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ABSTRACT

While action recognition has been an active research area for several years, most
existing approaches merely leverage the video modality as opposed to humans that
efficiently process video and audio cues simultaneously. This limits the usage of
recent models to applications where the actions are visually well-defined. On the
other hand, audio and video can be perceived in a hierarchical structure, e.g., from
audio signal per sampling time point to audio activities and the whole category
in the audio classification. In this work, we develop a multiscale multimodal
Transformer (MMT) that employs hierarchical representation learning. Particularly,
MMT is composed of a novel multiscale audio Transformer (MAT) and a multiscale
video Transformer (Li et al., 2022b). Furthermore, we propose a set of multimodal
supervised contrastive objectives called audio-video contrastive loss (AVC) and
intra-modal contrastive loss (IMC) that specifically align the two modalities for
robust multimodal representation fusion. MMT surpasses previous state-of-the-art
approaches by 7.3%, 1.6% and 2.1% on Kinetics-Sounds, Epic-Kitchens-100 and
VGGSound in terms of the top-1 accuracy without external training data. Moreover,
our MAT significantly outperforms AST (Gong et al., 2021) by 22.2%, 4.4% and
4.7% on the three public benchmark datasets and is 3× more efficient based on
the number of FLOPs. Through extensive ablation studies and visualizations, we
demonstrate that the proposed MMT can effectively capture semantically more
separable feature representations from a combination of video and audio signals.

1 INTRODUCTION

Several visual recognition tasks have made tremendous progress in recent years due to the availability
of massive annotated datasets and recent advances in Transformer architectures (Dosovitskiy et al.,
2021). However, unlike humans that have an innate ability to combine data from various modalities,
existing deep learning based approaches are largely dependent on visual cues as an information
source. We believe that in order to achieve human-level perception and improve accuracy, an
action recognition framework should be able to construe and rationalize information from multiple
modalities. For instance, Fig. 1 depicts “woodpecker pecking tree” (the 1st row) and “footsteps on
snow” (the 5th row) in VGGSound test set (Chen et al., 2020) where video only model, MViTV2 (Li
et al., 2022b), incorrectly predicts them as “playing glockenspiel” (the 2nd row) and “female singing”
(the 6th row). Combining the audio signal, our multiscale multimodal Transformer can successfully
detect the sound emitting objects, i.e., a woodpecker and shoes, in the 4th and 8th rows from the
GradCam (Selvaraju et al., 2017) visualizations. Relying on visual information alone is not sufficient
and can lead to misclassifications. In this work, we propose a unified architecture that is able to
process multiple modalities for video classification.

Understanding videos essentially implies learning efficient spatio-temporal representations, which is
a fundamental task in the computer vision community. A majority of earlier works primarily employ
3D convolutional models, such as C3D (Tran et al., 2015) or I3D (Carreira & Zisserman, 2017), that
suffer from several shortcomings. Particularly, inductive biases like local connection, translation
invariance, and a locally constrained receptive field substantially restrict the learning ability of
convolutional models on huge datasets (Dosovitskiy et al., 2021). Hence, recent efforts have been
heavily dependent on Transformer based architectures. Specifically, several approaches (Bertasius
et al., 2021; Arnab et al., 2021) apply the Transformer architecture directly to videos, which are
computationally inefficient (Arnab et al., 2021). Recently, Li et al. (2022b); Fan et al. (2021); Li
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Figure 1: Two test cases, “woodpecker pecking tree” (the 1st-4th rows) and “footsteps on snow” (the
5th-8th rows), in VGGSound test set. Video only model, MViTV2 (Li et al., 2022b), incorrectly
predicts them as “playing glockenspiel” and “female singing” in the 2nd and 6th rows. AVBottleneck
in Sec. 3.4 incorrectly predicts the first case as “playing didgeridoo” in the 3rd row. GradCam (Sel-
varaju et al., 2017) visualizations in the 6th row indicate that MViTV2 mistakenly considers the text
as lyrics. The 4th and 8th rows show that our MMT can align the sound with the objects, i.e., a
woodpecker and shoes.

et al. (2022a) propose multiscale video representation learning and pooling attention to overcome the
computational cost involved and achieve the best action recognition accuracy.

On the other hand, self-supervised representation learning is prevailing, and it can fully exploit the
data property and reduce the effect of inaccurate or insufficient supervised data during the training.
Multimodal inputs construct multiview of each instance, and contrastive learning can be applied to
multimodal signals (Zellers et al., 2022; Yang et al., 2022; Akbari et al., 2021). The self-supervised
contrastive learning between multimodal signals aligns the feature embedding and enhances the
multimodal fusion (Li et al., 2021).

Leveraging hierarchical representation learning from dense and simple to coarse and complex, in
this work, we propose a novel multimodal Transformer to extract a joint spatio-temporal and audio
representation from video and audio data sources. Specifically, the multimodal Transformer efficiently
learns multiscale hierarchical representations in both audio and video encoders. To augment the
learning efficiency of the multimodal Transformer, we propose a supervised multimodal alignment
loss function, called audio-video contrastive (AVC) learning. The proposed loss aligns multimodal
representations from the same class instead of from the same instance in previous work. Similarly,
we further incorporate label supervision into intra-modality contrastive learning. Our multimodal
Transformer, called multiscale multimodal Transformer (MMT), and multiscale audio Transformer
(MAT) outperform previous state-of-the-art counterparts on three public datasets. Our contributions
can be summarized as follows:

• We propose a novel multiscale audio Transformer (MAT), leveraging the multiscale hier-
archical representation learning in audio classification. MAT progressively increases the
channel capacity of the intermediate latent sequence while reducing its temporal length for
audio classification.

• We construct a novel multiscale multimodal Transformer (MMT), which employs the
proposed MAT and one of the current state-of-the-art video Transformers (Li et al., 2022b).
To learn compact and discriminative modality representations for multimodal feature fusion,
we develop audio-video contrastive loss and intra-modality contrastive loss considering
label supervision.
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Figure 2: Framework of multiscale multimodal Transformer, MMT, where multimodal inputs are
frame sequence Vi and audio spectrogram Ai from the i-th video. The multiscale audio Transformer,
MAT, learns hierarchical representations, which can effectively model the temporal dependencies
in audio signals since audio signal has the hierarchical structure naturally, ranging from signal at
per time point to a voice activity segment and the whole audio representation. Next, we build
multimodal audio-video bottleneck tokens, {EF

1 , · · · , EF
L }, to efficiently learn the cross-modality

fusion from multiscale audio and video representations. Supervised audio-video contrastive loss and
intra-modality contrastive loss encourage learning compact and discriminative representations.

• Experiments on three public datasets, Kinetics-Sounds (Arandjelovic & Zisserman, 2017),
Epic-Kitchens-100 (Damen et al., 2021a) and VGGSound (Chen et al., 2020), show that
MAT outperforms the previous audio Transformer (Gong et al., 2021) by 22.2%, 4.4% and
4.7%, respectively, in terms of top-1 accuracy. MMT surpasses the previous state-of-the-art
counterparts by 7.3%, 1.6% and 2.1% on the three datasets without external training data.

2 RELATED WORK

Learning effective audio-visual representations for video or audio classification can be improved by
leveraging the natural alignment between audio and visual data (Owens et al., 2016; 2018; Alwassel
et al., 2020; Patrick et al., 2020; Korbar et al., 2018; Chen et al., 2021b; Asano et al., 2020; Nagrani
et al., 2021; Cheng et al., 2020). Moreover, audio-visual learning has several applications such as
video sound localization, (Owens & Efros, 2018; Tian et al., 2018; Arandjelovic & Zisserman, 2018;
Gao & Grauman, 2019; Chen et al., 2021a; Afouras et al., 2020b;a; Qian et al., 2020; Xu et al., 2020;
Tzinis et al., 2021; Zhao et al., 2018; 2019), audio-visual synchronization (Ebeneze et al., 2021),
person-clustering in videos (Brown et al., 2021), (visual) speech and speaker recognition (Afouras
et al., 2018; Nagrani et al., 2020), and audio synthesis using visual information (Zhou et al., 2019;
Goldstein & Moses, 2018; Gan et al., 2020; Koepke et al., 2020).

Video is a natural source of multimodal data. For extracting the visual features, previous approaches
propose using a 3D-CNN, e.g., C3D (Tran et al., 2015), R(2+1)D (Tran et al., 2018) or I3D (Carreira
& Zisserman, 2017). Recently, multimodal Transformers (Nagrani et al., 2021; Akbari et al., 2021;
Zellers et al., 2022) employ vision Transformer (Dosovitskiy et al., 2021) with limited number of
frames, e.g., eight frames, to extract visual features. For spatio-temporal representation learning,
ViViT (Arnab et al., 2021) and TimeSformer (Bertasius et al., 2021) study various factorization
methods along spatial- and temporal-dimensions. MViT (Fan et al., 2021; Li et al., 2022b) conducts
a trade-off between resolution and the number of channels to learn a hierarchy from simple dense
resolution and fine-grained features to complex coarse features. We leverage advanced multiscale
hierarchy feature learning for both audio and video in our multimodal Transformer.
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Figure 3: One block of multiscale audio Transformer (MAT). The pooling strategy in the block
permits to construct representations from dense to coarse resolution and is able to effectively learn
hierarchical audio representations.

Contrastive self-supervised learning can be used to align multimodal representation from different
sources (Oord et al., 2018; Li et al., 2021). Yang et al. (2022) introduce intra-modality contrastive
learning into multimodal fusion and obtain a better accuracy. Integrating label supervision into
contrastive learning (Khosla et al., 2020) can further boost supervised learning. We enforce category
discriminative cross-modality contrastive learning and intra-modality contrastive learning instead of
instance discriminative contrastive learning in the multimodal Transformer.

3 MULTISCALE MULTIMODAL TRANSFORMER

Multiscale multimodal Transformer, as illustrated in Fig. 2, has three main components, multiscale
modality specific encoders including multiscale audio Transformer and multiscale video Trans-
former (Li et al., 2022b), multi-modal fusion, and multimodal learning objectives consisting of
advanced audio-video contrastive loss, intra-modality contrastive loss and multimodal supervised
cross-entropy loss.

3.1 MULTISCALE AUDIO TRANSFORMER

We can perceive an audio sequence in a hierarchical structure, from a signal value at each sampling
time point to audio activities and an audio classification category. Therefore, hierarchical representa-
tion learning from audio spectrogram, which progressively reduces the temporal length and increases
the channel dimensions, improves audio-based action recognition. Leveraging the current state-of-
the-art multiscale vision Transformer (Li et al., 2022b), we construct a multiscale audio Transformer
with audio spectrogram A ∈ RD×T as input, where D is the number of triangular mel-frequency
bins, and T is the temporal length. The multiscale audio Transformer is illustrated in Fig. 3. One
block of multiscale audio Transformer can be a stack of multihead multiscale self-attention (MMSA),
layer normalization (LN) and multilayer perceptron (MLP)

A′ = MMSA(LN(A)) + P(A), Block(A) = MLP(LN(A′)) +A′, (1)

where P is a pooling operator. One attention in multihead multiscale self-attention (Li et al., 2022b)
(MSAttn) can be formulated as

Q = PQ(AWQ), K = PK(AWK), V = PV (AWV ),

MSAttn(A) = Q+ Softmax((QKT + E(rel))/
√
d)V,

(2)

where E(rel) = Qi ·Rp(i),p(j) = Qi · (Rt
t(i),t(j) +Rf

f(i),f(j)), R
t and Rf are positional embeddings

along the temporal and feature axes, and d is the embedding dimension.

Compared with the previous audio spectrogram Transformer (Gong et al., 2021), multiscale audio
Transformer can efficiently extract representation that effectively models hierarchical characteristics
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of audio signals. In section 4, we demonstrate that the multiscale audio Transformer significantly
reduces the number of parameters and FLOPs required. Using multiscale representation permits to
use a larger batch size for improving the following supervised multimodal contrastive learning.

3.2 AUDIO-VIDEO CONTRASTIVE LEARNING

Multimodal inputs can naturally be considered as multiple views for the same instance in contrastive
learning. Previous image-text Transformer (Li et al., 2021) shows that the image-text contrastive loss
yields a better accuracy. The cross-modality contrastive learning aligns inter-modality representations,
which benefits the following cross-modality fusion. The cross-modality alignment contrastive learning
can be enhanced by considering label supervision to learn compact and discriminative representations.

After multiscale audio Transformer and multiscale video Transformer, we obtain audio embeddings
{EA

CLS , E
A
1 , · · · , EA

M}, and video embeddings {EV
CLS , E

V
1 , · · · , EV

N}, where M is the number of
audio tokens andN is the number of video tokens. The audio-video contrastive loss can be formulated

LAV C = −E(A,V )∈D[yAV log
exp((gA(E

A
CLS)

T gV (E
V
CLS))/τ)∑

(A,V )∈D exp((gA(EA
CLS)

T gV (EV
CLS))/τ)

], (3)

where D is the multimodal input consisting of audio A and video V signals, yAV is an indicator
that the current A and V are from the same category or not, τ is a temperature parameter, gA and
gV are linear embedding layers for audio representation EA

CLS and video representation EV
CLS ,

respectively. The dot product gA(·)T gV (·) measures the similarity of audio and video embedding,
and the supervised audio-video contrastive learning LAV C penalizes the distribution divergence of
audio and video representations for the same category, which enhances the following cross-modality
representation learning.

3.3 INTRA-MODALITY CONTRASTIVE LEARNING

The cross-modality fusion can also benefit from compact intra-modality representations. Yang et al.
(2022) employs multiple views from data augmentation to construct intra-modality contrastive loss.
We further consider label discriminative supervision into intra-modality contrastive loss

LV
IMC = −E(V1,V2)∈D[yV1V2

log
exp((gV (E

V1

CLS)
T gV (E

V2

CLS))/τ)∑
(V1,V2)∈D exp((gV (E

V1

CLS)
T gV (E

V2

CLS))/τ)
],

LA
IMC = −E(A1,A2)∈D[yA1A2

log
exp((gA(E

A1

CLS)
T gA(E

A2

CLS))/τ)∑
(A1,A2)∈D exp((gA(E

A1

CLS)
T gA(E

A2

CLS))/τ)
],

(4)

where yV1V2
and yA1A2

are indicators that the current V1 and V2 or A1 and A2 are from the same
category or not, respectively. The supervised intra-modality contrastive loss enables to learn discrimi-
native and compact modality representations.

3.4 LEARNING FROM MULTIMODAL VIDEO

AVBottleneck Previous cross-modality Transformers either simply concatenated multimodal
representations (Akbari et al., 2021), or exchanged the key and value matrices between the two
modalities (Hendricks et al., 2021). However, due to the huge GPU memory consumption of the
existing video Transformer, we construct an audio-video bottleneck Transformer, AVBottleneck,
which handles varied lengths of modality tokens efficiently as illustrated in Fig. 2, inspired by the cross
modality fusion between audio and image Transformers (Nagrani et al., 2021). Let {EF

1 , · · · , EF
L } be

the initial multimodal tokens, and L be the number of multimodal tokens. Without loss of generality,
we omit the layer number in the denotation. One multimodal bottleneck Transformer block can be
formulated as

EV F = [EV
CLS , E

V
1 , · · · , EV

N , E
F
1 , · · · , EF

L ], ẼV F = MSA(LN(EV F )) + EV F ,

ÊV F = MLP(LN(ẼV F )) + ẼV F , EAF = [EA
CLS , E

A
1 , · · · , EA

M , Ê
F
1 , · · · , ÊF

L ],

ẼAF = MSA(LN(EAF )) + EAF , ÊAF = MLP(LN(ẼAF )) + ẼAF ,

(5)

where multimodal tokens can be updated by averaging the multimodal tokens along all the AVBottle-
neck blocks. The multimodal bottleneck Transformer can be stacked into K blocks.
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Kinetics-Sounds VGGSound
Models Modal. Top-1 Top-5 Top-1 Top-5

Chen et al. (2020) A N/A N/A 48.8 76.5
AudioSlowFast (Kazakos et al., 2021) A N/A N/A 50.1 77.9
MBT (Nagrani et al., 2021) A 52.6 71.5 52.3 78.1

MAT (Ours) A 74.8 (22.2%↑) 93.1 57.0 (4.7%↑) 81.3

AVSlowFast, R101 (Xiao et al., 2020) A, V 85.0 N/A N/A N/A
MBT (Nagrani et al., 2021) V 80.7 94.9 51.2 72.6
MBT (Nagrani et al., 2021) A, V 85.0 96.8 64.1 85.6

MMT (Ours) A, V 92.3 (7.3%↑) 99.2 66.2 (2.1%↑) 85.7

Models Modalities Verb Noun Action FLOPs (G)

Damen et al. (2021a) A 42.1 21.5 14.8 -
AudioSlowFast (Kazakos et al., 2021) A 46.5 22.8 15.4 -
MBT (Nagrani et al., 2021) A 44.3 22.4 13.0 131

MAT (Ours) A 50.1 24.2 17.4 (2.0%↑) 46.2

TSN (Wang et al., 2016) V, F 60.2 46.0 33.2 -
TRN (Zhou et al., 2018) V, F 65.9 45.4 35.3 -
TBN (Kazakos et al., 2019) A, V, F 66.0 47.2 36.7 -
TSM (Lin et al., 2019) V, F 67.9 49.0 38.3 -
SlowFast (Feichtenhofer et al., 2019) V 65.6 50.0 38.5 -
MBT (Nagrani et al., 2021) V 62.0 56.4 40.7 140
MBT (Nagrani et al., 2021) A, V 64.8 58.0 43.4 317
ViViT-L/16×2 (Arnab et al., 2021) V 66.4 56.8 44.0 3410
MFormer-HR (Patrick et al., 2021) V 67.0 58.5 44.5 959
MeMViT, 16×4 (Wu et al., 2022) V 70.6 58.5 46.2 59

MMT (Ours) (16 frames) A, V 70.1 61.0 47.8 (1.6%↑) 206

Table 1: Comparison to previous related state-of-the-art on Kinetics-Sounds (left), VGGSound (right)
and Epic-Kitchens-100 (16 frames) (bottom). We report top-1 and top-5 classification accuracy on
Kinetics-Sounds and VGGSound. A: Audio, V: Visual. F: Optical flow.

Computational complexity The multimodal bottleneck Transformer reduces the computing com-
plexity from O((M +N)2) in merged concatenation based multimodal attention (Akbari et al., 2021)
to O((M +L)2) +O((N +L)2) ≈ O(M2) +O(N2), which is the sum of complexity in one block
of audio and video Transformers approximately, since L � M,N . Here, O(M2) and O(N2) are
the complexities of video and audio Transformers, where M and N are the numbers of tokens in the
video and audio Transformers, respectively.

Finally, we concatenate the video and audio representations [EV
CLS , E

A
CLS ] and pass it through a

fully connected layer for multimodal classification. The supervised multimodal loss is formulated as

LAV
CLS = − 1

n

n∑
i=1

C∑
c=1

[yi(c) log p
AV
i (c)], (6)

where pAV
i (c) is the multimodal classification probability for the i-th video and label index c. A

hybrid loss consisting of multimodal video classification and supervised multimodal contrastive
learning objectives forces the multimodal Transformer to learn effectively from the training data.

L = LAV
CLS + λ1LAV C + λ2

(LV
IMC + LA

IMC)

2
, (7)

where λ1, and λ2 are hyperparameters to balance the loss terms in the training. The inference is
consistent with the training, and we use the multimodal prediction pAV directly.
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Models Top-1 Top-5

Video Only 91.6 98.8
Avg 92.0 99.1
AVBottleneck 91.2 99.1
+AL 91.4 99.0
+AVC 92.2 99.1
+AVC+IM AL 92.2 99.1
+AVC+IMC 92.3 99.2

Models Top-1 Top-5

Video Only 56.1 77.9
Avg 62.4 84.1
AVBottleneck 63.3 84.1
+AL 63.5 84.2
+AVC 64.9 85.4
+AVC+IM AL 65.7 85.9
+AVC+IMC 66.2 85.7

Models Video Only Avg AVBottleneck +AL +AVC +AVC+IM AL +AVC+IMC

Verb 67.5 68.7 69.8 69.8 70.0 69.6 70.1
Noun 59.2 59.2 59.4 59.9 60.0 60.1 61.0

Action 46.5 46.5 46.9 46.6 47.4 47.3 47.8

Table 2: Ablation study on Kinetics-Sounds (left), VGGSound (right), Epic-Kitchens-100 (bottom).

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We experiment with three video classification datasets – Kinetics-Sounds (Arandjelovic & Zisserman,
2017), Epic-Kitchens-100 (Damen et al., 2021a; 2018; 2021b), and VGGSound (Chen et al., 2020).

Kinetics-Sounds is a commonly used subset of Kinetics (Kay et al., 2017), which consists of 10-
second videos sampled at 25fps from YouTube. As Kinetics-400 is a dynamic dataset and videos
may be removed from YouTube, we follow the dataset collection protocol in Xiao et al. (2020), and
we collect 22,914 valid training multimodal videos and 1,585 valid test multimodal videos.

Epic-Kitchens-100 consists of 90,000 variable length egocentric clips spanning 100 hours capturing
daily kitchen activities. The dataset formulates each action into a verb and a noun. We employ two
classification heads, one for verb classification and the other one for noun classification. It should be
noted that the dataset mainly consists of short clips with an average length of 2.6 seconds.

VGGSound is a large scale action recognition dataset, which consists of about 200K 10-second
clips and 309 categories ranging from human actions and sound-emitting objects to human-object
interactions. Like other YouTube datasets, e.g., K400 (Kay et al., 2017), some clips are no longer
available. After removing invalid clips, we collect 159,223 valid training multimodal videos and
12,790 valid test multimodal videos.

Implementation details We employ 16 frames for multiscale video Transformer and 5 ensemble
views in the inference. Due to the efficiency of multiscale audio Transformer, we are able to
train the model using a batch size of 64 on 8 NVIDIA A100 GPUs, each with 40 GB of memory.
Following Nagrani et al. (2021), we set the numbers of AVBottleneck blocks K and tokens L as
4. τ is fixed as 0.07 and the dimensions of gA and gV are fixed as 256 following Li et al. (2021).
For hyperparameters in multiscale audio Transformer, we follow MViTv2-B and use ImageNet-1K
pretrained weights. AdamW (Loshchilov & Hutter, 2018) is used in the backpropagation and the
learning rate is set as 0.0001. The number of epochs is set as 100. We set λ1 and λ2 as 0.25, 0.25 for
the first 20 epochs, 0.1, 0.1 from the 21- to 40-th epochs, and 0.05, 0.05 after the 40-th epochs. These
hyperparameters are generally set to tune the loss values into the same scale. Other hyperparameters
follow the recipe of MViTv2-B (Li et al., 2022b).

4.2 RESULTS

Comparison to state-of-the-art Multiscale audio Transformer (MAT) outperforms previous audio
Transformer Gong et al. (2021) by 22.2%, 4.4% and 4.7% on Kinetics-Sounds (Arandjelovic &
Zisserman, 2017), Epic-Kitchens-100 (Damen et al., 2021a) and VGGSound (Chen et al., 2020)
in Table 1, which demonstrates that the multiscale representation learning effectively models the
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Figure 4: The t-SNE visualization (Van der Maaten & Hinton,
2008) of representations from audio only model (a), video only
model (b) and our MMT (c) for random 50 categories on the test
set of VGGSound.

Video Audio Ours

ARI 0.394 0.370 0.400
HS 0.722 0.718 0.740

Table 3: Statistical metrics, ad-
justed rand index (ARI) and ho-
mogeneity score (HS), for repre-
sentations of all categories on VG-
GSound test set. Best scores are
in bold face. Our MMT learns a
compact and discriminative repre-
sentation.

Figure 5: Visualization of three test cases in VGGSound. From top to bottom, we show 16 frames
from the raw video, GradCAM (Selvaraju et al., 2017) of video only model (MViTV2), AVBottleneck,
MMT (ours). With well-designed strategies to learn audio and video fusion, we demonstrate that
MMT can effectively understand the clip.
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hierarchical characteristics in audio signals. Multiscale multimodal Transformer (MMT) surpasses
its previous state-of-the-art counterparts by 7.3%, 1.6% and 2.1% on the three public datasets based
on top-1 accuracy, which shows the advantage of multiscale audio Transformer, and supervised
audio-video contrastive loss and intra-modality contrastive loss. The FLOPs and #Params of our
multiscale audio Transformer are 46.2G and 52M, compared with 131G FLOPs and 87M #Params in
AST (Gong et al., 2021). The multiscale audio Transformer is 3× more efficient than AST, and the
multiscale multimodal Transformer is 1.5× more efficient than MBT (Nagrani et al., 2021) based on
the number of FLOPs.

The ablations study w.r.t. video only, simple averaging audio only and video only predictions (Avg),
AVBottleneck in section 3.4, with multimodal alignment loss (Li et al., 2021) (AL), LAV C (AVC),
intra-modality alignment loss (Yang et al., 2022) (IM AL) and LIMC (IMC) are shown in Table 2
on the three datasets. From the table, we can find that 1) multimodal model outperforms one of
the current state-of-the-art video Transformers (Li et al., 2022b) by a large margin, especially on
VGGSound (+10.1%) and Epic-Kitchens-100 (+1.3%), 2) our multiscale multimodal Transformer
with multimodal supervised contrastive learning surpasses simply fusion strategies, i.e., Avg and
AVBottleneck, 3) supervised multimodal contrastive losses in multimodal Transformer, i.e., AVC
and IMC, achieve better accuracy than their naı̈ve contrastive learning counterparts, i.e., AL and IM
AL, because the supervised contrastive learning (Khosla et al., 2020) can effectively use the label
supervision and learns a compact discriminative representation.

Visualizations We randomly pick three test clips with category names of “baby crying”, “volcano
explosion”, and “popping popcorn” from VGGSound test set, and visualize 16 frames of raw video,
GradCAM (Selvaraju et al., 2017) of video only model, AVBottleneck, and the fully trained multiscale
multimodal Transformer (MMT) sequentially. From the first test case (the 1-4th rows), we can find
the video only model focuses on the body of the baby and incorrectly predicts this clip as “people
screaming”. With audio signal and supervised multimodal contrastive learning, the full MMT is able
to align the audio and video well, and focuses only on the mouth of the baby to obtain the correct
prediction. From the second test case (the 5-8th rows), we find that AVBottleneck in the 7th row
cannot capture the fog and mountain, and it incorrectly predicts the clip as “mouse clicking”. From
the third case (the 9-12th rows), we find that the video only model does not have any attention on
the pop-corn machine and only pays attention to human and the background table, and incorrectly
predicts the clip as “eating with cutlery”, whereas MMT with audio signal and the advanced loss
function can fully interpret the underlying action in the clip.

We also employ t-SNE (Van der Maaten & Hinton, 2008) to visualize the feature representations from
the second to the last layer in multiscale audio Transformer (a), multiscale video Transformer (b), and
our multiscale multimodal Transformer (c) on VGGSound dataset in Fig. 4. For clarity, we randomly
choose 2,000 test samples and 50 categories in the visualization. From the figure, we can find that
our MMT learns a compact and discriminative representation. In Table 3, we compare the feature
representations for all the categories using two statistical metrics on VGGSound test set. The adjusted
rand index (ARI) (Hubert & Arabie, 1985) computes a similarity measure between the clusters and
the ground truth categories. The homogeneity score (HS) (Rosenberg & Hirschberg, 2007) checks
if a cluster contains samples belonging to a single class. Both metrics can be used to evaluate the
compactness and correctness of representation learning methods, and a higher value means a better
model. From the table, MMT achieves the best score based on the two metrics, which validates that
MMT with supervised contrastive learning can effectively learn from audio and video data sources.

5 CONCLUSION

In this work, we have presented an effective multiscale audio Transformer, MAT, for audio classifica-
tion, as well as a multiscale multimodal Transformer, MMT, for multimodal action recognition. MMT
leverages advanced multiscale Transformers, supervised audio-video contrastive loss and intra-modal
contrastive objective. These supervised multimodal contrastive learning objectives enable a compact
and discriminative multimodal representation learning. Experimental results demonstrate that, MAT
is 3× more efficient based on the number of FLOPs, and is able to outperform Gong et al. (2021)
by 22.2%, 4.4% and 4.7% based on top-1 accuracy on Kinetics-Sounds, Epic-Kitchens-100 and
VGGSound. MMT surpasses its previous state-of-the-art counterparts by 7.3%, 1.6% and 2.1% on
the three public datasets without external training data.
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