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Abstract

Large language models have shown impressive001
capabilities across a variety of NLP tasks, yet002
their generating text autoregressively is time-003
consuming. One way to speed them up is spec-004
ulative decoding, which generates candidate005
segments (a sequence of tokens) from a fast006
draft model that is then verified in parallel by007
the target model. However, the acceptance rate008
of candidate tokens from the draft model can be009
affected by several factors, such as the model,010
the dataset, and the decoding setup. This paper011
proposes to sample multiple candidates from a012
draft model and then organise them in batches013
for verification. We design algorithms for effi-014
cient multi-candidate verification while main-015
taining the distribution of the target model. Our016
approach shows significant improvements in017
acceptance rates across datasets, models, and018
decoding setups, consistently outperforming019
standard speculative decoding.1020

1 Introduction021

Recently developed large language models (LLMs),022

such as GPT series (Brown et al., 2020; Achiam023

et al., 2023) and LLaMA (Touvron et al., 2023a,b),024

have demonstrated remarkable capabilities in lan-025

guage understanding and generation, as well as026

generalizability across a wide variety of NLP tasks027

and open domains. This promotes the need to de-028

ploy LLM services. However, the extensive vol-029

ume of parameters and computational overhead030

make LLMs run with significantly higher latency031

than smaller models. On the other hand, popular032

Transformer-based LLMs typically generate text033

in an autoregressive paradigm, which necessitates034

multiple iterations of the model for decoding a sin-035

gle piece of text, making things even worse.036

To reduce the inference cost, a series of meth-037

ods have have been developed (So et al., 2021;038

1We release codes, datasets, and model checkpoints at
Anonymous URL.

Shazeer, 2019; Kwon et al., 2023). Among them, 039

speculative decoding (SD) (Leviathan et al., 2023; 040

Chen et al., 2023) has been proved to be very effec- 041

tive in improving the end-to-end latency of large 042

autoregressive models without compromising the 043

quality of generation. SD employs an additional 044

draft model, typically much smaller than the target 045

model to be accelerated, to generate a sequence 046

of tokens as candidate at low computational cost. 047

These tokens are concurrently fed into the target 048

model and conditionally accepted to preserve the 049

output distribution of the target model. 050

The main purpose of SD is to minimize the invo- 051

cations of the target model by accepting as many 052

tokens as possible during the verification stage. 053

Therefore, the acceleration performance crucially 054

depends on the acceptance rate of candidate tokens 055

by the target model, i.e., the agreement between the 056

draft and target model’s distributions under a given 057

context. In general, models within the same suite 058

generally exhibit strong agreement in their output 059

distributions. However, our experiments reveal that 060

the distributional discrepancies between the tar- 061

get and draft models become more pronounced 062

when tackling complex tasks that involve longer 063

prompts. On the other hand, it has become popular 064

in the community to fine-tune LLMs using addi- 065

tional data to enhance their performance in specific 066

aspects (Chiang et al., 2023; Taori et al., 2023; Iyer 067

et al., 2022; Chung et al., 2022). It is important to 068

note that fine-tuning can also introduce significant 069

distributional discrepancies between the target and 070

draft models, even if they are initially well-aligned. 071

The aim of this work is to improve the accep- 072

tance rate by sampling multiple candidate tokens 073

at each position in the draft generation. These 074

candidates can be organized in a batch for paral- 075

lel verification on the target model. Although this 076

approach is straightforward and intuitive, it encoun- 077

ters the challenge that SD cannot directly utilize 078

multiple candidates to improve the acceptance rate 079
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while preserving the output distribution of the tar-080

get model. To address it, we propose an algorithm081

for multi-candidate verification. Moreover, the mul-082

tiple candidates sampled from the draft model have083

a probability of collision. Thus, we also introduce084

a more efficient version that avoids collisions by085

sampling candidates without replacement, and use086

Tree Attention to alleviate the memory-IO bound.087

We evaluate our method using the LLaMA suite,088

including its fine-tuned version, Vicuna, with both089

argmax and standard sampling. Our method yields090

significant improvements in acceptance rates on091

the Alpaca and WMT datasets, consistently out-092

performing SD in walltime speed. We further vali-093

date our method’s generalizability across models094

by extending it to the LLaMA2 and OPT suites.095

Notably, acceptance rates can often be improved096

by fine-tuning the draft model, and we show that097

our method can be superimposed on it.098

2 Background: Speculative Decoding099

The workflow of speculative decoding is shown in100

Fig. 1(a). Given contexts c, speculative decoding101

starts by invoking the draft model Mq to sample a102

draft sequence of tokens with a length of γ, denoted103

as x̃1, · · · , x̃γ , where x̃i ∼ q(x|x̃1, · · · , x̃i−1, c).104

The draft tokens, along with the contexts, are then105

passed to the target model Mp to obtain their output106

distribution p(x|x̃1, · · · , x̃i, c) in parallel. Finally,107

the draft tokens is verified sequentially from x̃1108

to x̃γ . To verify token x̃i, a speculative sampling109

algorithm is employed to determine whether to ac-110

cept x̃i or not, based on q(x|x̃, · · · , x̃i−1, c) and111

p(x|x̃, · · · , x̃i−1, c). Once a token is rejected, the112

next verification terminates and the algorithm re-113

turns a new token as the endpoint. If all tokens114

are accepted, there is an extra token sampled from115

p(x|x̃1, · · · , x̃γ , c) as the endpoint. Thus, the pro-116

cess generates a minimum of 1 and a maximum of117

γ + 1 accepted tokens.118

Speculative Sampling. The significance of spec-119

ulative sampling is that we cannot accept the120

guesses given by the draft model without restric-121

tion, otherwise we cannot preserve the same out-122

put distribution as the target model. A simple and123

straightforward idea is to first sample a token x124

from p(x)2, accept x̃ if x = x̃, otherwise reject125

it and return x. However, this approach — what126

2We’ll use p(x) and p(x̃) to denote p(x|x̃1, · · · , x̃i−1, c)
and p(x̃i|x̃1, · · · , x̃i−1, c) respectively whenever the prefix is
clear from the context, and similarly for q(x) and q(x̃).

we call naive sampling — has a very inefficient 127

acceptance rate of
∑

x̃ p(x̃)q(x̃). As a comparison, 128

speculative sampling uses a novel algorithm that 129

accepts x̃ with probability min(1, p(x̃)q(x̃) ), leading to 130

an overall acceptance rate of
∑

x̃min(p(x̃), q(x̃)). 131

If x̃ is rejected, then return a new token sampling 132

from p′(x) = max(0,p(x)−q(x))∑
x max(0,p(x)−q(x)) . It can be proven 133

that speculative sampling can preserve the same 134

output distribution as the target model (Leviathan 135

et al., 2023; Chen et al., 2023) while possessing 136

an upper bound on the acceptance rate of naive 137

sampling (Appendix C). 138

3 Multi-Candidate Speculative Decoding 139

Behind the success of SD lies the effective utiliza- 140

tion of parallel computing on computing devices: 141

the latency of parallel scoring of short continua- 142

tions is comparable to that of sampling a single 143

token from the larger target model. Ideally, the 144

length of draft tokens generated by the draft model 145

(i.e., γ) can be increased all the way up to the upper 146

limit of computing devices. However, there comes 147

the diminishing marginal utility with an increase in 148

γ rapidly, as the acceptance of a draft token for a 149

given position depends not only on itself but also 150

on the acceptance of all preceding tokens. 151

In short, there is a portion of potential comput- 152

ing resources that have not been fully utilized. Our 153

work involves utilizing this portion of resources to 154

perform parallel verification on another dimension 155

(i.e., the batch dimension) to significantly improve 156

the acceptance rate of draft tokens. This requires 157

the draft model to sample more than one token at 158

each step, eventually generating a batch of candi- 159

dates. This batch of candidates is fed together into 160

the target model to obtain the output distribution at 161

each position, as shown in Fig. 1(b). 162

The verification process for multiple candidates 163

is roughly the same as SD: starting from the first 164

step of generation, input the output distributions 165

q, p and candidate tokens x̃1, · · · , x̃k for the cur- 166

rent step into the speculative sampling algorithm. 167

If the algorithm accepts one of the k tokens, the 168

candidate corresponding to that token is retained 169

in the batch for the next step of verification. If 170

the tokens are all rejected, the algorithm returns a 171

new token as the endpoint, and the next verifica- 172

tion procedure is aborted. Finally, if a candidate in 173

the batch survives to the end, the endpoint token is 174

sampled from the output distribution corresponding 175

to this candidate. Taking a look at the process, it is 176
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Figure 1: The procedure for standard SD (a) and
MCSD (b).

similar to walking from the root of a tree to a leaf177

node, where each step chooses a path from one of178

the k branches or aborts early.179

3.1 Multi-Candidate Speculative Sampling180

Now the problem is that the original speculative181

sampling algorithm described in Section 2 cannot182

be directly used for verification of multiple candi-183

dates. This motivates us to design the speculative184

sampling algorithms for multi-candidate verifica-185

tion, as shown in Algorithm 1. The algorithm op-186

erates in the same manner as the standard SD to187

verify each candidate token. However, the distribu-188

tion p is recalibrated based on q whenever a token189

fails verification. In Appendix A, we prove that the 190

tokens output from Algorithm 1 follow the distribu- 191

tion p(x), which ensures that the output obtained 192

by our algorithm has the same distribution as the 193

target model. 194

Algorithm 1: Multi-Candidate Speculative
Sampling

Input: Distributions p, q; The candidate tokens
x̃1, · · · , x̃k ∼ q.

Output: If accept, returns True and the accepted
token, otherwise returns False and a new
token as the endpoint.

1 for i← 1 to k do
2 r ∼ U(0, 1)

3 if r ≤ p(x̃i)

q(x̃i)
then ▷ Accept x̃i

4 return (True, x̃i)
5 else
6 ▷ Normalize the residual p(x)

7 p(x) := max(0,p(x)−q(x))∑
x max(0,p(x)−q(x))

8 end
9 xend ∼ p(x)

10 return (False, xend)

Algorithm 2: Multi-Candidate Speculative
Sampling without Replacement

Input: Distributions p, q; The candidate tokens
x̃1, · · · , x̃k, where x̃i ∼ q̄i−1(x).

Output: If accept, returns True and the accepted
token, otherwise returns False and a new
token as the endpoint.

1 for i← 1 to k do
2 r ∼ U(0, 1)

3 if r ≤ p(x̃i)

q(x̃i)
then ▷ Accept x̃i

4 return (True, x̃i)
5 else
6 ▷ Normalize the residual p(x) and

q(x)

7 p(x) := max(0,p(x)−q(x))∑
x max(0,p(x)−q(x))

8 q(x̃i)← 0

9 q(x) := q(x)∑
x q(x)

10 end
11 xend ∼ p(x)

12 return (False, xend)

3.2 Multi-Candidate Speculative Sampling 195

without Replacement 196

Notice that the k tokens sampled by the draft model 197

at each step are independently and identically dis- 198

tributed. As k increases, the possibility of colli- 199

sions arises, meaning that there may be duplicates 200

in x̃1, · · · , x̃k. Even if a token is repeatedly sam- 201

pled, there is no way to increase the probability 202

of accepting it, because once it is rejected the first 203

time, it has a probability of 0 in the residual distri- 204

bution p, and thus will never be accepted again. 205
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An intuitive way to prevent token collisions is206

to do sampling without replacement in draft model207

generation. Without loss of generality, assume that208

x̃1, · · · , x̃k are sampled without replacement from209

q sequentially, that is x̃i ∼ q̄i−1(x), where210

q̄0(x) = q(x),

q̄i(x) =

{
0, x ∈ {x̃1, · · · , x̃i}

q(x)∑
x ̸=x̃1,··· ,x̃i q(x)

, otherwise .
(1)211

We also propose the version without replace-212

ment as shown in Algorithm 2 and the proof that it213

preserves the distribution p(x) in Appendix B.214

3.3 Tree Attention215

dogredsaw bigI a cat bus car

KV Cache

Target Model

dog

red

big

a

cat

bus

car

Query
Dimension

Key and Value
Dimension

Figure 2: Processing multiple candidates in a single
sequence concurrently based on Tree Attention, which
contains an attention mask that exclusively permits each
token to access its ancestors.

The generative Transformer (Vaswani et al.,216

2017), which serves as the backbone of LLMs,217

employs a left-to-right manner in text generation218

based on causal language modeling. To generate219

each new token, the attention mechanism requires220

accessing the keys and values of all preceding to-221

kens. Due to the forward dependency, once a token222

is generated, the keys and values at that position223

remain unchanged in the following iterations, so224

it is very common to cache the keys and values of225

generated tokens for reuse. In multiple candidate226

generation and verification, these cached keys and227

values should be copied within the batch, for both228

the target and draft models. Although the copying229

incurs a slight overhead, the situation worsens as230

these keys and values need to be transferred to the231

computational unit at each layer of the model, even232

if they are numerically duplicated.233

Here we employ Tree Attention (Miao et al., 234

2023; Cai et al., 2023) to mitigate the communi- 235

cation overhead resulting from replicated caches, 236

which enables multiple candidates to share the 237

caches of generated tokens. This time, all can- 238

didates are squeezed onto a single sequence in the 239

order in which they were generated3. Then, a well- 240

designed attention mask is applied to the sequence 241

to prevent information contamination among can- 242

didates and preserve causal relationships between 243

tokens, as shown in Fig. 2. With multiple candidate 244

sequences arranged in a single sequence, the length 245

of the sequence is slightly increased compared to 246

the original. Accordingly, the total computational 247

overhead is increased, but it is negligible compared 248

to the communication overhead saved, since the 249

contextual prefixes are generally much longer than 250

the length of the candidates generated by the draft 251

model. In our architecture, multiple candidates 252

can be maximally squeezed into a single sequence 253

without adding too much length, thanks to the k-ary 254

tree formed by the candidate tokens, which allows 255

a previously generated token to be shared by its 256

descendants in the sequence. 257

4 Experiments 258

4.1 Experiment Settings 259

Models. Our evaluation is based on the pub- 260

licly available LLM suite LLaMA (Touvron et al., 261

2023a), as well as its fine-tuned version Vi- 262

cuna (Chiang et al., 2023), which is fine-tuned with 263

instruction data to better perform dialogues and 264

instructions. We select the 13B and 33B size ver- 265

sions as target models. Since there are no small 266

models suitable for rapid draft generation included 267

in the LLaMA suite, we employ LLaMA-68M and 268

LLaMA-160M (Miao et al., 2023) as draft models, 269

which are trained from scratch on the Wikipedia 270

dataset and part of the C4 dataset (Raffel et al., 271

2020). 272

Datasets. We evaluate our approach on the con- 273

versational dataset Alpaca (Taori et al., 2023; Peng 274

et al., 2023) and the translation dataset WMT 275

EnDe (Bojar et al., 2014), which were used in pre- 276

vious works (Leviathan et al., 2023; Zhou et al., 277

2023) to evaluate decoding acceleration for LLM, 278

and we observe that the performance of SD varies 279

dramatically between the two datasets. For the 280

3The positional encoding of each token keeps the respec-
tive position in the previous sequence unchanged.
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Figure 3: Acceptance rate (α) curves given different k using LLaMA-68M as draft model.

WMT dataset, the source text is embedded in an in-281

struction template to prompt the model to perform282

the translation task.283

Efficiency Measures. We use the acceptance284

rate α to evaluate the probability that a candidate285

token is accepted at each step, which basically in-286

dicates the distributional consistency between the287

draft model and the target model.288

Since the draft model generates candidate seg-289

ments of γ tokens at a time for verification,290

the block efficiency τ is commonly used as291

the expected number of generated tokens per292

block (Leviathan et al., 2023). Note that in the293

worst case, τ = 1, since the algorithm at least re-294

turns a token as the endpoint; if all candidate tokens295

are accepted, the target model appends an extra to-296

ken at the end, see Fig. 1(b), and so τ = γ + 1.297

In a real-world deployment, calling the draft298

model and executing our algorithm incurs addi-299

tional overheads, so we report average wall clock300

speedups besides block efficiency.301

Platform. The experiments were conducted on302

a single node, of which is equipped with four303

NVIDIA RTX A6000 48GB GPUs. All systems304

serves in half precision. The 13B versions are de-305

ployed on one GPU and the 33B versions are de-306

ployed across two GPUs. The draft models are307

deployed along with the target models and does not308

occupy additional GPUs.309

Inference Settings. Since LLaMA base models310

are unlikely to stop generating naturally, we limit311

the generation length to a maximum of 128 new312

tokens. Our experiments involve two popular sam-313

pling setups, argmax sampling (temp=0) and stan-314

dard sampling (temp=1). For other sampling meth-315

ods, they can all easily be cast into standard sam-316

pling from an adjusted probability distribution.317

4.2 Acceptance Rate Improvement318

We begin by looking at the impact of different fac-319

tors, such as the dataset, supervised fine-tuning,320

Draft model Target model Temp Alpaca WMT

LLaMA-68M

LLaMA-13B

0

0.76 0.55
Vicuna-13B 0.49 0.36
LLaMA-33B 0.75 0.58
Vicuna-33B 0.52 0.22

LLaMA-13B

1

0.51 0.39
Vicuna-13B 0.36 0.25
LLaMA-33B 0.51 0.38
Vicuna-33B 0.35 0.24

LLaMA-160M

LLaMA-13B

0

0.80 0.59
Vicuna-13B 0.54 0.39
LLaMA-33B 0.78 0.61
Vicuna-33B 0.54 0.25

LLaMA-13B

1

0.57 0.43
Vicuna-13B 0.42 0.29
LLaMA-33B 0.57 0.42
Vicuna-33B 0.42 0.25

Table 1: Baseline acceptance rate (α) at k = 1 on
Alpaca and WMT datasets.

and sampling method, on acceptance rates. As 321

shown in Table 1, on the unfine-tuned target model, 322

i.e., LLaMA, the draft models generate candidates 323

with good acceptance rates if the inference is per- 324

formed on the Alpaca dataset with argmax sam- 325

pling. However, fine-tuning the target model (Vi- 326

cuna, a fine-tuned version of LLaMA), changing 327

the dataset4 or the sampling method can lead to a 328

decrease in acceptance rates. In most cases, we 329

did not observe a significant effect of changing 330

the target model size on acceptance rates, while 331

increasing the size of the draft model had a limited 332

positive effect on it. 333

Fig. 3 illustrates the acceptance rates at differ- 334

ent k using LLaMA-68M as a draft model, with 335

LLaMA-160M results in Appendix D. As k in- 336

creases, we observe a consistent improvement in 337

acceptance rates across the different models and 338

datasets. The α curves tend to converge when k 339

exceeds 32, at which point it becomes difficult and 340

uneconomical to increase k further. These results 341

4The discrepancy between the datasets can be attributed to
the variation in prompt length: WMT averages 29 words per
sample, compared to Alpaca’s 9.
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Dataset Methods Temp LLaMA-33B Vicuna-33B
k Config. Speedup τ k Config. Speedup τ

Alpaca

Baseline N/A N/A 1× 1 N/A 1× 1

SD (same γ)

0

1x1x1x1x1 2.71× 3.19 1x1x1x1 1.64× 1.97
SD (best γ) 1x1x1x1x1x1x1x1x1 2.89× 3.70 1x1x1x1x1x1 1.70× 2.03
Ours 4x2x2x1x1 3.06× 3.93 8x2x1x1 2.06× 2.56

SD (same γ)
1

1x1x1x1 1.69× 1.98 1x1x1 1.33× 1.53
SD (best γ) 1x1x1x1x1 1.73× 2.02 1x1x1x1x1 1.34× 1.58
Ours 8x2x1x1 2.17× 2.71 16x1x1 1.73× 2.10

WMT

Baseline N/A N/A 1× 1 N/A 1× 1

SD (same γ)

0

1x1x1x1x1 2.02× 2.38 1x1 1.15× 1.29
SD (best γ) 1x1x1x1x1x1x1 2.06× 2.52 1x1 1.15× 1.29
Ours 4x2x2x1x1 2.24× 2.87 16x2 1.45× 1.73

SD (same γ)
1

1x1x1 1.41× 1.63 1x1 1.13× 1.26
SD (best γ) 1x1x1x1x1 1.43× 1.69 1x1x1 1.14× 1.31
Ours 8x2x1 1.72× 2.08 16x2 1.42× 1.70

Table 2: Performance of each method on Alpaca and WMT datasets using LLaMA-68M as draft model, and
LLaMA-33B and Vicuna-33B as target models.

Dataset Methods Temp LLaMA-33B Vicuna-33B
k Config. Speedup τ k Config. Speedup τ

Alpaca

Baseline N/A N/A 1× 1 N/A 1× 1

SD (same γ)

0

1x1x1x1 2.10× 3.20 1x1x1 1.33× 1.97
SD (best γ) 1x1x1x1x1 2.16× 3.49 1x1 1.40× 1.81
Ours 4x2x2x1 2.42× 3.87 8x2x2 1.72× 2.59

SD (same γ)
1

1x1x1 1.43× 2.05 1x1 1.24× 1.60
SD (best γ) 1x1 1.47× 1.90 1x1 1.24× 1.60
Ours 8x2x2 1.85× 2.79 16x2 1.62× 2.21

WMT

Baseline N/A N/A 1× 1 N/A 1× 1

SD (same γ)

0

1x1x1x1 1.54× 2.42 1 1.06× 1.25
SD (best γ) 1x1x1 1.57× 2.25 1 1.06× 1.25
Ours 8x2x1x1 1.81× 2.96 32 1.33× 1.66

SD (same γ)
1

1x1 1.22× 1.62 1 1.06× 1.25
SD (best γ) 1x1 1.22× 1.62 1 1.06× 1.25
Ours 16x2 1.52× 2.14 32 1.30× 1.63

Table 3: Performance of each method on Alpaca and WMT datasets using LLaMA-160M as draft model, and
LLaMA-33B and Vicuna-33B as target models.

demonstrate the effectiveness of our method in im-342

proving the acceptance rate with only a small value343

of k.344

4.3 Main Results345

Given a draft of size γ, our method samples346

multiple tokens at each step, assuming they are347

k1, k1, · · · , kγ respectively, generating a total of348

K =
∏γ

i=1 ki candidates. This constitutes a huge349

search space of hyperparameter. For efficiency350

reasons, we restrict the total budget K to a maxi-351

mum of 32, and ki ∈ {1, 2, 4, 8, 16, 32}. For the352

performance of our method under different hyper-353

parameters, see Section 4.4. For each setting, we354

report the performance of our method for the best355

combination of ks, as well as the SD with the same 356

γ and the SD with the best γ. We place the results 357

of 13B versions in Appendix E to save space. 358

Table 2 shows the performance of each method 359

using LLaMA-68m as the draft model. SD accel- 360

erates the LLaMA-33b model well on the Alpca 361

dataset with argmax sampling, while the boost of 362

our method is limited. However, when we observe 363

a degradation in acceptance rate, as seen when us- 364

ing Vicuna as the target model, employing standard 365

sampling, or working with the WMT dataset, the 366

performance of SD degrades significantly. In these 367

scenarios, our method demonstrates considerable 368

improvement over SD. Furthermore, the difference 369

observed between SD (same γ) and SD (best γ) 370
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Figure 4: Speedup and block efficiency (τ ) for different k configurations, where the dataset is Alpaca, using
LLaMA-68M as the draft model.

Algorithm Tree Attn. LLaMA-13B Vicuna-13B LLaMA-33B Vicuna-33B
Speedup τ Speedup τ Speedup τ Speedup τ

MCSS w/o Replacement. ! 1.91× 2.45 1.64× 2.00 2.17× 2.71 1.73× 2.10
MCSS w/ Replacement. ! 1.89× 2.39 1.55× 1.95 2.04× 2.55 1.66× 2.01
MCNS ! 1.21× 1.52 1.45× 1.78 1.33× 1.65 1.50× 1.80
MCSS w/o Replacement. % 1.61× 2.47 1.36× 1.99 1.84× 2.68 1.51× 2.09

Table 4: Ablation experiments on Tree Attention and different verification algorithms, where the dataset is Alpaca,
the draft model is LLaMA-68M, and temp = 1 (standard sampling).

validates our claim that further increasing γ does371

not yield significant gains.372

Replacing the draft model with LLaMA-160m,373

the results are shown in Table 3. The notable dif-374

ference from LLaMA-68m is that the latency of375

LLaMA-160m is much higher. Consequently, the376

higher cost of the invocations leads to a general377

shrinkage of γ. Our method achieves a similar378

improvement as in Table 2, and in some cases,379

our method can works at a larger γ compared to380

SD (best γ), because it compensates for the addi-381

tional overhead of the draft model by improving382

the acceptance rate.383

Overall, our approach consistently achieves384

higher speedup and block efficiency compared to385

and SD baseline, demonstrating the effectiveness386

in improving the efficiency of the target model.387

4.4 Budget Configuration388

In this section, we examine the performance varia-389

tions under different budget configurations. Fig. 4390

shows the performance of the 13B-sized target391

model with different k configurations on the Al-392

paca dataset, where we fixed γ = 2 for clarity.393

Our analysis yields three key insights. Firstly,394

the monotonically decreasing configuration always395

outperforms the monotonically increasing configu-396

ration for the same budget (monotonic rule), e.g.,397

4x2 outperforms 2x4. This is because the accep-398

tance of the next token is governed by the accep-399

tance of the preceding tokens. Therefore, it is a400

natural strategy to use a monotonically decreasing 401

configuration to preferentially improve the accep- 402

tance of the preceding tokens. The monotonic rule 403

is practically useful in reducing the overhead in 404

hyperparameter search. Secondly, configurations 405

with the same budget have roughly the same per- 406

formance if we follow the monotonic rule. For 407

instance, the 16-budget group is roughly centrally 408

distributed, as is the 32-budget group. This un- 409

derscores the robustness of our approach given a 410

specific budget. Lastly, despite a higher block effi- 411

ciency, the 32-budget group demonstrates a lower 412

speedup than the 16-budget group. This counterin- 413

tuitive outcome stems from the diminishing returns 414

of block efficiency gains as budget increases, which 415

fail to compensate for the latency inherent to larger 416

budgets. 417

4.5 Ablation Study 418

We conduct an ablation study to investigate the 419

impact of our proposed improvements on perfor- 420

mance, given optimal k configurations as in Sec- 421

tion 4.3. Our focus is on Tree Attention and verifi- 422

cation algorithms that handle multiple candidates. 423

More specifically, we look at multi-candidate spec- 424

ulative sampling (MCSS) both with and without 425

replacement, as well as a multi-candidate variant 426

of naive sampling (MCNS)5. The experiments are 427

5MCNS first sample a token x from p(x) and accepts x̃
if x ∈ {x̃1, · · · , x̃k}, otherwise it rejects the candidates and
returns x.
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based on standard sampling. For argmax sampling,428

MCSS with replacement degenerates to SD, as sam-429

pling with temp = 0 consistently produces the430

top1 token. Additionally, it can be conclusively431

demonstrated that MCSS without replacement is432

equivalent to MCNS when using argmax sampling.433

The findings, as presented in Table 4, reveal434

that MCSS offers the most significant improve-435

ment when compared to MCNS. Tree Attention436

also contributes a crucial role, not altering the ex-437

pected block efficiency but substantially reducing438

the communication overhead. The improvement439

brought by MCSS without replacement is limited,440

probably because repeated sampling is not as likely441

to happen when ki is small.442

5 Generalization Across Models443

We evaluate the effectiveness of our method across444

a range of draft and target models. For draft models,445

we explore the intuitive hypothesis that fine-tuning446

the draft model would enhance the alignment with447

target models. We also examine the compatibility448

of our method when applied to the fine-tuned draft449

models. To accomplish this, we use ShareGPT data450

to fine-tune the LLaMA-68M and LLaMA-160M451

models, following the training setup provided by452

the Vicuna suite (Chiang et al., 2023). The re-453

sulting fine-tuned models are subsequently named454

Vicuna-68M and Vicuna-160M. With regard to the455

target models, our consideration extended to the456

LLaMA2 suite (Touvron et al., 2023b) and the OPT457

suite (Zhang et al., 2022; Iyer et al., 2022).458

We report α@k with k from 1 to 4 for each459

model pair, as shown in Table 7. Fine-tuned draft460

models, Vicuna-68/160M, exhibit better alignment461

with both the Vicuna model and the LLaMA2-462

chat model, with a slight loss of alignment to the463

LLaMA/LLaMA2 base models. Fine-tuning, how-464

ever, shows domain-specific limitations, yielding465

less improvement in baseline acceptance on the466

WMT dataset compared to the Alpaca dataset. The467

delta value suggests that our method is fully super-468

imposable with fine-tuning, and even surpasses the469

improvements achieved prior to fine-tuning. In the470

context of the OPT suite, our approach achieves471

peak enhancements in acceptance rates for the OPT-472

iml-30B model on the WMT dataset.473

6 Related Work474

The quest for enhancing the inference efficiency of475

deep neural networks encompasses a broad spec-476

trum of strategies, including but not limited to distil- 477

lation (Hinton et al., 2015), quantisation (Dettmers 478

et al., 2022), and sparcification (Jaszczur et al., 479

2021). These techniques often introducing some 480

level of loss. In contrast, speculative decoding, as 481

introduced by Leviathan et al., 2023 and Chen et al., 482

2023, effectively reduces the inference latency of 483

LLMs without compromising model performance. 484

Before them, blockwise parallel decoding (Stern 485

et al., 2018) speeds up the inference of autoregres- 486

sive models based on a similar principle, but it only 487

supports argmax decoding. And Xia et al., 2023 488

shares similar idea, but uses a lossy verification 489

algorithm. 490

Given the pivotal role of distributional con- 491

sistency between the draft and target models, 492

researchers have focused on aligning the draft 493

model with the target model through additional 494

training (Miao et al., 2023; Zhou et al., 2023; 495

Liu et al., 2023). However, our empirical find- 496

ings suggest that this alignment is less robust on 497

out-of-distribution data (WMT) compared to in- 498

distribution data (Alpaca). In line with our research, 499

some studies have employed multiple candidates 500

to improve the acceptance rate. Miao et al., 2023 501

utilises multiple draft models to generate diverse 502

candidates, while Cai et al., 2023 trains additional 503

prediction heads for the same purpose. Their work 504

also incorporates tree attention to reduce the com- 505

munication overhead associated with multiple can- 506

didates. Similar to our approach, Sun et al., 2023 507

also sample multiple candidates from the draft 508

model. The difference is that they derive the al- 509

gorithm for multi-candidate verification from the 510

perspective of optimal transport, which requires 511

linear programming for its implementation. 512

7 Conclusion 513

This paper introduces multi-candidate speculative 514

decoding. This method leverages the full poten- 515

tial of multiple candidates generated by the draft 516

model, thereby improving the acceptance rate with- 517

out compromising the output quality of the target 518

model. We further augment this approach with 519

Tree Attention that reduces communication over- 520

head. Extensive testing across various models, de- 521

coding settings, and datasets has shown that our 522

method consistently reduces latency compared to 523

standard speculative decoding. Our method works 524

out-of-the-box and also benefits from works that 525

improve acceptance rates with additional training. 526
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Limitations527

Our method, including speculative decoding, de-528

mands additional computational resources for paral-529

lel verification compared to incremental decoding.530

Consequently, the acceleration may be diminished531

when decoding multiple sequences simultaneously,532

which depends on the parallel computing capabil-533

ities of the device. On the other hand, the opti-534

mal hyperparameter configuration for our method535

is dependent on the model, dataset, and decoding536

settings. While our experiments indicate robust per-537

formance under the same budget, fut ure work can538

involve more efficiently determining the optimal539

hyperparameter configuration.540
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A Proof of Multi-Candidate Speculative 685

Sampling 686

Given any distributions p(x) and q(x), we now 687

prove that the token returned from Algorithm 1 are 688

distributed identically to those sampled from p(x) 689

alone. 690

Proof. Let x̃1, · · · , x̃k be the candidate tokens sam- 691

pled from q(x). We define 692

R0 := ∅,
Rn := Reject x̃1, · · · , x̃n,

(2) 693

and 694

p̂0(x) := p(x),

p̂n(x) :=
max(p̂n−1(x)− q(x), 0)∑
xmax(p̂n−1(x)− q(x), 0)

.
(3) 695

According to Algorithm 1, there is 696

P (Accept x̃n|x̃n = x,Rn−1) = min(1,
p̂n−1(x)

q(x)
). (4) 697

Thus we have 698

P (x,Accept x̃n|Rn−1)

= P (Accept x̃n, x̃n = x|Rn−1)

= P (x̃n = x|Rn−1)P (Accept x̃n|x̃n = x,Rn−1)

= P (x̃n = x)P (Accept x̃n|x̃n = x,Rn−1)

= q(x)min(1,
p̂n−1(x)

q(x)
)

= min(q(x), p̂n−1(x)).

(5) 699

The probability of rejecting x̃n is 700

P (Reject x̃n|Rn−1) = 1− P (Accept x̃n|Rn−1)

= 1−
∑
x

P (Accept x̃n, x̃n = x|Rn−1)

= 1−
∑
x

min(q(x), p̂n−1(x))

=
∑
x

max(p̂n−1(x)− q(x), 0).

(6)

701

Let An := P (x|Rn). We have 702

An = P (x|Rn)

= P (x,Accept x̃n+1|Rn) + P (x,Reject x̃n+1|Rn)

= P (x,Accept x̃n+1|Rn)

+ P (Reject x̃n+1|Rn)P (x|Rn+1)

= q(x)min(1,
p̂n(x)

q(x)
) +

∑
x

max(p̂n(x)− q(x), 0)An+1

= min(q(x), p̂n(x)) +
∑
x

max(p̂n(x)− q(x), 0)An+1.

(7)

703
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According to Algorithm 1, Ak = P (x|Rk) =704

p̂k(x). So we get the recursive formula705

Ak−1 = min(q(x), p̂k−1(x))

+
∑
x

max(p̂k−1(x)− q(x), 0)Ak

= min(q(x), p̂k−1(x))

+
∑
x

max(p̂k−1(x)− q(x), 0)p̂k(x)

= min(q(x), p̂k−1(x))

+
∑
x

max(p̂k−1(x)− q(x), 0)
max(p̂k−1(x)− q(x), 0)∑
x max(p̂k−1(x)− q(x), 0)

= min(q(x), p̂k−1(x)) + max(p̂k−1(x)− q(x), 0)

= p̂k−1(x).
(8)

706

Iteratively, we have707

A0 = p̂0(x) = p(x),

P (x) = P (x|R0) = A0 = p(x).
(9)708

709

B Proof of Multi-Candidate Speculative710

Sampling without Replacement711

Given any distributions p(x) and q(x), we now712

prove that the token returned from Algorithm 2 are713

distributed identically to those sampled from p(x)714

alone.715

Proof. Let x̃1, · · · , x̃k be the candidate tokens sam-716

pled without replacement from q, as in Eq. (1). We717

define718

p̄0(x) = p(x),

p̄n(x) =
max(p̄n−1(x)− q̄n−1(x), 0)∑
xmax(p̄n−1(x)− q̄n−1(x), 0)

.
(10)719

According to Algorithm 2, there is720

P (Accept x̃n+1|Rn, x̃
1, · · · , x̃n+1)

= min(1,
p̄n(x̃

n+1)

q̄n(x̃n+1)
).

(11)721

Here we reuse the definition of R from Eq. (2).722

Thus we have723

P (x,Accept x̃n+1|Rn, x̃
1, · · · , x̃n)

= P (x̃n+1 = x,Accept x̃n+1|Rn, x̃
1, · · · , x̃n)

= P (x̃n+1 = x|Rn, x̃
1, · · · , x̃n)

× P (Acceptx̃n+1|Rn, x̃
1, · · · , x̃n+1)

= q̄n(x)min(1,
p̄n(x)

q̄n(x)
)

= min(q̄n(x), p̄n(x)).

(12)724

and 725

P (x,Reject x̃n+1|Rn, x̃
1, · · · , x̃n)

=
∑
x̃n+1

P (x,Reject x̃n+1, x̃n+1|Rn, x̃
1, · · · , x̃n)

=
∑
x̃n+1

[P (x̃n+1|Rn, x̃
1, · · · , x̃n)

× P (x,Reject x̃n+1|Rn, x̃
1, · · · , x̃n+1)]

=
∑
x̃n+1

[P (x̃n+1|Rn, x̃
1, · · · , x̃n)

× P (Reject x̃n+1|Rn, x̃
1, · · · , x̃n+1)

× P (x|Rn+1, x̃
1, · · · , x̃n+1)]

=
∑
x̃n+1

[P (x̃n+1|Rn, x̃
1, · · · , x̃n)

× (1− P (Accept x̃n+1|Rn, x̃
1, · · · , x̃n+1))

× P (x|Rn+1, x̃
1, · · · , x̃n+1)]

=
∑
x̃n+1

[q̄n(x̃
n+1)(1−min(1,

p̄n(x̃
n+1)

q̄n(x̃n+1)
))

× P (x|Rn+1, x̃
1, · · · , x̃n+1)]

=
∑
x̃n+1

{[q̄n(x̃n+1)−min(q̄n(x̃
n+1), p̄n(x̃

n+1))]

× P (x|Rn+1, x̃
1, · · · , x̃n+1)}.

(13) 726

Let An := P (x|Rn, x̃
1, · · · , x̃n). We have 727

An = P (x|Rn, x̃
1, · · · , x̃n)

= P (x,Accept x̃n+1|Rn, x̃
1, · · · , x̃n)

+ P (x,Reject x̃n+1|Rn, x̃
1, · · · , x̃n)

= min(q̄n(x), p̄n(x))

+
∑
x̃n+1

{[q̄n(x̃n+1)−min(q̄n(x̃
n+1), p̄n(x̃

n+1))]An+1}.

(14)

728

Because q̄n(x) is independent of x̃n+1. Thus p̄n 729

is independent of xn holds for n = 1, · · · , k. Ac- 730

cording to Algorithm 2, 731

Ak = P (x|Rk, x̃
1, · · · , x̃k) = p̄k(x), (15) 732
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so Ak is also independent of x̃k. We have733

Ak−1

= min(q̄k−1(x), p̄k−1(x))

+
∑
x̃k

{[q̄k−1(x̃
k)−min(q̄k−1(x̃

k), p̄k−1(x̃
k))]Ak}

= min(q̄k−1(x), p̄k−1(x))

+Ak

∑
x̃k

[q̄k−1(x̃
k)−min(q̄k−1(x̃

k), p̄k−1(x̃
k))]

= min(q̄k−1(x), p̄k−1(x))

+Ak[
∑
x̃k

q̄k−1(x̃
k)−

∑
x̃k

min(q̄k−1(x̃
k), p̄k−1(x̃

k))]

= min(q̄k−1(x), p̄k−1(x))

+Ak[
∑
x̃k

p̄k−1(x̃
k)−

∑
x̃k

min(q̄k−1(x̃
k), p̄k−1(x̃

k))]

= min(q̄k−1(x), p̄k−1(x))

+Ak

∑
x̃k

[p̄k−1(x̃
k)−min(q̄k−1(x̃

k), p̄k−1(x̃
k))]

= min(q̄k−1(x), p̄k−1(x))

+Ak

∑
x̃k

max(p̄k−1(x̃
k)− q̄k−1(x̃

k), 0)

= min(q̄k−1(x), p̄k−1(x))

+ [
max(p̄k−1(x)− q̄k−1(x), 0)∑
x max(p̄k−1(x)− q̄k−1(x), 0)

×
∑
x̃k

max(p̄k−1(x̃
k)− q̄k−1(x̃

k), 0)]

= min(q̄k−1(x), p̄k−1(x)) + max(p̄k−1(x)− q̄k−1(x), 0)

= p̄k−1(x).
(16)

734

Iteratively, we have735

A0 = p̄0(x) = p(x),

P (x) = P (x|R0) = A0 = p(x).
(17)736

737

C Upper Bound on Acceptance Rate for738

Naive Sampling739

We show that for any k ∈ N+, the acceptance rate740

of multi-candidate speculative sampling (with re-741

placement) has an upper bound for multi-candidate742

naive sampling. Our proof references Miao et al.,743

2023.744

Proof. We use PS and PN to denote the probabil-745

ities involved in speculative sampling and naive746

sampling algorithms, respectively.747

Since the acceptance rate is equal to 1 −748 ∑
x P (x,Rk), where we reuse the definition of749

R from Eq. (2). We now prove that PS(x,Rk) ≤750

PN (x,Rk) always holds.751

For speculative sampling, we have 752

PS(x,Rk)

= P (x|Rk)P (Rk)

= p̂k(x)
k∏

i=1

P (Reject x̃i|Ri−1).

(18) 753

For naive sampling, there is 754

PN (x,Rk) = p(x)(1− q(x))k. (19) 755

If there is p̂i(x) − q(x) ≤ 0, then p̂j(x) = 0 756

holds for j ≥ i. Thus PS(x,Rk) = 0 ≤ 757

PN (x,Rk). Otherwise p̂i(x) − q(x) > 0 holds 758

for i = 0, · · · , k − 1, and we get 759

p̂i(x) =
p̂i−1(x)− q(x)∑

xmax(p̂i−1(x)− q(x), 0)
(20) 760

By mathematical induction, if k = 1, there is 761

PS(x,R1) = p̂1(x)P (Reject x̃1|R0)

=
p̂0(x)− q(x)∑

x max(p̂0(x)− q(x), 0)

∑
x

max(p̂0(x)− q(x), 0)

= p(x)− q(x)

≤ p(x)− p(x)q(x)

= p(x)(1− q(x))

= PN (x,R1),
(21)

762

where the value of P (Reject x̃1|R0) comes from 763

Eq. (6). 764

Assume that PS(x,Rk) ≤ PN (x,Rk) holds for 765

k < n, then 766

PS(x,Rn) = p̂n(x)

n∏
i=1

P (Reject x̃i|Ri−1)

= p̂n(x)P (Reject x̃n|Rn−1)

n−1∏
i=1

P (Reject x̃i|Ri−1)

=
p̂n−1(x)− q(x)∑

x max(p̂n−1(x)− q(x), 0)

∑
x

max(p̂n−1(x)− q(x), 0)

×
n−1∏
i=1

P (Reject x̃i|Ri−1)

= [p̂n−1(x)− q(x)]

n−1∏
i=1

P (Reject x̃i|Ri−1)

≤ [p̂n−1(x)− p̂n−1(x)q(x)]

n−1∏
i=1

P (Reject x̃i|Ri−1)

= [1− q(x)]p̂n−1(x)

n−1∏
i=1

P (Reject x̃i|Ri−1)

≤ [1− q(x)]p(x)(1− q(x))n−1

≤ p(x)(1− q(x))n

= PN (x,Rn),
(22)

767

768
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Figure 5: Acceptance rate (α) curves given different k using LLaMA-160M as draft model.

Dataset Methods Temp LLaMA-13B Vicuna-13B
k Config. Speedup τ k Config. Speedup τ

Alpaca

Baseline N/A N/A 1× 1 N/A 1× 1

SD (same γ)

0

1x1x1x1x1 2.46× 3.35 1x1 1.49× 1.72
SD (best γ) 1x1x1x1x1x1x1 2.57× 3.72 1x1 1.49× 1.72
Ours 2x2x2x1x1 2.75× 3.89 8x2 1.82× 2.18

SD (same γ)
1

1x1x1 1.54× 1.93 1x1 1.30× 1.50
SD (best γ) 1x1 1.56× 1.79 1x1 1.30× 1.50
Ours 4x2x2 1.91× 2.45 16x1 1.64× 2.00

WMT

Baseline N/A N/A 1× 1 N/A 1× 1

SD (same γ)

0

1x1x1 1.69× 2.05 1x1 1.29× 1.52
SD (best γ) 1x1x1 1.69× 2.05 1x1x1x1 1.31× 1.63
Ours 4x2x1 1.88× 2.37 8x1 1.54× 1.85

SD (same γ)
1

1x1 1.30× 1.55 1x1 1.14× 1.34
SD (best γ) 1x1x1 1.31× 1.63 1 1.15× 1.25
Ours 8x2 1.57× 1.95 16x1 1.39× 1.72

Table 5: Performance of each method on Alpaca and WMT datasets using LLaMA-68M as draft model, and
LLaMA-13B and Vicuna-13B as target models.

Dataset Methods Temp LLaMA-13B Vicuna-13B
k Config. Speedup τ k Config. Speedup τ

Alpaca

Baseline N/A N/A 1× 1 N/A 1× 1

SD (same γ)

0

1x1x1 1.53× 2.91 1x1 1.15× 1.83
SD (best γ) 1x1x1 1.53× 2.91 1 1.16× 1.54
Ours 4x2x2 1.70× 3.36 4x4 1.39× 2.25

SD (same γ)
1

1x1 1.17× 1.90 1 1.09× 1.42
SD (best γ) 1 1.19× 1.57 1 1.09× 1.42
Ours 8x2 1.41× 2.37 32 1.29× 1.83

WMT

Baseline N/A N/A 1× 1 N/A 1× 1

SD (same γ)

0

1x1 1.18× 1.94 1 1.07× 1.39
SD (best γ) 1x1 1.18× 1.94 1 1.07× 1.39
Ours 16x1 1.34× 2.31 16 1.25× 1.68

SD (same γ)
1

1 1.04× 1.43 1 0.99× 1.29
SD (best γ) 1 1.04× 1.43 1 0.99× 1.29
Ours 32 1.27× 1.81 32 1.20× 1.68

Table 6: Performance of each method on Alpaca and WMT datasets using LLaMA-160M as draft model, and
LLaMA-13B and Vicuna-13B as target models.

D Acceptance Rate Improvement769

Fig. 5 shows the acceptance rate improvement from770

increasing k when using LLaMA-160M as a draft771

model.772

E Main Results for 13B Models 773

Table 5 and Table 6 shows the performance of each 774

method when using target models of size 13B. 775
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Draft model Target model Temp α@1→ α@4 (∆α)
Alpaca WMT

LLaMA-68M

LLaMA-13B 0 0.76→ 0.88 (+0.12) 0.55→ 0.68 (+0.13)
Vicuna-13B 0 0.49→ 0.67 (+0.19) 0.36→ 0.51 (+0.14)
LLaMA2-13B 0 0.75→ 0.88 (+0.13) 0.57→ 0.71 (+0.14)
LLaMA2-13B-chat 0 0.47→ 0.66 (+0.19) 0.30→ 0.44 (+0.15)

Vicuna-68M

LLaMA-13B 0 0.75→ 0.90 (+0.14) 0.56→ 0.69 (+0.13)
Vicuna-13B 0 0.56→ 0.76 (+0.20) 0.38→ 0.57 (+0.19)
LLaMA2-13B 0 0.74→ 0.89 (+0.14) 0.56→ 0.69 (+0.13)
LLaMA2-13B-chat 0 0.55→ 0.75 (+0.21) 0.32→ 0.53 (+0.21)

LLaMA-160M

LLaMA-13B 0 0.80→ 0.91 (+0.11) 0.59→ 0.72 (+0.13)
Vicuna-13B 0 0.54→ 0.73 (+0.19) 0.39→ 0.54 (+0.15)
LLaMA2-13B 0 0.78→ 0.90 (+0.12) 0.61→ 0.74 (+0.14)
LLaMA2-13B-chat 0 0.52→ 0.72 (+0.19) 0.32→ 0.48 (+0.16)

Vicuna-160M

LLaMA-13B 0 0.78→ 0.91 (+0.12) 0.59→ 0.72 (+0.13)
Vicuna-13B 0 0.62→ 0.81 (+0.19) 0.40→ 0.58 (+0.18)
LLaMA2-13B 0 0.77→ 0.90 (+0.13) 0.59→ 0.72 (+0.13)
LLaMA2-13B-chat 0 0.61→ 0.81 (+0.20) 0.33→ 0.54 (+0.22)

OPT-125M
OPT-13B 0 0.86→ 0.95 (+0.09) 0.97→ 0.99 (+0.02)
OPT-30B 0 0.83→ 0.94 (+0.11) 0.80→ 0.89 (+0.09)
OPT-iml-30B 0 0.81→ 0.93 (+0.12) 0.40→ 0.77 (+0.37)

LLaMA-68M

LLaMA-13B 1 0.51→ 0.72 (+0.21) 0.39→ 0.56 (+0.17)
Vicuna-13B 1 0.35→ 0.57 (+0.22) 0.25→ 0.41 (+0.16)
LLaMA2-13B 1 0.51→ 0.71 (+0.20) 0.38→ 0.57 (+0.18)
LLaMA2-13B-chat 1 0.35→ 0.57 (+0.22) 0.25→ 0.39 (+0.14)

Vicuna-68M

LLaMA-13B 1 0.48→ 0.69 (+0.21) 0.38→ 0.55 (+0.18)
Vicuna-13B 1 0.46→ 0.68 (+0.22) 0.29→ 0.45 (+0.16)
LLaMA2-13B 1 0.49→ 0.69 (+0.20) 0.38→ 0.56 (+0.18)
LLaMA2-13B-chat 1 0.46→ 0.69 (+0.22) 0.30→ 0.49 (+0.18)

LLaMA-160M

LLaMA-13B 1 0.57→ 0.76 (+0.19) 0.43→ 0.61 (+0.17)
Vicuna-13B 1 0.42→ 0.63 (+0.21) 0.29→ 0.45 (+0.16)
LLaMA2-13B 1 0.57→ 0.75 (+0.19) 0.43→ 0.61 (+0.18)
LLaMA2-13B-chat 1 0.41→ 0.63 (+0.22) 0.29→ 0.44 (+0.15)

Vicuna-160M

LLaMA-13B 1 0.54→ 0.73 (+0.20) 0.41→ 0.58 (+0.18)
Vicuna-13B 1 0.53→ 0.74 (+0.22) 0.31→ 0.48 (+0.18)
LLaMA2-13B 1 0.54→ 0.73 (+0.19) 0.41→ 0.59 (+0.18)
LLaMA2-13B-chat 1 0.54→ 0.75 (+0.22) 0.33→ 0.51 (+0.18)

OPT-125M
OPT-13B 1 0.63→ 0.81 (+0.18) 0.59→ 0.78 (+0.19)
OPT-30B 1 0.60→ 0.79 (+0.18) 0.56→ 0.76 (+0.20)
OPT-iml-30B 1 0.61→ 0.78 (+0.17) 0.44→ 0.68 (+0.24)

Table 7: Acceptance rate (α) improvements with k from 1 to 4 on Alpaca and WMT datasets using various draft and
target models. Underlining highlights α@k increases after fine-tuning, while bold indicates ∆α improvements.
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