018.

Mark Rowland, Will Dabney, and Rémi Munos. Adaptive trade-offs in off-policy learning. In
International Conference on Artificial Intelligence and Statistics, pp. 34–44. PMLR, 2020.

Younggyo Seo and Pieter Abbeel. Reinforcement learning with action sequence for data-efficient
robot learning. 2024.

Younggyo Seo, Jafar Uruç, and Stephen James. Continuous control with coarse-to-fine reinforcement
learning. In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/
forum?id=WjDR48cL3O.

Tanmay Shankar and Abhinav Gupta. Learning robot skills with temporal variational inference. In
International Conference on Machine Learning, pp. 8624–8633. PMLR, 2020.

Özgür Şimşek and Andrew G. Barto. Betweenness centrality as a basis for forming skills. Working-
paper, University of Massachusetts Amherst, April 2007.

Aravind Srinivas, Ramnandan Krishnamurthy, Peeyush Kumar, and Balaraman Ravindran. Option
discovery in hierarchical reinforcement learning using spatio-temporal clustering. arXiv preprint
arXiv:1605.05359, 2016.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Philip S Thomas, Scott Niekum, Georgios Theocharous, and George Konidaris. Policy evaluation
using the Ω-return. Advances in Neural Information Processing Systems, 28, 2015.

Dong Tian, Ge Li, Hongyi Zhou, Onur Celik, and Gerhard Neumann. Chunking the critic: A
transformer-based soft actor-critic with N-step returns. arXiv preprint arXiv:2503.03660, 2025.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist? In
The Eleventh International Conference on Learning Representations, 2022.

Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John Agapiou,
et al. Strategic attentive writer for learning macro-actions. Advances in neural information
processing systems, 29, 2016.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540–3549. PMLR, 2017.

Max Wilcoxson, Qiyang Li, Kevin Frans, and Sergey Levine. Leveraging skills from unlabeled prior
data for efficient online exploration. arXiv preprint arXiv:2410.18076, 2024.

Yihong Wu. Lecture notes on information-theoretic methods for high-dimensional statistics. Lecture
Notes for ECE598YW (UIUC), 16:15, 2017.

Kevin Xie, Homanga Bharadhwaj, Danijar Hafner, Animesh Garg, and Florian Shkurti. Latent skill
planning for exploration and transfer. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=jXe91kq3jAq.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

14

https://openreview.net/forum?id=WjDR48cL3O
https://openreview.net/forum?id=WjDR48cL3O
https://openreview.net/forum?id=jXe91kq3jAq

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A FULL RESULTS

Table 2 reports the performance of our method (DQC) and baselines for all hyperparameter configu-
rations. All of them use the same hyperparameters in Table 5 with the only exception that SHARSA
handles goal-sampling for training behavior cloning policies slightly differently as we discuss in
more details in Appendix E. We also include the full batch size sensitivity analysis in Figure 4.

Task OS DQC DQC-naïve QC NS DQC DQC-naïve NS DQC DQC-naïve QC-NS QC SHARSA HIQL IQL FBC HFBC
(h = 5, ha = 1) (h = 5, ha = 1) (ha = 5) (n = 5) (h = 25, ha = 1) (h = 25, ha = 1) (n = 25) (h = 25, ha = 5) (h = 25, ha = 5) (n = 25, ha = 5) (ha = 25)

cube-triple-100M 56[48,64] 69[68,70] 15[8,20] 16[8,23] 50[26,72] 77[75,79] 21[14,29] 56[38,71] 98[97,99] 36[24,49] 63[31,96] 27[18,37] 82[78,88] 36[27,45] 64[59,68] 53[48,57] 57[54,61]
cube-quadruple-100M 0[0,0] 37[36,39] 36[28,44] 37[30,44] 23[4,41] 47[42,53] 9[0,20] 22[9,36] 93[91,95] 18[2,37] 73[44,89] 7[1,15] 67[62,74] 24[18,30] 53[53,53] 32[30,33] 38[34,41]
cube-octuple-1B 0[0,0] 0[0,0] 0[0,0] 0[0,0] 0[0,0] 10[8,13] 1[0,2] 7[3,11] 31[29,33] 2[0,4] 20[12,26] 0[0,1] 33[30,35] 18[14,21] 0[0,0] 0[0,0] 28[27,28]
humanoidmaze-giant 0[0,0] 0[0,0] 81[79,83] 49[46,52] 1[0,1] 92[91,94] 18[17,19] 97[95,98] 51[47,54] 0[0,1] 66[64,68] 0[0,0] 18[13,25] 24[20,28] 4[2,6] 1[0,3] 4[2,5]
puzzle-4x5 18[17,19] 19[19,20] 20[20,20] 20[20,20] 66[61,71] 90[87,94] 30[25,34] 88[86,90] 96[95,97] 31[26,35] 96[95,97] 28[25,32] 1[0,2] 0[0,0] 20[20,20] 0[0,0] 0[0,0]
puzzle-4x6-1B 19[19,20] 35[33,37] 25[23,28] 26[24,28] 54[46,61] 81[77,86] 41[36,47] 95[92,97] 75[71,79] 42[37,49] 98[97,99] 45[41,51] 62[57,71] 10[3,17] 7[2,13] 0[0,0] 5[3,5]

Table 2: Complete results for all configurations. All means and 95% bootstrapped confidence intervals are
computed over 6 seeds. (⋆) indicates that we take the results from the original paper (Park et al., 2025), where
we take the results with larger 10M-sized datasets for humanoidmaze-giant (originally 4M) and puzzle-4x5
(originally 3M). For QC (h = 25), we use κb = 0.93 for cube-*, κb = 0.9 on humanoidmaze-giant and
puzzle-4x5, κb = 0.7 on puzzle-4x6 (same as QC with h = 5). For QC-NS, we use the same implicit
parameters as DQC. For NS (n = 5), we use κb = 0.93 on cube-*, κb = 0.7 on humanoidmaze-giant and
puzzle-4x5, κb = 0.5 on puzzle-4x6 (same as NS with n = 25).

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-triple-100M

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-quadruple-100M

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-octuple-1B

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

humanoidmaze-giant

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

puzzle-4x5

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

puzzle-4x6-1B

Training Steps (×106)

Ov
er

al
l S

uc
ce

ss
 R

at
e

4096 (ours) 1024 256

Figure 4: Batch size sensitivity. Large batch size is crucial for DQC’s performance especially on hard tasks.

B ADDITIONAL EMPIRICAL ANALYSIS

To gain more insights of the role of the implicit parameters κb and κd in DQC, we plot the average
value of Vξ, Qϕ and QPψ over the course of training for each task in Figure 5.

C COMPUTATION RESOURCE

All our experiments are run NVIDIA RTX-A5000 GPU. On average, each 1M-training-step ex-
periment takes about 8-10 hours (depending on the method). To reproduce our main results
(e.g., Table 2), we estimate it would take around 10︸︷︷︸

hours per single run

× 14︸︷︷︸
of methods

× 6︸︷︷︸
of tasks

× 6︸︷︷︸
of seeds

=

5 040 GPU hours. Reproducing our sensitivity analysis in Figure 3 and Figure 4 would take an-
other extra 10︸︷︷︸

hours per single run

× 22︸︷︷︸
of analysis curves

× 6︸︷︷︸
of seeds

= 1 320 GPU hours. We also report the training

speed and the parameter count for both our method and all our baselines in Table 3.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00

0.86

0.87

0.88
cube-triple-100M

0.00 0.25 0.50 0.75 1.00

0.84

0.85

0.86
cube-quadruple-100M

0.00 0.25 0.50 0.75 1.00
0.70

0.72

0.74

0.76

cube-octuple-1B

0.00 0.25 0.50 0.75 1.00
0.64

0.66

0.68

humanoidmaze-giant

0.00 0.25 0.50 0.75 1.00
0.84

0.85

0.86

0.87
puzzle-4x5

0.00 0.25 0.50 0.75 1.00
0.72

0.74

0.76

0.78
puzzle-4x6-1B

Training Steps (×106)

Va
lu

e

V QP Q

Figure 5: Value of Vξ, Qϕ, QPψ over the course of training of our method, DQC. For cube-triple and
cube-quadruple, DQC uses κb = 0.93, κd = 0.8. This is reflected as the value gap between V , QP and
Q. The partial critic QP optimistically distills from the full critic Q and the value V optimistically backs
up from QP . For cube-octuple and puzzle-4x5, we use κd = 0.5, which causes QP to closely track Q.
For humanoidmaze-giant, DQC uses κb = 0.5 and κd = 0.8 which make V closely tracks QP and QP

optimistically distills from Q. Finally, for puzzle-4x6, we use κb = κd = 0.5 which causes all value functions
to output a similar value.

DQC QC NS / OS SHARSA HIQL IQL HFBC FBC
training speed (sec/step) 0.0271 0.0203 0.0200 0.0235 0.0401 0.0243 0.0101 0.0066

parameter count 26 218 528 19 507 230 19 384 330 22 677 526 22 605 853 19 390 474 6 490 129 3 237 893

Table 3: Training speed and parameter count for each method on cube-quadruple-100M.

D ENVIRONMENTS AND DATASETS

To evaluate our method, we consider 8 goal-conditioned environments in OGBench with varying
difficulties (Figure 6). The dataset size, episode length, and the action dimension for each environment
is available in Table 4. We describe each of the environments and the datasets we use as follows.

Environment cube-*: We consider three cube environments (cube-triple, cube-quadruple,
cube-octuple). As the names suggest, the goal of these environments involve using a robot arm
to manipulate 3/4/8 cubes from some initial configuration to some specified goal configuration. We
use the same five evaluation tasks used in OGBench (Park et al., 2024a) for cube-triple and
cube-quadruple and the same five evaluation tasks used in Park et al. (2025) for cube-octuple.
We refer the environment detail to the corresponding references.

Environment Dataset Size Episode Length Action Dim. (A)
cube-triple-100M 100M 1000 5

cube-quadruple-100M 100M 1000 5
cube-octuple-1B 1B 1500 5

humanoidmaze-giant 4M (default) 4000 21
puzzle-4x5 3M (default) 1000 5

puzzle-4x6-1B 1B 1000 5

Table 4: Environment metadata. For both humanoidmaze-giant and puzzle-4x5, we use the default
dataset that is released in the original OGBench benchmark (Park et al., 2024a). For the other environments, we
use larger datasets as we find them to be essential for achieving good performances on these environments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Environment humanoidmaze-*: We also consider the hardest locomotion environment available
in OGBench. The goal of the environment is to control and navigate a humanoid agent from some
initial location to some specified goal location in a 16 × 12 maze. This environment also has the
longest episode length (4000, more than twice as long as the second longest episode length as used in
cube-octuple). We refer the environment detail to Park et al. (2024a).

Environment puzzle-*: Finally, we consider two environments that involve solving a combinatorial
puzzle with a robot arm. The puzzle consists of a board of 4 × 5 or 4 × 6 buttons, organized as a
regular grid (4 rows and 5 or 6 columns). Each button has a binary state. Whenever the end-effector
of the arm touches a button, the button and all its adjacent four buttons (three or two if the button
is on the edge of the grid or in the corner) flip its binary state. The goal of the environment is to
transform the board from some initial state to some specified goal state. We refer the environment
detail to Park et al. (2025).

At the test-time/evaluation-time, the goal-conditioned agent is tested on five evaluation tasks for each
of the six environments we consider. The overall success rate is the average over 5 tasks with 50
evaluation trials each.

Datasets. We use play datasets for all cube-* and puzzle-* environments and navigate
dataset for humanoidmaze-*. We use the original datasets available for humanoidmaze-giant and
puzzle-4x5 because they are sufficient for solving the environments. Using larger datasets on these
environments do not help differentiating among different methods/baselines. For each of the other
environments, we use the largest dataset available from Park et al. (2025) as we find it to be neces-
sary to solve these environments (or achieve non-trivial performance on the hardest cube-octuple
environment).

cube-triple cube-quadruple cube-octuple

humanoidmaze-giant puzzle-4x5 puzzle-4x6

Figure 6: Visualization of environments.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Hyperparameters. Table 5 describes the common hyperparameters used in all our experiments.
Table 7 describe the environment-specific hyperparameters and Table 8 describes the range of
hyperparameters we use for tuning each method.

Parameter Value
Batch size 4096

Discount factor (γ) 0.999
Optimizer Adam

Learning rate 3× 10−4

Target network update rate (λ) 5× 10−3

Critic ensemble size (K) 2

Critic target min(Q1, Q2) for cube-*
(Q1 +Q2)/2 for puzzle-* and humanoid-*

Implicit Backup Quantile (κb) 0.9
Value loss type binary cross entropy

Best-of-N sampling (N) 32
Number of flow steps 10

Number of training steps 106

Network width 1024
Network depth 4 hidden layers

Value goal sampling (wv
cur, w

v
geom, w

v
traj, w

v
rand) (0.2, 0, 0.5, 0.3)

Actor goal sampling (wp
cur, w

p
geom, w

p
traj, w

p
rand)

DQC/QC/NS/OS: πβ is not goal-conditioned
SHARSA (cube): (0, 1, 0, 0)

SHARSA (puzzle): (0, 0, 1, 0)
SHARSA (humanoidmaze): (0, 0, 1, 0)

Table 5: Common hyperparameters. For the GCRL goal-sampling distribution we follow the same hyperpa-
rameters used in Park et al. (2025).

Goal-conditioned RL implementation details. While we have described in the main body of the
paper how DQC works as a general RL algorithm, we have not touched on how DQC and similarly
all our baselines works with the goal-condition RL (GCRL) setting. We consider the setting where
we have access to an oracle goal representation Ψ : S → G where G is the goal space (see Table 6
for the oracle goal representation description for each environment). The goal-conditioned reward
function r : (s, g) 7→ IΨ(s)=g is a binary reward function where its output is 1 if the goal g is reached
by the current state s. We can treat g as part of an extended state s̃ = [s, g] ∈ S̃ = S × G and learn
value functions (e.g., Qϕ(s̃, a)) normally with such extended state.

Environment Goal Representation (Ψ) Goal Domain (G)

cube-triple (x, y, z) of three cubes (rel. to center) R9

cube-quadruple (x, y, z) of four cubes (rel. to center) R12

cube-octuple (x, y, z) of eight cubes (rel. to center) R24

humanoidmaze-giant (x, y) of the humanoid R2

puzzle-4x5 the binary state for each button {0, 1}20
puzzle-4x6 the binary state for each button {0, 1}24

Table 6: Oracle goal representation description for each environment. Following Park et al. (2025), we
assume access to an oracle goal representation for each environment. More detailed definition of these oracle
goal representations is available in OGBench (Park et al., 2024a).

A common trick in the GCRL setting is to use goal relabeling. That is, during training for each (s, a)
pair in the training batch, a goal g is sampled from some distribution (i.e., pD(· | s, a)) and the reward
of the transition is relabeled with the goal-conditioned reward function. Following Park et al. (2025),

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Environment DQC DQC-naïve QC NS OS SHARSA HIQL IQL HFBC
(h, ha, κb, κd) (h, ha, κb) (h = ha, κb) (n, κb) (κb) (n) (h, κ, α) (α) (h)

cube-triple-100M (25, 5, 0.93, 0.8) (25, 5, 0.93) (5, 0.93) (25, 0.5) 0.5 25 (25, 0.5, 10) 3 25
cube-quadruple-100M (25, 5, 0.93, 0.8) (5, 1, 0.93) (5, 0.93) (25, 0.5) 0.7 25 (25, 0.5, 10) 3 25

cube-octuple-1B (25, 5, 0.93, 0.5) (25, 5, 0.93) (25, 0.93) (25, 0.97) 0.7 25 (50, 0.5, 10) 10 50
humanoidmaze-giant (25, 1, 0.5, 0.8) (5, 1, 0.9) (5, 0.9) (25, 0.7) 0.5 50 (50, 0.5, 3) 0.3 50

puzzle-4x5 (25, 5, 0.9, 0.5) (25, 5, 0.9) (5, 0.9) (25, 0.7) 0.7 50 (25, 0.7, 3) 1 25
puzzle-4x6-1B (25, 1, 0.7, 0.5) (25, 5, 0.7) (5, 0.7) (25, 0.5) 0.7 50 (25, 0.7, 3) 1 25

Table 7: Environment-specific hyperparameters for DQC, QC, NS, OS, and SHARSA . For SHARSA, we follow
the hyperparameters in the original paper (Park et al., 2025).

Environment Backup Quantile Distillation Expectile Backup horizon Policy Chunk Size
(κb) (κd) (h) or (n) (ha)

cube-* {0.5, 0.7, 0.9, 0.93, 0.95, 0.97, 0.99} {0.5, 0.8} {5, 25} {1, 5, 25}
{humanoidmaze/puzzle}-* {0.5, 0.7, 0.9} {0.5, 0.8} {5, 25} {1, 5, 25}

Table 8: Hyperparameter tuning range for all methods. For NS, we only tune κb and n because the policy
chunk size is always 1 and there is no distilled critic. Similarly, for QC, we only tune κb and h = ha because
the policy chunk size is the same as the crtici chunk size and there is no distilled critic. For OS, we only tune κb.

the goal distribution P g(· | s, a) : S × A → ∆G is a mixture of four distributions, conditioned on
the training state-action example:

P g = wcurP
g
cur + wgeomP

g
geom + wtrajP

g
traj + wrandP

g
rand, (32)

where

1. P gcur(· | s, a) = δΨ(s): the goal is the same as the current state;

2. P ggeom(· | s, a): geometric distribution over the future states in the same trajectory that (s, a)
is from;

3. P gtraj(· | s, a): uniform distribution over the future states in the same trajectory that (s, a) is
from; and finally

4. P grand(· | s, a) = Ψ(UD(s)): uniform distribution over the dataset (D(s) is the distribution
of states in the dataset).

and wcur, wgeom, wtraj, wrand > 0 are the corresponding weights for each of the distribution compo-
nents with wcur + wgeom + wtraj + wrand = 1.

In practice, it has been found to be beneficial to use a separate set of goal sampling weights
for TD backup (Park et al., 2024a) (i.e., (wv

cur, w
v
geom, w

v
traj, w

v
rand)) and for policy learning (i.e.,

(wp
cur, w

p
geom, w

p
traj, w

p
rand)). However, in our implementation of DQC/QC/NS/OS, we do not train a

goal-conditioned policy, as our policy extraction is done entirely at test-time by best-of-N sampling
from an unconditional (i.e., not goal-conditioned) behavior policy πβ . In particular, we use an uncon-
ditioned flow policy πβ(· | s) that is parameterized by a velocity field vβ : S × RA × [0, 1]→ RA
that is trained with the standard flow-matching objective:

LFM(β) = Eu∼U [0,1],z∼N ,(s,a)∼D
[
∥vβ(s, (1− u)z + ua, u)− a+ z∥22

]
(33)

For SHARSA, we use the official implementation where both flow policies (high-level and low-
level) are goal-conditioned (and thus are trained with the goal distribution mixture specified by
wp

cur, w
p
geom, w

p
traj, w

p
rand). The goal sampling distribution for training the value networks (for all

methods) and the goal sampling distribution for the policy networks (for SHARSA only) are provided
in Table 5.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F LOWER-BOUND ANALYSES

F.1 AC VALUE BIAS (PROOF IN APPENDIX G.3)

Theorem F.1 (Worst-case AC Value Bias). For any γ ∈ [0, 1), εh ∈ [0, 1/2], there exists an MDP
M and a weakly εh-open-loop consistent D such that for some s ∈ supp(PD(st)),

Vac(s)− V̂ac(s) = ±
γεh

(1− γ)(1− (1− εh)γh)
. (34)

F.2 OPTIMALITY GAP FOR ACTION CHUNKING POLICY (PROOF IN APPENDIX G.5)

Corollary F.2 (Worse-case Optimality Gap for Action Chunking Policy). For any γ ∈ [0, 1), εh ∈
[0, 1/2], there exists an MDPM whose optimal policy π⋆ induces a data distribution D⋆ that is
weakly εh-open-loop consistent, such that for some s ∈ supp(PD⋆(st)),

V ⋆(s)− V ⋆ac(s) =
γεh

(1− γ)(1− (1− εh)γh)
. (35)

F.3 Q-LEARNING WITH ACTION CHUNKING POLICY (PROOF IN APPENDIX G.7)

Theorem F.3 (Worst-case Analysis of Q-Learning with Action Chunking Policy on Off-policy Data).
For any εh ∈ (0, 1/5), γ ∈ (0, 1), c1 ∈ (0, εh/2), and c2 ∈ (0, 2εhγ), there exists an MDP M
and strongly εh-open-loop consistent data distribution D and D⋆ with supp(PD(st, at:t+h)) ⊇
supp(PD⋆(st, at:t+h)), such that for some s ∈ supp(PD⋆(st)),

V ⋆(s)− V +
ac (s) =

2εhγ − c2
(1− γ)(1− (1− 2εh)γh)

+
εhγ

(1− γ)(1− (1− εh − c1)γh)
, (36)

where V ⋆ is the value of an optimal policy and V +
ac is the true value of π+

ac. As c1, c2 → 0,

V ⋆(s)− V +
ac (s)→

εhγ

1− γ

[
2

1− (1− 2εh)γh
+

1

1− (1− εh)γh

]
. (37)

F.4 CLOSED-LOOP AC POLICY UNDER BOV (PROOF IN APPENDIX G.11)

Theorem F.4 (Worst-case Closed-loop AC Policy under BOV). For any γ ∈ (0, 1), ϑGh , ϑ
L
h ∈(

0, γ−γ
h

4(1−γ)

]
, c ∈

[
0, γ−γh

4(1−γh)

)
, σ ∈

(
0,

min(ϑG
h ,ϑ

L
h)

1−γ

)
, there existsM and D satisfying the mixture

assumption in Theorem 4.11 such that there exists st ∈ supp(PD⋆(st)), where

V ⋆(st)− V •(st) =
ϑLh

1− γ
+
ϑGh + γhmin(ϑLh , ϑ

G
h)

(1− γ)(1− γh)
− σ, V ⋆(st)− V +

ac (st) ≥
c

1− γ
(38)

F.5 ε-DETERMINISTIC DYNAMICS IS WEAKLY OPEN-LOOP CONSISTENT

To provide some intuitions on what this open-loop consistency implies, we discuss a concrete
family of MDPs where any data distribution from these MDPs are (weakly) εh-open-loop consistent
(Proposition F.6, with proof available in Appendix G.12).

Definition F.5 (Near-deterministic Dynamics). A transition dynamics T is ε-deterministic if there
exists a deterministic transition dynamics represented by function f : S × A → S and another
arbitrary transition dynamics T̃ : S ×A → ∆S , and T is a combination of f and T̃ :

T (s′ | s, a) = (1− ε)δf(s,a)(s′) + εT̃ (s′ | s, a),∀s, s′ ∈ S, a ∈ A. (39)

Proposition F.6 (Deterministic Dynamics are Weakly Open-loop Consistent). If a transition dynamics
M is ε-deterministic, then any data D collected fromM is weakly εh-open-loop consistent with
respect toM for any h ∈ N+ as long as εh ≥ 3(1− (1− ε)h−1).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

An ε-deterministic dynamics acts like a deterministic one most of the time (with 1− ε probability)
and a non-deterministic one occasionally (with ε probability). This bounded stochasticity allows the
results of taking an action sequence (of length h) open-loop to be deterministically determined in the
event that the deterministic dynamics is ‘triggered’ (with a joint (1− ε)h−1 probability across h time
steps). It is clear that under such event, there is no gap between the ‘replayed’ open-loop data P ◦

D and
the original data distribution PD, and as result there is also no value estimation bias under this event,
and thus intuitively we can bound the value estimation error by a function of the probability that the
stochastic dynamics is ‘triggered’ (i.e., with 1− (1− ε)h−1 probability).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G PROOFS OF MAIN RESULTS

G.1 UTILITY LEMMATA

Lemma G.1 (Mean value theorem for conditional probabilities). Let P1, P2 ∈ ∆X×Y and P (x, y) :=
α̂(y)P1(x, y) + (1− α̂(y))P2(x, y) and there exists α > 0 such that α̂(y) ≤ α,∀y ∈ Y . Then, there
exists y ∈ Y and α̃ ≤ α such that

P (· | y) = α̃P1(· | y) + (1− α̃)P2(· | y) (40)

Proof.

P (x, y)

P (y)
=
α̂(y)P1(y)P1(x | y) + (1− α̂(y))P2(x | y)

α̂(y)P1(y) + (1− α̂(y))P2(y)

= β(y)P1(x | y) + (1− β(y))P2(x | y)
(41)

where β(y) := α̂(y)P1(y)
α̂(y)P1(y)+(1−α̂(y))P2(y)

. We now prove ∃y ∈ Y, α̃ ≤ α for Equation (40) to hold by
contradiction.

We first assume α̃ = β(y) > α, ∀y ∈ Y . Now, substitute β(y) in and integrate both side by y to obtain

α̂(y)P1(y) > αα̂(y)P1(y) + α(1− α̂(y))P2(y) (42)
α̂(y) > αα̂(y) + α− αα̂(y) = α, (43)

which is a contradiction to the condition α̂(y) ≤ α.

Therefore, there must exist y ∈ Y with α̃ ≤ α such that Equation (40) holds.

Lemma G.2 (Expectation difference for bounded function and TV). For two distributions P,Q ∈ ∆X
and two bounded functions f, g : X → [0, 1], if the TV distance between P and Q is no larger than ε
and ∥f − g∥∞ ≤ δ under supp(P) ∩ supp(Q), then

|Ex∼P [f(x)]− Ex∼Q[g(x)]| ≤ (1− ε)δ + ε. (44)

Proof. Let’s decompose the probability mass of P and Q in terms of dP , dPQ, dQ : X → R as the
following:

P (x) = dP (x) + dPQ(x), (45)
Q(x) = dPQ(x) + dQ(x). (46)

The
∫
dP (x)dx maximizing solution is

dP (x) = max(P (x), Q(x))−Q(x) (47)
dQ(x) = max(P (x), Q(x))− P (x) (48)
dPQ(x) = P (x) +Q(x)−max(P (x), Q(x)). (49)

It is clear that under this decomposition,∫
dP (x)dx =

∫
dQ(x)dx = ε̂ ≤ ε, (50)∫

dPQ(x)dx = 1− ε̂ ≥ 1− ε. (51)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Now we are ready to bound the expectation difference:
|Ex∼P [f(x)]− Ex∼Q[g(x)]|

=

∣∣∣∣(∫ dP (x)f(x)dx−
∫
dQ(x)g(x)dx

)
+

(∫
dPQ(x)(f(x)− g(x))dx

)∣∣∣∣
≤
∣∣∣∣∫ dP (x)f(x)dx−

∫
dQ(x)g(x)dx

∣∣∣∣+ ∣∣∣∣∫ dPQ(x)(f(x)− g(x))dx
∣∣∣∣

≤ max

(
sup
x
f(x)

∫
dP (x)dx− inf

x
g(x)

∫
dQ(x)dx, sup

x
g(x)

∫
dQ(x)dx− inf

x
f(x)

∫
dP (x)dx

)
+

∣∣∣∣∣
(

sup
x:dPQ(x)>0

|f(x)− g(x)|

)∫
dPQ(x)dx

∣∣∣∣∣
≤ ε̂+

(
sup

x∈supp(P)∩supp(Q)

|f(x)− g(x)|

)
(1− ε̂)

= ε̂+ ∥f − g∥∞(1− ε̂)
≤ ε̂(1− δ) + δ

= (1− ε)δ + ε
(52)

as desired.

Lemma G.3 (Total variation under event conditioning). For two random variables X ∈ ∆X and
Y ∈ ∆Y and any y ∈ Y ,

DTV(P (X | Y = y) ∥ P (X)) ≤ 1− P (Y = y) (53)

Proof. Let p = P (Y = y)

DTV(P (X | Y = y) ∥ P (X))

=
1

2

∫
|P (x)− P (x | y)|dx

=
1

2

∫
|P (x | Y = y)(P (Y = y)− 1) + P (x | Y ̸= y)P (Y ̸= y)|dx

=
1− p
2

∫
|(P (x | Y ̸= y)− P (x | Y = y))|dx

= (1− p)DTV(P (X | Y = y) ∥ P (X | Y ̸= y))

≤ 1− p

(54)

Lemma G.4 (Data Processing Inequality for f -divergence (Csiszár, 1967)). For two random variables
A,B ∈ ∆X and a deterministic function f : X → Y , and C := g(A), D := g(B)

Df (PA ∥ PB) ≥ Df (PC ∥ PD). (55)
Since TV-distance is a f -divergence with f = |x− 1|, we have

DTV(PA ∥ PB) ≥ DTV(PC ∥ PD). (56)

Proof from Wu (2017).
Df (PA ∥ PB) = Ex∼PB

[f(PA(x)/PB(x))]

= EPBD
[f(PAC/PBD)]

= E(x,y)∼PD

[
EPB|D [f(PAC(x, y)/PBD(x, y))]

]
≥ Ey∼PD

[
f
(
Ex∼PB|D=y

[PAC(x, y)/PBD(x, y)]
)]

= Ey∼PD

[
f
(
Ex∼PB|D=y

[PC(y)/PD(y)]
)]

= Df (PC ∥ PD).

(57)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G.2 PROOF OF THEOREM 4.4

Theorem 4.4 (Bias of Action Chunking Critic). Let V̂ac : S → [0, 1/(1− γ)] be a solution of

V̂ac(st) = Est+1:t+h+1,at:t+h∼PD(·|st)

[
Rt:t+h + γhV̂ac(st+h)

]
, (12)

with Rt:t+h =
∑t+h
t′=t γ

t′−tr(st′ , at′) and Vac is the true value of π◦
D : st 7→ PD(at:t+h | st). If D is

εh-open-loop consistent, then under supp(D),∥∥∥Vac − V̂ac∥∥∥
∞
≤ εhγ

(1− (1− εh)γh)(1− γ)
≤ εh

(1− γh)(1− γ)
. (13)

Proof. Since D is εh′-open-loop consistent in state-action for h′ < h, the state-action distribution
leading up to step h admits the following bound:

DTV(PD(st+h, at+h | st) ∥ P ◦
D(st+h, at+h | st)) ≤ εh (58)

Let Rt:t+h =
∑h−1
k=0 γ

kr(st+k, at+k) be the h-step reward distribution. Then the difference in h-step
reward is bounded by∣∣∣EPD(·|st)[Rt:t+h]− EP◦

D(·|st)[Rt:t+h]
∣∣∣

≤
h−1∑
h′=1

[
γh

′
EPD(st+h′ ,at+h′ |st)[r(st+h′ , at+h′)]− EP◦

D(st+h′ ,at+h′ |st)[r(st+h′ , at+h′)]
]

≤
h−1∑
h′=1

γh
′
εh.

(59)

where the first inequality uses Lemma G.2 and the fact that TV distance is bounded (Equation (58)).

Since D is εh-open-loop consistent for h in state, we have

DTV(PD(st+h | st) ∥ P ◦
D(st+h | st)) ≤ εh, (60)

which can then be used to bound the estimation error using Lemma G.2:∣∣∣Est+h∼PD(st+h|st)

[
V̂ac(st+h)

]
− Est+h∼P◦

D(st+h|st) [Vac(st+h)]
∣∣∣

≤ εh
1− γ

+ (1− εh) sup
st+h∈supp(PD(st+h|st))

[
|V̂ac(st+h)− Vac(st+h)|

] (61)

For all st ∈ supp(PD(st)),∣∣∣V̂ac(st)− Vac(st)∣∣∣
≤
∣∣∣EPD(·|st)[Rt:t+h]− EP◦

D(·|st)[Rt:t+h]
∣∣∣

+ γh
∣∣∣Est+h∼PD(st+h|st)

[
V̂ac(st+h)

]
− Est+h∼P◦

D(st+h|st) [Vac(st+h)]
∣∣∣

≤
h−1∑
h′=0

[
γh

′
εh

]
+
γhεh
1− γ

+ γh(1− εh) sup
st+h∈supp(PD(st+h|st))

[
|V̂ac(st+h)− Vac(st+h)|

]
.

(62)

Since the support of st+h | st is a subset of the support for st by Assumption 4.1, we can recursively
apply the inequality to obtain,∣∣∣V̂ac(st)− Vac(st)∣∣∣ ≤ 1

1− (1− εh)γh

(
h−1∑
h′=1

[
γh

′
εh

]
+
γhεh
1− γ

)
=

γεh
(1− γ)(1− (1− εh)γh)

,

(63)

as desired.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

a = 0 r = 0 a = 0 r = 0

X1 X2 ... Xh−1 X0

a = 0 r = 0 a = 1 r = 1 a = 1 r = 1

X0

a = 1 r = 1 a = 0 r = 1 a = 0 r = 1

X̃1 X̃2 ... X̃h−1 Z

a = 1 r = 0 a = 1 r = 0

1−δ

δ

1−δ

δ

1−δ

δ

1−δ

δ

1−δ

δ

r=0

1−δ

δ

Figure 7: A 2h-state MDP that is constructed to meet the upper-bound in Theorem 4.4. The data
distribution D that achieves such upper-bound is collected by the optimal policy: π(Xi) = 1, π(X̃i) = 0.

G.3 PROOF OF THEOREM F.1

Theorem F.1 (Worst-case AC Value Bias). For any γ ∈ [0, 1), εh ∈ [0, 1/2], there exists an MDP
M and a weakly εh-open-loop consistent D such that for some s ∈ supp(PD(st)),

Vac(s)− V̂ac(s) = ±
γεh

(1− γ)(1− (1− εh)γh)
. (34)

Proof. Let δ ∈ [0, 1] be any value that satisfies εh = 2δ(1− δ). δ must exist because εh ∈ [0, 1/2].
Let us define a MDP that has S = 2h states, S = {X0, X1, X̃1, · · · , Xh−1, X̃h−1, Z}, and A = 2
actions, A = {0, 1}, and the following transition function T and reward function r (see a diagram in
Figure 7):

T (X̃i+1 | Xi, a) = T (X̃i+1 | X̃i, a) = δ, ∀a ∈ {0, 1}, i ∈ {1, · · · , h− 2}
T (Xi+1 | Xi, a) = T (Xi+1 | X̃i, a) = 1− δ, ∀a ∈ {0, 1}, i ∈ {0, · · · , h− 2}
T (Z | X̃h−1, a = 1) = T (Z | Xh−1, a = 0) = 1

T (X0 | X̃h−1, a = 0) = T (X0 | Xh−1, a = 1) = 1

r(X̃i, a = 0) = r(Xi, a = 1) = 1, ∀i ∈ {0, · · · , h− 1}
r(X̃i, a = 1) = r(Xi, a = 0) = 0, ∀i ∈ {0, · · · , h− 1}
r(Z, a = 1) = r(Z, a = 0) = 0

T (Z | Z, a = 0) = T (Z | Z, a = 1) = 1

(64)

Now, we assume that the data D is collected by the optimal closed-loop policy where

π(Xi) = 1, π(X̃i) = 0. (65)

First, we check D is εh-open-loop consistent.

We can show that by computing the distribution for PD(st+i, at+i | st = X0) and P ◦
D(st+i, at+i |

st = X0) as follows:[
PD(st+i = X̃i, at+i = 0 | X0) PD(st+i = X̃i, at+i = 1 | X0)
PD(st+i = Xi, at+i = 0 | X0) PD(st+i = Xi, at+i = 1 | X0)

]
=

[
δ 0
0 1− δ

]
[
P◦
D(st+i = X̃i, at+i = 0 | X0) P◦

D(st+i = X̃i, at+i = 1 | X0)
P◦
D(st+i = Xi, at+i = 0 | X0) P◦

D(st+i = Xi, at+i = 1 | X0)

]
=

[
δ2 (1− δ)δ

δ(1− δ) (1− δ)2
] (66)

From the calculation above, it is clear that

DTV(P
◦
D(st+i, at+i | st) ∥ PD(st+i, at+i | st)) = εh, ∀i ∈ {1, 2, · · · , h− 1}. (67)

From the computed values of P ◦
D(st+h−1, at+h−1 | st) and PD(st+h−1, at+h−1 | st), we can derive

PD(st+h = Z | st = X0) = 0,

P ◦
D(st+h = Z | st = X0) = 2(1− δ)δ = εh.

(68)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

From the calculation above, it is clear that

DTV(P
◦
D(st+h | st) ∥ PD(st+h | st)) = εh. (69)

Up to now, we have checked that D is εh-open-loop consistent. Now, we are left with analyzing V̂ac
and Vac. With some calculations, we can obtain the following:

EP◦
D
[Rt:t+h] = 1 +

(1− εh)(γ − γh)
1− γ

,

V̂ac(X0) =
1

1− γ
,

Vac(Z) = 0.

(70)

Now, we are ready to compute Vac(X0):

Vac(X0) =
(1− γh)− εh(γ − γh)

(1− γ)
+ γh [(1− εh)Vac(X0) + εhVac(Z)]

=
1− γh − εh(γ − γh)

(1− γ)(1− γh(1− εh))

(71)

Finally, with X0 ∈ supp(D), we obtain the desired value difference

V̂ac(X0)− Vac(X0) =
εhγ

(1− γ)(1− γh(1− εh))
. (72)

By symmetry, we can flip the reward value (i.e., 0→ 1 and 1→ 0) to construct the example such that

Vac(X0)− V̂ac(X0) =
εhγ

(1− γ)(1− γh(1− εh))
. (73)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

G.4 PROOF OF COROLLARY 4.5

Corollary 4.5 (Optimal Action Chunking Policy). Let π⋆ : S → ∆A be an optimal policy inM and
D⋆ be the data collected by π⋆. If D⋆ is εh-open-loop consistent, then under supp(D⋆),

∥V ⋆ac − V ⋆∥∞ ≤
∥∥∥Ṽac − V ⋆∥∥∥

∞
≤ εhγ

(1− (1− εh)γh)(1− γ)
≤ εh

(1− γh)(1− γ)
, (14)

where V ⋆ is the value of the optimal policy π⋆, V ⋆ac is the true value of the optimal action chunking
policy, and Ṽac is the true value of the action chunking policy from cloning the data D⋆:

π̃ac(at:t+h | st) : st 7→ PD⋆(· | st). (15)

Proof. Let V̂ac be the fixed point of the following equation:

V̂ac(st) = Est+1:t+h+1,at:t+h∼PD⋆ (·|st)

[
Rt:t+h + γhV̂ac(st+h)

]
(74)

where again Rt:t+h =
∑t+h
t′=t γ

t′−tr(st′ , at′). The value of the optimal policy is the fixed point of
the following equation:

V ⋆(st) = Est+1,at∼PD⋆ (·|st) [r(st, at) + γV ⋆(st+1)]

= Est:t+2,at:t+1∼PD⋆ (·|st) [r(st, at) + γr(st+1, at+1) + γV ⋆(st+2)]

· · ·
= Est+1:t+h+1,at:t+h∼PD⋆ (·|st)

[
Rt:t+h + γhV ⋆(st+h)

] (75)

which is equivalent to fixed-point equation for V̂ac. Therefore V̂ac = V ⋆. By Theorem 4.4, we
know that the true value Vac of the action chunking policy π̃ac that clones D⋆ is close to V̂ac. More
specifically, for all st ∈ supp(D⋆),∣∣∣V̂ac(st)− Ṽac(st)∣∣∣ ≤ γεh

(1− γ)(1− (1− εh)γh)
, (76)

which means that

V ⋆(st)− Ṽac(st) ≤
γεh

(1− γ)(1− (1− εh)γh)
, (77)

where we can remove the absolute value operator because V ⋆(st) is by definition always at least
as large as Ṽac(st). Since the optimal action chunking policy, by definition, attains equally good
or better values (over S) represented by Vac, and the optimal policy π⋆ also attains equally good
or better value (i.e., V ⋆) compared to that of the optimal action chunking policy π⋆ac (i.e., V ⋆ac), the
following inequality holds for all st ∈ supp(D⋆):

V ⋆(st) ≥ V ⋆ac(st) ≥ Ṽac(st). (78)

Therefore,

V ⋆ac(st)− V ⋆(st) ≤ Ṽac(st)− V ⋆(st) ≤
γεh

(1− γ)(1− (1− εh)γh)
, (79)

as desired.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

G.5 PROOF OF COROLLARY F.2

Corollary F.2 (Worse-case Optimality Gap for Action Chunking Policy). For any γ ∈ [0, 1), εh ∈
[0, 1/2], there exists an MDPM whose optimal policy π⋆ induces a data distribution D⋆ that is
weakly εh-open-loop consistent, such that for some s ∈ supp(PD⋆(st)),

V ⋆(s)− V ⋆ac(s) =
γεh

(1− γ)(1− (1− εh)γh)
. (35)

Proof. To show this, we need a slightly more complicated MDP (compared to the 2h-state MDP we
use in the proof Appendix G.3). The MDP we construct for this proof is a (3h− 1)-state MDP as
illustrated in Figure 8.

a = 0 r = 0

A1 A2 ... Ah−1

a = 1 r = 1

a = 0 r = 0 X0

a = 1 r = 1 a = 0 r = 1 a = 1 r = 1

a = 0 r = 1

X0 X1 X2 ... Xh−1

a = 1 r = 1

a = 0 r = 1 a = 1 r = 1 a = 0 r = 1

Z

a = 0 r = 1

B1 B2 ... Bh−1

a = 1 r = 0 a = 1 r = 0

δ/2

1−δ

δ/2

δ/2

1−δ

δ/2

δ/2

1−δ

δ/2

δ/2

1−δ

δ/2

δ/2

1−δ

δ/2

δ/2

1−δ

δ/2

r=0

δ/2

1−δ

δ/2

δ/2

1−δ

δ/2

Figure 8: A (3h− 1)-state MDP that is constructed to meet the upper-bound in Corollary 4.5.

The optimal policy we pick is described as the following:

π⋆(a = 0 | Xi) = 1/2

π⋆(a = 1 | Xi) = 1/2

π⋆(a = 1 | Ai) = 1

π⋆(a = 0 | Bi) = 1/2

(80)

This induces the following state distribution,

PD⋆(st+i = Ai | st = X0) = PD⋆(st+i = Bi | st = X0)

= P ◦
D⋆(st+i = Ai | st = X0) = P ◦

D⋆(st+i = Bi | st = X0) = δ/2,

PD⋆(st+i = Xi | st = X0) = P ◦
D⋆(st+i = Xi | st = X0) = 1− δ,

(81)

and a fully factorized distribution for the action chunk,

P ◦
D⋆(at+i = 0 | st) = P ◦

D⋆(at+i = 0 | st, at:t+i) =
1

2
(δa=0 + δa=1). (82)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Now, we derive the condition on δ when the optimal data D⋆ is εh-open-loop consistent. We start by
calculating the TV distance discrepancy for the future state-action distribution:

DTV(P
open
D⋆ (st+i, at+i | st) ∥ PD⋆(st+i, at+i | st))

=
1

2

∥∥∥∥∥
[

0 δ/2
(1− δ)/2 (1− δ)/2
δ/2 0

]
−

[
δ/4 δ/4

(1− δ)/2 (1− δ)/2
δ/4 δ/4

]∥∥∥∥∥
1,1

= δ/2.

(83)

In the second line of the equations above, each row in the matrix corresponds to a distinct action
at+i ∈ {0, 1} and each row in the matrix corresponds to a distinct state st+i ∈ {Ai, Xi, Bi}.
Next, we calculate the TV distance discrepancy for st+h:

DTV(P
open
D⋆ (st+h | st) ∥ PD⋆(st+h | st))

=
1

2
∥[1 0]− [1− δ/2 δ/2]∥

1

= δ/2.

(84)

In the second line of the equations above, each element in the vector corresponds to a distinct state
st+h ∈ {X0, Z}. Up to now, we have concluded that D⋆ is (δ/2)-open-loop consistent.

Due to the symmetric structure of this MDP, it is clear that any action chunking policy πac(X0) =
at:t+h with at:t+h ∈ {0, 1} is optimal and achieve the following value:

V ⋆ac(X0) = 1 + (1− δ/2)
[
γ − γh

1− γ
+ γhV ⋆ac(X0)

]
=

(1− γ) + (1− δ/2)(γ − γh)
(1− γ)(1− (1− δ/2)γh)

.

(85)

The optimal closed-loop policy can achieve the maximum possible return

V ⋆(X0) =
1

1− γ
. (86)

Therefore, with εh = δ/2, the optimality gap achieved by this (3h− 1)-state MDP is

V ⋆(X0)− V ⋆ac(X0) =
εhγ

(1− γ)(1− (1− εh)γh)
, (87)

as desired.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G.6 PROOF OF THEOREM 4.6

Theorem 4.6 (Q-Learning with Action Chunking Policy on Off-policy Data). If D is strongly εh-
open-loop consistent and supp(D) ⊇ supp(D⋆), with D⋆ being the data distribution of an arbitrary
optimal policy π⋆ underM), then the following bound holds under supp(D⋆):

∥V +
ac − V ⋆∥∞≤

εhγ

1− γ

[
2

1− (1− 2εh)γh
+

1

1− (1− εh)γh

]
≤ 3εh

(1− γ)(1− γh)
. (18)

where V ⋆ is the value of an optimal policy underM.

Proof of Theorem 4.6. We start by constructing a bound between Q̂+
ac and Q⋆ac, the solution of the

following bellman equation:

Q⋆ac(st, at:t+h) = Est+1:t+h+1∼P◦
D(·|st,at:t+h)

[
Rt:t+h + γh max

at+h:t+2h

Q⋆ac(st+h, at+h:t+2h)

]
. (88)

Intuitively, Q⋆ac is the Q-function of the optimal action chunking policy π⋆ac that can be learned from
D. Because supp(D) ⊇ supp(D⋆), π⋆ac is at least as good as π̃ac, the action chunking policy obtained
by behavior cloning D⋆. Bounding the difference between Q̂+

ac and Q⋆ac allows us to leverage the
bound in Corollary 4.5 to form a bound between V̂ +

ac and V ⋆.

Since D is strongly εh-open-loop consistent,

DTV(T (st+h′ | st, at:t+h′) ∥ PD(st+h′ | st, at:t+h)) ≤ εh,∀h′ ∈ {1, · · · , h− 1}. (89)

Since D⋆ is also strongly εh-open-loop consistent,

DTV(T (st+h′ | st, at:t+h′) ∥ PD⋆(st+h′ | st, at:t+h)) ≤ εh,∀h′ ∈ {1, · · · , h− 1}. (90)

Using the transitive property of TV distance, we have

DTV(PD(st+h′ | st, at:t+h) ∥ PD⋆(st+h′ | st, at:t+h)) ≤ 2εh,∀h′ ∈ {1, · · · , h− 1}. (91)

Now, for the h-step reward, we have∣∣EPD(·|st,at:t+h) [Rt:t+h]− EPD⋆ (·|st,at:t+h) [Rt:t+h]
∣∣

≤
h−1∑
h′=1

[
γh

′
DTV(PD(st+h′ | st, at:t+h) ∥ PD⋆(st+h′ | st, at:t+h))

]
≤ 2(γ − γh)εh

1− γ
.

(92)

Similarly, for the value h-step into the future, we can use Lemma G.2 to obtain the following bound:∣∣∣Est+h∼PD(st+h|st) [V
⋆(st+h)]− Est+h∼PD⋆ (st+h|st)

[
V̂ +
ac (st+h)

]∣∣∣
≤ 2εh + (1− 2εh) sup

st+h∈D⋆

∣∣∣V ⋆(st+h)− V̂ +
ac (st+h)

∣∣∣ . (93)

We define Q⋆(st, at:t+h) to be

Q⋆(st, at:t+h) := EPD⋆ (·|st,at:t+h)

[
Rt:t+h + γhV ⋆(st+h)

]
. (94)

It is clear that

V ⋆(st) = Eat:t+h∼PD⋆ [Q
⋆(st, at:t+h)] . (95)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Combining the bound for the h-step reward and the bound on the value for st+h, for all st, at:t+h ∈
supp(PD⋆(st, at:t+h)),

∆(st, at:t+h) = Q⋆(st, at:t+h)− Q̂+
ac(st, at:t+h)

≤ 2εhγ
h +

2(γ − γh)εh
1− γ

+ (1− 2εh)γ
h
(
V ⋆(st+h)− V̂ +

ac (st+h)
)

≤ 2εhγ

1− γ
+ (1− 2εh)γ

h

(
EPD⋆ [Q

⋆(st+h, at+h:t+2h)]− sup
at+h:t+2h

Q̂+
ac(st+h, at+h:t+2h)

)

≤ 2εhγ

1− γ
+ (1− 2εh)γ

h

(
EPD⋆

[
Q̂+

ac(st+h, at+h:t+2h) + ∆(st+h, at+h:t+2h)
]
− sup
at+h:t+2h

Q̂+
ac(st+h, at+h:t+2h)

)

≤ 2εhγ

1− γ
+ (1− 2εh)γ

h sup
st+h,at+h:t+2h

[∆(st+h, at+h:t+2h)],

(96)
which can be recursively expanded to obtain

V ⋆(st)− V̂ +
ac (st) ≤

2εhγ

(1− γ)(1− (1− 2εh)γh)
. (97)

By Theorem 4.4, for all st ∈ supp(D),∣∣∣V̂ +
ac (st)− V +

ac (st)
∣∣∣ ≤ εhγ

(1− γ)(1− (1− εh)γh)
. (98)

Combining the two inequalities above, for all st ∈ supp(D⋆),

V ⋆(st)− V +
ac (st) ≤

εhγ

1− γ

[
2

1− (1− 2εh)γh
+

1

1− (1− εh)γh

]
. (99)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

G.7 PROOF OF THEOREM F.3

Theorem F.3 (Worst-case Analysis of Q-Learning with Action Chunking Policy on Off-policy Data).
For any εh ∈ (0, 1/5), γ ∈ (0, 1), c1 ∈ (0, εh/2), and c2 ∈ (0, 2εhγ), there exists an MDP M
and strongly εh-open-loop consistent data distribution D and D⋆ with supp(PD(st, at:t+h)) ⊇
supp(PD⋆(st, at:t+h)), such that for some s ∈ supp(PD⋆(st)),

V ⋆(s)− V +
ac (s) =

2εhγ − c2
(1− γ)(1− (1− 2εh)γh)

+
εhγ

(1− γ)(1− (1− εh − c1)γh)
, (36)

where V ⋆ is the value of an optimal policy and V +
ac is the true value of π+

ac. As c1, c2 → 0,

V ⋆(s)− V +
ac (s)→

εhγ

1− γ

[
2

1− (1− 2εh)γh
+

1

1− (1− εh)γh

]
. (37)

The examples in the following proof of Theorem F.3 (available in Appendix G.7) provide insights
on the factor of 3 in V ⋆ − V +

ac ≤ 3εhHH̄ (with H = 1/(1− γ), H̄ = 1/(1− γh)) is necessary. In
particular, the worse case can be roughly seen as a combination of the two main results that we have
presented so far:

1. V ⋆ − V ⋆ac ≈ εhHH̄ (Corollary 4.5, Corollary F.2): the optimal action chunking policy is
(εhH

2)-suboptimal due to its inability to react to environment stochasticity, quantified by
the strongly-εh open-loop consistency of D⋆.

2. V ⋆ac − V̂ +
ac ≈ εhHH̄ (a transformation of Theorem 4.4 and Theorem F.1 on the optimal

action chunking policy π⋆ac): the value under-estimation bias can incur another factor of
εhHH̄ bringing up the sub-optimality of V̂ +

ac to at most 2εhHH̄ , and finally,

3. V̂ +
ac − V +

ac ≈ εhHH̄ (Theorem 4.4, Theorem F.1): the action chunking value function may
prefer an overestimated action chunking policy π+

ac where its actual value is again εhHH̄
from its estimated value, resulting in a total sub-optimality of 3εhHH̄ .

Our construction (in the proof of Theorem F.3) directly builds on the above insights by using a 2-part
MDP where the first part corresponds to an (εhHH̄)-underestimated action chunking policy that has
a (εhHH̄)-optimality gap from the optimal closed-loop policy and the second part corresponds to an
(εhHH̄)-overestimated action chunking policy that has a (3εhHH̄)-optimality gap that is preferred
by the value function.

Before we start our main proof, we first introduce a Lemma that helps simplifies the inequalities.

Lemma G.5 (Optimality gap comparator). For any γ̃ ∈ [0, 1) and 0 < ε1 < ε2 < 1,

ε1
1− (1− ε1)γ̃

<
ε2

1− (1− ε2)γ̃
. (100)

Proof.
0 < (1− γ)(ε2 − ε1)
= ε2 − ε2γ̃ − ε1 + ε1γ̃

= ε2 − ε2γ̃ + ε1ε2γ̃ − ε1 + ε1γ̃ − ε1ε2γ̃
= ε2(1− (1− ε1)γ̃)− ε1(1− (1− ε2)γ̃)

(101)

Since 1− (1− ε1)γ̃ > 0 and 1− (1− ε2)γ̃ > 0, we can divide both sides by (1− (1− ε1)γ̃)(1−
(1− ε2)γ̃) to get

0 <
ε2

1− (1− ε2)γ̃
− ε1

1− (1− ε1)γ̃
, (102)

as desired.

Now, we begin the main proof as follows.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Proof of Theorem F.3. We prove by constructing the following (2h+ 4)-state MDP where the agent
can take any of the three actions {0, 1, 2} at each state (see a diagram in Figure 9).

Notations: we start by introducing some abbreviations for all action chunks that appear in this proof:

a⋆t:t+h = (0, 0, 0, · · · , 0)
a⋄t:t+h = (0, 1, 0, · · · , 0)
a•t:t+h = (0, 2, 0, · · · , 0)
a△t:t+h = (1, 1, 1, · · · , 1)
a◦t:t+h = (1, 0, 1, · · · , 1)
a×t:t+h = (1, 2, 1, · · · , 1)

(103)

The first three action chunks a⋆t:t+h, a
⋄
t:t+h, a

•
t:t+h are only possible in the top branch and the last

three action chunks a△t:t+h, a
◦
t:t+h, a

×
t:t+h are only possible in the bottom branch because the first

action in the action chunk deterministically divides it into the two branches.

Among these action chunks, it is clear by inspection that πac(X0) = (0, 0, · · · , 0) is the optimal
action chunking policy, and thus we directly use ‘⋆’ to denote a⋆t:t+h = (0, 0, · · · , 0). a△t:t+h is also of
great importance: as we will show later, π+

ac(X0) = a△t:t+h. The actual values and nominal/estimated
values for these action chunks are (V ⋆ac, V

⋄
ac, V

•
ac, V

△
ac , V

◦
ac, V

×
ac) and (V̂ ⋆ac, V̂

⋄
ac, V̂

•
ac, V̂

△
ac , V̂

◦
ac, V̂

×
ac)

respectively. Much of the focus of this proof is to calculate the optimality gap, which is the difference
between the optimal closed-loop value and the action chunking policy value (either estimated or
actual):

actual optimality gap: V ⋆(X0)− V [·]
ac (X0) (104)

nominal optimality gap: V ⋆(X0)− V̂ [·]
ac (X0) (105)

High-level proof sketch: The MDP contains two branches: a top branch where (as we will show)
both the optimal policy π⋆ and the optimal action chunking policy π⋆ac take, and a bottom branch
where (as we will also show) the learned action chunking policy π+

ac takes. The key idea of the
construction is that for the top branch, we have

V ⋆(X0)− V̂ ⋆ac(X0) ≈
2εhγ

(1− γ)(1− (1− 2εh)γh)
, (106)

and for the bottom branch, we have

V̂ ⋆ac(X0) < V̂ +
ac (X0) ≈ V +

ac (X0) +
εhγ

(1− γ)(1− (1− εh)γh)
. (107)

Combining these two together gives

V ⋆(X0)− V +
ac (X0) ≈

εhγ

1− γ

[
2

1− (1− 2εh)γh
+

1

1− (1− εh)γh

]
. (108)

We use ‘≈’ because the equalities are not strictly achievable but (as we will show) can be made
arbitrarily close.

The proof can be roughly divided into the following steps (we use ‘≈’ to help illustrate the high-level
idea below and use more precise argument in the actual proof):

1. MDP description: we formally describe the transition dynamics T and the reward function
r for each state-action pair for both the top and the bottom branches.

2. Strong εh-open-loop consistency of D⋆: we then check the strong open-loop con-
sistency assumption for D⋆.

3. Data distribution Dtop for the top branch: we use a mixture data distribution
from two policies to construct Dtop.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

4. Strong εh-open-loop consistency of Dtop: we then check that the constructed
data distribution of the top branch satisfies the strongly open-loop consistency assumption.
Note that we can do so separately for the top and the bottom because these two distributions
have non-overlapping support in at:t+h.

5. The optimality gap and value estimation error for the top branch: we
prove that V ⋆(X0) − V ⋆ac(X0) = εhγ

(1−γ)(1−(1−2εh)γh)
and V ⋆(X0) − V̂ ⋆ac(X0) =

2εhγ
(1−γ)(1−(1−2εh)γh)

and the other two possible action chunks a⋄t:t+h = (0, 1, 0, · · ·) and

a•t:t+h = (0, 2, 0, · · ·) both admit lower estimated values compared to a⋆t:t+h: V̂ ⋄
ac(X0) <

V̂ ⋆ac(X0) and V̂ •
ac(X0) < V̂ ⋆ac(X0).

6. Data distribution Dbottom for the bottom branch: we again use a mixture data
distribution from two different policies to construct Dbottom.

7. Strong εh-open-loop consistency of Dbottom: we then check that the constructed
data distribution of the bottom branch satisfies the strongly open-loop consistency assump-
tion.

8. The optimality gap and value estimation error for the bottom branch:
we prove that V ⋆(X0) − V̂ △

ac (X0) ≈ 2εhγ
(1−γ)(1−(1−2εh)γh)

and V̂ △
ac (X0) − V △

ac (X0) =
εhγ

(1−γ)(1−(1−εh)γh)
, and the other two possible action chunks a◦t:t+h = (1, 0, 0, · · ·)

and a×t:t+h = (1, 2, 0, · · ·) both admit lower estimated values compared to a△t:t+h:
V̂ ◦
ac(X0) < V̂ △

ac (X0) and V̂ ×
ac (X0) < V̂ △

ac (X0). Moreover a⋆t:t+h also admits a lower esti-
mated value compared to a△t:t+h: V̂ ⋆ac(X0) < V̂ △

ac (X0) which proves π+
ac(X0) = a△t:t+h and

thus concluding our proof: V ⋆(X0)−V +
ac (X0) ≈ 2εhγ

(1−γ)(1−(1−2εh)γh)
+ εhγ

(1−γ)(1−(1−εh)γh)
.

Now we begin our proof as follows.

Step 1. MDP description (Figure 9).

The transition function T of the MDP is defined as follows (from left to right):

T (Z | Z, a) = T (G | G, a) = 1, ∀a,
T (Z | s, a = 2) = 1, ∀a,∀s : s ̸= G

T (X1 | X0, a = 0) = 1− 2εh

T (X̃1 | X0, a = 0) = εh

T (C | X0, a = 0) = εh

T (Y1 | X0, a = 1) = 1− εh − c1
T (Ỹ1 | X0, a = 1) = εh

T (G | X0, a = 1) = c1

T (X2 | X1, a = 0) = 1

T (X2 | X̃1, a = 1) = 1

T (X2 | C, a = 1) = 1

T (Z | X1, a = 1) = 1

T (Z | C, a = 0) = 1

T (G | X̃1, a = 0) = 1

T (Y2 | Y1, a = 1) = 1

T (Y2 | Ỹ1, a = 0) = 1

T (Z | Y1, a = 0) = 1

T (Z | Ỹ1, a = 1) = 1

T (Xi+1 | Xi, a ∈ {0, 1}) = T (Yi+1 | Yi, a ∈ {0, 1}) = 1, ∀i ∈ {2, · · · , h− 2}
T (X0 | Xh−1, a ∈ {0, 1}) = T (Y0 | Yh−1, a ∈ {0, 1}) = 1

(109)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

a = 1 r = 0

Z X1

[·] a = 2 r = 0 a = 0 r = 1

a = 1 r = 1

a = 0 r = 1 C X2 · · · Xh−1

a = 0 r = 0

a = 1 r = 1 Z

X̃1

X0 a = 0 r = 1 G X0

a = 0 r = 0

Y1

a = 1 r = 1− δ

a = 1 r = 1 G Y2 · · · Yh−1

a = 0 r = 1− δ

Ỹ1 Z

a = 1 r = 0

r=0

1−2εh

εh

εh

r=1

r=1r=0

r=1

1−εh−c1

c1

εh

r=1 r=1−δ

r=1−δ

r=0

Figure 9: A (2h+ 4)-state MDP that is constructed to illustrate the MDP constructed to meet the exact
upper-bound optimality gap in Theorem 4.6. We redraw the same states Z, G, X0 in multiple locations in the
diagram above for better clarity.

The reward function is defined as

r(Z, a) = 0, ∀a
r(G, a) = 1, ∀a

r(s, a = 2) = 0, ∀s : s ̸= G

r(X0, a = 0) = r(X0, a = 1) = 1,

r(C, a = 1) = r(X1, a = 0) = r(X̃1, a ∈ {0, 1}) = 1,

r(C, a = 0) = r(X1, a = 1) = 0,

r(Y1, a = 1) = r(Ỹ1, a = 0) = 1− δ,
r(Y1, a = 0) = r(Ỹ1, a = 1) = 0,

r(Xi, a ∈ {0, 1}) = 1, ∀i ∈ {2, · · · , h− 1}
r(Yi, a ∈ {0, 1}) = 1− δ, ∀i ∈ {2, · · · , h− 1}

(110)

Notably, there are some special states:

• State Z: a self-looping “black hole” state that always gets 0 reward at each time step and
thus has a constant value of 0.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

• State G: a self-looping “black hole” state that always gets 1 reward at each time step and
thus has a constant value of 1/(1− γ).

• StateX0: the special state that branches out based on the action taken. The agent periodically
visit this state every h steps unless it has been trapped in either Z or G. As we proceed in
the proof, we will encounter factors in the form of 1

1−bγh in the calculation of the optimality
gap. These factors come from the agent looping around and revisiting X0 with b-probability
each cycle.

These two absorbing states are important because their values sit at the boundary of the value range of
our value function V (s) ∈ [0, 1/(1− γ)]. Shifting the reaching probability from Z to G or the other
way around results in the biggest possible difference in the policy value. Our construction hinges on
the constructing D such that

1. PD(· | st, π⋆(st)) and T (· | st, π⋆(st)) differs by only εh (in TV distance as required by the
strongly open-loop consistency assumption) where precisely εh probability mass is moved
from reaching state Z to reaching state G. This causes the V̂ ⋆ac to precisely underestimates
the value of V ⋆ac by εhγ

h

(1−γ)(1−(1−2εh)γh)
. It is worth noting that we cannot make the 2εh in

the denominator εh because V ⋆ac needs to simultaneously maintain a value gap with V ⋆. If
we were to construct an example where V̂ ⋆ac(X0)− V ⋆ac(X0) = V ⋆ac be εhγ

h

(1−γ)(1−(1−εh)γh)
,

it would enforce V ⋆ac(X0) = V ⋆(X0) because there would be no probability mass left to
create the gap between V ⋆ and V ⋆ac. With an extra εh in the denominator, we can also make
the optimality gap of V ⋆ac precisely εhγ

h

(1−γ)(1−(1−2εh)γh)
, bringing the combined value gap

(between V ⋆ and V̂ ⋆ac) up to 2εhγ
h

(1−γ)(1−(1−2εh)γh)
.

2. PD(· | st, π+(st)) and T (· | st, π+(st)) differs by only εh (again in TV distance as required
by the strongly open-loop consistency assumption) where precisely εh probability mass
is moved from reaching state G to reaching state Z. This causes the V̂ +

ac to precisely
overestimates the value of V +

ac by εhγ
h

(1−γ)(1−(1−εh)γh)
.

We use a special action a = 2 where upon taking the action the agent immediately transitions to Z
and receives a reward of 0 (except in G). As we will see soon, this action is useful for constructing a
data distribution with an easily ‘controllable’ probability of reaching Z for the top branch and an
easily ‘controllable’ probability of reaching G for the bottom branch. Before we start constructing D,
we first check the condition that D⋆ is strongly εh-open-loop consistent.

Step 2. Strong εh-open-loop consistency of D⋆: It is clear that one possible π⋆ that
achieves 1/(1− γ) value is

π⋆(Xi) = 0

π⋆(C) = 1

π⋆(X̃) = 0

(111)

We can easily check that D⋆ collected by π⋆ is strongly εh-open-loop consistent by observing that
the only path that π⋆ outputs (0, 1, 0, 0, · · ·) has εh probability, which causes the state distribution of
st+1 to differ by at most εh under the TV distance (subject to a = (0, 1, 0, 0, · · ·) or a = (0, 0, 0, · · ·)
conditioning). This concludes that D⋆ generated by π⋆ above is strongly εh-open-loop consistent.

Now, depending on the first action at, the MDP can be decomposed into two parts: the top (a = 0)
and the bottom (a = 1). We construct the data distribution for each branch and analyze the actual
and nominal optimality gap for each branch in the following steps.

Step 3. Data distribution Dtop for the top branch: we use a mixture of the following
two policies to construct a strongly εh-open-loop consistent Dtop.

Policy π1
top:

π1
top(X0) = π1

top(C) = π1
top(Z) = 0,

π1
top(X1) = π1

top(X̃1) = 2.
(112)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

π1
top always take a = 2 unless it is in state X0, C or Z where it always takes a = 0. It is clear that

this policy only produces two possible action chunks: at:t+h = (0, 0, · · · , 0) or at:t+h = a•t:t+h :=
(0, 2, 0, · · ·). We note that the at:t+h policy always leads to state Z:

PD
π1
top

(st+h = Z | st, at:t+h = 0) = 1. (113)

Policy π2
top:

π2
top(X0) = 0,

π2
top(X̃1) = π2

top(C̃) = 1,

π2
top(a = 0 | X1) = 1− δG,
π2
top(a = 1 | X1) = δG,

(114)

with some δG ∈ (0, 1). π2
top can also only produce two possible action chunks: at:t+h = (0, 0, · · · , 0)

or at:t+h = a⋄t:t+h := (0, 1, 0, · · · , 0).
The distribution of st+h conditioned on at:t+h = 0 is

PD
π2
top

(st+h = Z | st, at:t+h = 0) = 0,

PD
π2
top

(st+h = G | st, at:t+h = 0) = 0,

PD
π2
top

(st+h = X0 | st, at:t+h = 0) = 1.

(115)

Mixing π1
top and π2

top: Let Dtop be a mixture of Dπ1
top

and Dπ2
top

:

PDtop = (1− ς)PD1
top

+ ςPD2
top
, (116)

where

ς =
1

2(1− δG) + 1
. (117)

It is clear that 0 < ς < 1 (because δG ∈ (0, 1)), making it valid mixing ratio.

We now compute the marginal state distribution of the mixture by first analyzing the action probability:

PD1
top

(a⋆t:t+h | st) = εh,

PD2
top

(a⋆t:t+h | st) = (1− 2εh)(1− δG).
(118)

The state marginals are then

PDtop(st+h = Z | st, a⋆t:t+h) =
PDtop(st+h = Z, a⋆t:t+h | st)

PDtop(a
⋆
t:t+h | st)

=
(1− ς)PD1

top
(a⋆t:t+h | st)

(1− ς)PD1
top

(a⋆t:t+h | st) + ςPD2
top

(a⋆t:t+h | st)

=
εh(1− ς)

εh(1− ς) + (1− 2εh)(1− δG)ς
= 2εh.

(119)

Therefore,
PDtop

(st+h = Z | st, a⋆t:t+h) = 2εh,

PDtop
(st+h = X0 | st, a⋆t:t+h) = 1− 2εh,

PDtop
(st+h = G | st, a⋆t:t+h) = 0.

(120)

Step 4. Strong εh-open-loop consistency of Dtop: Now, we check for strong open-
loop consistency for the three possible action chunks on the top branch:

a⋆t:t+h = (0, 0, 0, · · ·)
a⋄t:t+h = (0, 1, 0, · · ·)
a•t:t+h = (0, 2, 0, · · ·)

(121)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

For a⋆t:t+h = 0, we can compute open-loop marginal state distribution as follows:

T (st+h = Z | st, a⋆t:t+h) = εh,

T (st+h = X0 | st, a⋆t:t+h) = 1− 2εh,

T (st+h = G | st, a⋆t:t+h) = εh.

(122)

Combining this with the data distribution calculated in Equation (120), it is clear that

DTV

(
T (st+h | st, at:t+h = 0)

∥∥ PDtop
(st+h | st, at:t+h = 0)

)
= εh. (123)

We can repeat the same procedure to show that

DTV

(
T (st+h′ | st, at:t+h′ = 0)

∥∥ PDtop
(st+h′ | st, at:t+h = 0)

)
= εh, ∀h′ ∈ {1, · · · , h− 1}

(124)

because the only difference in these distributions is that they occupy st+h′ = Xh′ with 2εh probability
instead of st+h = X0 with 2εh probability.

For a•t:t+h = (0, 2, 0, · · ·), it is clear that

DTV

(
T (st+h′ | st, at:t+h = a•t:t+h)

∥∥ PDtop(st+h′ | st, at:t+h = a•t:t+h)
)
= εh (125)

holds for any h′ ∈ {1, 2, · · · , h} since the only difference between these two distributions is the εh-
probability path (i.e., X0 → C → Z where the probability is under T (· | st, a•t:t+h)).

For a⋄t:t+h = (0, 1, 0, · · ·), we first compute the marginal state distributions:

PDtop(st+h = Z | st, a⋄t:t+h) =
(1− 2εh)δG

2εh + (1− 2εh)δG
,

PDtop
(st+h = X0 | st, a⋄t:t+h) =

2εh
2εh + (1− 2εh)δG

,

PDtop
(st+h = G | st, a⋄t:t+h) = 0.

PDtop
(st+1 = X1 | st, a⋄t:t+h) =

(1− 2εh)δG
2εh + (1− 2εh)δG

.

PDtop
(st+1 = X̃1 | st, a⋄t:t+h) =

εh
2εh + (1− 2εh)δG

.

PDtop
(st+1 = C | st, a⋄t:t+h) =

εh
2εh + (1− 2εh)δG

.

(126)

We can also compute the open-loop marginal state distribution as follows:

T (st+h = Z | st, a⋄t:t+h) = 1− 2εh

T (st+h = X0 | st, a⋄t:t+h) = 2εh

T (st+h = G | st, a⋄t:t+h) = 0.

T (st+1 = X1 | st, a⋄t:t+h) = 1− 2εh.

T (st+1 = X̃1 | st, a⋄t:t+h) = εh.

T (st+1 = C | st, a⋄t:t+h) = εh.

(127)

Let c3 be any value that satisfies c3 ∈ (0, εh/2), we can set

δG =
εh(1− 2εh − 2c3)

(εh + c3)(1− 2εh)
, (128)

such that
PDtop(st+h = Z | st, a⋄t:t+h) = 1− 2εh − 2c3,

PDtop
(st+h = X0 | st, a⋄t:t+h) = 2εh + 2c3,

PDtop(st+h = G | st, a⋄t:t+h) = 0,

PDtop
(st+1 = X1 | st, a⋄t:t+h) = 1− 2εh − 2c3,

PDtop
(st+1 = X̃1 | st, a⋄t:t+h) = εh + c3,

PDtop
(st+1 = C | st, a⋄t:t+h) = εh + c3.

(129)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

It is easy to check that 0 < δG < 1 (a valid probability) because in Equation (128), each term in the
numerator has a larger term in the denominator (i.e., εh < εh + c3 and 1− 2εh − 2c3 < 1− 2εh).

Now, for all h′ ∈ {1, 2, · · · , h}, using the values calculated in Equation (127) and Equation (129),
we have

DTV

(
T (st+h′ | st, at:t+h′ = a⋄t:t+h′)

∥∥ PDtop(st+h′ | st, at:t+h = a⋄t:t+h)
)
= 2c3. (130)

Since c3 < εh/2, the strong open-loop consistency assumption holds for a⋄t:t+h as well.

Step 5. The optimality gap and value estimation error for the top branch:
Now we can compute the optimality gap for the estimated value for a⋄t:t+h:

V ⋆(X0)− V̂ ⋄
ac(X0) =

(1− 2εh − 2c3)γ

(1− γ)(1− 2(εh + c3)γh)
, (131)

where the h-step reward suboptimality gap is a sole result of the reaching Z with (1− 2εh − 2c3)
probability (and hence the (1− 2εh − 2c3)γ term in the numerator), and the h-step distribution gap
is reflected in the (1− 2(εh + c3)γ

h) term at bottom because the probability of reaching X0 after h
steps is 2(εh + c3).

Similarly, we can compute the optimality gap for V ⋆ac and V̂ ⋆ac:

V ⋆(X0)− V ⋆ac(X0) = εh
γ − γh

1− γ
+
εhγ

h

1− γ
+ γh(1− 2εh)(V

⋆ − V̂ac)

=
εhγ

(1− γ)(1− (1− 2εh)γh)
,

(132)

V ⋆(X0)− V̂ ⋆ac(X0) =
2εh(γ − γh)

1− γ
+

2εhγ
h

1− γ
γh(1− 2εh)(V

⋆ − V̂ac)

=
2εhγ

(1− γ)(1− (1− 2εh)γh)
.

(133)

Now, we observe that
1− 2εh − 2c3 > 1− 3εh > 2εh, (134)

where the first inequality is due to c3 ∈ (0, εh/2) and the second inequality is due to εh ∈ (0, 1/5)
in our assumption.

This allows us to lower-bound the estimated optimality gap for a⋄t:t+h as follows:

V ⋆(X0)− V̂ ⋄
ac(X0) =

(1− 2εh − 2c3)γ

(1− γ)(1− 2(εh + c3)γh)

>
2εhγ

(1− γ)(1− (1− 2εh)γh)

= V ⋆(X0)− V̂ ⋆ac(X0),

(135)

where the inequality is obtained by triggering Lemma G.5 (e.g., by setting ε1 = 2εh, ε2 = (1−2εh−
2c3), γ̃ = γh). The bound above rules out the possibility of a⋄t:t+h being picked by π̂+

ac because it
has a lower estimated value compared to a⋆t:t+h.

Finally, for a•t:t+h, since it is correlated with st+h = Z and receives no reward except the first step in
Dtop, the estimated value is just 1, being trivially smaller than V̂ ⋆ac(X0) and would never get picked
by π̂+

ac.

Up to now, we have finished our data distribution construction and analysis for the top branch. We
summarize the key intermediate results as the remark below:

Remark G.6 (Intermediate results from Step 1-4). The optimal action chunk is a⋆t:t+h and the
estimated values for the two other possible action chunks a•t:t+h, a⋄t:t+h are smaller than that of
a⋆t:t+h:

V̂ •
ac(X0) < V̂ ⋄

ac(X0) < V̂ ⋆ac(X0) = V ⋆(X0)−
2εhγ

(1− γ)(1− (1− 2εh)γh)
. (136)

In addition, both Dtop and D⋆ are strongly εh-open-loop consistent.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Next, we move on to the bottom branch.

Step 6. Data distribution Dbottom for the bottom branch: For the bottom, we again
use two policies.

Policy π1
bottom:

π1
bottom(X0) = π1

bottom(G) = π1
bottom(Z) = 1,

π1
bottom(Y1) = π1

bottom(Ỹ1) = 2.
(137)

π1
bottom takes a = 1 at X0 and G and Z, and takes a = 2 otherwise (at Y1, Ỹ1). It is clear that this

policy only produces two possible action chunks: a△t:t+h = (1, 1, 1, · · ·) or a×t:t+h = (1, 2, 1, · · ·).

Policy π2
bottom:

π2
bottom(X0) = 1,

π2
bottom(a = 0 | Y1) = δZ ,

π2
bottom(a = 1 | Y1) = 1− δZ ,

π2
bottom(Ỹ1) = 0,

π2
bottom(Yi) = 1, ∀i ∈ {2, · · · , h− 1},

(138)

where δZ ∈ (0, 1) and we shall specify the exact value of δZ shortly.

π2
bottom takes a = 1 when it is at Yi and takes either a = 0 (with δZ probability) or a = 1 (with

1 − δZ probability) when it is at Ỹ1. It is clear that this policy only produces two possible action
chunks: a△t:t+h = (1, 1, 1, · · ·) or a◦t:t+h = (1, 0, 1, · · ·).

Now, we observe that the marginal state distributions for both policies conditioned on a△t:t+h are
independent of c1 and δZ because the action chunk only appears when π1

bottom reaches G and when
π2
bottom reaches X0. More specifically,

PD1
bottom

(st+1 = G | st, a△t:t+h) = PD1
bottom

(st+h = G | st, a△t:t+h) = 1, (139)

PD2
bottom

(st+i = Xi | st, a△t:t+h) = PD2
bottom

(st+h = X0 | st, a△t:t+h) = 1,∀i ∈ {1, · · · , h− 1}.
(140)

We can now mix D1
bottom and D2

bottom with an appropriate ratio to control the state marginals for
st:t+h = G and st:t+h = X0 arbitrarily (st:t+h = Z stays at 0 because none of the policies take/have
taken a△t:t+h when they reach Z).

Mixing π1
bottom and π2

bottom: Let Dbottom be a mixture of D1
bottom and D2

bottom:

PDbottom
= (1− ϑ)PD1

bottom
+ ϑPD2

bottom
, (141)

where we set the mixing ratio to be

ϑ =
c1

c1 + (1− δZ)(εh + c1)
. (142)

This mixing ratio helps the calculations to be simpler later on.

We can now compute the marginal state distribution of the mixture. We start by analyzing the action
probability:

PD1
bottom

(a△t:t+h | st) = c1,

PD2
bottom

(a△t:t+h | st) = (1− εh − c1)(1− δZ).
(143)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

The state marginal is then

PDbottom
(st+h = X0 | st, a△t:t+h) =

PDbottom
(st+h = X0, a

△
t:t+h | st)

PDbottom
(a△t:t+h | st)

=
ϑPD2

bottom
(a△t:t+h | st)

(1− ϑ)PD1
bottom

(a△t:t+h | st) + ϑPD2
bottom

(a△t:t+h | st)

=
(1− εh − c1)(1− δZ)ϑ

c1(1− ϑ) + (1− εh − c1)(1− δZ)ϑ
= 1− εh − c1.

(144)

We can use it to deduce the rest of the marginals as follows:

PDbottom
(st+h = G | st, a△t:t+h) = εh + c1, ∀h′ ∈ {1, · · · , h− 1},

PDbottom
(st+h = X0 | st, a△t:t+h) = 1− εh − c1,

PDbottom
(st+h = Z | st, a△t:t+h) = 0,

PDbottom
(st+h′ = Yh′ | st, a△t:t+h) = 1− εh − c1, ∀h′ ∈ {1, · · · , h− 2},

PDbottom
(st+1 = Ỹ1 | st, a△t:t+h) = 0.

(145)

Up to now, we have established Dbottom and we are ready to check the strong open-loop consistency.

Step 7. Strong εh-open-loop consistency of Dbottom:

For a△t:t+h = (1, 1, · · ·), we can compute the open-loop marginals as follows:

T (st+h′ = G | st, a△t:t+h) = c1, ∀h′ ∈ {1, · · · , h− 1},

T (st+h = X0 | st, a△t:t+h) = 1− εh − c1,

T (st+h = Z | st, a△t:t+h) = εh.

T (st+h′ = Yh′ | st, a△t:t+h) = 1− εh − c1, ∀h′ ∈ {1, · · · , h− 2}

T (st+1 = Ỹ1 | st, a△t:t+h) = εh.

(146)

Combining it with the marginals calculated in Equation (145), it is clear that for all h′ ∈ {1, · · · , h−
1},

DTV

(
T (st+h′ | st, at:t+h′ = a+t:t+h′)

∥∥ PDbottom
(st+h′ | st, at:t+h = a+t:t+h)

)
= εh, (147)

satisfying the open-loop consistency.

For a×t:t+h = (1, 2, 1, · · ·), the data and open-loop state marginals are

PDbottom
(st+h = Z | st, a×t:t+h) = 1,

PDbottom
(st+1 = Y1 | st, a×t:t+h) =

1− εh − c1
1− c1

,

PDbottom
(st+1 = Ỹ1 | st, a×t:t+h) =

εh
1− c1

,

T (st+h = Z | st, a×t:t+h) = 1− c1,
T (st+h = G | st, a×t:t+h) = c1,

T (st+1 = Y1 | st, a×t:t+h) = 1− εh − c1,
T (st+1 = Ỹ1 | st, a×t:t+h) = εh,

T (st+1 = G | st, a×t:t+h) = c1.

(148)

This allows us to bound the TV distance for all h′ ∈ {1, · · · , h− 1} as

DTV

(
T (st+h′ | st, at:t+h′ = a×t:t+h′)

∥∥ PDbottom
(st+h′ | st, at:t+h = a×t:t+h)

)
≤ c1

1− c1
. (149)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Since c1 < εh/2 < 1/10,

c1
1− c1

<
10

9
c1 < 5εh/9 < εh, (150)

satisfying the strong open-loop consistency assumption.

For a◦t:t+h = (1, 0, 1, · · ·), we first compute the state marginals in Dbottom as follows:

PDbottom
(st+h = Z | st, a◦t:t+h) =

(1− εh − c1)δZ
εh + (1− εh − c1)δZ

,

PDbottom
(st+h = X0 | st, a◦t:t+h) =

εh
εh + (1− εh − c1)δZ

,

PDbottom
(st+1 = Y1 | st, a◦t:t+h) =

(1− εh − c1)δZ
εh + (1− εh − c1)δZ

.

PDbottom
(st+1 = Ỹ1 | st, a◦t:t+h) =

εh
εh + (1− εh − c1)δZ

.

(151)

We can also compute the open-loop marginal state distribution as follows:

T (st+h = Z | st, a◦t:t+h) = 1− εh − c1,
T (st+h = X0 | st, a◦t:t+h) = εh,

T (st+h = G | st, a◦t:t+h) = c1,

T (st+1 = Y1 | st, a◦t:t+h) = 1− εh − c1,
T (st+1 = Ỹ1 | st, a◦t:t+h) = εh,

T (st+1 = G | st, a◦t:t+h) = c1.

(152)

Let c4 ∈ (c1, εh), and we set

δZ =
εh(1− εh − c4)

(εh + c4)(1− εh − c1)
. (153)

Then, we have
PDbottom

(st+h = Z | st, a◦t:t+h) = 1− εh − c4,
PDbottom

(st+h = X0 | st, a◦t:t+h) = εh + c4,

PDbottom
(st+h = G | st, a◦t:t+h) = 0,

PDbottom
(st+1 = Y1 | st, a◦t:t+h) = 1− εh − c4,

PDbottom
(st+1 = Ỹ1 | st, a◦t:t+h) = εh + c4.

(154)

The TV distance is then

DTV

(
T (st+h′ | st, at:t+h′ = a◦t:t+h′)

∥∥ PDbottom
(st+h′ | st, at:t+h = a◦t:t+h)

)
= c4. (155)

Since c4 < εh, the strong open-loop consistency is also satisfied for a◦t:t+h.

Up to now, we have checked that all three possible action chunks in the bottom branch satisfy the
strong open-loop consistency assumption. Since Dtop and Dbottom have non-overlapping supports
for at:t+h, and they are both strongly εh-open-loop consistent on their own, we can construct D as

PD(· | st) = (1− ϱ)PDtop
(· | st) + ϱPDbottom

(· | st), (156)

for any ϱ ∈ (0, 1), and conclude that

Remark G.7 (Intermediate result from Step 5-7). D is strongly εh-open-loop consistent.

Up to now, we have constructed and checked both D and D⋆ are strongly εh-open-loop consistent.

As the final step, we calculate the optimality gap and value estimation error for these action chunks.

Step 8. The optimality gap and value estimation error for the bottom
branch:

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

We first note that similar to a•t:t+h, a×t:t+h is correlated with st+h = Z and always receives 0 reward
except the first step in D. Thus, the estimated value V̂ × is just 1, being trivially smaller than V̂ ⋆ac
and would never get picked by π̂△

ac. The only top contenders are a+t:t+h, a
◦
t:t+h and a⋆t:t+h (which we

already analyzed in Step 5 above).

We start with a◦t:t+h where we can compute optimality gap as follows:

V ⋆(X0)− V̂ ◦
ac(X0) =

(1− εh − c4)γ + δ(1− γ) + (εh + c4)δ(γ − γh)
(1− γ)(1− (εh + c4)γh)

. (157)

Now, observe that

εh + c4 < 2εh < 1− 2εh, (158)

where again the last inequality comes from the fact that εh < 1/4.

We can now lower-bound the optimality gap as follows:

V ⋆(X0)− V̂ ◦
ac(X0) >

2εhγ + δ(1− γ) + (εh + c4)δ(γ − γh)
(1− γ)(1− (1− 2εh)γh)

>
2εhγ

(1− γ)(1− (1− 2εh)γh)

= V ⋆(X0)− V̂ ⋆ac(X0).

(159)

where the first inequality is obtained by triggering Lemma G.5 (e.g., by setting ε1 = 2εh, ε2 =
(1− εh − c4), γ̃ = γh).

With this lower-bound, we can conclude that a◦t:t+h would not be picked by π+
ac as well because

V̂ ◦
ac(X0) < V̂ ⋆ac(X0).

Up to now, we have eliminated both a◦t:t+h and a×t:t+h (for the possibility of being picked by π+
ac)

and the only remaining contender left is a△t:t+h.

We can also compute the estimated and the actual values for at:t+h = a△t:t+h = 1 in terms of their
optimality gaps:

V ⋆(X0)− V̂ △
ac (X0) =

δ(1− εh − c1)γ
(1− γ)(1− (1− εh − c1)γh)

, (160)

V ⋆(X0)− V △
ac (X0) =

[δ(1− εh − c1) + εh] γ

(1− γ)(1− (1− εh − c1)γh)
. (161)

Let

δ =
2εhγ − c2

(1− εh − c1)γ
1− (1− εh − c1)γh

1− (1− 2εh)γh
. (162)

We first check 1− δ is a valid reward value (within [0, 1]):

δ <
2εh

1− εh − c1
1− (1− εh − c1)γh

1− (1− 2εh)γh

<
2εh

1− 2εh

1− (1− 2εh)γ
h

1− (1− 2εh)γh

=
2εh

1− 2εh
≤ 1,

(163)

where the first inequality is because c2 > 0, the second inequality is due to c1 < εh, and the final
inequality is due to εh < 1/4.

It is also clear that δ > 0 because all terms are positive in the fraction (Equation (162)).

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Next, we substitute δ in to obtain

V ⋆(X0)− V̂ △
ac (X0) =

2εhγ − c2
(1− γ)(1− (1− 2εh)γh)

, (164)

V ⋆(X0)− V △
ac (X0) =

2εhγ − c2
(1− γ)(1− (1− 2εh)γh)

+
εhγ

(1− γ)(1− (1− εh − c1)γh)
, (165)

where intuitively the second term in V ⋆(X0)−V △
ac (X0) is due to the fact that from PD(· | st, a△t:t+h)

to T (· | st, a△t:t+h), there is a shift in εh probability mass from st:t+h = (X0, G, · · ·) to st:t+h =

(X0, Ỹ1, Z, · · ·) incurring an additional εhγ
1−γ suboptimality in terms of the h-step reward, and then

amplified by the value recursion by an additional factor of 1
1−(1−εh−c1)γh (where 1− εh − c1 is the

probability that a△t:t+h reaches X0 for the value recursion to occur).

Since c2 > 0, we can now show that a△t:t+h achieves the highest estimated value among six possible
action chunks:

V ⋆ − V̂ △
ac < V ⋆ − V̂ ⋆ac =

2εhγ

(1− γ)(1− (1− 2εh)γh)
, (166)

which means that π+
ac(X0) = a△t:t+h = (1, 1, · · ·), or equivalently V̂ △

ac = V̂ +
ac !

Finally, putting everything together, we have

V ⋆(X0)− V +
ac (X0) =

2εhγ − c2
(1− γ)(1− (1− 2εh)γh)

+
εhγ

(1− γ)(1− (1− εh − c1)γh)
, (167)

as desired.

G.8 PROOF OF PROPOSITION 4.9

Proposition 4.9 (Optimality of Closed-loop Execution of Action Chunking Policy). Let V • be the
value of the one-step policy, π•, defined as the closed-loop execution of the action chunking policy
π+
ac learned from D. That is, for each st ∈ supp(PD(st)),

π•(st) = a+t , where a+t:t+h = π+
ac(st). (21)

If we assume D and D⋆ are both strongly εh-open-loop consistent and supp(PD(st, at:t+h)) ⊇
supp(PD⋆(st, at:t+h)), then under supp(D⋆),

∥V ⋆ − V •∥∞ ≤
εhγ

(1− γ)2

[
2

1− (1− 2εh)γh
+

1

1− (1− εh)γh

]
≤ 3εh

(1− γ)2(1− γh)
. (22)

Proof. We observe that
V +
ac (st) = Q+

ac(st, a
+
t:t+h)

≤ Q⋆(st, a+t).
(168)

Combining this with Theorem 4.6, we get

Q⋆(st, a
+
t) ≥ V ⋆(st)−∆, (169)

where ∆ = εhγ
1−γ

[
2

1−(1−2εh)γh + 1
1−(1−εh)γh

]
.

Now, we can bound V • as follows:

V ⋆(st)− V •(st) ≤ Q⋆(st, a+t)−Q•(st, a
+
t) + ∆

≤ γET (·|st,a+t) [V
⋆(st+1)− V •(st+1)] + ∆

≤ εhγ

(1− γ)2

[
2

1− (1− 2εh)γh
+

1

1− (1− εh)γh

]
.

(170)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

G.9 PROOF OF THEOREM 4.8

Theorem 4.8. Let D be strongly εh-open-consistent, δn-suboptimal, and supp(D) ⊇ supp(D⋆). Let
π⋆n be the optimal n-step return policy learned from D, as the solution of
Q⋆n(st, at) = EPD [Rt:t+n + γnQ⋆n(st+n, π

⋆
n(st+n))] , π⋆n : st 7→ argmax

at
Q⋆n(st, at). (20)

As long as δn >
3εh(1−γn)

(1−γ)(1−γh)
, then from all s ∈ supp(D⋆), the action chunking policy, π+

ac (Equa-
tion (17)), is better than the n-step return policy, πn (Equation (20)) (i.e., V +

ac (s) > V ⋆n (s)).

To prove Theorem 4.8, we first prove the following helper Lemma G.8 to quantify sub-optimality for
n-step return policy.
Lemma G.8. Let Q⋆n be the solution of the uncorrected n-step return backup equation:

Q⋆n(st, at) = EPD(·|st,at)

[
Rt:t+n + γnmax

at+n

Q⋆n(st+n, at+n)

]
(171)

The following inequality holds as long as D is δn-suboptimal:

Q⋆(st, at) ≥ Q⋆n(st, at) +
δn

1− γn
,∀st ∈ S, at ∈ A (172)

where Q⋆ is the Q-function of the optimal policy inM. For the n-step return policy
π⋆n : st 7→ argmax

at
Q⋆n(st, at), (173)

its corresponding value admits a similar bound:

V ⋆(st) ≥ V ⋆n (st) +
δn

1− γn
,∀st (174)

Proof. Using the definition of suboptimal data (Definition 4.7), we have

Q⋆n(st, at) = EPD(·|st,at)

[
Rt:t+n + γnmax

at+n

Q⋆n(st+n, at+n)

]
≤ Q⋆(st, at)− δn + γhEPD(·|st,at)

[
max
at+n

Q⋆n(st+n, at+n)− V ⋆(st+h)
] (175)

Rearranging the inequality above yields
Q⋆n(st, at)−Q⋆(st, at) ≤ −δn + γnEPD(·|st)[V

⋆
n (st+n)− V ⋆(st+n)],∀st ∈ S, at ∈ A (176)

By recursively applying the inequality above, we have

Q⋆(st, at) ≥ Q⋆n(st, at) +
δn

1− γn
,∀st ∈ S, at ∈ A (177)

By choosing a⋆t = π⋆n(st), we see that
V ⋆(st) ≥ Q⋆(st, at)

≥ Q⋆n(st, a⋆t) +
δn

1− γn

= V ⋆n (st) +
δn

1− γn

(178)

Now we are ready to prove the main Theorem 4.8.

Proof of Theorem 4.8. From Lemma G.8 and Theorem 4.6, we have

V ⋆n (s) +
δn

1− γn
≤ V ⋆(s) ≤ V +

ac (s) +
εhγ

1− γ

[
2

1− (1− 2εh)γh
+

1

1− (1− εh)γh

]
. (179)

Rearranging the terms give

V +
ac (s)− V ⋆n (s) ≥

δn
1− γn

− εhγ

1− γ

[
2

1− (1− 2εh)γh
+

1

1− (1− εh)γh

]
. (180)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

G.10 PROOF THEOREM 4.11

Theorem 4.11 (Closed-loop AC Policy under Bounded OV). Let D⋆ be the data distribution col-
lected by an optimal policy. Assume D can be decomposed into a mixture of data distributions
{D⋆,D1,D2, · · · DN} such that each data distribution component satisfies Assumption 4.1 and for
some ϑLh , ϑ

G
h ≥ 0, they satisfy the following two conditions:

1. Locally bounded optimality variability condition: every Di (including D⋆) exhibits ϑLh -bounded
variability in optimality conditioned on st, at for all (st, at) ∈ supp(PDi

(st, at)), and

2. Globally bounded optimality variability condition: D as a whole exhibits ϑGh -variability in
optimality conditioned on st, at:t+h for all (st, at:t+h) ∈ supp(PD(st, at:t+h)).

Then for all st ∈ supp(PD⋆(st)),

V ⋆(st)− V •(st) ≤
ϑLh

1− γ
+
ϑGh + γhmin(ϑLh , ϑ

G
h)

(1− γ)(1− γh)
≤ ϑLhH + 2ϑGhHH̄ (24)

The proof of Theorem 4.11 below is made possible by observing that V ⋆(st)− V̂ +
ac and V̂ +

ac (st)−
Q⋆(st, a

+
t) are bounded by ϑGh /(1− γh) and ϑLh/(1− γh) respectively. Combining this two bounds

naïvely already allows us to derive a relatively loose bound V ⋆(st)−Q⋆(st, a+t) ≤ (ϑLh +ϑGh)/(1−
γh) which leads to V ⋆(st)− V •(st) ≤ (ϑLh + ϑGh)/(1− γh)/(1− γ). To obtain the tight bound in
Theorem 4.11, we leverage a key insight that the amount of overestimation in V +

ac can never exceed
ϑLh + ϑG

1−γh as otherwise the nominal value of the action chunking policy h-step into the future,

V̂ +
ac (st+h), would have an optimality gap higher than ϑGh /(1− γh), which is impossible under the

global optimality variability condition. Forming this tight bound is important because it effectively
shaves off a factor of H̄ = 1/(1 − γh) from the ϑLh term (the stronger local condition) and only
bumps up a factor of ≈ 2 to the ϑGh term (the weaker global condition).

Proof of Theorem 4.11. Consider any st ∈ supp(PD⋆(st)). Let a+t:t+h = π+
ac(st) and

a◦t:t+h := argmaxat:t+h∈supp(PD⋆ (at:t+h|st))
[
EPD⋆ (·|st,at:t+h)

[
Rt:t+h + γhV ⋆(st+h)

]]
. (181)

We first observe that
EPD⋆ (·|st,a◦t:t+h)

[
Rt:t+h + γhV ⋆(st+h)

]
≥ V ⋆(st), (182)

because
V ⋆(st) = Eat:t+h∼PD⋆ (·|st)

[
EPD⋆ (·|st,at:t+h)

[
Rt:t+h + γhV ⋆(st+h)

]]
, (183)

and the maximum value of a random variable is no less than its expectation.

Let
Q̃min(st, a

◦
t:t+h) := min

supp(PD(·|st,a◦t:t+h))
[Rt:t+h + V ⋆(st+h)] , (184)

Q̃max(st, a
◦
t:t+h) := max

supp(PD(·|st,a◦t:t+h))
[Rt:t+h + V ⋆(st+h)] . (185)

Since D exhibits ϑGh -variability in optimality, we have

Q̃min(st, a
◦
t:t+h) ≥ Q̃max(st, a

◦
t:t+h)− ϑGh . (186)

V ⋆(st)−Q⋆(st, a+t)
= V ⋆(st)− V̂ +

ac (st) + V̂ +
ac (st)−Q⋆(st, a+t)

= V ⋆(st)− Q̂+
ac(st, a

+
t:t+h) + Q̂+

ac(st, a
+
t:t+h)−Q

⋆(st, a
+
t)

≤ V ⋆(st)− Q̂+
ac(st, a

◦
t:t+h) + ϑLh + γhEPD(·|st,a+t:t+h)

[
V̂ +
ac (st+h)− V ⋆(st+h)

]
= V ⋆(st)− Q̂+

ac(st, a
◦
t:t+h) + ϑLh + γhEPD(·|st,a+t:t+h)

[
V̂ +
ac (st+h)−Q⋆(st+h, a+t+h)

]
−

γhEPD(·|st,a+t:t+h)

[
V ⋆(st+h)−Q⋆(st+h, a+t+h)

]
.

(187)

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

We can use it to lower-bound V̂ +
ac (st) as follows:

V̂ +
ac (st) = Q̂+

ac(st, a
+
t:t+h)

≥ Q̂+
ac(st, a

◦
t:t+h)

= EPD(·|st,a◦t:t+h)

[
Rt:t+h + γhV̂ +

ac (st+h)
]

= EPD(·|st,a◦t:t+h)

[
Rt:t+h + γhV ⋆(st+h)

]
+ EPD(·|st,a◦t:t+h)

[
γh(V̂ +

ac (st+h)− V ⋆(st+h))
]

≥ Q̃min(st, a
◦
t:t+h) + EPD(·|st,a◦t:t+h)

[
γh(V̂ +

ac (st+h)− V ⋆(st+h))
]

≥ Q̃max(st, a
◦
t:t+h)− ϑGh + EPD(·|st,a◦t:t+h)

[
γh(V̂ +

ac (st+h)− V ⋆(st+h))
]

≥ EPD⋆ (·|st,a◦t:t+h)

[
Rt:t+h + γhV ⋆(st+h)

]
− ϑGh + γhEPD(·|st,a◦t:t+h)

[
(V̂ +

ac (st+h)− V ⋆(st+h))
]

≥ V ⋆(st)− ϑGh + γhEPD(·|st,a◦t:t+h)

[
(V̂ +

ac (st+h)− V ⋆(st+h))
]

≥ V ⋆(st)−
ϑGh

1− γh
.

(188)

Let M+ = {D̃1, · · · D̃M+} be all data distributions from {D⋆,D1,D2, · · · ,DN} where (st, a
+
t:t+h)

is in the support. Let D̃+ be any mixture of M where each mixture component has non-zero weight:

PD̃+ =

M∑
i=1

wiPD̃i
, (189)

where wi > 0,
∑
i wi = 1.

Let

Q̃⋆min(st, at) := min
supp(PD⋆ (·|st,at))

[Rt:t+h + V ⋆(st+h)] , (190)

Q̃⋆max(st, at) := max
supp(PD⋆ (·|st,at))

[Rt:t+h + V ⋆(st+h)] , (191)

Q̃imin(st, at) := min
supp(PDi (·|st,at))

[Rt:t+h + V ⋆(st+h)] , (192)

Q̃imax(st, at) := max
supp(PDi (·|st,at))

[Rt:t+h + V ⋆(st+h)] , (193)

Q̃+
max(st, a

+
t) := max

supp(PD̃+ (·|st,a+t))
[Rt:t+h + V ⋆(st+h)] , (194)

Q̃+
max(st, a

+
t:t+h) := max

supp(PD̃+ (·|st,a+t:t+h))
[Rt:t+h + V ⋆(st+h)] . (195)

The minimum and the maximum is over the remaining trajectory conditioned on st, at or st, at:t+h
that is still in the support of the corresponding data distribution.

From the ϑLh -bounded variability in optimality and the Assumption 4.1 of each data mixture, we
observe that

Q⋆(st, at) ≥ Q̃imin(st, at) ≥ Q̃imax(st, at)− ϑLh , ∀i ∈ {1, 2, · · · , N} (196)

Q⋆(st, at) ≥ Q̃⋆min(st, at) ≥ Q̃⋆max(st, at)− ϑLh . (197)

We can then derive that

Q̃+
max(st, a

+
t) = max(Q̃⋆max(st, a

+
t), Q̃

1
max(st, a

+
t), · · · , Q̃Nmax(st, a

+
t))

≤ Q⋆(st, at) + ϑLh .
(198)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

With this, we can now upper-bound V̂ +
ac (st) as follows:

V̂ +
ac (st) = Q̂+

ac(st, a
+
t:t+h)

= EPD(·|st,a+t:t+h)

[
Rt:t+h + γhV̂ +

ac (st+h)
]

= EPD̃+ (·|st,a+t:t+h)

[
Rt:t+h + γhV̂ +

ac (st+h)
]

= EPD̃+ (·|st,a+t:t+h)

[
Rt:t+h + γhV ⋆(st+h)

]
+ γhEPD̃+ (·|st,a+t:t+h)

[
V̂ +
ac (st+h)− V ⋆(st+h)

]
≤ Q̃+

max(st, a
+
t:t+h) + γhEPD(·|st,a+t:t+h)

[
V̂ +
ac (st+h)− V ⋆(st+h)

]
≤ Q̃+

max(st, a
+
t) + γhEPD(·|st,a+t:t+h)

[
V̂ +
ac (st+h)− V ⋆(st+h)

]
≤ Q⋆(st, a+t) + ϑLh + γhEPD(·|st,a+t:t+h)

[
V̂ +
ac (st+h)− V ⋆(st+h)

]
.

(199)

Let

∆(st) := V ⋆(st)−Q⋆(st, a+t). (200)

∆̂(st) := V̂ +
ac (st)−Q⋆(st, a+t). (201)

From the inequalities above, we have

∆̂(st) ≤ ϑLh + γh sup
st+h

[
∆̂(st+h)−∆(st+h)

]
, (202)

0 ≤ ∆(st) ≤
ϑGh

1− γh
+ ∆̂(st), (203)

∆̂(st)−∆(st) ≤ min

{
ϑGh

1− γh
, ∆̂(st)

}
. (204)

The minimum operator allows us to obtain two upper-bounds on ∆:

∆(st) ≤ ϑLh +
(1 + γh)ϑGh

1− γh
, (205)

∆(st) ≤
ϑGh

1− γh
+ ∆̂(st) ≤

ϑLh + ϑGh
1− γh

. (206)

Finally, combining these two upper-bounds together and recursively applying the inequality yields
our desired results:

V ⋆(st)−Q•(st, a
+
t) ≤

ϑLh
1− γ

+
ϑLh

(1− γ)(1− γh)
+
γhmin(ϑGh , ϑ

L
h)

(1− γ)(1− γh)
. (207)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

G.11 PROOF OF THEOREM F.4

Theorem F.4 (Worst-case Closed-loop AC Policy under BOV). For any γ ∈ (0, 1), ϑGh , ϑ
L
h ∈(

0, γ−γ
h

4(1−γ)

]
, c ∈

[
0, γ−γh

4(1−γh)

)
, σ ∈

(
0,

min(ϑG
h ,ϑ

L
h)

1−γ

)
, there existsM and D satisfying the mixture

assumption in Theorem 4.11 such that there exists st ∈ supp(PD⋆(st)), where

V ⋆(st)− V •(st) =
ϑLh

1− γ
+
ϑGh + γhmin(ϑLh , ϑ

G
h)

(1− γ)(1− γh)
− σ, V ⋆(st)− V +

ac (st) ≥
c

1− γ
(38)

To show that our upper-bound is achievable, we need to carefully design both the MDP and the data
distribution. For clarity of the proof, we divide up the construction into two parts. The first part
(Lemma G.9) focuses on designing part of the MDP and two data distributions D⋆ and D⋄ such that
any action chunk that has a value bigger than V ⋆ − ϑG

h

1−γh is preferred over the action chunks in D⋆

and D⋄. The second part (Lemma G.10) focuses on constructing the remaining MDP and the D△

that contains the action chunk that π+
ac picks where V̂ +

ac overestimates the value of this action chunk

by ϑLh +
γh min(ϑL,ϑG

h)
1−γh . Finally, we assemble these two results (combining D⋆, D⋄, D△) to show

that the MDP and the mixture data achieve our upper-bound exactly.

Lemma G.9 (“The Castle”). For δ ∈ (0, 1), ϑGh < γ−γh

2(1−γ) , consider a 2-state, 2-action MDP in
Figure 10. Let there be two data distributions, D⋆ and D⋄. D⋆ is collected by the following optimal
closed-loop policy from X and Y :

π⋆(X) = 0, π⋆(Y) = 1. (208)
D⋄ is collected by the following optimal closed-loop policy from X and Y :

π⋄(X) = 1, π⋄(Y) = 0. (209)
Let D be a mixture of D⋆ and D⋄ with

PD = (1− ς)PD⋆ + ςPD⋄ . (210)
There exists c1 ∈ (0, 1/2) such that

1. D⋆ and D⋄ both individually exhibits 0-variability in optimality conditioned on st, at for all
st, at ∈ supp(PD(st, at)),

2. D exhibits ϑGh -variability in optimality conditioned on st, at:t+h for all st, at:t+h ∈
supp(PD(st, at:t+h)),

and

V̂ +
ac (X) = V̂ +

ac (Y) =
1− γ + ς(γ − γh)
2(1− γh)(1− γ)

− ςϑGh
1− γh

. (211)

Proof. Set

c1 =
(1− γ)ϑGh
γ − γh

. (212)

We first check whether c1 ∈ (0, 1/2). For the upper-bound, it is clear that c1 < 1/2 because
ϑGh < γ−γh

2(1−γ) . For the lower-bound, c > 0 because all terms in the fraction are positive.

We now check the two optimality variability conditions. The first (local) one is trivial because π⋄

always receives r = 1/2− c1 and π⋆ always receives r = 1/2, and the optimal value for X and Y
are both V ⋆(X) = V ⋆(Y) = 1

2(1−γ) .

Next, we check the second (global) condition by analyzing all possible states and action chunks in D.
We observe that for any at:t+h that starts with at = 0, we have

Q̃min(X, at:t+h) =
1− 2c1(γ − γh)

2(1− γ)
, (213)

Q̃max(X, at:t+h) =
1

2(1− γ)
, (214)

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Y X

a = 0 a = 1 a = 1 a = 0

r = 1/2− c1 r = 1/2 r = 1/2− c1 r = 1/2

Y X

δ 1−δδ 1−δδ 1−δδ 1−δ

Figure 10: MDP construction Part 1 for Theorem F.4 (“the castle”). This diagram describes state X and Y
and how actions a = 0 and a = 1 transition between them. The main purpose of this construction is to make
V̂ +
ac (X) underestimate V ⋆ by exactly ϑGh /(1− γh). This allows the action chunk that appears in the second

part of the construction to be preferred (by π+
ac) over the action chunks that start with with a = 0 or a = 1.

which gives

Q̃max(X, at:t+h)− Q̃min(X, at:t+h) = ϑGh . (215)

By symmetry, we also have

Q̃max(Y, at:t+h)− Q̃min(Y, at:t+h) = ϑGh . (216)

for all at:t+h that starts with at = 1.

Now, for any at:t+h that starts with at = 1, we have

Q̃min(X, at:t+h) =
γ − 2c1(γ − γh)

2(1− γ)
, (217)

Q̃max(X, at:t+h) =
γ

2(1− γ)
, (218)

which admits the same gap as the case when at = 0. The same also holds for Y with at =
1. Thus, D exhibits ϑGh -variability in optimality conditioned on st, at:t+h for all st, at:t+h ∈
supp(PD(st, at:t+h)).

Finally, we check for the value,

V̂ +
ac (X) = V̂ +

ac (Y) = (1− ς)/2 + ς(1/2 + (1− 2c1)
γ − γh

2(1− γ)
)

=
1

1− γh

[
1/2 + ς

(1− 2c1)(γ − γh)
2(1− γ)

]
=

1

2(1− γh)

[
1 + ς

γ − γh − 2(1− γ)ϑGh
1− γ

]
=

1− γ + ς(γ − γh)
2(1− γh)(1− γ)

− ςϑGh
1− γh

,

(219)

as desired.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Lemma G.10 (“The Flower”). Assume ϑGh ∈
(
0, 1−γ

h

8

]
, ϑLh ∈

(
0, γ−γ

h

4(1−γ)

]
, γ ∈ (0, 1), and

Consider a 5-state, 3-action MDP in Figure 11 building on top of the transitions that already in
Figure 10. Let D△ be a data distribution induced by a cycling, time-dependent (with a time cycle
length of h) policy π△ (we use the subscript to indicate the time step from 0 to h− 1):

π△
0 (st = X) = π△

0 (st = X̃) = 2, (220)

π△
0 (st = Y) = 3 (221)

π△
k (st+k = C̃) = π△

k (st+k = D̃) = 2, ∀k ∈ {1, 2, · · · , h− 2}, (222)

π△
k (st+h−1 = C̃) = π△

k (st+h−1 = D̃) = 0, (223)

π△
k (st+k = X) = 0, ∀k ∈ {1, 2, · · · , h− 1}, (224)

π△
k (st+k = Y) = 1, ∀k ∈ {1, 2, · · · , h− 1}. (225)

Let V̂ +
ac be the nominal value of the action chunking policy π+

ac learned from D△ and let

∆ = ϑLh +
ϑGh

1− γh
+
γhmin(ϑGh , ϑ

L
h)

1− γh
. (226)

For any c ∈
[
0, γ−γh

4(1−γh)

)
, there exists some 0 < c2 ≤ 1/2, 0 < c3 ≤ 1/2, δ, δ2 ∈ (0, 1), such that

for every 0 < ∆̃ < min
(
∆,

2ϑG
h

1−γh

)
,

1. D△ exhibits 0-variability in optimality conditioned on st, at:t+h for all st, at:t+h ∈
supp(PD△(st, at:t+h)),

2. D△ exhibits ϑLh -variability in optimality conditioned on st, at for all st, at ∈
supp(PD△(st, at)),

and

V̂ +
ac (X) =

1

2(1− γ)
− ϑGh

1− γh
+ ∆̃, (227)

V ⋆(X)− V •(X) =
∆− ∆̃

1− γ
, (228)

V ⋆(X)− V +
ac (X) ≥ c

1− γ
, (229)

V ⋆(X)− V ⋆ac(X) ≥ c

1− γ
. (230)

Proof. Without the loss of generality, we assume we always start from state X . Due to symmetry,
the same analysis applies to state Y (with the first action being at = 3 rather than at = 2).

Due to cycling nature of the data collection policy, we observe that all action chunks starting from
X are in the form of at:t+h = (2, · · ·︸︷︷︸

0’s and 1’s

) or at:t+h = (2, 2, · · · , 2, 0). These two possibilities

correspond to two different paths that the data collection policy takes:

• a◦t:t+h = (2, · · ·︸︷︷︸
0’s and 1’s

): Stay in either X or Y . The agent going on this path receives a

constant reward of 1/2 except the first step where it receives a reward of (1− c2)/2.

• a△t:t+h = (2, 2, · · · , 2, 0): Visit C̃ and then stays there for h− 1 until it goes out with a = 0

to visit X̃ . The agent going on this path receives a constant reward of (1 + c3)/2 except the
first step where it receives a reward of (1− c2)/2.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

X

a = 2
r = 1+c4

2

a = 0
r = 1/2

a = 2
r = 1/2

D̃

X̃

a = 2
r = 1+c3

2

C̃
a = 2

r = 1+c3
2

X r = 1−c2
2 Y

a = 2 a = 3

a = 3 r = 0 a = 2

1−δ2

δ2

a=0

r=(1+c4)/2

a=0

r=
1+c3

2

δ2

(1−δ2)(1−δ)
(1−δ2)δ

1−δ δ

Figure 11: MDP construction Part 2 for Theorem F.4 (“the flower”). This diagram describes the remaining
states C̃, D̃ and X̃ , and what actions a = 2 and a = 3 do in state X and Y . The main purpose of this
construction is to make V̂ +

ac (X) overestimate the optimal value of the action chunks that π+
ac, Q⋆(X, a+t), by

exactly ϑLh + γhmin(ϑLh , ϑ
G
h)/(1− γh).

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Similarly, all action chunks starting from X̃ are in the form of at:t+h = (2, · · ·︸︷︷︸
0’s and 1’s

) or at:t+h =

(2, 2, · · · , 2, 0). These two possibilities correspond to two different paths that the data collection
policy takes:

• a◦t:t+h = (2, · · ·︸︷︷︸
0’s and 1’s

): Stay in either X or Y . The agent going on this path receives a

constant reward of 1/2.

• a△t:t+h = (2, 2, · · · , 2, 0): Visit C̃ and then stays there for h− 1 until it goes out with a = 0

to visit X̃ . The agent going on this path receives a constant reward of (1 + c4)/2 except the
first step where it receives a reward of 1/2.

Now, we divide up the problem into two cases depending on the relative values of ϑLh and ϑGh .

1. Case ϑLh ≥ ϑGh :

Set

c2 = 2

[
ϑLh +

(1 + γh)ϑGh
1− γh

]
− 2∆̃ > 0, (231)

c3 =
2(1− γ)ϑLh
γ − γh

> 0, (232)

c4 =
2(1− γ)ϑGh
γ − γh

> 0. (233)

Next, we check that c2, c3, c4 ≤ 1/2.

We first observe that

(1− γ)(1− γh)− 2(γ − γh) = 1− 3γ + γh(γ + 1) ≤ 1− 3γ + γ(γ + 1) = (1− γ)2 ≥ 0.
(234)

Dividing both sides by 8(1− γ) yields

1− γh

8
≥ γ − γh

4(1− γ)
≥ ϑLh ≥ ϑGh . (235)

Now, using the inequality above, we have

c2 = 2

[
ϑLh +

(1 + γh)ϑGh
1− γh

]
− 2̃∆

≤ 2

[
ϑLh +

(1 + γh)ϑLh
1− γh

]
≤ 4ϑLh

1− γh
≤ 1/2.

(236)

Furthermore,

c4 ≤ c3 =
2(1− γ)ϑLh
γ − γh

≤ 1/2. (237)

Next, we check the data distribution D△ satisfies both optimality variability conditions. We first
note that we only need to check for st ∈ {X, X̃} because all other states are out of the support due
to the cycling nature of the data collection policies. The first (global) optimality condition is trivial
because the h-step reward received is deterministic conditioned on at:t+h ∈ {a◦t:t+h, a

△
t:t+h}, and

the optimal value of V ⋆(st+h) is always 1
2(1−γ) . This leads to 0-variability in optimality conditioned

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

on st, at:t+h. For the second (local) optimality condition, we check the difference in optimality for
two paths from st, at = 2 for both st = X and st = X̃ .

For st = X , the optimality gap is

c3
γ − γh

2(1− γh)
= ϑLh . (238)

For st = X̃ , the optimality gap is

c4
γ − γh

2(1− γh)
= ϑGh ≤ ϑLh . (239)

This concludes that the second (local) optimality condition is also satisfied.

Next, we first analyze which action chunk π+
ac prefers by computing Q̂+

ac’s:

Q̂+
ac(X, a

◦
t:t+h) =

1

2

[
(1− c2) +

γ − γh

1− γ

]
+ γhV̂ +

ac (X), (240)

Q̂+
ac(X, a

△
t:t+h) =

1

2

[
(1− c2) + (1 + c3)

γ − γh

1− γ

]
+ γhV̂ +

ac (X̃), (241)

Q̂+
ac(X̃, a

◦
t:t+h) =

1

2

[
1− γh

1− γ

]
+ γhV̂ +

ac (X), (242)

Q̂+
ac(X̃, a

△
t:t+h) =

1

2

[
1 + (1 + c4)

γ − γh

1− γ

]
+ γhV̂ +

ac (X̃). (243)

We first observe that

Q̂+
ac(X̃, a

△
t:t+h)− Q̂

+
ac(X, a

△
t:t+h) =

1

2

[
c2 − (c3 − c4)

γ − γh

1− γ

]
= ϑLh +

(1 + γh)ϑGh
1− γh

− ϑLh + ϑGh − ∆̃

=
2ϑGh

1− γh
− ∆̃

> 0.

(244)

Also,

Q̂+
ac(X̃, a

◦
t:t+h)− Q̂+

ac(X, a
◦
t:t+h) = c2 > 0 (245)

Therefore,
V̂ +
ac (X) = max(Q̂+

ac(X, a
◦
t:t+h), Q̂

+
ac(X, a

△
t:t+h))

< max(Q̂+
ac(X̃, a

◦
t:t+h), Q̂

+
ac(X̃, a

△
t:t+h))

= V̂ +
ac (X̃).

(246)

Now, we can compare the values for the action chunks for X and X̃:

Q̂+
ac(X, a

△
t:t+h)− Q̂

+
ac(X, a

◦
t:t+h) = c3

γ − γh

2(1− γ)
+ γh(V̂ +

ac (X̃)− V̂ +
ac (X)) > 0, (247)

Q̂+
ac(X̃, a

△
t:t+h)− Q̂

+
ac(X̃, a

◦
t:t+h) = c4

γ − γh

2(1− γ)
+ γh(V̂ +

ac (X̃)− V̂ +
ac (X)) > 0, (248)

since c3, c4 > 0 and h > 1, 0 < γ < 1 (and thus γ−γh

1−γ > 0).

This concludes that π+
ac(X) = π+

ac(X̃) = a△t:t+h = (2, 2, · · · , 2, 0) and thus

V̂ +
ac (X̃) =

1− γ + (γ − γh)(1 + c4)

2(1− γh)(1− γ)
, (249)

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

and

V̂ +
ac (X) =

1

2

[
(1− c2) + (1 + c3)

γ − γh

1− γ

]
+

γh

1− γh
V̂ +
ac (X̃)

=
1

2(1− γ)
− ϑGh

1− γh
+

∆̃

2
.

(250)

We can now compute the remaining values as follows:

V ⋆(X) =
1

2(1− γ)
, (251)

Q⋆(X, a = 2) =
(1− c2)(1− γ) + γ

2(1− γ)
, (252)

Q•(X, a = 2) =
1− c2
2(1− γ)

. (253)

Substituting the value of c2 yields

V ⋆(X)− V •(X) =
ϑLh

1− γ
+

(1 + γh)ϑGh
(1− γ)(1− γh)

− ∆̃

2(1− γ)
. (254)

2. Case ϑLh < ϑGh :

Set

∆ = 2

[
ϑLh + ϑGh
1− γh

]
(255)

c2 = 2

[
ϑLh + ϑGh
1− γh

]
− ∆̃ > 0, (256)

c3 = c4 =
2(1− γ)ϑLh
γ − γh

> 0 (257)

where again ∆̃ is any value that satisfies 0 < ∆̃ ≤ ∆.

From the definitions above and the value range of ϑGh (ϑGh ≤
1−γh

4), it is clear that

c3 = c4 < c2 ≤
4ϑGh

1− γh
≤ 2(1− γ)

γ − γh
≤ 1/2. (258)

Next, we check the data distribution D△ satisfies both optimality variability conditions. With the
same argument as the previous case, we can quickly conclude that the global optimality condition is
satisfied. We just need to show the remaining local optimality condition. We repeat the procedure
from the previous case.

For st = X , the local optimality gap is

c3
γ − γh

2(1− γh)
= ϑLh . (259)

For st = X̃ the local optimality gap is the same because c4 = c3:

c4
γ − γh

2(1− γh)
= ϑLh . (260)

This concludes that the second (local) optimality condition is also satisfied for the second case.

Now, we can follow the same procedure as the previous case to show that Q̂+
ac(X, a

△
t:t+h) −

Q̂+
ac(X, a

◦
t:t+h) > 0 and Q̂+

ac(X̃, a
△
t:t+h)− Q̂+

ac(X̃, a
◦
t:t+h) > 0.

This concludes that π+
ac(X) = π+

ac(X̃) = a△t:t+h = (2, 2, · · · , 2, 0), and thus

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

V̂ +
ac (X̃) =

1

2

[
1− γ + (1 + c3)(γ − γh)

(1− γ)(1− γh)

]
, (261)

and

V̂ +
ac (X) =

1

2

[
(1− c2) + (1 + c3)

γ − γh

1− γ

]
+

γh

1− γh
V̂ +
ac (X̃)

=
1

2(1− γ)
− ϑGh

1− γh
+

∆̃

2
.

(262)

Repeating the same procedure as the previous case, we obtain

V ⋆(X)−Q⋆(X, a = 2) =
ϑLh + ϑGh
1− γh

− ∆̃, (263)

resulting in an optimality of

V ⋆(X)− V •(X) =
ϑLh + ϑGh

(1− γ)(1− γh)
− ∆̃

1− γ
. (264)

3. Sub-optimality of V +
ac :

Finally, we can use a pretty crude upper-bound on the actual value of the action chunking policy π+
ac

(reparameterizing δ̃2 = 1− (1− δ2)h):

V +
ac (X) ≤ (1− δ̃2)

[
(1− c2)/2 +

δ(γ − γh)
2(1− γ)

+ γhV +
ac (X)

]
+

δ̃2
1− γ

(265)

≤ 1− δ̃2
2(1− γh)(1− γ)

[
1− γ + δ(γ − γh)

]
+

δ̃2
1− γ

. (266)

Set δ = 1/2, we have

V +
ac (X) ≤ 1− δ̃2

2(1− γh)(1− γ)
[
1− γ/2− γh/2

]
+

δ̃2
1− γ

. (267)

We set

δ2 = 1−
[
1− γ − γh − 4c(1− γh)

2− 3γh + γ

]1/h
, (268)

which results in

δ̃2 =
γ − γh − 4c(1− γh)

2− 3γh + γ
. (269)

It is clear that 0 < δ2 < 1 because c < γ−γh

4(1−γh)
and γ−γh

2−3γh+γ
< 1.

Substituting δ̃2 in the bound of V +
ac (X) above, we obtain

V ⋆(X)− V +
ac (X) ≥ c

1− γ
. (270)

Proof of Theorem F.4. Let

∆ = ϑLh +
ϑGh

1− γh
+
γhmin(ϑGh , ϑ

L
h)

1− γh
. (271)

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Consider the 5-state, 3-action MDP constructed in Lemma G.9 and Lemma G.10 and a data distri-
bution consisting of a mixture of three data distributions D⋆,D⋄ (from Lemma G.9) and D△ (from
Lemma G.10):

PD = α(1− ς)PD⋆ + ςPD⋄ + (1− α)PD△ . (272)

We set α to be any value between 0 and 1 (non-inclusive) and set ς as any positive value such that

ς <
(γ − γh)− 2ϑGh (1− γ) + 2∆̃(1− γ)(1− γh)

(γ − γh)− 2ϑGh (1− γ)
, (273)

where ∆̃ = σ(1 − γ) < min(ϑLh , ϑ
G
h) < min(∆,

2ϑG
h

1−γh) (satisfying the condition for ∆̃ in
Lemma G.10).

The numerator and the denominator are both positive:

(γ − γh)− 2ϑGh (1− γ) + 2∆̃(1− γ)(1− γh) > (γ − γh)− 2ϑGh (1− γ) > 0, (274)

meaning such ς always exists.

Substituting the inequality to the result of Lemma G.9 results in

1− γ + ς(γ − γh)
2(1− γh)(1− γ)

− ςϑGh
1− γh

<
1

2(1− γ)
− ϑGh

1− γh
+ ∆̃, (275)

which shows that π+
ac will always prefer a△t:t+h over action chunks in D⋆ and D⋄.

This means that the value V̂ +
ac and the action chunking policy π+

ac we learn from D coincides with
these of D△, allowing us to directly use the results of Lemma G.10.

Thus, we can conclude that

V ⋆(st)− V +
ac (st) ≥

c

1− γ
, (276)

and

V ⋆(X)− V •(X) =
∆− ∆̃

1− γ
=

ϑLh
1− γ

+
ϑGh

(1− γ)(1− γh)
+
γhmin(ϑLh , ϑ

G
h)

(1− γ)(1− γh)
− σ, (277)

as desired.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

G.12 PROOF OF PROPOSITION F.6

Proposition F.6 (Deterministic Dynamics are Weakly Open-loop Consistent). If a transition dynamics
M is ε-deterministic, then any data D collected fromM is weakly εh-open-loop consistent with
respect toM for any h ∈ N+ as long as εh ≥ 3(1− (1− ε)h−1).

Proof. Since T is ε-deterministic, it can be represented as T (· | s, a) = (1− ε)δf(s,a) + εT̃ (· | s, a)
for some f : S×A → S and T̃ : S×A → ∆S . Let f(s, a1, · · · , ah) = f(· · · f(f(s, a1), a2) · · · ah)
Let I ∈ {0, 1} a binary indicator variable that is 1 if and only if

st+k+1 = f(st+k, at+k),∀k ∈ {0, 1, 2, · · · , h− 1} (278)

Intuitively I = 1 when the trajectory is generated deterministically until but not including the last
state sh in the trajectory chunk.

From the fact that T is ε-deterministic, we know that

PD(Ih = 1) ≥ (1− ε)h−1 (279)

We also have

PD(at:t+h | st) = PD(Ih = 1)PD(at:t+h | st, Ih = 1) + PD(Ih = 0)PD(at:t+h | st, I = 0)
(280)

Then we have

DTV(PD(at:t+h | st) ∥ PD(at:t+h | st, Ih = 1)) ≤ (1− (1− ε)h−1) (281)

If we transform each distribution of at:t+h deterministically by f(st, ·), by data processing inequality
(DPI; Lemma G.4), we have

DTV

(
Eat:t+h∼PD(·|st)

[
δf(st,at:t+h)

] ∥∥ Eat:t+h∼PD(·|st,Ih=1)

[
δf(st,at:t+h)

])
≤ (1− (1− ε)h−1)

(282)

Similarly, we have

DTV(PD(at:t+h+1 | st) ∥ PD(at:t+h+1 | st, Ih+1 = 1)) ≤ (1− (1− ε)h) (283)

which can be also deterministically transformed by taking at:t+h+1 7→ (f(st, ·), at+h) (again with
DPI, Lemma G.4) to obtain

DTV

(
Eat:t+h∼PD(·|st)

[
π◦
D(at+h | st, at:t+h)If(st,at:t+h)

]
∥

Eat:t+h∼PD(·|st,Ih+1=1)

[
π◦
D(at+h | st, at:t+h, Ih+1 = 1)If(st,at:t+h)

])
≤ (1− (1− ε)h)

(284)

Now, if we analyze the distribution of st+h subject to the open-loop execution of the action sequence
from PD(· | st) and break it up into the deterministic and the non-deterministic case, we get

Eat:t+h∼PD(·|st)
[
Tat:t+h

(· | st)
]
= PT (I = 1)Eat:t+h∼PD(·|st)

[
δf(st,at:t+h)

]
+

PT (I = 0)Eat:t+h∼PD(·|st)
[
Tat:t+h

(· | st, Ih = 0)
] (285)

Note that PT (I = 1) denotes the probability that an open-loop executed trajectory using at:t+h ∼
PD(· | st) is deterministic. This is different from PD(Ih = 1) because the latter is based on
PD(st:t+h+1, at:t+h) whereas PT (Ih = 1) is based on the open-loop trajectory distribution: PD(· |
st)
∏h−1
k=0 T (st+k | st, at:t+k). They both admit the same lower bound of 2(1− (1− ε)h−1).

Therefore,

DTV

(
Eat:t+h∼PD(·|st)

[
Tat:t+h

(· | st)
] ∥∥ Eat:t+h∼PD(·|st)

[
δf(st,at:t+h)

])
≤ (1− (1− ε)h−1)

(286)

Similarly for the state-action case, we can multiply both side by the same conditional distribution
π◦
D(at+h | st, at:t+h) which preserves the TV bound. For the left-hand side, we have

P ◦
D(st+h, at+h | st) = Eat:t+h∼PD(·|st)

[
π◦
D(at+h | st, at:t+h)Tat:t+h

(st+h | st)
]

(287)

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Therefore, we get
DTV

(
P ◦
D(st+h, at+h | st)

∥∥ Eat:t+h∼PD(·|st)
[
π◦
D(at+h | st, at:t+h)If(st,at:t+h)

])
≤ (1− (1− ε)h−1)

(288)

We also have
PD(st+h | st) = (1− ε)h−1PD(st+h | st, I = 1) + (1− (1− ε)h−1)PD(st+h | st, Ih = 0)

(289)
Similarly, we have

DTV(PD(st+h | st) ∥ PD(st+h | st, Ih = 1))

= DTV

(
PD(st+h | st)

∥∥ Eat:t+h∼PD(·|st,Ih=1)

[
δf(st,at:t+h)

])
≤ (1− (1− ε)h−1)

(290)

For state-action, we can also get
PD(st+h, at+h | st) = (1− ε)hPD(st+h, at+h | st, Ih+1 = 1)

+ (1− (1− ε)h)PD(st+h, at+h | st, Ih+1 = 0)
(291)

which can be turned into the TV distance bound:
DTV(PD(st+h, at+h | st) ∥ PD(st+h, at+h | st, Ih+1 = 1))

= DTV

(
PD(st+h, at+h | st) ∥

Eat:t+h∼PD(·|st,Ih+1=1)

[
π◦
D(at+h | st, at:t+h, Ih+1 = 1)If(st,at:t+h)

])
≤ (1− (1− ε)h)

(292)

Connecting all three total variation inequality (Equations (282), (286) and (290)) together, we get
DTV

(
PD(st+h | st)

∥∥ Eat:t+h∼PD(·|st)
[
Tat:t+h

(· | st)
])
≤ 3(1− (1− ε)h−1) ≤ εh (293)

Connecting all three total variable inequality for state-action (Equations (284), (287) and (292))
together, we get
DTV(P

◦
D(st+h−1, at+h−1 | st) ∥ PD(st+h, at+h | st)) ≤ 3− 2(1− ε)h−1 − (1− ε)h−2

≤ 3(1− (1− ε)h−1)

≤ εh
(294)

Therefore, D is εh-open-loop consistent as desired.

H A PATHOLOGICAL FAILURE OF ACTION CHUNKING POLICIES WITHOUT THE
STRONG OPEN-LOOP CONSISTENCY ASSUMPTION

In this section, we show an example where the optimal action chunking policy defined in Equation (17)
can be highly suboptimal in the absence of the strong open-loop consistency condition.

We define an MDP as follows. Let S = {A,B,C,D,E, F,G} andA = {1, 2}. Define the transition
dynamics and reward function as shown in the diagram below:

a = 1 D (r = +1)

a = 1 B a = 2 E (r = 0)

A

a = 2 C a = 1 F (r = 0)

a = 2 G (r = +c)

p

1−p

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

where p, c ∈ (0, 1) are real numbers and dotted lines denote stochastic transitions. For simplicity,
assume that the MDP has a length-2 finite horizon with γ = 1, and the reward function depends only
on states (r(A) = r(B) = r(C) = r(E) = r(F) = 0, r(D) = 1, and r(G) = c). Assume that the
dataset is collected by a policy πD defined as πD(A) = 1 (with probability 0.5) or 2 (with probability
0.5), πD(B) = 1 (with probability 1), and πD(C) = 2 (with probability 1).

Then, we have the following:

PD(A, (1, 1)) = D, R(A, (1, 1)) = 1, (295)
PD(A, (1, 2)) = G, R(A, (1, 2)) = c, (296)
PD(A, (2, 2)) = G, R(A, (2, 2)) = c, (297)

where we denote action chunks as a tuple and slightly abuse notation to denote deterministic outputs
of PD(· | s0, a0:2) (e.g., PD(A, (1, 1)) = D indicates that all length-2 trajectories in D from state A
with a0 = a1 = 1 have s2 = D with probability 1). From this, we can compute Q̂+

ac as follows:

Q̂+
ac(A, (1, 1)) = 1, (298)

Q̂+
ac(A, (1, 2)) = c, (299)

Q̂+
ac(A, (2, 2)) = c. (300)

Then, assuming the missing data has a Q-value of 0 (i.e., Q̂+
ac(A, (2, 1)) = 0), the optimal action

chunking policy is defined as π̂+
ac(A) = (1, 1) (Equation (17)).

The true value of this action chunking policy is p. However, if p is small enough and c is large enough,
the optimal strategy in this MDP is to always choose (a0, a1) = (2, 2), in which case the agent
receives a constant return of c. The suboptimality in this example is therefore c− p, which can be
made arbitrarily close to 1 (the maximum possible regret in any finite, length-2 sparse-reward MDP
with a terminal reward bounded by [0, 1]). This shows a pathological failure of an action chunking
policy without the strong open-loop consistency assumption.

I ADDITIONAL RELATED WORK ON HIERARCHICAL REINFORCEMENT
LEARNING

Hierarchical reinforcement learning methods (Dayan & Hinton, 1992; Dietterich, 2000; Peng et al.,
2017; Riedmiller et al., 2018; Shankar & Gupta, 2020; Pertsch et al., 2021; Gehring et al., 2021; Xie
et al., 2021) solve tasks by typically leveraging a bi-level structure: a set of low-level/skill policies that
directly interact with the environment and a high-level policy that selects among low-level policies.
The low-level policies can also be learned via online RL (Kulkarni et al., 2016; Vezhnevets et al.,
2016; 2017; Nachum et al., 2018) or offline pre-training on a prior dataset (Paraschos et al., 2013;
Merel et al., 2018; Ajay et al., 2021; Pertsch et al., 2021; Touati et al., 2022; Nasiriany et al., 2022;
Hu et al., 2023; Frans et al., 2024; Chen et al., 2024; Park et al., 2024b). In the options framework,
these low-level policies are often additionally associated with initiation and termination conditions
that specify when and for how long these actions can be used (Sutton et al., 1999; Menache et al.,
2002; Chentanez et al., 2004; Şimşek & Barto, 2007; Konidaris, 2011; Daniel et al., 2016; Srinivas
et al., 2016; Fox et al., 2017; Bacon et al., 2017; Bagaria & Konidaris, 2019; Bagaria et al., 2024;
de Mello Koch et al., 2025). A long-lasting challenge in HRL is optimization stability because the
high-level policy needs to optimize for an objective that is shaped by the constantly changing low-
level policies (Nachum et al., 2018). Prior work (Ajay et al., 2021; Pertsch et al., 2021; Wilcoxson
et al., 2024) avoided this by first pre-train low-level policies and then keep them frozen during the
optimization of the high-level policy. Macro-actions (McGovern & Sutton, 1998; Durugkar et al.,
2016), or action chunking (Zhao et al., 2023) is another form of temporally extended action, a special
case of the low-level policies often considered in HRL, options literature, where a short horizon of
actions are predicted all at once and executed in open loop. Such approach collapses the bi-level
structure, conveniently side stepping optimization instability, and when combined with Q-learning,
has shown great empirical successes in offline-to-online RL setting (Seo et al., 2024; Li et al., 2025b).
Action chunking policies need to predict multiple actions open-loop, which can be difficult to learn
and sacrifice reactivity. Our approach regains policy reactivity by predicting and executing only a
partial action chunk, while still learning with the fully chunked critic for TD-backup. This design

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

preserves the value propagation benefits of chunked critic without relying on fully open-loop action
chunking policies, allowing our approach to work well on a wider range of tasks.

J INTUITION BEHIND OPTIMALITY VARIABILITY

In this section, we provide more intuition on the definition of optimality variability. With Defini-
tion 4.10, if we pick X to be the current state and the current action (i.e., st, at), a bounded optimality
variability subject to such conditioning means that as long as we observe the initial action (e.g., pick-
ing up the cube), the optimality of the outcome after h-steps does not vary too much (e.g., does not
misdrop the object that fails the task immediately). It turns out that if (1) the data distribution is a
mixture of a bunch of data sources where the optimality variability conditioned on the current actions
is bounded within each data source, and additionally (2) the optimality variability conditioned on the
current action chunks is bounded globally across mixture, we can form a much stronger bound on the
optimality of π•. It is worth noting that the second optimality variability condition is much weaker
than the first one because it is conditioned on the event where we observe the state st and the entire
action chunk at:t+h (rather than the first action at). For example, for data mixture where each pair of
data distributions has non-overlapping support on the action chunks, the second condition is trivially
implied by the first condition.

61

	Introduction
	Related Work
	Preliminaries
	When should we use action chunking for Q-learning?
	Assumptions
	Open-loop value bias of action chunking Q-learning
	Comparing to n-step return Q-learning
	Closed-loop execution of action chunking policy

	Decoupled Q-chunking
	Experimental Setup
	Results
	Discussion
	Full results
	Additional empirical analysis
	Computation resource
	Environments and datasets
	Hyperparameters and implementation details
	Lower-bound analyses
	AC Value Bias (Proof in proof:bcvbiastight)
	Optimality Gap for Action Chunking Policy (Proof in proof:vbtight)
	Q-learning with Action Chunking Policy (Proof in proof:suboptactight)
	Closed-loop AC Policy under BOV (Proof in proof:optvartight)
	-deterministic dynamics is weakly open-loop consistent

	Proofs of main results
	Utility Lemmata
	Proof of thm:bcvbias
	Proof of thm:bcvbiastight
	Proof of corollary:vb
	Proof of corollary:vbtight
	Proof of thm:suboptact
	Proof of thm:suboptactight
	Proof of thm:suboptdqc
	Proof of thm:compare
	Proof thm:optvar
	Proof of thm:optvartight
	Proof of thm:ddyn-con

	A pathological failure of action chunking policies without the strong open-loop consistency assumption
	Additional related work on hierarchical reinforcement learning
	Intuition behind optimality variability

