
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DECOUPLED Q-CHUNKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Bootstrapping bias problem is a long-standing challenge in temporal-difference
(TD) methods in off-policy reinforcement learning (RL). Multi-step return backups
can alleviate this issue but require delicate importance sampling to correct their
off-policy bias. Recent work has proposed to use chunked critics, which estimate
the value of short action sequences (“chunks”) rather than individual actions,
enabling unbiased multi-step backup. However, extracting policies from chunked
critics is challenging: policies must output the entire action chunk open-loop,
which can be sub-optimal for environments that require policy reactivity and also
challenging to model especially when the chunk length grows. Our key insight
is to decouple the chunk length of the critic from that of the policy, allowing the
policy to operate over shorter action chunks. We propose a novel algorithm that
achieves this by optimizing the policy against a distilled critic for partial action
chunks, constructed by optimistically backing up from the original chunked critic
to approximate the maximum value achievable when a partial action chunk is
extended to a complete one. This design retains the benefits of multi-step value
propagation while sidestepping both the open-loop sub-optimality and the difficulty
of learning action chunking policies for long action chunks. We evaluate our
method on challenging, long-horizon offline goal-conditioned benchmarks and
shows that it reliably outperforms prior methods.

1 INTRODUCTION

A reinforcement learning (RL) agent can in principle solve any task with a well-defined reward
function, but training an RL agent from scratch can be sample inefficient. In many practical problems,
we instead have access to an offline dataset of trajectories that serves as a great prior to accelerate
learning. Temporal-difference (TD)-based RL algorithms, which learn a value network to perform
approximate dynamic programming via value backups, are particular suitable in this setting because
they are designed to handle off-policy data. A well-known yet long-lasting bottleneck, however, is the
bootstrapping bias problem (Jaakkola et al., 1993; Sutton et al., 1998; De Asis et al., 2018; Park et al.,
2025)—as the value network regresses towards its own estimates, any error compounds across time
steps, making accurate value propagation challenging especially in long-horizon, sparse reward tasks.

Multi-step return backups (such as n-step return (Sutton et al., 1998)) can alleviate bootstrapping
bias by effectively reducing the time horizon, but naïvely applying them can result in another form
of bias that causes the value estimates to be overly conservative/pessimistic. While it is possible to
correct such systematic biases with importance sampling (Munos et al., 2016), they often require
additional heuristics and truncations to balance a delicate scale between bias and variance that that
is often tricky to tune. Recent works (Seo & Abbeel, 2024; Li et al., 2025a; Tian et al., 2025; Li
et al., 2025b) leverage chunked value functions, which estimate the value of short action sequences
(“chunks”) rather than a single action. This formulation allows n-step return backup without the
pessimistic bias (under the open-loop consistency condition, which we will formalize in Section 4).
However, directly optimizing a policy over full action chunks is difficult, particularly as the chunk
size grows, and it is still unclear how to best extract a policy from a chunked critic.

In this work, we develop a simple, novel technique to address this challenge. We train a policy to
predict a shorter, partial action chunk against the chunked critic that takes in longer, complete action
chunks. The key design that enables such an optimization is a ‘distilled’ chunked critic with a chunk
size that matches the policy: it optimistically regresses to the original chunked critic to approximate
the maximum value that the partial action chunk can achieve after being extended into a full action
chunk. Conceptually, while the action optimization is still done for the longer, complete action

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

chunks, the policy network is only trained to output the the partial action chunk of an optimized
complete action chunk. This way, the policy only needs to predict a much shorter action chunk (e.g.,
in the extreme case, only one action), which often admits a much simpler distribution, while enjoying
the value learning benefits from the use of chunked critics.

Our main contributions are two-fold. On the theoretical side, we provide a formal analysis of Q-
learning with action chunking, identifying the open-loop value learning bias and characterizing the
conditions under which action chunking critic backup is preferable over n-step return backup with
a single-step critic. On the empirical side, we propose a novel technique, Decoupled Q-chunking
(DQC), that addresses the policy learning challenge in action chunking Q-learning by decoupling the
policy chunk size from the critic chunk size. DQC trains a policy to only predict a partial action chunk,
significantly reducing the policy learning challenge, while retaining the value learning benefits of the
chunked critic. We instantiate this technique as a practical offline RL algorithm that outperforms the
previous state-of-the-art method on the hardest set of environments in OGBench (Park et al., 2024a),
a challenging, long-horizon goal-conditioned RL benchmark.

2 RELATED WORK

Offline and offline-to-online reinforcement learning methods assume access to an offline dataset to
learn a policy without interactions with the environment (offline) (Kumar et al., 2020; Kostrikov et al.,
2021; Tarasov et al., 2024) or with as little online interaction with the environment as possible (offline-
to-online) (Lee et al., 2022; Ball et al., 2023; Nakamoto et al., 2024). Q-learning or TD-based RL
algorithms have been a popular choice for these problem settings as they naturally handle off-policy
data without the need for on-policy rollouts, and also exhibit great online sample-efficiency (Chen
et al., 2021; D’Oro et al., 2022). A large body of literature in these two problem settings has been
focusing on tackling the distribution shift challenge by appropriately constraining the policies with
respect to the prior offline data, and most of them use the standard 1-step TD backup for Q-learning,
which has been known to suffer from the bootstrapping bias problem in the RL literature (Jaakkola
et al., 1993; Sutton et al., 1998). To tackle this, recent work (Jeong et al., 2022; Park & Lee, 2024;
Park et al., 2025; Li et al., 2025b) has shown that multi-step return backups are effective for improving
offline/offline-to-online Q-learning agents. These methods either use a standard single-step critic
network (Park et al., 2025) that suffers from the off-policy bias, or use a ‘chunked,’ multi-step critic
network (Li et al., 2025b) that does not have such bias but poses a huge policy learning challenge
when the chunk size is too large. Our method brings the best of both worlds—it uses action chunking
to avoid the off-policy bias while simultaneously avoiding the policy learning challenge by extracting
a simpler policy that predicts a shorter action chunk from the full-chunk-sized critic.

Multi-step return backups are computed with multi-step off-policy rewards that can lead to system-
atic value underestimation (Sutton et al., 1998; Peng & Williams, 1994; Konidaris et al., 2011; Thomas
et al., 2015), and there has been a rich literature (Precup et al., 2000; Munos et al., 2016; Rowland
et al., 2020) dedicated to fix these biases via importance sampling (Kloek & Van Dijk, 1978) with trun-
cation (Ionides, 2008). These approaches often require a careful balance between bias and variance
that can be tricky to tune. More recently, Seo & Abbeel (2024); Li et al. (2025a); Tian et al. (2025);
Li et al. (2025b) group temporally extended sequences of actions as chunks and directly estimate the
value of an action chunk rather than a single action. Such a formulation allows the value backup to op-
erate directly in the chunk space, which allows multi-step return backup without the systematic biases
from the sub-optimal off-policy data. Despite their empirical success, we still lack a good theoretical
understanding of the convergence of TD-learning with ‘chunked’ critics, as well as when it should be
favored over more traditional multi-step returns. Our work lays out the theoretical foundation for Q-
learning with critic chunking, and identifies an important yet subtle, often overlooked bias in the TD-
backup. We quantify such bias and provide the condition under which TD backup using critic chunk-
ing is guaranteed to perform better than the standard n-step return backup with a single-step critic.

See additional discussions for related work in hierarchical reinforcement learning in Appendix G.

3 PRELIMINARIES

Reinforcement learning can be formalized as a Markov decision process,M = (S,A, T, r, ρ, γ),
where S is the state space, A is the action space, T : S × A → ∆A is the transition kernel
that defines the next state distribution conditioned on the current state and the current action (e.g.,
s′ ∼ T (· | s, a)), r : S × A → [0, 1] is the reward function, ρ ∈ ∆S is the initial state distribution,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and γ ∈ [0, 1) is the discount factor. We also assume we have access to a prior offline dataset
D = {(si0, ai0, ri0, si1, ai1, ri1, · · · , siH)}|D|

i=1 where the goal is to learn a policy, π : S → ∆A that
maximizes its return, η(π) = Est+1∼T (·|st,at),at∼π(·|st),s0∼ρ [

∑∞
t=0 γ

tr(st, at)], the cumulative
discounted sum of rewards that the policy receives in expectation.

Temporal difference learning. Modern value-based reinforcement learning methods often learn a
critic network, Q : S ×A → R to approximate the maximum discounted cumulative reward starting
from state s and action a, and the critic is often trained using the temporal-difference (TD) loss:

L(ϕ) = Es,a,s′∼D
[
(Qϕ(s, a)− r(s, a)− γQ̄(s′, a′⋆))2

]
, (1)

where Q̄ is the target critic that is set to the same critic with its parameters set to an exponential
moving average of ϕ, and a′⋆ = argmaxa′ Q(s′, a′) (often approximated by a policy πθ).

Implicit value learning with implicit maximization loss function. Instead of using Q(s′, a′⋆ ∼
πθ(s

′)) as the TD target, we can use what we refer to as an implicit maximization loss function fimp

to learn a value function Vξ(s) that approximates the maximum value Q(s, a⋆) (Kostrikov et al.,
2021; Hansen-Estruch et al., 2023):

L(ξ) = Es,a∼D
[
fκimp(Q̄(s, a)− Vξ(s))

]
. (2)

Two popular choices of fκimp are (1) expectile: fκexpectile(c) = |κ − Ic<0|c2, and (2) quantile:
fκquantile(c) = |κ − Ic<0||c|, for any real value κ ∈ [0.5, 1). At the optimum of L(ξ), Vξ(s)
approximates the κ-expectile/quantile of the distribution of the critic values evaluated at Q(s, a),
induced by the data distribution D. With this implicit maximization technique, we no longer need to
explicitly find the action a that maximizes Q(s, a) and can use Vξ(s) as the backup target:

L(ϕ) = Es,a,s′∼D
[
(Qϕ(s, a)− r(s, a)− γVξ(s′))2

]
. (3)

Multi-step return backup. TD learning can sometimes struggle with long-horizon tasks due to
the well-known bootstrapping bias problem, where regressing the value network towards its own
potentially inaccurate value estimates amplifies the value estimation errors further. To tackle this
challenge, we can instead sample a trajectory segment, (st, at, st+1, · · · , at+n−1, st+n), to construct
an n-step return backup target from states h steps ahead:

Lns(ϕ) = Est,at,··· ,st+n

[(
Qϕ(st, at)−Rt:t+n − γnQ̄(st+n, a

⋆
t+n)

)2]
, (4)

where a⋆t+n = argmaxat+n
Q(st+n, at+n), Rt:t+n :=

∑t+n−1
t′=t γt

′−tr(st′ , at′). The n-step return
value estimate of reduces the effective horizon by a factor of n, alleviating the bootstrapping bias
problem. However, such value estimate is always biased towards the off-policy data distribution, and
is also commonly referred to as the uncorrected n-step return estimator (Fedus et al., 2020; Kozuno
et al., 2021). While there are ways to correct this value estimator via importance sampling (Precup
et al., 2000; Munos et al., 2016; Rowland et al., 2020), they require additional tricks (e.g., importance
ratio truncation) for numerical stability and re-introduce biases into the estimator, ultimately resulting
in a delicate trade-off between variances and biases that must be carefully balanced.

Action chunking critic. Alternatively, one may learn an action chunking critic to estimate the
value of a short sequence of actions, at:t+h := (at, at+1, · · · , at+h−1) (or an action chunk) instead:
Q(st, at:t+h) (Seo & Abbeel, 2024; Li et al., 2025a; Tian et al., 2025; Li et al., 2025b). The TD
backup loss for such a critic is naturally multi-step:

LQC(ϕ) = Est:t+h+1,at:t+h

[(
Qϕ(st, at:t+h)−Rt:t+h − γhQ̄(st+h, a

⋆
t+h:t+2h)

)2]
, (5)

where again a⋆t+h:t+2h = argmaxat+h:t+2h
Q(st+h, at+h:t+2h). On the one hand, unlike n-step

return estimate for single-action critic that is pessimistic, the n-step return estimate (with n = h)
for the action chunking critic is unbiased as long as the action chunk at:t+h is independent of the
intermediate states st+1:t+h+1, while enjoying the reduction in effective horizon (Li et al., 2025a;b).
On the other hand, action chunking critic implicitly imposes a constraint on the policy that the actions
are predicted and executed in chunks. As a result, the policy extracted from the action chunking critic
needs to predict the entire action chunk all at once, posing a big learning challenge, especially for
environments with complex transition dynamics.

In the following two sections, we offer theoretical insights that characterize the conditions when using
action chunking critic is more preferable over n-step return backup with a single critic (Section 4), and
develop a practical method that tackles the action chunking policy extraction challenge (Section 5).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 WHEN SHOULD WE USE ACTION CHUNKING FOR Q-LEARNING?
In this section, we build a theoretical foundation for Q-learning with action chunking critic functions.
We start by formalizing the setup of our analysis in Section 4.1, quantifying the value estimation bias
incurred from backing up on non-action chunking data (Theorem 4.4) and the optimality of action
chunking policy (Theorem 4.6) in Section 4.2. Using these result, we derive the condition when we
prefer action chunking Q-learning over the standard n-step return learning in Section 4.3. We also
include some examples in which the condition holds in Appendix D in hope to facilitate theoretical
analysis of action chunking policy learning in future work.

4.1 ASSUMPTIONS

To build the foundation of our analysis, we start by describing the trajectory data distribution that we
use for Q-learning and the trajectory distribution induced by open-loop action chunking policy. In
particular, we assume that the trajectory data distribution obeys the transition dynamics T :
Assumption 4.1 (Data Distribution Obeys Dynamics). D ∈ ∆T is a trajectory distribution generated
by rolling out a behavior policy from a distribution of st ∼ µ. The behavior policy can be non-
Markovian (i.e., πβ(at+k | st:t+k+1, at:t+k)). Each subsequent state is generated obeying the
dynamics of the MDP M: st+k+1 ∼ T (· | st+k, at+k),∀k ∈ {0, 1, · · · , h − 1}. The resulting
trajectory is {st, st+1, · · · , st+h, at, at+1, · · · , at+h} ∈ T = Sh ×Ah.

Next, we formally define the open-loop trajectory distribution that we would obtain if we take the
same actions in the data and rollout them out open-loop in the environment.
Definition 4.2 (Open-loop Trajectory). From any trajectory distribution D, we can extract an open-
loop policy with a horizon of h by marginalizing out all intermediate states. We use πopen

D : S → ∆Ah

to denote such policy and is formally defined as:

πopen
D (at:t+h | st) := PD(at:t+h | st). (6)

By using this open-loop policy to roll-out trajectories in the MDP M, it induces a trajectory
distribution P open

D ∈ ∆Sh+1,Ah that is generally different from D. We can decompose this open-
loop policy step-by-step with the following factorization πopen

D (at:t+k | st) =
∏h−1
k=0 π

open
D (at+k |

st, at:t+k) which allows us to define the induced trajectory distribution P open
D recursively (for

k ∈ {1, 2, · · · , h}):

P open
D (st+k, at:t+k | st) := (7)

P open
D (st+k−1, at:t+k−1 | st)T (st+k | st+k−1, at+k−1)π

open
D (at+k | st, at:t+k). (8)

4.2 OPEN-LOOP VALUE BIAS OF ACTION CHUNKING Q-LEARNING

As what we have elucidated in our definition above, replaying the actions from the trajectory data
distribution PD in an open-loop manner, in general, can result in a different trajectory distribution,
P open
D . This discrepancy between P open

D and PD has not been carefully analyzed by prior work (e.g.,
Q-chunking (Li et al., 2025b)) but can play a huge role in the optimal policy that action chunking
Q-learning converges to. This is because TD-backup is only unbiased when it is done under the open-
loop trajectory distribution P open

D . Naïvely running TD-backup on PD (as done in Li et al. (2025b))
may lead to a biased Q-target. We now formalize the discrepancy and analyze such bias.
Definition 4.3 (Open-Loop Consistency). D is εh-open-loop consistent if for every st ∈ S, h′ ∈
{1, · · · , h}, as long as st ∈ S has non-zero probability in the data (i.e., PD(st) > 0),

2DTV(P
open
D (st+h′ , at+h′ | st) ∥ PD(st+h′ , at+h′ | st)) ≤ εh,∀h′ ∈ {1, 2, · · · , h− 1}, (9)

2DTV(P
open
D (st+h | st) ∥ PD(st+h | st)) ≤ εh. (10)

We say D is strongly εh-open-loop consistent if additionally for h′ ∈ {1, 2, · · · , h}, for every
at:t+h′ ∈ Ah′

with non-zero probability in the data (i.e., PD(at:t+h′ , st) > 0),

2DTV(T (st+h′ | st, at:t+h′) ∥ PD(st+h′ | st, at:t+h′)) ≤ εh. (11)

Intuitively, D is ε-open-loop consistent if, when executing the same sequence of actions from it open-
loop from st, the resulting marginal distribution of the state-action h steps into the future (i.e., st+h)
deviates from the corresponding distribution in the dataset by at most ε in total variation distance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The strong version (Equation (11)) requires the total variation distance bound to hold for every action
sequence in the support, whereas the weak version (Equation (9)) only requires the bound to hold
in expectation. Having weak open-loop consistency of D is sufficient to show that behavior value
iteration of an action chunking critic results in a nominal value function with a bounded bias from the
true value of the open-loop policy πopen

D :

Theorem 4.4 (Bias of Action Chunking Critic). Let V̂ac : S → [0, 1/(1− γ)] be a solution of

V̂ac(st) = Est+1:t+h+1,at:t+h∼PD(·|st)

[
Rt:t+h + γhV̂ac(st+h)

]
, (12)

with Rt:t+h =
∑t+h
t′=t γ

t′−tr(st′ , at′) and Vac is the true value of πopen
D : st 7→ PD(at:t+h | st). If

D is εh-open-loop consistent, then under supp(D),∥∥∥Vac − V̂ac∥∥∥
∞
≤ εh

(1− γh)(1− γ)
. (13)

The proof of Theorem 4.4 is available in Appendix E. A direct consequence of this result is that the
true value of the optimal action chunking policy is close to that of the optimal closed-loop policy:
Corollary 4.5 (Optimal Action Chunking Policy). Let π⋆ : S → ∆A be an optimal policy inM and
D⋆ be the data collected by π⋆. If D⋆ is εh-open-loop consistent, then under supp(D⋆),

∥V ⋆ac − V ⋆∥∞ ≤
∥∥∥Ṽac − V ⋆∥∥∥

∞
≤ εh

(1− γh)(1− γ)
, (14)

where V ⋆ is the value of the optimal policy π⋆, V ⋆ac is the true value of the optimal action chunking
policy, and Ṽac is the true value of the action chunking policy from cloning the data D⋆:

π̃ac(at:t+h | st) : st 7→ PD⋆(· | st). (15)

The proof of Corollary 4.5 (available in Appendix E) builds on the observation that the nominal
(biased) value of the action chunking critic obtained from behavior value iteration on an optimal
data D⋆ (i.e., the data collected from an optimal policy π⋆) recovers the value of the optimal policy.
This allows us to use Theorem 4.4 to show that the value of the action chunking policy obtained by
behavior cloning on such optimal data is close to the nominal (biased) value of its critic, and thus
close to the optimal value of the closed-loop policy.

Next, we analyze the performance of the action chunking policy obtained by Q-learning. In particular,
we analyze the Q-function obtained as a solution of the following equation under supp(D):

Q̂+
ac(st, at:t+h) = Est+1:t+h+1∼PD(·|st,at:t+h)

[
Rt:t+h + γh max

at+h:t+2h

Q̂+
ac(st+h, at+h:t+2h)

]
. (16)

The corresponding action chunking policy is

π+
ac : st 7→ argmaxat:t+h

Q̂+
ac(st, at:t+h). (17)

It turns out that with the weak version of the open-loop consistent condition, the worst case perfor-
mance of the action chunking policy may be arbitrarily low (see an example in Appendix F). For-
tunately, as long as the data D satisfies the strongly open-loop consistency (Equation (11)), we can
show that the learned policy π+

ac is provably near-optimal by combining all the results above together:
Theorem 4.6 (Q-Learning with Action Chunking Policy on Off-policy Data). If D is strongly εh-
open-loop consistent and supp(D) ⊇ supp(D⋆), with D⋆ being the data distribution of an arbitrary
optimal policy π⋆ underM), then the following bound holds under supp(D⋆):

∥V +
ac − V ⋆∥∞ ≤

3εh
(1− γh)(1− γ)

, (18)

where V ⋆ is the value of an optimal policy underM.

The implication of Theorem 4.6 (proof available in Appendix E) is that as long as D satisfies the
strongly open-loop consistency condition and contains the behavior in D⋆, Q-learning with action
chunking is guaranteed to converge to a near-optimal action chunking policy regardless of how sub-
optimal the data D might be. As we will show in the following section, this is in contrast to n-step
return policy where its performance depends on the sub-optimality of the data.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 COMPARING TO n-STEP RETURN Q-LEARNING

We now characterize the condition when action chunking Q-learning should be preferred over the
standard n-step return backup. We start by introudcing a notion of sub-optimality of the data D:
Definition 4.7 (Sub-optimal data). D is δn-suboptimal for backup horizon length n ∈ N+ if

Q⋆(st, at)− EPD(·|st,at) [Rt:t+n + γnV ⋆(st+n)] ≥ δh,∀st ∈ S, at ∈ A. (19)

Intuitively, δn captures how much worse the n-step return policy can get compared to the optimal
policy incurred by the backup bias. Under such condition, we can show that the action chunking
policy is provably better than the n-step return policy as long as δn is large.
Theorem 4.8. Let D be strongly εh-open-consistent, δn-suboptimal, and supp(D) ⊇ supp(D⋆). Let
π⋆n be the optimal n-step return policy learned from D, as the solution of

Q⋆n(st, at) = EPD [Rt:t+n + γnQ⋆n(st+n, π
⋆
n(st+n))] , π⋆n : st 7→ argmax

at
Q⋆n(st, at). (20)

As long as δn >
3εh(1−γn)

(1−γ)(1−γh)
, then from all s ∈ supp(D⋆), the action chunking policy, π+

ac (Equa-
tion (17)), is better than the n-step return policy, πn (Equation (20)) (i.e., V +

ac (s) > V ⋆n (s)).

The proof of Theorem 4.8 is available in Appendix E. Notably, for n = h, the condition on δn and εh
reduces to δn > 3εhH with effective horizon H (i.e., H = 1/(1− γ)). As long as D is more than
O(εhH) sub-optimal, the action chunking policy performs provably better than n-step return policy.

5 DECOUPLED Q-CHUNKING

We propose a new algorithm that enjoys the benefits of value backup speedup of Q-chunking while
avoiding the difficulty of learning an open-loop action chunking policy with a large chunk size.

Our core idea is to decouple the chunk size of the critic from that of the policy. In particular, we train a
policy π(at:t+ha

| st) to output an action chunk (with a size of ha ≪ h) with the following objective:

L(π) := −Eat:t+ha∼π(·|st)[Qϕ(s, [at:t+ha , a
⋆
t+ha:t+h])], (21)

where [at:t+ha
, a⋆t+ha:t+h

] represents the concatenation of two partial action chunks (size ha and size
h− ha) into a full action chunk at:t+h of size h, and a⋆t+ha:t+h

is the best ‘second-half’ of the action
chunk that maximizes the critic value under Qϕ:

a⋆t+ha:t+h := argmaxat+ha:t+h
Qϕ(s, [at:t+ha

, at+ha:t+h]). (22)

Essentially, we want our policy to predict the partial action chunk (of size ha) within an optimal
action chunk of size h, rather than the entire optimal action chunk. This lowers the policy expressivity
requirement and hence the learning challenges associated with it with ha < h.

However, directly optimizing this objective (Equation (21)) does not lead to a novel algorithm because
taking the maximization over at+ha:t+h seemingly requires us to learn a policy of the original chunk
size anyways. To address this issue, we learn a separate partial critic QPψ , which only takes in the
partial action chunk (of size ha) as input, to approximate the maximum value this partial action chunk
can achieve when it is extended to the full action chunk (of size h):

QPψ (s, at:t+ha) ≈ Qϕ(s, [at:t+ha , a
⋆
t+ha:t+h]) (23)

To train QPψ , we can use an implicit maximization loss function (as described in Equation (2)):

L(ψ) := fκd

imp(Q̄ϕ(st, at:t+h)−Q
P
ψ (st, at:t+ha)), (24)

where st, at:t+h are sampled from D. As a result, the partial critic, QPψ , is distilled from
the original critic via an optimistic regression, where its optimum Q⋆ψ(s, at:t+ha) approximates
Qϕ(s, [at:t+ha

, a⋆t+ha:t+h
]) in Equation (21), conveniently removing the need for training a policy to

predict the whole optimal action chunk entirely. This allows us to simplify the policy objective as

L(π) := −Eat:t+ha∼π(·|st)
[
QPψ (s, at:t+ha

)
]
. (25)

In summary, DQC trains a policy to predict a partial chunk, at:t+ha
(of size ha), by hill climbing the

value of a partial critic QPψ (s, at:t+ha) that is distilled from the original chunked critic Qϕ(s, at:t+h)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Decoupled Q-chunking (DQC).

Given: D,Qϕ(st, at:t+h), QPψ (st, at:t+ha), Vξ(st), πβ(at:t+ha | st)
1. Agent Update:
(st:t+h+1, at:t+h, rt:t+h) ∼ D. ▷ sample trajectory chunk from the offline dataset

Optimize Qϕ with L(ϕ) =
(
Qϕ(st, at:t+h)−

∑h−1
k=0 γ

krt+k − γhV̄ξ(st+h)
)2

.

Optimize QPψ with L(ψ) = f
τd
expectile

(
Q̄ϕ(st, at:t+h)−QPψ (st, at:t+ha)

)
.

Optimize Vξ with L(ξ) = f
τb
quantile(Q̄

P
ψ (st, a

β
t:t+ha

)− Vξ(st)), aβt:t+ha
∼ πβ(· | st)

2. Policy Extration:
a1t:t+ha

, a2t:t+ha
, · · · , aNt:t+ha

∼ πβ(· | st) ▷ sample N actions from behavior policy
a⋆t:t+ha

← argmax{
ai
t:t+ha

}N

i=1

QPψ (st, at:t+ha) ▷ take the action with the highest Q-value

via an implicit maximization loss. This allows our policy to fully leverage the chunked critic Qϕ
(and thus the value speedup benefits associated with Q-chunking) without the need to predict the full
action chunk (of size h), mitigating the learning challenge of an action chunking policy.

Practical considerations for offline RL. Finally, we describe several implementation details that
we find to work well in the offline RL setting, which our experiments primarily focus on. Our
implementation draws inspirations from a prior method, IDQL (Hansen-Estruch et al., 2023).

We first train a behavior cloning flow policy πβ using a standard flow-matching objective (Liu et al.,
2022) on the offline dataset D. Then, we approximate the policy optimization objective in DQC
(Equation (25)) using best-of-N sampling without explicitly modeling π:

a⋆t:t+ha
← argmax{ait:t+ha

}N
i=1

QPψ (st, at:t+ha), where a1t:t+ha
, · · · , aNt:t+ha

∼ πβ(· | st). (26)

where a⋆t:t+ha
is output of the policy that we extract from QPψ for state st. Essentially, this sampling

procedure is a test-time approximation of the objective in Equation (25), where it outputs action
(chunk) that maximizes QPψ , subject to the behavior prior, as modeled by πβ .

For TD learning ofQϕ, directly computing the TD backup target from eitherQϕ̄ orQP
ψ̄

is computation-
ally expensive, as either requires samples from the current policy, which is approximated via the best-
of-N sampling procedure as described above. Instead, we use the implicit value backup (Kostrikov
et al., 2021) (i.e., as described in Equation (2)) to approximate the target:

L(ξ) = fκb

quantile(Q̄
P
ψ (st, a

β
t:t+ha

− Vξ(st)), aβt:t+ha
∼ πβ(· | st) (27)

where we pick the quantile regression loss as the implicit maximization loss function. This is
because the Q-value obtained from best-of-N sampling can be seen as the largest order statistic of
a random batch (of size N) of the behavior Q-values (i.e., {Q(s, ai)}Ni=1, a

i ∼ πβ(· | s)). Such
statistic estimates the behavior Q-value distribution’s N

1−N -quantile, which is the same as Vξ(s) at
the optimum of L(ξ) if we set κb = N

1−N . In practice, we use a larger κb for numerical stability.

Finally, we pick the expectile regression loss for training the distilled partial critic QPψ because prior
work has found it to work the best among all implicit maximization loss functions (Hansen-Estruch
et al., 2023). A summary of the algorithm is available in Algorithm 1.

6 EXPERIMENTAL SETUP

We conduct experiments to evaluate the benefits of decoupling the policy chunk size and the critic
chunk size on OGBench (Park et al., 2024a)—a challenging long-horizon, goal-conditioned offline
RL benchmark consisting of a diverse set of environments (from manipulation to locomotion). In
particular, we use the more difficult environments introduced by Park et al. (2025) (Figure 4), where
multi-step return backups are crucial. These environments require highly complex, long-horizon
reasoning. For example, the puzzle tasks require stitching up to 24 atomic motions to solve a
combinatorial puzzle with a robot arm, and the humanoidmaze task requires controlling a high-
dimensional humanoid robot over 3000 environment steps to navigate a maze. These environments
serve as an ideal testbed for our algorithm, which improves upon n-step returns and Q-chunking. We
now describe our main comparisons. To start with, we consider several direct ablation baselines:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-triple-100M

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-quadruple-100M

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-octuple-1B

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

huamnoidmaze-giant

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

puzzle-4x5

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

puzzle-4x6-1B

Training Steps (×106)

Ov
er

al
l S

uc
ce

ss
 R

at
e

DQC QC NS OS

Figure 1: Offline goal-conditioned RL results. Our method (DQC) uses a decoupled critic and policy chunk
sizes, which allows it to consistently outperform our baselines: QC: Q-chunking (Li et al., 2025b); NS: n-step
return backup; OS: 1-step TD-backup.

QC (Li et al., 2025b) uses a single critic that has the same chunk length as that of the policy (i.e.,
h = ha). This baseline tests whether having decoupled chunk sizes is important.

NS: n-step return TD backup. This baseline uses a single one-step critic (i.e., Q(st, at)). Compared
to DQC with h = n and ha = 1, this baseline tests whether using a chunked critic is important.

OS: Standard 1-step TD backup. This is the same as NS but with n = 1.

Beyond the ablation baselines, we also consider the following strong goal-conditioned baselines:

FBC/HFBC: Goal-conditioned and hierarchical goal-conditioned flow behavior cloning baselines
considered in Park et al. (2025).

IQL/HIQL (Kostrikov et al., 2021; Park et al., 2023): These are strong goal-conditioned RL methods
that train a goal-conditioned value function with implicit value backups and extract a flat (IQL) or
hierarchical (HIQL) policy from the value function.

SHARSA (Park et al., 2025): The previous state-of-the-art method on the long-horizon environments
that we evaluate on. The method uses a combination of n-step return and bi-level hierarchical policies.

In our ablation study, we also consider an additional baseline, QC-NS, that uses the idea of decoupled
policy chunking and critic chunking (ha < h), but without using a distilled critic. This baseline
simply uses n-step return targets to directly train a critic with a chunk size of ha without implicit
maximization (Equation (24)). The performance of this baseline helps determine how important it is
to learn a separate distilled critic for partial action chunks with implicit maximization. For all our
main results, we run 3 seeds and report the means and the 95% confidence intervals.

Task FBC HFBC IQL HIQL SHARSA OS NS QC DQC

cube-triple-100M 53[48,57] 57[54,61] 64[59,68] - 82[78,88] 1[0,2] 42[5,74] 14[6,28] 98[96,98]

cube-quadruple-100M 32[30,33] 38[34,41] 53[53,53] - 67[62,74] 0[0,0] 20[4,52] 23[6,44] 90[88,90]

cube-octuple-1B 0⋆[0,0] 20⋆[17,23] 0⋆[0,0] 1⋆[0,2] 20⋆[19,20] 0[0,0] 8[8,9] 0[0,0] 24[22,25]

humanoidmaze-giant 1⋆[0,2] 19⋆[16,22] 3⋆[3,4] 22⋆[18,29] 18[13,25] 0[0,1] 59[54,64] 0[0,0] 72[67,75]

puzzle-4x5 0⋆[0,0] 4⋆[2,6] 19⋆[18,20] 5⋆[3,7] 1[0,2] 14[13,15] 91[90,94] 20[19,20] 96[95,97]

puzzle-4x6-1B 0⋆[0,0] 2⋆[1,2] 17⋆[16,19] 8⋆[4,12] 56⋆[49,63] 17[14,19] 74[66,86] 20[20,20] 72[63,80]

Table 1: Comparisons with prior methods. Our method outperforms SHARSA (the previous state-of-the-
art method on this benchmark) on all environments. (⋆) indicates that we take the results from the original
paper (Park et al., 2025), where we take the results with larger 10M-sized datasets for humanoidmaze-giant
(originally 4M) and puzzle-4x5 (originally 3M). We omit HIQL results on cube-{triple, quadruple}
given its high computational cost and poor performance on the other tasks.

7 RESULTS

In this section, we present our experimental results to answer the following three questions:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-triple-100M

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-quadruple-100M

0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00

cube-octuple-1B

Training Steps (×106)

Ov
er

al
l S

uc
ce

ss
 R

at
e backup horizon = 5, ha = 1

DQC (h = 5, ha = 1)
NS (n = 5)

backup horizon = 25, ha = 1
DQC (h = 25, ha = 1)
NS (n = 25)

backup horizon = 25, ha = 5
DQC (h = 25, ha = 5)
QC-NS (n = 25, ha = 5)

Figure 2: Distilled critic ablations. Each group in the legend contains DQC and its non-distilled counterpart
with the same configuration (i.e., same backup horizon and same policy chunk size). Our method (DQC)
performs on par or better than the non-distilled counterpart across all configurations.

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Best-of-N Policy Extraction (N)

N = 128
N = 8
N = 32 (Ours)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Implicit Backup Method

Expectile
Quantile (ours)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Backup Quantile (b)

b = 0.95
b = 0.7
b = 0.5
b = 0.9 (Ours)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Distillation Expectile (d)

d = 0.9
d = 0.7
d = 0.5
d = 0.8 (Ours)

Training Steps (×106)

Ov
er

al
l S

uc
ce

ss
 R

at
e

Figure 3: Hyperparameter sensitivity analysis on cube-quadruple-100M. Best-of-N (N): the number
of action samples drawn from πβ(· | s) during policy evaluation; Implicit Backup Method: the implicit
maximization loss function for the implicit value backup; Backup Quantile (κb): the coefficient for the implicit
value backup; Distillation Expectile (κd): the coefficient for training the distilled critic.

(Q1) Does DQC improve upon n-step return, Q-chunking? Figure 1 compares DQC (ours) to
both n-step and QC across six challenging long-horizon GCRL tasks, with our method performing
on par or better across the board. Table 1 shows DQC also consistently outperforms the previous
state-of-the-art method on this benchmark, SHARSA (Park et al., 2025), on all environments. For
each environment, we pick the best configuration (in terms of h, ha, and n). See Appendix C (DQC:
Table 6, SHARSA/QC/NS: Table 7) for the environment-specific hyperparameters used in Figure 1
and Table 1. For the results on all configurations, see the complete table in Appendix A.

(Q2) Is training a separate distilled critic QPψ necessary? In Figure 2, we compare DQC to DQC
without using the distilled critic across three different (h, ha) configurations: (h = 25, ha = 5),
(h = 25, ha = 1), and (h = 5, ha = 1). For configurations with ha = 1, the baseline without using
the distilled critic is the same as the n-step return baseline (with n = h) and for the configuration
with ha = 5, it is the same as combining Q-chunking and n-step return. Across three configurations,
DQC performs on par or better than its non-distilled counterpart. This highlights that the use of a
separate distilled critic for the partial action chunk is necessary for the effectiveness of DQC.

(Q3) How sensitive is DQC to its hyperparameters? Figure 3 shows that our method is neither
sensitive to the implicit backup method (quantile or expectile), nor sensitive to the backup coefficient
κb. The important hyperparameters are the N in best-of-N policy extraction and the distillation
expectile coefficient, κd. Making sure the number of action samples N is large enough (e.g., N = 32)
is crucial for good performance, though a larger N (N = 128) does not lead to better performance.

8 DISCUSSION

We provide a theoretical foundation for action chunking Q-learning and demonstrate how to effec-
tively extract policies from chunked critics. Theoretically, we provide a formal analysis of action
chunking Q-learning, identifying the TD backup bias that arises from open-loop inconsistency and
characterizing the conditions under which action chunking Q-learning is preferred over n-step re-
turn learning. Empirically, we develop a novel technique that enables effective policy extraction
from chunked critics with long action chunks, scaling up action chunking Q-learning to much harder
environments. Together, these contributions advance the goal of tackling bootstrapping bias in TD-
learning. Several challenges remain, indicating promising avenues for future research. Our method
still inherits the open-loop value bias identified in Theorem 4.4, and developing techniques to ac-
tively correct for this bias could further improve performance. Moreover, our method relies on a
fixed policy action chunk size ha and critic action chunk size h across all states, even though the
optimal action chunk size may vary by state. Developing practical methods that can support flexible,
state-dependent chunk sizes would be a natural next step.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate future research, we include our source code as part of the supplementary materials,
along with example scripts for both our method and our baselines. We describe our environments
in Appendix B and hyperparameters in Appendix C. For our theoretical results, we fully state our
assumption in Assumption 4.1 and provide complete proofs in Appendix E.

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. OPAL: Offline
primitive discovery for accelerating offline reinforcement learning. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=V69LGwJ0lIN.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Akhil Bagaria and George Konidaris. Option discovery using deep skill chaining. In International
Conference on Learning Representations, 2019.

Akhil Bagaria, Ben Abbatematteo, Omer Gottesman, Matt Corsaro, Sreehari Rammohan, and George
Konidaris. Effectively learning initiation sets in hierarchical reinforcement learning. Advances in
Neural Information Processing Systems, 36, 2024.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR, 2023.

Boyuan Chen, Chuning Zhu, Pulkit Agrawal, Kaiqing Zhang, and Abhishek Gupta. Self-supervised
reinforcement learning that transfers using random features. Advances in Neural Information
Processing Systems, 36, 2024.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated reinforcement
learning. Advances in neural information processing systems, 17, 2004.

Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hierarchical relative entropy
policy search. Journal of Machine Learning Research, 17(93):1–50, 2016.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural information
processing systems, 5, 1992.

Kristopher De Asis, J Hernandez-Garcia, G Holland, and Richard Sutton. Multi-step reinforcement
learning: A unifying algorithm. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Anita de Mello Koch, Akhil Bagaria, Bingnan Huo, Zhiyuan Zhou, Cameron Allen, and George
Konidaris. Learning transferable sub-goals by hypothesizing generalizing features. 2025.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-
tion. Journal of artificial intelligence research, 13:227–303, 2000.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and Aaron
Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In Deep
Reinforcement Learning Workshop NeurIPS 2022, 2022.

Ishan P Durugkar, Clemens Rosenbaum, Stefan Dernbach, and Sridhar Mahadevan. Deep reinforce-
ment learning with macro-actions. arXiv preprint arXiv:1606.04615, 2016.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International
conference on machine learning, pp. 3061–3071. PMLR, 2020.

10

https://openreview.net/forum?id=V69LGwJ0lIN

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options.
arXiv preprint arXiv:1703.08294, 2017.

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Unsupervised zero-shot reinforcement
learning via functional reward encodings. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the
41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 13927–13942. PMLR, 21–27 Jul 2024. URL https://proceedings.
mlr.press/v235/frans24a.html.

Jonas Gehring, Gabriel Synnaeve, Andreas Krause, and Nicolas Usunier. Hierarchical skills for
efficient exploration. Advances in Neural Information Processing Systems, 34:11553–11564, 2021.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Hao Hu, Yiqin Yang, Jianing Ye, Ziqing Mai, and Chongjie Zhang. Unsupervised behavior extraction
via random intent priors. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=4vGVQVz5KG.

Edward L Ionides. Truncated importance sampling. Journal of Computational and Graphical
Statistics, 17(2):295–311, 2008.

Tommi Jaakkola, Michael Jordan, and Satinder Singh. Convergence of stochastic iterative dynamic
programming algorithms. Advances in neural information processing systems, 6, 1993.

Jihwan Jeong, Xiaoyu Wang, Michael Gimelfarb, Hyunwoo Kim, Baher Abdulhai, and Scott Sanner.
Conservative bayesian model-based value expansion for offline policy optimization. arXiv preprint
arXiv:2210.03802, 2022.

Teun Kloek and Herman K Van Dijk. Bayesian estimates of equation system parameters: an
application of integration by monte carlo. Econometrica: Journal of the Econometric Society, pp.
1–19, 1978.

George Konidaris, Scott Niekum, and Philip S Thomas. TDγ : Re-evaluating complex backups in
temporal difference learning. Advances in Neural Information Processing Systems, 24, 2011.

George Dimitri Konidaris. Autonomous robot skill acquisition. University of Massachusetts Amherst,
2011.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit Q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Tadashi Kozuno, Yunhao Tang, Mark Rowland, Rémi Munos, Steven Kapturowski, Will Dabney,
Michal Valko, and David Abel. Revisiting Peng’s Q (λ) for modern reinforcement learning. In
International Conference on Machine Learning, pp. 5794–5804. PMLR, 2021.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic Q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Ge Li, Dong Tian, Hongyi Zhou, Xinkai Jiang, Rudolf Lioutikov, and Gerhard Neumann. TOP-ERL:
Transformer-based off-policy episodic reinforcement learning. In The Thirteenth International
Conference on Learning Representations, 2025a. URL https://openreview.net/forum?id=
N4NhVN30ph.

11

https://proceedings.mlr.press/v235/frans24a.html
https://proceedings.mlr.press/v235/frans24a.html
https://openreview.net/forum?id=4vGVQVz5KG
https://openreview.net/forum?id=N4NhVN30ph
https://openreview.net/forum?id=N4NhVN30ph

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. arXiv
preprint arXiv:2507.07969, 2025b.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Amy McGovern and Richard S Sutton. Macro-actions in reinforcement learning: An empirical
analysis. 1998.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut—dynamic discovery of sub-goals in
reinforcement learning. In Machine Learning: ECML 2002: 13th European Conference on
Machine Learning Helsinki, Finland, August 19–23, 2002 Proceedings 13, pp. 295–306. Springer,
2002.

Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne,
Yee Whye Teh, and Nicolas Heess. Neural probabilistic motor primitives for humanoid control.
arXiv preprint arXiv:1811.11711, 2018.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. Advances in neural information processing systems, 29, 2016.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-QL: Calibrated offline RL pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Soroush Nasiriany, Tian Gao, Ajay Mandlekar, and Yuke Zhu. Learning and retrieval from prior data
for skill-based imitation learning. In Conference on Robot Learning, 2022.

Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Probabilistic movement
primitives. Advances in neural information processing systems, 26, 2013.

Kwanyoung Park and Youngwoon Lee. Model-based offline reinforcement learning with lower
expectile q-learning. arXiv preprint arXiv:2407.00699, 2024.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. HIQL: Offline goal-
conditioned RL with latent states as actions. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=cLQCCtVDuW.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. ArXiv, 2024a.

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations.
In Forty-first International Conference on Machine Learning, 2024b. URL https://openreview.
net/forum?id=LhNsSaAKub.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon reduction makes RL scalable. arXiv preprint arXiv:2506.04168, 2025.

Jing Peng and Ronald J Williams. Incremental multi-step Q-learning. In Machine Learning Proceed-
ings 1994, pp. 226–232. Elsevier, 1994.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning. Acm transactions on graphics
(tog), 36(4):1–13, 2017.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021.

Doina Precup, Richard S Sutton, and Satinder Singh. Eligibility traces for off-policy policy evaluation.
In ICML, volume 2000, pp. 759–766. Citeseer, 2000.

12

https://openreview.net/forum?id=cLQCCtVDuW
https://openreview.net/forum?id=LhNsSaAKub
https://openreview.net/forum?id=LhNsSaAKub

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In International conference on machine learning, pp. 4344–4353.
PMLR, 2018.

Mark Rowland, Will Dabney, and Rémi Munos. Adaptive trade-offs in off-policy learning. In
International Conference on Artificial Intelligence and Statistics, pp. 34–44. PMLR, 2020.

Younggyo Seo and Pieter Abbeel. Reinforcement learning with action sequence for data-efficient
robot learning. 2024.

Younggyo Seo, Jafar Uruç, and Stephen James. Continuous control with coarse-to-fine reinforcement
learning. In 8th Annual Conference on Robot Learning, 2024. URL https://openreview.net/
forum?id=WjDR48cL3O.

Tanmay Shankar and Abhinav Gupta. Learning robot skills with temporal variational inference. In
International Conference on Machine Learning, pp. 8624–8633. PMLR, 2020.

Özgür Şimşek and Andrew G. Barto. Betweenness centrality as a basis for forming skills. Working-
paper, University of Massachusetts Amherst, April 2007.

Aravind Srinivas, Ramnandan Krishnamurthy, Peeyush Kumar, and Balaraman Ravindran. Option
discovery in hierarchical reinforcement learning using spatio-temporal clustering. arXiv preprint
arXiv:1605.05359, 2016.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Philip S Thomas, Scott Niekum, Georgios Theocharous, and George Konidaris. Policy evaluation
using the Ω-return. Advances in Neural Information Processing Systems, 28, 2015.

Dong Tian, Ge Li, Hongyi Zhou, Onur Celik, and Gerhard Neumann. Chunking the critic: A
transformer-based soft actor-critic with N-step returns. arXiv preprint arXiv:2503.03660, 2025.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist? In
The Eleventh International Conference on Learning Representations, 2022.

Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John Agapiou,
et al. Strategic attentive writer for learning macro-actions. Advances in neural information
processing systems, 29, 2016.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540–3549. PMLR, 2017.

Max Wilcoxson, Qiyang Li, Kevin Frans, and Sergey Levine. Leveraging skills from unlabeled prior
data for efficient online exploration. arXiv preprint arXiv:2410.18076, 2024.

Kevin Xie, Homanga Bharadhwaj, Danijar Hafner, Animesh Garg, and Florian Shkurti. Latent skill
planning for exploration and transfer. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=jXe91kq3jAq.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

13

https://openreview.net/forum?id=WjDR48cL3O
https://openreview.net/forum?id=WjDR48cL3O
https://openreview.net/forum?id=jXe91kq3jAq

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A FULL RESULTS

Table 2 reports the performance of our method (DQC) and baselines for all hyperparameter configu-
rations. All of them use the same hyperparameters in Table 4 with the only exception that SHARSA
handles goal-sampling for training behavior cloning policies separate as we discuss in more details in
Appendix C.

Task
DQC QC-NS DQC NS QC DQC QC NS OS SHARSA HIQL IQL HFBC FBC

(h = 25) (n = 25) (h = 25) (n = 25) (ha = 25) (h = 5) (ha = 5) (n = 5)
(ha = 5) (ha = 5) (ha = 1) (ha = 1)

cube-triple-100M 98[96,98] 69[13,98] 73[67,80] 42[5,74] 23[0,50] 75[70,79] 14[6,28] 35[0,81] 1[0,2] 82[78,88] - 64[59,68] 57[54,61] 53[48,57]
cube-quadruple-100M 90[88,90] 37[20,63] 46[41,52] 20[4,52] 2[0,5] 58[56,59] 24[6,44] 27[0,64] 0[0,0] 67[62,74] - 53[53,53] 38[34,41] 32[30,33]
cube-octuple-1B 24[22,25] 28[26,31] 13[12,14] 8[8,9] 1[1,2] 0[0,0] 0[0,0] 0[0,0] 0[0,0] 20⋆[19,20] 1⋆[0,2] 0⋆[0,0] 20⋆[17,23] 0⋆[0,0]
humanoidmaze-giant 32[29,36] 21[19,24] 72[67,75] 59[54,64] - 0[0,0] 0[0,0] 0[0,0] 0[0,1] 18[13,25] 22⋆[18,29] 3⋆[3,4] 19⋆[16,22] 1⋆[0,2]
puzzle-4x5 96[95,97] 97[96,98] 89[84,92] 91[90,94] - 19[19,19] 20[19,20] 19[19,20] 14[13,15] 1[0,2] 5⋆[3,7] 19⋆[18,20] 4⋆[2,6] 0⋆[0,0]
puzzle-4x6-1B 65[60,75] 69[64,71] 72[63,80] 74[66,86] - 23[22,23] 20[20,20] 22[21,22] 17[14,19] 56⋆[49,63] 8⋆[4,12] 17⋆[16,19] 2⋆[1,2] 0⋆[0,0]

Table 2: Complete results for all configurations. All means and 95% bootstrapped confidence intervals are
computed over 3 seeds. (⋆) indicates that we take the results from the original paper (Park et al., 2025), where
we take the results with larger 10M-sized datasets for humanoidmaze-giant (originally 4M) and puzzle-4x5
(originally 3M). We omit HIQL results on cube-{triple, quadruple} given its high computational cost and
poor performance on the other tasks.

B ENVIRONMENTS AND DATASETS

To evaluate our method, we consider 8 goal-conditioned environments in OGBench with varying
difficulties (Figure 4). The dataset size, episode length, and the action dimension for each environment
is available in Table 3. We describe each of the environments and the datasets we use as follows.

Environment cube-*: We consider three cube environments (cube-triple, cube-quadruple,
cube-octuple). As the names suggest, the goal of these environments involve using a robot arm
to manipulate 3/4/8 cubes from some initial configuration to some specified goal configuration. We
use the same five evaluation tasks used in OGBench (Park et al., 2024a) for cube-triple and
cube-quadruple and the same five evaluation tasks used in Park et al. (2025) for cube-octuple.
We refer the environment detail to the corresponding references.

Environment Dataset Size Episode Length Action Dim. (A)
cube-triple-100M 100M 1000 5

cube-quadruple-100M 100M 1000 5
cube-octuple-1B 1B 1500 5

humanoidmaze-giant 4M (default) 4000 21
puzzle-4x5 3M (default) 1000 5

puzzle-4x6-1B 1B 1000 5

Table 3: Environment metadata. For both humanoidmaze-giant and puzzle-4x5, we use the default
dataset that is released in the original OGBench benchmark (Park et al., 2024a). For the other environments, we
use larger datasets as we find them to be essential for achieving good performances on these environments.

Environment humanoidmaze-*: We also consider the hardest locomotion environment available
in OGBench. The goal of the environment is to control and navigate a humanoid agent from some
initial location to some specified goal location in a 16 × 12 maze. This environment also has the
longest episode length (4000, more than twice as long as the second longest episode length as used in
cube-octuple). We refer the environment detail to Park et al. (2024a).

Environment puzzle-*: Finally, we consider two environments that involve solving a combinatorial
puzzle with a robot arm. The puzzle consists of a board of 4 × 5 or 4 × 6 buttons, organized as a
regular grid (4 rows and 5 or 6 columns). Each button has a binary state. Whenever the end-effector
of the arm touches a button, the button and all its adjacent four buttons (three or two if the button
is on the edge of the grid or in the corner) flip its binary state. The goal of the environment is to
transform the board from some initial state to some specified goal state. We refer the environment
detail to Park et al. (2025).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

At the test-time/evaluation-time, the goal-conditioned agent is tested on five evaluation tasks for each
of the six environments we consider. The overall success rate is the average over 5 tasks with 50
evaluation trials each.

Datasets. We use play datasets for all cube-* and puzzle-* environments and navigate
dataset for humanoidmaze-*. We use the original datasets available for humanoidmaze-giant and
puzzle-4x5 because they are sufficient for solving the environments. Using larger datasets on these
environments do not help differentiating among different methods/baselines. For each of the other
environments, we use the largest dataset available from Park et al. (2025) as we find it to be neces-
sary to solve these environments (or achieve non-trivial performance on the hardest cube-octuple
environment).

cube-triple cube-quadruple cube-octuple

humanoidmaze-giant puzzle-4x5 puzzle-4x6

Figure 4: Visualization of environments.

C HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Hyperparameters. Table 4 describes the common hyperparameters used in all our experiments
(except for the ones with † where the numbers are directly taken from prior work). Table 6 (for our
method) and Table 7 (for baselines) describe the environment-specific hyperparameters.

Goal-conditioned RL implementation details. While we have described in the main body of the
paper how DQC works as a general RL algorithm, we have not touched on how DQC and similarly
all our baselines works with the goal-condition RL (GCRL) setting. We consider the setting where
we have access to an oracle goal representation Ψ : S → G where G is the goal space (see Table 5
for the oracle goal representation description for each environment). The goal-conditioned reward
function r : (s, g) 7→ IΨ(s)=g is a binary reward function where its output is 1 if the goal g is reached
by the current state s. We can treat g as part of an extended state s̃ = [s, g] ∈ S̃ = S × G and learn
value functions (e.g., Qϕ(s̃, a)) normally with such extended state.

A common trick in the GCRL setting is to use goal relabeling. That is, during training for each (s, a)
pair in the training batch, a goal g is sampled from some distribution (i.e., pD(· | s, a)) and the reward

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Parameter Value
Batch size 4096

Discount factor (γ) 0.999
Optimizer Adam

Learning rate 3× 10−4

Target network update rate (λ) 5× 10−3

Critic ensemble size (K) 2

Critic target min(Q1, Q2) for cube-*
(Q1 +Q2)/2 for puzzle-* and humanoid-*

Implicit Backup Quantile (κb) 0.9
Value loss type binary cross entropy

Best-of-N sampling (N) 32
Number of flow steps 10

Number of training steps 106

Network width 1024
Network depth 4 hidden layers

Value goal sampling (wv
cur, w

v
geom, w

v
traj, w

v
rand) (0.2, 0, 0.5, 0.3)

Actor goal sampling (wp
cur, w

p
geom, w

p
traj, w

p
rand)

DQC/QC/NS/OS: πβ is not goal-conditioned
SHARSA (cube): (0, 1, 0, 0)

SHARSA (puzzle): (0, 0, 1, 0)
SHARSA (humanoidmaze): (0, 0, 1, 0)

Table 4: Common hyperparameters. For the GCRL goal-sampling distribution we follow the same hyperpa-
rameters used in Park et al. (2025).

Environment Goal Representation (Ψ) Goal Domain (G)

cube-triple (x, y, z) of three cubes (rel. to center) R9

cube-quadruple (x, y, z) of four cubes (rel. to center) R12

cube-octuple (x, y, z) of eight cubes (rel. to center) R24

humanoidmaze-giant (x, y) of the humanoid R2

puzzle-4x5 the binary state for each button {0, 1}20
puzzle-4x6 the binary state for each button {0, 1}24

Table 5: Oracle goal representation description for each environment. Following Park et al. (2025), we
assume access to an oracle goal representation for each environment. More detailed definition of these oracle
goal representations is available in OGBench (Park et al., 2024a).

of the transition is relabeled with the goal-conditioned reward function. Following Park et al. (2025),
the goal distribution P g(· | s, a) : S × A → ∆G is a mixture of four distributions, conditioned on
the training state-action example:

P g = wcurP
g
cur + wgeomP

g
geom + wtrajP

g
traj + wrandP

g
rand, (28)

where

1. P gcur(· | s, a) = δΨ(s): the goal is the same as the current state;

2. P ggeom(· | s, a): geometric distribution over the future states in the same trajectory that (s, a)
is from;

3. P gtraj(· | s, a): uniform distribution over the future states in the same trajectory that (s, a) is
from; and finally

4. P grand(· | s, a) = Ψ(UD(s)): uniform distribution over the dataset (D(s) is the distribution
of states in the dataset).

and wcur, wgeom, wtraj, wrand > 0 are the corresponding weights for each of the distribution compo-
nents with wcur + wgeom + wtraj + wrand = 1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Environment Distillation Expectile Critic Chunk Size Policy Chunk Size
(κd) (h) (ha)

cube-triple-100M 0.8 25 5
cube-quadruple-100M 0.8 25 5

cube-octuple-1B 0.8 25 5
humanoidmaze-giant 0.5 25 1

puzzle-4x5 0.5 25 5
puzzle-4x6-1B 0.5 25 1

Table 6: Environment-specific hyperparameters for DQC. We use a distillation expectile of 0.8 for all cube
environments and a distillation expectile of 0.5 for all other environments. For all cube-* environments, we
use a policy chunk size of 5 (i.e., ha = 5). For all other environments, we use 1-step policy (i.e., ha = 1). All
environments use a critic chunk size of h = 25.

Environment QC (h = ha) NS (n) SHARSA (n)

cube-triple-100M 5 25 25
cube-quadruple-100M 5 25 25

cube-octuple-1B 5 25 25
humanoidmaze-giant-4M 5 25 50

puzzle-4x5-3M 5 25 50
puzzle-4x6-1B 5 25 50

Table 7: Environment-specific hyperparameters for QC, NS, SHARSA . For QC, we find h = ha = 5
works the best for all environments. For NS, we find n = 25 works the best for all environments. For SHARSA,
we follow the hyperparameters in the original paper (Park et al., 2025).

In practice, it has been found to be beneficial to use a separate set of goal sampling weights
for TD backup (Park et al., 2024a) (i.e., (wv

cur, w
v
geom, w

v
traj, w

v
rand)) and for policy learning (i.e.,

(wp
cur, w

p
geom, w

p
traj, w

p
rand)). However, in our implementation of DQC/QC/NS/OS, we do not train a

goal-conditioned policy, as our policy extraction is done entirely at test-time by best-of-N sampling
from an unconditional (i.e., not goal-conditioned) behavior policy πβ . In particular, we use an uncon-
ditioned flow policy πβ(· | s) that is parameterized by a velocity field vβ : S × RA × [0, 1]→ RA
that is trained with the standard flow-matching objective:

LFM(β) = Eu∼U [0,1],z∼N ,(s,a)∼D
[
∥vβ(s, (1− u)z + ua, u)− a+ z∥22

]
(29)

For SHARSA, we use the official implementation where both flow policies (high-level and low-
level) are goal-conditioned (and thus are trained with the goal distribution mixture specified by
wp

cur, w
p
geom, w

p
traj, w

p
rand). The goal sampling distribution for training the value networks (for all

methods) and the goal sampling distribution for the policy networks (for SHARSA only) are provided
in Table 4.

D EXAMPLES OF OPEN-LOOP CONSISTENT DATA

In this section, we provide some examples of open-loop consistent data that could serve as a useful
basis for theoretical analyses in future work. The first example is any data collected from a near-
deterministic dynamics, as formally defined as follows:
Definition D.1 (Near-deterministic Dynamics). A transition dynamics T is ε-deterministic if there
exists a deterministic transition dynamics represented by function f : S × A → S and another
transition dynamics T̃ : S ×A → ∆S , and T is a combination of f and T̃ :

T (s′ | s, a) = (1− ε)δf(s,a)(s′) + εT̃ (s′ | s, a),∀s, s′ ∈ S, a ∈ A. (30)

Theorem D.2 (Deterministic Dynamics are Open-loop Consistent). If a transition dynamicsM is
ε-deterministic, then any data D is εh-open-loop consistent with respect toM for any h ∈ N+ as
long as εh ≥ 3(1− (1− ε)h−1).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The proof of Theorem D.2 is available in Appendix E.

In addition to deterministic dynamics, any data collected by open-loop policies are also open-loop
consistent.

Definition D.3 (Data Collected by Open-loop Policies). A policy is open-loop if its action distribution
does not depend on the state (i.e., π(at:t+h | st:t+h) is the same for all st:t+h).

Remark D.4. If the data D is collected with an open-loop policy, then D is strongly open-loop
consistent.

E PROOFS

Theorem 4.4 (Bias of Action Chunking Critic). Let V̂ac : S → [0, 1/(1− γ)] be a solution of

V̂ac(st) = Est+1:t+h+1,at:t+h∼PD(·|st)

[
Rt:t+h + γhV̂ac(st+h)

]
, (12)

with Rt:t+h =
∑t+h
t′=t γ

t′−tr(st′ , at′) and Vac is the true value of πopen
D : st 7→ PD(at:t+h | st). If

D is εh-open-loop consistent, then under supp(D),∥∥∥Vac − V̂ac∥∥∥
∞
≤ εh

(1− γh)(1− γ)
. (13)

Proof. Since D is εh′-open-loop consistent in state-action for h′ < h, the state-action distribution
leading up to step h admits the following bound:

2DTV(PD(st+h, at+h | st) ∥ P open
D (st+h, at+h | st)) ≤ εh (31)

Let Rt:t+h =
∑h−1
k=0 γ

kr(st+k, at+k) be the h-step reward distribution. Then the difference in h-step
reward is bounded by∣∣∣EPD(·|st)[Rt:t+h]− EP open

D (·|st)[Rt:t+h]
∣∣∣ (32)

≤
h−1∑
h′=0

[
2γh

′
DTV(PD(st+h′ , at+h′ | st) ∥ P open

D (st+h′ , at+h′ | st))
]

(33)

≤
h−1∑
h′=0

γh
′
εh (34)

Since D is εh-open-loop consistent for h in state, we have

DTV(PD(st+h | st) ∥ P open
D (st+h | st) ≤ εh (35)

∣∣∣Est+h∼PD(st+h|st)

[
V̂ac(st+h)

]
− Est+h∼P open

D (st+h|st) [Vac(st+h)]
∣∣∣ (36)

≤ 2DTV(PD(st+h | st) ∥ P open
D (st+h | st))Est+h∼P open

D (·|st)

[
V̂ac(st+h)

]
(37)

+
∣∣∣Est+h∼PD(st+h|st)

[
V̂ac(st+h)− Vac(st+h)

]∣∣∣ (38)

≤ εh
1− γ

+ ∥V̂ac − Vac∥∞ (39)

The first term in the last line works because even though P open
D can go out of the support of D, the

value of V̂ac is uniformly bounded by its range [0, 1/(1− γ)]. The second term works because the
support of st+h | st is a subset of the support for st as part of Assumption 4.1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

For all st ∈ supp(PD(st)),∣∣∣V̂ac(st)− Vac(st)∣∣∣ ≤ ∣∣∣EPD(·|st)[Rt:t+h]− EP open
D (·|st)[Rt:t+h]

∣∣∣ (40)

+ γh
∣∣∣Est+h∼PD(st+h|st)

[
V̂ac(st+h)

]
− Est+h∼P open

D (st+h|st) [Vac(st+h)]
∣∣∣

(41)

≤
h−1∑
h′=0

[
γh

′
εh

]
+
γhεh
1− γ

+ γh∥Vac − V̂ac∥∞. (42)

Therefore, under the same support,∥∥∥Vac − V̂ac∥∥∥
∞
≤ 1

1− γh

(
h−1∑
h′=0

[
γh

′
εh

]
+
γhεh
1− γ

)
, (43)

which can be simplified to be ∥∥∥Vac − V̂ac∥∥∥
∞
≤ εh

(1− γ)(1− γh)
. (44)

Corollary 4.5 (Optimal Action Chunking Policy). Let π⋆ : S → ∆A be an optimal policy inM and
D⋆ be the data collected by π⋆. If D⋆ is εh-open-loop consistent, then under supp(D⋆),

∥V ⋆ac − V ⋆∥∞ ≤
∥∥∥Ṽac − V ⋆∥∥∥

∞
≤ εh

(1− γh)(1− γ)
, (14)

where V ⋆ is the value of the optimal policy π⋆, V ⋆ac is the true value of the optimal action chunking
policy, and Ṽac is the true value of the action chunking policy from cloning the data D⋆:

π̃ac(at:t+h | st) : st 7→ PD⋆(· | st). (15)

Proof. Let V̂ac be the fixed point of the following equation:

V̂ac(st) = Est+1:t+h+1,at:t+h∼PD⋆ (·|st)

[
Rt:t+h + γhV̂ac(st+h)

]
(45)

where again Rt:t+h =
∑t+h
t′=t γ

t′−tr(st′ , at′). The value of the optimal policy is the fixed point of
the following equation:

V ⋆(st) = Est+1,at∼PD⋆ (·|st) [r(st, at) + γV ⋆(st+1)] (46)

= Est:t+2,at:t+1∼PD⋆ (·|st) [r(st, at) + γr(st+1, at+1) + γV ⋆(st+2)] (47)

· · · (48)

= Est+1:t+h+1,at:t+h∼PD⋆ (·|st)
[
Rt:t+h + γhV ⋆(st+h)

]
(49)

which is equivalent to fixed-point equation for V̂ac. Therefore V̂ac = V ⋆. By Theorem 4.4, we know
that the true value Vac of the action chunking policy π̃ac that clones D⋆ is close to V̂ac:

∥V̂ac − Ṽac∥∞ ≤
εh

(1− γh)(1− γ)
(50)

which means that

∥V ⋆ − Ṽac∥∞ ≤
εh

(1− γh)(1− γ)
(51)

Since the optimal action chunking policy, by definition, attains equally good or better values (over
S) represented by Vac, and the optimal policy π⋆ also attains equally good or better value (i.e., V ⋆)
compared to that of the optimal action chunking policy π⋆ac (i.e., V ⋆ac), the following inequality holds
under supp(D⋆):

V ⋆ ≥ V ⋆ac ≥ Ṽac. (52)
Therefore,

∥V ⋆ac − V ⋆∥ ≤ ∥Ṽac − V ⋆∥ ≤
εh

(1− γh)(1− γ)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Theorem 4.6 (Q-Learning with Action Chunking Policy on Off-policy Data). If D is strongly εh-
open-loop consistent and supp(D) ⊇ supp(D⋆), with D⋆ being the data distribution of an arbitrary
optimal policy π⋆ underM), then the following bound holds under supp(D⋆):

∥V +
ac − V ⋆∥∞ ≤

3εh
(1− γh)(1− γ)

, (18)

where V ⋆ is the value of an optimal policy underM.

Proof. We start by constructing a bound between Q̂+
ac and Q⋆ac, the solution of the following bellman

equation:

Q⋆ac(st, at:t+h) = Est+1:t+h+1∼P open
D (·|st,at:t+h)

[
Rt:t+h + γh max

at+h:t+2h

Q⋆ac(st+h, at+h:t+2h)

]
.

(53)

Intuitively, Q⋆ac is the Q-function of the optimal action chunking policy π⋆ac that can be learned from
D. Because supp(D) ⊇ supp(D⋆), π⋆ac is at least as good as π̃ac, the action chunking policy obtained
by behavior cloning D⋆. Bounding the difference between Q̂+

ac and Q⋆ac allows us to leverage the
bound in Corollary 4.5 to form a bound between V̂ +

ac and V ⋆.

Since D is strongly εh-open-loop consistent,

DTV(P
open
D (st+h′ | st, at:t+h′) ∥ PD(st+h′ | st, at:t+h′)),∀h′ ∈ {0, 1, · · · , h− 1} (54)

Now, for the h-step reward, we have∣∣∣EPD(·|st,at:t+h) [Rt:t+h]− EP open
D (·|st,at:t+h) [Rt:t+h]

∣∣∣ (55)

≤
h−1∑
h′=0

[DTV(P
open
D (st+h′ | st, at:t+h′) ∥ PD(st+h′ | st, at:t+h′))] (56)

≤ (1− γh)εh
1− γ

(57)

Similarly, for the value h-step into the future, we have∣∣∣Est+h∼P open
D (st+h|st) [V

⋆
ac(st+h, at+h:t+2h)]− Est+h∼PD(st+h|st)

[
V̂ +
ac (st+h, at+h:t+2h)

]∣∣∣
(58)

≤ 2DTV(P
open
D (st+h′ | st, at:t+h) ∥ PD(st+h | st, at:t+h′))∥V ⋆ac∥∞ + ∥V ⋆ac − V̂ +

ac∥∞ (59)

≤ εh
1− γ

+ ∥V ⋆ac − V̂ +
ac∥∞ (60)

Combining the bound for the h-step reward and the bound on the value for st+h, we get

|Q⋆ac(st, at:t+h)− Q̂+
ac(st, at:t+h)| ≤

εh
1− γ

+ γh∥V ⋆ac − V̂ +
ac∥∞, (61)

which can be recursively expanded to get

∥V ⋆ac − V̂ +
ac∥ ≤

εh
(1− γ)(1− γh)

(62)

By Theorem 4.4, we have ∥∥∥V̂ +
ac − V +

ac

∥∥∥
∞
≤ εh

(1− γ)(1− γh)
(63)

By Corollary 4.5, we have ∥∥∥V ⋆ − Ṽac∥∥∥
∞
≤ εh

(1− γ)(1− γh)
(64)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Since supp(D) ⊇ supp(D⋆), we know that V ⋆ac is at least as good as Ṽac uniformly.

Combining the three inequalities above, we get

∥V ⋆ − V +
ac∥∞ ≤

3εh
(1− γ)(1− γh)

(65)

Theorem 4.8. Let D be strongly εh-open-consistent, δn-suboptimal, and supp(D) ⊇ supp(D⋆). Let
π⋆n be the optimal n-step return policy learned from D, as the solution of

Q⋆n(st, at) = EPD [Rt:t+n + γnQ⋆n(st+n, π
⋆
n(st+n))] , π⋆n : st 7→ argmax

at
Q⋆n(st, at). (20)

As long as δn >
3εh(1−γn)

(1−γ)(1−γh)
, then from all s ∈ supp(D⋆), the action chunking policy, π+

ac (Equa-
tion (17)), is better than the n-step return policy, πn (Equation (20)) (i.e., V +

ac (s) > V ⋆n (s)).

To prove Theorem 4.8, we first prove the following helper Lemma E.1 to quantify sub-optimality for
n-step return policy.
Lemma E.1. Let Q⋆n be the solution of the uncorrected n-step return backup equation:

Q⋆n(st, at) = EPD(·|st,at)

[
Rt:t+n + γnmax

at+n

Q⋆n(st+n, at+n)

]
(66)

The following inequality holds as long as D is δn-suboptimal:

Q⋆(st, at) ≥ Q⋆n(st, at) +
δn

1− γn
,∀st ∈ S, at ∈ A (67)

where Q⋆ is the Q-function of the optimal policy inM. For the n-step return policy

π⋆n : st 7→ argmax
at

Q⋆n(st, at), (68)

its corresponding value admits a similar bound:

V ⋆(st) ≥ V ⋆n (st) +
δn

1− γn
,∀st (69)

Proof. Using the definition of suboptimal data (Definition 4.7), we have

Q⋆n(st, at) = EPD(·|st,at)

[
Rt:t+n + γnmax

at+n

Q⋆n(st+n, at+n)

]
(70)

≤ Q⋆(st, at)− δn + γhEPD(·|st,at)

[
max
at+n

Q⋆n(st+n, at+n)− V ⋆(st+h)
]

(71)

Rearranging the inequality above yields

Q⋆n(st, at)−Q⋆(st, at) ≤ −δn + γnEPD(·|st)[V
⋆
n (st+n)− V ⋆(st+n)],∀st ∈ S, at ∈ A (72)

By recursively applying the inequality above, we have

Q⋆(st, at) ≥ Q⋆n(st, at) +
δn

1− γn
,∀st ∈ S, at ∈ A (73)

By choosing a⋆t = π⋆n(st), we see that

V ⋆(st) ≥ Q⋆(st, at) (74)

≥ Q⋆n(st, a⋆t) +
δn

1− γn
(75)

= V ⋆n (st) +
δn

1− γn
(76)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Now we are ready to prove the main Theorem 4.8.

Proof of Theorem 4.8. From Lemma E.1 and Theorem 4.6, we have

V ⋆n (s) +
δn

1− γn
≤ V ⋆(s) ≤ V +

ac (s) +
3εh

(1− γh)(1− γ)
(77)

Rearranging the terms give

V +
ac (s)− V ⋆n (s) ≥

δn
1− γn

− 3εh
(1− γ)(1− γh)

> 0 (78)

Theorem D.2 (Deterministic Dynamics are Open-loop Consistent). If a transition dynamicsM is
ε-deterministic, then any data D is εh-open-loop consistent with respect toM for any h ∈ N+ as
long as εh ≥ 3(1− (1− ε)h−1).

Proof. Since T is ε-deterministic, it can be represented as T (· | s, a) = (1− ε)δf(s,a) + εT̃ (· | s, a)
for some f : S×A → S and T̃ : S×A → ∆S . Let f(s, a1, · · · , ah) = f(· · · f(f(s, a1), a2) · · · ah)
Let I ∈ {0, 1} a binary indicator variable that is 1 if and only if

st+k+1 = f(st+k, at+k),∀k ∈ {0, 1, 2, · · · , h− 1} (79)

Intuitively I = 1 when the trajectory is generated deterministically until but not including the last
state sh in the trajectory chunk.

From the fact that T is ε-deterministic, we know that

PD(Ih = 1) ≥ (1− ε)h−1 (80)

We also have

PD(at:t+h | st) = PD(Ih = 1)PD(at:t+h | st, Ih = 1) + PD(Ih = 0)PD(at:t+h | st, I = 0) (81)

Then we have

2DTV(PD(at:t+h | st) ∥ PD(at:t+h | st, Ih = 1)) ≤ (1− (1− ε)h−1) (82)

If we transform each distribution of at:t+h deterministically by f(st, ·), by data processing inequality
we have

2DTV

(
Eat:t+h∼PD(·|st)

[
δf(st,at:t+h)

] ∥∥ Eat:t+h∼PD(·|st,Ih=1)

[
δf(st,at:t+h)

])
≤ (1− (1− ε)h−1)

(83)

Similarly, we have

2DTV(PD(at:t+h+1 | st) ∥ PD(at:t+h+1 | st, Ih+1 = 1)) ≤ (1− (1− ε)h) (84)

which can be also deterministically transformed by taking at:t+h+1 7→ (f(st, ·), at+h) to obtain

2DTV

(
Eat:t+h∼PD(·|st)

[
πopen
D (at+h | st, at:t+h)If(st,at:t+h)

]
∥ (85)

Eat:t+h∼PD(·|st,Ih+1=1)

[
πopen
D (at+h | st, at:t+h, Ih+1 = 1)If(st,at:t+h)

])
≤ (1− (1− ε)h) (86)

Now, if we analyze the distribution of st+h subject to the open-loop execution of the action sequence
from PD(· | st) and break it up into the deterministic and the non-deterministic case, we get

Eat:t+h∼PD(·|st)
[
Tat:t+h

(· | st)
]
= PT (I = 1)Eat:t+h∼PD(·|st)

[
δf(st,at:t+h)

]
+ (87)

PT (I = 0)Eat:t+h∼PD(·|st)
[
Tat:t+h

(· | st, Ih = 0)
]

(88)

Note that PT (I = 1) denotes the probability that an open-loop executed trajectory using at:t+h ∼
PD(· | st) is deterministic. This is different from PD(Ih = 1) because the latter is based on

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

PD(st:t+h+1, at:t+h) whereas PT (Ih = 1) is based on the open-loop trajectory distribution: PD(· |
st)
∏h−1
k=0 T (st+k | st, at:t+k). They both admit the same lower bound of (1− (1− ε)h−1).

Therefore,

2DTV

(
Eat:t+h∼PD(·|st)

[
Tat:t+h

(· | st)
] ∥∥ Eat:t+h∼PD(·|st)

[
δf(st,at:t+h)

])
≤ (1− (1− ε)h−1)

(89)

Similarly for the state-action case, we can multiply both side by the same conditional distribution
πopen
D (at+h | st, at:t+h) which preserves the TV bound. For the left-hand side, we have

P open
D (st+h, at+h | st) = Eat:t+h∼PD(·|st)

[
πopen
D (at+h | st, at:t+h)Tat:t+h

(st+h | st)
]

(90)

Therefore, we get

2DTV

(
P open
D (st+h, at+h | st)

∥∥ Eat:t+h∼PD(·|st)
[
πopen
D (at+h | st, at:t+h)If(st,at:t+h)

])
(91)

≤ (1− (1− ε)h−1) (92)

We also have

PD(st+h | st) = (1− ε)h−1PD(st+h | st, I = 1) + (1− (1− ε)h−1)PD(st+h | st, Ih = 0) (93)

Similarly, we have

2DTV(PD(st+h | st) ∥ PD(st+h | st, Ih = 1)) (94)

= 2DTV

(
PD(st+h | st)

∥∥ Eat:t+h∼PD(·|st,Ih=1)

[
δf(st,at:t+h)

])
≤ (1− (1− ε)h−1) (95)

For state-action, we can also get

PD(st+h, at+h | st) = (1− ε)hPD(st+h, at+h | st, Ih+1 = 1) (96)

+ (1− (1− ε)h)PD(st+h, at+h | st, Ih+1 = 0) (97)

which can be turned into the TV distance bound:

2DTV(PD(st+h, at+h | st) ∥ PD(st+h, at+h | st, Ih+1 = 1)) (98)

= 2DTV

(
PD(st+h, at+h | st) ∥ (99)

Eat:t+h∼PD(·|st,Ih+1=1)

[
πopen
D (at+h | st, at:t+h, Ih+1 = 1)If(st,at:t+h)

])
(100)

≤ (1− (1− ε)h) (101)

Connecting all three total variation inequality (Equations (83), (89) and (94)) together, we get

2DTV

(
PD(st+h | st)

∥∥ Eat:t+h∼PD(·|st)
[
Tat:t+h

(· | st)
])
≤ 3(1− (1− ε)h−1) ≤ εh (102)

Connecting all three total variable inequality for state-action (Equations (85), (90) and (98)) together,
we get

2DTV(P
open
D (st+h−1, at+h−1 | st) ∥ PD(st+h, at+h | st)) ≤ 3− 2(1− ε)h−1 − (1− ε)h−2

(103)

≤ 3(1− (1− ε)h−1) (104)
≤ εh (105)

Therefore, D is εh-open-loop consistent as desired.

F A PATHOLOGICAL FAILURE OF ACTION CHUNKING POLICIES WITHOUT THE
STRONG OPEN-LOOP CONSISTENCY ASSUMPTION

In this section, we show an example where the optimal action chunking policy defined in Equation (17)
can be highly suboptimal in the absence of the strong open-loop consistency condition.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

We define an MDP as follows. Let S = {A,B,C,D,E, F,G} andA = {1, 2}. Define the transition
dynamics and reward function as shown in the diagram below:

a = 1 D (r = +1)

a = 1 B a = 2 E (r = 0)

A

a = 2 C a = 1 F (r = 0)

a = 2 G (r = +c)

p

1−p

where p, c ∈ (0, 1) are real numbers and dotted lines denote stochastic transitions. For simplicity,
assume that the MDP has a length-2 finite horizon with γ = 1, and the reward function depends only
on states (r(A) = r(B) = r(C) = r(E) = r(F) = 0, r(D) = 1, and r(G) = c). Assume that the
dataset is collected by a policy πD defined as πD(A) = 1 (with probability 0.5) or 2 (with probability
0.5), πD(B) = 1 (with probability 1), and πD(C) = 2 (with probability 1).

Then, we have the following:

PD(A, (1, 1)) = D, R(A, (1, 1)) = 1, (106)
PD(A, (1, 2)) = G, R(A, (1, 2)) = c, (107)
PD(A, (2, 2)) = G, R(A, (2, 2)) = c, (108)

where we denote action chunks as a tuple and slightly abuse notation to denote deterministic outputs
of PD(· | s0, a0:2) (e.g., PD(A, (1, 1)) = D indicates that all length-2 trajectories in D from state A
with a0 = a1 = 1 have s2 = D with probability 1). From this, we can compute Q̂+

ac as follows:

Q̂+
ac(A, (1, 1)) = 1, (109)

Q̂+
ac(A, (1, 2)) = c, (110)

Q̂+
ac(A, (2, 2)) = c. (111)

Then, assuming the missing data has a Q-value of 0 (i.e., Q̂+
ac(A, (2, 1)) = 0), the optimal action

chunking policy is defined as π̂+
ac(A) = (1, 1) (Equation (17)).

The true value of this action chunking policy is p. However, if p is small enough and c is large enough,
the optimal strategy in this MDP is to always choose (a0, a1) = (2, 2), in which case the agent
receives a constant return of c. The suboptimality in this example is therefore c− p, which can be
made arbitrarily close to 1 (the maximum possible regret in any finite, length-2 sparse-reward MDP
with a terminal reward bounded by [0, 1]). This shows a pathological failure of an action chunking
policy without the strong open-loop consistency assumption.

G ADDITIONAL RELATED WORK ON HIERARCHICAL REINFORCEMENT
LEARNING

Hierarchical reinforcement learning methods (Dayan & Hinton, 1992; Dietterich, 2000; Peng et al.,
2017; Riedmiller et al., 2018; Shankar & Gupta, 2020; Pertsch et al., 2021; Gehring et al., 2021; Xie
et al., 2021) solve tasks by typically leveraging a bi-level structure: a set of low-level/skill policies that
directly interact with the environment and a high-level policy that selects among low-level policies.
The low-level policies can also be learned via online RL (Kulkarni et al., 2016; Vezhnevets et al.,
2016; 2017; Nachum et al., 2018) or offline pre-training on a prior dataset (Paraschos et al., 2013;

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Merel et al., 2018; Ajay et al., 2021; Pertsch et al., 2021; Touati et al., 2022; Nasiriany et al., 2022;
Hu et al., 2023; Frans et al., 2024; Chen et al., 2024; Park et al., 2024b). In the options framework,
these low-level policies are often additionally associated with initiation and termination conditions
that specify when and for how long these actions can be used (Sutton et al., 1999; Menache et al.,
2002; Chentanez et al., 2004; Şimşek & Barto, 2007; Konidaris, 2011; Daniel et al., 2016; Srinivas
et al., 2016; Fox et al., 2017; Bacon et al., 2017; Bagaria & Konidaris, 2019; Bagaria et al., 2024;
de Mello Koch et al., 2025). A long-lasting challenge in HRL is optimization stability because the
high-level policy needs to optimize for an objective that is shaped by the constantly changing low-
level policies (Nachum et al., 2018). Prior work (Ajay et al., 2021; Pertsch et al., 2021; Wilcoxson
et al., 2024) avoided this by first pre-train low-level policies and then keep them frozen during the
optimization of the high-level policy. Macro-actions (McGovern & Sutton, 1998; Durugkar et al.,
2016), or action chunking (Zhao et al., 2023) is another form of temporally extended action, a special
case of the low-level policies often considered in HRL, options literature, where a short horizon of
actions are predicted all at once and executed in open loop. Such approach collapses the bi-level
structure, conveniently side stepping optimization instability, and when combined with Q-learning,
has shown great empirical successes in offline-to-online RL setting (Seo et al., 2024; Li et al., 2025b).
Action chunking policies need to predict multiple actions open-loop, which can be difficult to learn
and sacrifice reactivity. Our approach regains policy reactivity by predicting and executing only a
partial action chunk, while still learning with the fully chunked critic for TD-backup. This design
preserves the value propagation benefits of chunked critic without relying on fully open-loop action
chunking policies, allowing our approach to work well on a wider range of tasks.

25

	Introduction
	Related Work
	Preliminaries
	When should we use action chunking for Q-learning?
	Assumptions
	Open-loop value bias of action chunking Q-learning
	Comparing to n-step return Q-learning

	Decoupled Q-chunking
	Experimental Setup
	Results
	Discussion
	Full results
	Environments and datasets
	Hyperparameters and implementation details
	Examples of Open-loop Consistent Data
	Proofs
	A pathological failure of action chunking policies without the strong open-loop consistency assumption
	Additional related work on hierarchical reinforcement learning

