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ABSTRACT

Pre-training a vison-language model and then fine-tuning it on downstream tasks
have become a popular paradigm. However, pre-trained vison-language models
with the Transformer architecture usually have a large number of parameters and
take long inference time. Knowledge distillation has been an efficient technique
to transfer the capability of a large model to a small one while maintaining the
accuracy, which has achieved remarkable success in natural language processing.
However, the collection of the pre-training data for the pre-training knowledge
distillation costs huge manpower in multi-modality applications. In this paper,
we propose a novel knowledge distillation method, named CLIPPING1, where
the plentiful knowledge of a large teacher model that has been fine-tuned for
video-language tasks with the powerful pre-trained CLIP can be effectively trans-
ferred to a small student only at the fine-tuning stage. Especially, a new layer-
wise alignment is proposed for knowledge distillation of the intermediate layers
from the Transformer to the CNN in CLIPPING, which enables the student model
to well absorb the knowledge of the teacher. Besides, we present an effective
cross-modality knowledge distillation, which includes both the knowledge of the
global video-caption distributions from the teacher model and the knowledge of
the local video-caption distributions from the pre-training model (CLIP). Finally,
CLIPPING with MobileViT-v2 as the vison encoder without any vison-language
pre-training achieves 91.5%–95.3% of the performance of its teacher on three
video-language retrieval benchmarks, with its vison encoder being 19.5x smaller.
CLIPPING also significantly outperforms a state-of-the-art small baseline (ALL-
in-one-B) on the MSR-VTT dataset, obtaining relatively 7.4% performance gain,
with 29% fewer parameters and 86.9% fewer flops. Moreover, CLIPPING is
comparable or even superior to many large pre-training models.

1 INTRODUCTION

Recently, pre-training a vison-language model and then fine-tuning it on downstream tasks are a
popular paradigm (Radford et al. (2021); Li et al. (2021); Jia et al. (2021); Li et al. (2022a); Fu
et al. (2021)). Pre-trained vison-language models (PVLMs) have achieved great success in many
multi-modality tasks (e.g., image-text retrieval, video-text retrieval, image captioning and VQA).
However, PVLMs with the Transformer architecture (especially the vison stream) usually have a
large number of parameters and a huge amount of computation, which are difficult to be deployed
on edge devices such as mobile phones. Recent small models (Mehta & Rastegari (2022); Kumar
et al. (2022); Guo et al. (2022); Li et al. (2022b); Yu et al. (2022); Chen et al. (2022b)) show that
combining Convolutional Neural Networks (CNNs) and Transformers as a hybrid architecture gets
the best of both architectures, but the overall performance of these works is still far away from
satisfactory when compared to large pre-training models. Apparently, knowledge distillation (KD)
(Hinton et al. (2015)) is an efficient technique to transfer the capability of a large model to a small
one while maintaining the accuracy, which has achieved remarkable success in natural language
processing (NLP) (Kim & Rush (2016); Jiao et al. (2020)). In NLP, the Transformer distillation
methods are usually performed at both the pre-training and the fine-tuning stages. However, the
collection and clearning of the pre-training data for the pre-training knowledge distillation cost huge

1In this paper, CLIPPING means cutting something to make it smaller through distilling.
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manpower in multi-modality applications (Jia et al. (2021)). Therefore, it poses a challenge here:
Can the generalization ability of a large pre-training model be transferred to a small model by
only performing knowledge distillation at the fine-tuning stage? To this end, we propose a novel
knowledge distillation method, named CLIPPING, where the plentiful knowledge of a large teacher
model Clip4clip (Luo et al. (2021)) that has been fine-tuned for video-language tasks with the pow-
erful pre-trained CLIP (Radford et al. (2021)) can be effectively transferred to a small student only
at the fine-tuning stage. The contributions of CLIPPING are summarized below:

1) We introduce an efficient approach to distill both the vison knowledge and the cross-modality
knowledge from teacher to a small model without the vison-language pre-training stage. The result-
ing model shows strong performance on multi-modality video tasks, e.g., text-to-video retrieval and
video-to-text retrieval.

2) We propose a layer-wise alignment scheme, called All-Student’s-layers-to-One-Teacher-layer
(AS2OT), for knowledge distillation of the intermediate layers from the Transformer to the CNN
in CLIPPING, where the student’s layers can be regarded as the bases of the teacher’s feature space,
forcing the student model to well absorb the knowledge of the teacher. In our experience, the AS2OT
layer-wise alignment significantly surpasses the previous knowledge distillation methods. We be-
lieve it will become a popular paradigm for knowledge distillation of intermediate features from the
Transformer to the CNN.

3) We present an effective cross-modal knowledge distillation, which includes knowledge from both
the global and local video-caption distributions. We use the video-caption distributions of the teacher
to guide the training of the student. Besides, the student can also benefit from the powerful pre-
trained CLIP that obtains certain local frame-word attention ability via learning from massive data.
This pre-training knowledge can also be effectively transferred to the student by our method, even
though it is just performed at the fine-tuning stage.

4) CLIPPING with MobileViT-v2 (Mehta & Rastegari (2022)) as the vison encoder without any
vison-language pre-training achieves 91.5%–95.3% of the performance of its teacher on video-
language benchmarks, with its vison encoder being 19.5x smaller. CLIPPING also significantly
outperforms a state-of-the-art small baseline (ALL-in-one-B) on the MSR-VTT dataset, obtaining
relatively 7.4% performance gain, with 29% fewer parameters and 86.9% fewer flops. Moreover,
CLIPPING is comparable or even superior to many large pre-training models.

2 RELATIVE WORK

Vison-Language Modeling. Learning from web-collected image-text data, large-scale Vision-
Language Pre-training (VLP) models such as CLIP (Radford et al. (2021)) have recently demon-
strated great success across various downstream tasks. Nowadays, models such as Clip4clip (Luo
et al. (2021)) and MDMMT (Dzabraev et al. (2021)) extended from the pre-trained model CLIP keep
appearing. There are also some end-to-end trainable models (Xu et al. (2021); Bain et al. (2021)),
which are designed to take advantage of both large-scale image and video captioning datasets. All-
in-one (Wang et al. (2022a)) is the first work to consider both efficiency and performance for video-
language retrieval tasks. It introduces a unified backbone that enables the representation learning of
both video-text multimodal and unimodal inputs.

Knowledge Distillation. Knowledge distillation (KD) (Hinton et al. (2015)) is a simple yet effec-
tive technique to improve the performance of a learning model. Earlier works transfer knowledge
embedded in the “logits” learned in a large teacher model to a small student model without sacri-
ficing much performance. Recent works (Chen et al. (2021a;b)) use multiple layers of the teacher
to supervise each layer in the student, where each layer of the student learns the knowledge from
multiple layers of the teacher. (Lin et al. (2022)) proposes a target-aware Transformer and enables
the student to mimic each spatial component of the teacher in each distilled layer to boost the stu-
dent’s performance. For multi-modality KD, (Wang et al. (2021)) designs a fusion-encoder model
as the teacher and introduces cross-modal attention knowledge to train the dual-encoder student
model. The distillation objective is applied at both the pre-training and the fine-tuning stages and
helps the dual-encoder model learn interactions of different modalities. TinyBert (Jiao et al. (2020))
also introduces a two-stage learning framework that performs Transformer distillation at both the
pre-training and the task-specific fine-tuning stages. In this paper, we also focus on KD for transfer-
ring the knowledge of a pre-training vison-language model to a small one but only at the fine-tuning
stage.

2



Under review as a conference paper at ICLR 2023

Figure 1: (a) and (b) are previous methods of intermediate features’ knowledge distillation. LT
j ,

j = 1, 2, ...,M , and LS
i , i = 1, 2, ..., N , are the outputs of the jth and ith layers of the teacher and

the student, respectively. OL2OL is the most common One-Layer-to-One-Layer KD, where it selects
some layers of the teacher and then distills the layers into the student one by one (e.g., from LT

j to
LS
i ). AT2OS (All-Teacher’s-layers-to-One-Student’s-layer) uses all the teacher’s layers to supervise

each layer in the student, where each layer of the student (e.g., LS
i ) learns the knowledge from all

the selected layers of the teacher (
∑M

k=1w
′
ikL

T
k , where w′

ik, k = 1, 2, ...,M , are the knowledge
selection weights with

∑M
k=1w

′
ik = 1). (c) Our AS2OT KD enables each of the teacher’s layers to

pass its knowledge to all the student’s layers (e.g., LT
j →

∑N
k=1 wjkL

S
k ,
∑N

k=1 wjk = 1).

Transformers and CNNs. Over the past ten years, CNNs have been the most popular architecture
for deep learning on visual tasks. However, in the past two years, an amount of works have shown
that Vision Transformers (ViTs) (Dosovitskiy et al. (2021); Liu et al. (2021)) can achieve comparable
or even superior performance. Transformers use self-attention, rather than convolution, to aggregate
global information across locations. For KD, most existing methods distill knowledge either from
a Transformer to another Transformer (T2T) or from a CNN to another CNN (C2C) that computes
the loss in the OL2OL or AT2OS style (see Fig. 1). To the best of our knowledge, KD from a
Transformer to a CNN (T2C) has not been explored yet. The most related work is (Chen et al.
(2022a)) that distills knowledge from a CNN to a Transformer (C2T) in the OL2OL way. However,
previous works (e.g., Raghu et al. (2021)) have investigated the internal representation structures of
ViTs and CNNs, and found striking differences between the two models, such as ViTs having highly
similar representations throughout the model’s layers, while CNNs showing obvious distinction of
representations between lower and higher layers (Raghu et al. (2021)). Considering such striking
differences between ViTs and CNNs, the previous KD (OL2OL and AT2OS) may not be good
distillation ways for our T2C task, which is verified by our experiments.

3 METHOD

We propose to distill both the vison knowledge and the cross-modality knowledge from Clip4clip
to a small model with MobileViT-v2 as its vison encoder for multimodal video tasks, which can get
the best from both sides: powerful multimodal representations of CLIP and efficient mobile vision
Transformer of MobileViT-v2. The overall architecture is illustrated in Fig. 2.

3.1 PRELIMINARIES

Given a batch of videos V and captions T , Clip4clip learns a similarity function s(vi, tj) to calculate
the similarity between a video vi ∈ V and a caption tj ∈ T . It obtains the frames’ representation and
the caption representation in a multi-modal embedding space via CLIP. The frames’ representation
is denoted as Zi = {zi1, zi2, ..., zin}, where n is the number of frames in vi and zik (k = 1, 2, ..., n)
is the class token from the output of the CLIP’s vison encoder corresponding to the kth input frame.
The caption representation is denoted as Wj = {wj1, wj2, ..., wjm}, where m is the number of
words in tj (including [CLS] and [SEP]) and wjm is used as the representation of tj in Clip4clip.
Clip4clip uses a temporal Transformer encoder to obtain the sequential feature, denoted as Z ′

i =
{z′i1, z′i2, ..., z′in} = TemporalTransformer(Zi). Then, the mean pooling is used to aggregate
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Figure 2: Overview of CLIPPING. There are mainly four knowledge distillation (KD) parts: (1)
Temporal KD. (2) Saptial KD. (3) AS2OT KD. (4) Cross-modality KD. The CLIP’s vision encoder
is a Transformer.

the features of all frames to obtain the video representation, zi = 1
n

∑n
k=1 z

′
ik. Finally, the similarity

functions s(vi, tj) and s(tj , vi) are defined as:

s(vi, tj) = w⊤
jmzi, s(tj , vi) = z⊤i wjm. (1)

Nowadays, models such as Clip4clip based on the pre-trained model CLIP have been applied to
many tasks. They pursue better performance with CLIP but have a heavy vison encoder, which
makes them difficult to be deployed on edge devices such as mobile phones. Since MobileViT-
v2 (Mehta & Rastegari (2022)) is a light-weight and mobile-friendly hybrid network, we employ
it as the vison encoder of the student model and maintain the original text encoder and temporal
Transformer of Clip4clip.

3.2 CLIPPING

To distill multimodal knowledge from Clip4clip to the MobileViT-v2-based model, we use four
kinds of knowledge transfer: 1) temporal KD, 2) spatial KD, 3) AS2OT KD, and 4) cross-modality
KD.

3.2.1 TEMPORAL AND SPATIAL KNOWLEDGE DISTILLATION

The temporal KD is motivated by the previous finding that aligning multi-frame dependency from
the teacher to the student can enhance the performance of the student (Liu et al. (2020)), which
encodes the multi-frame dependency into a latent embedding by using a recurrent unit ConvLSTM.
In our architecture, multi-frame dependency is modeled naturally through the temporal Transformer
(Temporal Transformer in Fig. 2), so we define the temporal KD loss as:

LTKD =
1

B

B∑
i=1

DKL(Z
′
i
S , Z ′

i
T ), (2)

where B is the batch size, the superscripts S and T denote the student and the teacher, respectively,
and DKL() is the KL divergence loss function. In addition to imitating the behavior of CLIP for
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Figure 3: Reshaping the features of (a) the student LS
k and (b) the teacher LT

k to the same shape. (c)
Similarity Computation.

each frame, we use spatial KD to align the spatial embeddings of the student and the teacher by:

LSKD =
1

B

B∑
i=1

DKL(Z
S
i , Z

T
i ). (3)

3.2.2 AS2OT KNOWLEDGE DISTILLATION

Recently, it is discovered that distilling intermediate features is more effective (Chen et al. (2021a)).
So in addition to the spatial and temporal KD, we also force the vison encoder of the student to mimic
the intermediate layers of the teacher. In the traditional OL2OL KD, some layers of the teacher are
selected and distilled into the student one by one (Jiao et al. (2020)). However, it is difficult to find
the optimal correspondence between the student and the teacher. The recent AT2OS works (Chen
et al. (2021a;b)) still cannot help the student learn enough knowledge from the teacher when there
is a large architecture gap between them, which is verified in our experiments. For our task, the
student (MobileViT-v2) is a hybrid architecture, which has convolution layers in the shallow stages
and separable self-attention layers in the later blocks. And a separable self-attention layer differs
significantly from the traditional self-attention in two ways: 1) it does not learn an explicit attention
map; 2) its input and output are still 3D, which are more similar to CNN features. Except for the
separable self-attention in the later blocks, the shallow stages with convolution layers undoubtedly
have a huge difference from the Transformer structure in CLIP, which has been investigated in
previous works (Yuan et al. (2021); Raghu et al. (2021)). Therefore, we design AS2OT layer-wise
alignment for KD of the intermediate layers from the Transformer to the CNN.

AS2OT Property. As shown in Fig. 1(c), the student’s layers in our AS2OT KD can be explained
as the bases of the feature space, and each layer of the teacher is a linear combination of the bases.
After training, if the student’s layers do ideally form the bases, the knowledge of the teacher’s layers
is learned completely by the student. Our experiment in Section 4 shows that the teacher’s features
in different layers can be well recovered from the features of the student’s layers. Next, we describe
how to implement AS2OT KD.

Feature Reshaping and Similarity Computation. Let the layers of the teacher and the student be
LayerT = [LT

1 , L
T
2 , . . . , L

T
M ] and LayerS = [LS

1 , L
S
2 , . . . , L

S
N ] (usually M > N ), respectively.

LT
k ∈ RD×L is a 2D tensor, where D is the dimensionality of the token feature and L is the number

of tokens, while LS
k ∈ RCk×Hk×Wk is a 3D tensor, where Ck, Hk and Wk are the channel number,

height and width of the kth CNN layer’s feature. We calculate a similarity tensor W between LS
k

and LT
k , which need to be reshaped first as shown in Figs. 3(a) and (b), respectively. For LS

k , we first
apply a linear operator and then do pixel reshuffle on the result, obtaining L̄S

k , k = 1, 2, ..., N . Next,
L̄S
k is reshaped to L̃S

k . As for LT
k , we remove the class token and obtain a (L−1)×D tensor, denoted

as L̃T
k , k = 1, 2, ...,M . Finally, all L̃S

k , k = 1, 2, ..., N , and L̃T
k , k = 1, 2, ...,M , are represented
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Figure 4: (a) Masks obtained with Eq. 4, where all the L − 1 masks along the k dimension are the
same. (b) Masking the similarity tensor W . (c) AS2OT alignment. LAS2OT is the AS2OT loss.

as L̃ayerS = [L̃S
1 , L̃

S
2 , ..., L̃

S
N ] and L̃ayerT = [L̃T

1 , L̃
T
2 , ..., L̃

T
M ], respectively. After this reshaping,

as shown in Fig. 3(c), we are able to measure the similarities between the intermediate layers of the
student and the teacher through W = L̃ayerT × (L̃ayerS)⊤, W ∈ R(L−1)×M×N .

Masking and AS2OT Alignment. To speed up the training procedure, we design AS2OT KD with
sequential masks, which follow this formula:

mask(i,j) =

{
0, if (j > n0 and i ≤ m0) or (j > n1 andm0 < i ≤ m1)

1, else
, (4)

where i = 1, 2, ...,M , j = 1, 2, ..., N , 1 ≤ m0 < m1 < M , 1 ≤ n0 < n1 < N . And the final
attention mask Mask ∈ R(L−1)×M×N is composed of L − 1 same masks, Fig. 4(a) shows one
example with m0 = 1, n0 = 2,m1 = 3, n1 = 3. mask(i,j) = 0 means to mask all the elements
along the k dimension (Fig. 4(a)) at (i, j) in W , while mask(i,j) = 1 means to maintain their
similarities, as shown in Fig. 4(b). This masking is based on our experimental finding: The student’s
lower-level layers should learn from the teacher’s lower-layers, while the student’s higher layers
should learn from all the teacher’s layers. In Fig. 4(b), we also normalize the masks by performing
softmax along the j dimension on each row, obtaining W̃ = σ(W ◦Mask), where σ is the softmax
function and ◦ denotes the element-wise product. Guided by W̃ , as shown in Fig. 4(c), the weighted
student layers are calculated as: L̃ayerSw = W̃ × L̃ayerS . Each component of L̃ayerSw is the linear
combination of N student layers’ features. Finally, the AS2OT KD loss is defined as:

LAS2OT = DKL(L̃ayer
S
w, L̃ayer

T ). (5)

3.2.3 CROSS-MODALITY KNOWLEDGE DISTILLATION

To further adapt the student’s features to the teacher’s multi-modal feature space, we employ the
teacher’s knowledge of cross-modality distributions to guide the training of the student. Specif-
ically, we characterize the cross-modal distributions from two perspectives, global video-caption
distributions of the teacher and local video-caption distributions of CLIP.

Global Video-Caption Distribution Alignment. We consider both the video-to-caption distribu-
tion AGV C and the caption-to-video distribution AGCV , the elements (s(vi, tj) and s(tj , vi)) of
which are defined via the similarities obtained by Eq. 1:

AGV C = σ

(
s(v1, t1) ... s(v1, tB)

... ... ...
s(vB , t1) ... s(vB , tj)

)
, AGCV = σ

(
s(t1, v1) ... s(t1, vB)

... ... ...
s(tB , v1) ... s(tB , vB)

)
. (6)
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Finally, the global video-caption distribution alignment loss is defined as:

LG = DKL(A
S
GV C , A

T
GV C) +DKL(A

S
GCV , A

T
GCV ). (7)

Local Video-Caption Distribution Alignment. CLIP uses text prompts (such as “A picture of a
()”) for zero-shot image classification. CLIP fills them with different words (e.g., “cat” and “dog”)
and results in different captions (e.g., “A picture of a cat” and “A picture of a dog”). It can match
the captions to the corresponding images, showing some image-word alignment ability. We transfer
this pre-training knowledge to the student through a local frame-word alignment as follows. Recall
that Z ′

i = {z′i1, z′i2, ..., z′in} and Wj = {wj1, wj2, ..., wjm} are the features of the video vi and the
caption tj , respectively, with n being the number of frames in vi and m the number of words in tj
(Section 3.1). The similarity between the kth frame and the rth word is defined as sfw(wjr, z

′
ik) =

(wjr)
⊤z′ik. Then we respectively define the local video-to-caption and caption-to-video similarities

as:

s′(vi, tj) =
1

n

n∑
k=1

max
1≤r≤m

{sfw(wjr, z
′
ik)}, s′(tj , vi) =

1

m

m∑
r=1

max
1≤k≤n

{sfw(z′ik, wjr)}. (8)

Finally, we have the local video-to-caption distribution ALV C and the local caption-to-video distri-
bution ALCV :

ALV C = σ

(
s′(v1, t1) ... s′(v1, tB)

... ... ...
s′(vB , t1) ... s′(vB , tB)

)
, ALCV = σ

(
s′(t1, v1) ... s′(t1, vB)

... ... ...
s′(tB , v1) ... s′(tB , vB)

)
, (9)

and the local caption-video distribution alignment loss is defined as:

LL = DKL(A
S
LCV , A

T
LCV ) +DKL(A

S
LV C , A

T
LV C). (10)

Combining LG and LV , the cross-modality KD loss is:
LCM = 0.5 · LG + 0.5 · LL. (11)

The total loss for training our model is:
L = Ltask + α · LTKD + β · LSKD + γ · LCM + δ · LAS2OT , (12)

where Ltask is the task-specifical loss, and α, β, γ and δ are loss balance weights.

4 EXPERIMENTS

We conduct comprehensive experiments on three benchmarks for video-text retrieval (video-to-text
(v2t) and text-to-video (t2v)): MSR-VTT (Xu et al. (2016)), MSVD (Chen & Dolan (2011)) and
LSMDC (Rohrbach et al. (2015)). The metrics Recall at rank 1 (R@1), rank 5 (R@5) and rank 10
(R@10) are used for evaluation.

4.1 COMPARISON WITH STATE-OF-THE-ARTS

In Table 1, we compare the proposed model CLIPPING with eight state-of-the-art methods on MSR-
VTT: TACo (Yang et al. (2021)), VideoClip (Xu et al. (2021)), Frozen (Bain et al. (2021)), VIOLET
(Fu et al. (2021)), OA-Trans (Wang et al. (2022b)), BridgeFormer (Ge et al. (2022)), ALL-in-one
(Wang et al. (2022a)) and MDMMT (Dzabraev et al. (2021)). It can be seen that CLIPPING sig-
nificantly surpasses those large-scale video-text/image-text pre-training models for video-text re-
trieval. For example, our model exceeds VideoClip and Frozen by absolute 9.8% t2vR@1 and 8.2%
t2vR@1, respectively. In addition, CLIPPING also outperforms the small model ALL-in-one-B
even though CLIPPING is smaller. Note that the model MDMMT uses CLIP as its backbone, while
our CLIPPING uses CLIP as the teacher. The results on the MSVD and LSMDC datasets are given
in the supplementary materials.

In Fig. 5, we show the performances and Flops of these models. Among previous models, MDMMT
has the best performance and ALL-in-one-S is the fastest. CLIPPING not only obtains relative 4.6%
performance gain over MDMMT but also is faster than All-in-one-S.
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Figure 5: Flops and Performances.

Table 1: Comparison with state-of-the-art models on MSR-VTT
(1k split) for text-to-video retrieval. “PT Datasets”: datasets used
for pre-training the vision encoder. “HT100M”: HowTo100M
dataset (Miech et al. (2019)). “C400M”: CLIP-400M dataset
(Radford et al. (2021)). “IN21K”: ImageNet21K dataset (Deng
et al. (2009)). “W2M”: WebVid-2M dataset (Bain et al. (2021)).
“C3M”: CC3M dataset (Sharma et al. (2018)). “COCO”: COCO
dataset (Chen et al. (2015)). “AudioSet”: AudioSet dataset (Kong
et al. (2018)).

Model PT Datasets Params R@1 R@5 R@10
TACo HT100M 212M 28.4 57.8 71.2

VideoClip HT100M 130M 30.9 55.4 66.8
Frozen C3M,W2M,COCO 232M 32.5 59.5 70.5

ALL-in-one-S W2M,HT100M 33M 33.5 - -
VIOLET C3M,W2M 198M 34.5 63.0 73.4
OA-Trans C3M,W2M 232M 35.8 63.4 76.5

BridgeFormer C3M,W2M 160M 37.6 64.8 75.1
ALL-in-one-B W2M,HT100M 110M 37.9 68.1 77.1

MDMMT C400M,AudioSet 226M 38.9 68.3 78.8
CLIPPING (our) IN21K 78.1M 40.7 68.5 78.9

Table 2: Ablation study of different KD components of CLIPPING on the 1k validation set of MSR-
VTT. The first row is the results of the teacher model (Clip4clip). T , S, AS2OT , CMG and CML

denote temporal KD, spatial KD, AS2OT KD, global cross-modality KD and local cross-modality
KD, respectively.

Vison Encoder PT Dataset Params Flops KD Types t2vR@1 v2tR@1
CLIPvision C400M 87.8M 8.6G - 44.5 42.2

MobileViTv2 IN21K 4.5M 1.4G - 25.7 24.5
MobileViTv2 IN21K 4.5M 1.4G T 28.8 27.3
MobileViTv2 IN21K 4.5M 1.4G T ,S 33.0 32.8
MobileViTv2 IN21K 4.5M 1.4G T ,S,AS2OT 37.6 36.2
MobileViTv2 IN21K 4.5M 1.4G T ,S,AS2OT ,CMG 39.6 39.1
MobileViTv2 IN21K 4.5M 1.4G T ,S,AS2OT ,CMG,CML 40.7 40.2

4.2 ABLATION STUDY

Key Components. We provide detailed ablation
study to validate each key component of our pro-
posed method, on MSR-VTT. From Table 2, we
can see that without any KD, it gets extreme low
accuracies. When simply adding the temporal
KD and spatial KD, t2vR@1 and v2tR@1 in-
crease significantly. When we further add AS2OT
KD, and then global and local cross-modality KD,
CLIPPING’s performance rises gradually. This
study shows that all these key components of
CLIPPING are effective. Compared with the
teacher, the full CLIPPING achieves about 91.5%
and 95.3% of the performance of its teacher on
t2vR@1 and v2tR@1, respectively, with the vi-
son encoder of 19.5x smaller.

Table 3: Ablation study of different KD types
on MSR-VTT (1k split). All the models are
trained for 36 epochs with the same setting
(see the supplementary materials for details).

KD Types t2vR@1 v2tR@1
T , S 33.0 32.8

T , S, OL2OL 34.6 33.4
T , S, AT2OS 35.1 34.4

T , S, AS2OTw/o masking 37.1 35.7
T , S, AS2OTw/ masking 37.6 36.2

KD Types. In Table 3, we compare the proposed AS2OT KD with the previous OL2OL KD and
AT2OS KD (Fig. 1). For AS2OT and AT2OS, the same layers of the student and the teacher are used
for KD, the details of which are give in the supplementary materials. From Table 3, we can see that
AT2OS performers better than OL2OL, and our AS2OT outperforms AT2OS. In Section 3.2.2, we
use masking to speed up the training. In this study, we also compare “with masking” and “without
masking”. The last two rows of Table 3 verify that the masking is beneficial.
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Figure 6: (a) Feature tensors of the student and the teacher. (b) Examples to demonstrate that the
teacher’s features are the linear combinations of the student features.

AS2OT Property. The student’s layers in our AS2OT KD can be explained as the bases of the
feature space, and each layer of the teacher is a linear combination of the bases (Section 3.2). In
Fig. 6, we show that this property holds. In AS2OT KD, the student has 4 layers and the teacher
has 12 layers. We randomly pick 3 image examples, and for each example, we select the features
of one random token (in the k dimension in Fig. 6(a)). After training, the linear combinations
W̃ × L̃ayerS = L̃ayerSw show feature patterns very similar to the teacher’s features (L̃ayerT ).
This property verifies that the teacher’s knowledge is fully absorbed by the student.

5 CONCLUSION
In this paper, we propose a novel knowledge distillation method that is specially designed for small
vison-language models. It includes temporal KD, spatial KD, AS2OT KD and cross-modality KD.
Especially, the AS2OT KD has the property of the student’s layers being the bases of the feature
space. After training, the teacher’s features are the linear combinations of the bases, indicating that
the student has fully absorbed the knowledge of the teacher. Our method CLIPPING can achieve
91.5%–95.3% of the performance of its teacher on three retrieval benchmarks without any vison-
language pre-training KD. CLIPPING significantly outperforms a state-of-the-art small baseline
ALL-in-one-B. Moreover, it is comparable or even superior to many large pre-training models. In
the feature, we will apply CLIPPING to other vison-language models for compression.
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