Multi-Candidate Speculative Decoding

Anonymous ACL submission

Abstract

Large language models have shown impressive
capabilities across a variety of NLP tasks, yet
their generating text autoregressively is time-
consuming. One way to speed them up is spec-
ulative decoding, which generates candidate
segments (a sequence of tokens) from a fast
draft model that is then verified in parallel by
the target model. However, the acceptance rate
of candidate tokens from the draft model can be
affected by several factors, such as the model,
the dataset, and the decoding setup. This paper
proposes to sample multiple candidates from a
draft model and then organise them in batches
for verification. We design algorithms for effi-
cient multi-candidate verification while main-
taining the distribution of the target model. Our
approach shows significant improvements in
acceptance rates across datasets, models, and
decoding setups, consistently outperforming
standard speculative decoding.’

1 Introduction

Recently developed large language models (LLMs),
such as GPT series (Brown et al., 2020; Achiam
et al., 2023) and LLaMA (Touvron et al., 2023a,b),
have demonstrated remarkable capabilities in lan-
guage understanding and generation, as well as
generalizability across a wide variety of NLP tasks
and open domains. This promotes the need to de-
ploy LLM services. However, the extensive vol-
ume of parameters and computational overhead
make LLMs run with significantly higher latency
than smaller models. On the other hand, popular
Transformer-based LLMs typically generate text
in an autoregressive paradigm, which necessitates
multiple iterations of the model for decoding a sin-
gle piece of text, making things even worse.

To reduce the inference cost, a series of meth-
ods have have been developed (So et al., 2021;

'We release codes, datasets, and model checkpoints at
Anonymous URL.

Shazeer, 2019; Kwon et al., 2023). Among them,
speculative decoding (SD) (Leviathan et al., 2023;
Chen et al., 2023) has been proved to be very effec-
tive in improving the end-to-end latency of large
autoregressive models without compromising the
quality of generation. SD employs an additional
draft model, typically much smaller than the target
model to be accelerated, to generate a sequence
of tokens as candidate at low computational cost.
These tokens are concurrently fed into the target
model and conditionally accepted to preserve the
output distribution of the target model.

The main purpose of SD is to minimize the invo-
cations of the target model by accepting as many
tokens as possible during the verification stage.
Therefore, the acceleration performance crucially
depends on the acceptance rate of candidate tokens
by the target model, i.e., the agreement between the
draft and target model’s distributions under a given
context. In general, models within the same suite
generally exhibit strong agreement in their output
distributions. However, our experiments reveal that
the distributional discrepancies between the tar-
get and draft models become more pronounced
when tackling complex tasks that involve longer
prompts. On the other hand, it has become popular
in the community to fine-tune LLMs using addi-
tional data to enhance their performance in specific
aspects (Chiang et al., 2023; Taori et al., 2023; Iyer
et al., 2022; Chung et al., 2022). It is important to
note that fine-tuning can also introduce significant
distributional discrepancies between the target and
draft models, even if they are initially well-aligned.

The aim of this work is to improve the accep-
tance rate by sampling multiple candidate tokens
at each position in the draft generation. These
candidates can be organized in a batch for paral-
lel verification on the target model. Although this
approach is straightforward and intuitive, it encoun-
ters the challenge that SD cannot directly utilize
multiple candidates to improve the acceptance rate

while preserving the output distribution of the tar-
get model. To address it, we propose an algorithm
for multi-candidate verification. Moreover, the mul-
tiple candidates sampled from the draft model have
a probability of collision. Thus, we also introduce
a more efficient version that avoids collisions by
sampling candidates without replacement, and use
Tree Attention to alleviate the memory-IO bound.

We evaluate our method using the LLaMA suite,
including its fine-tuned version, Vicuna, with both
argmax and standard sampling. Our method yields
significant improvements in acceptance rates on
the Alpaca and WMT datasets, consistently out-
performing SD in walltime speed. We further vali-
date our method’s generalizability across models
by extending it to the LLaMA2 and OPT suites.
Notably, acceptance rates can often be improved
by fine-tuning the draft model, and we show that
our method can be superimposed on it.

2 Background: Speculative Decoding

The workflow of speculative decoding is shown in
Fig. 1(a). Given contexts c, speculative decoding
starts by invoking the draft model M, to sample a
draft sequence of tokens with a length of , denoted
as &1,--- ,Z~, where Z; ~ q(x|T1, -+ ,Ti—1,C).
The draft tokens, along with the contexts, are then
passed to the target model M), to obtain their output
distribution p(z|Z1, - - - , Z;, ¢) in parallel. Finally,
the draft tokens is verified sequentially from 2
to Z~. To verify token ;, a speculative sampling
algorithm is employed to determine whether to ac-
cept Z; or not, based on ¢(z|Z,--- ,%;—1,c) and
p(x|Z,- -+ ,Z;—1,c). Once a token is rejected, the
next verification terminates and the algorithm re-
turns a new token as the endpoint. If all tokens
are accepted, there is an extra token sampled from
p(x|Z1,- - ,Z,c) as the endpoint. Thus, the pro-
cess generates a minimum of 1 and a maximum of
v + 1 accepted tokens.

Speculative Sampling. The significance of spec-
ulative sampling is that we cannot accept the
guesses given by the draft model without restric-
tion, otherwise we cannot preserve the same out-
put distribution as the target model. A simple and
straightforward idea is to first sample a token =
from p(x)?, accept 7 if x = 7, otherwise reject
it and return . However, this approach — what

*We’ll use p(x) and p(&) to denote p(x|E1,--- , i1, c)

and p(Z;|%1,- - - , Ti—1, ¢) respectively whenever the prefix is
clear from the context, and similarly for g(z) and q(Z).

we call naive sampling — has a very inefficient
acceptance rate of) - p(Z)q(Z). As a comparison,
speculative sampling uses a novel algorithm that

accepts Z with probability min(1, 1;’ E;;), leading to

an overall acceptance rate of) - min(p(z), ¢()).

If z is rejected, then return a new token sampling

from p/(z) = ZI:?;(;S’(%EZ@%;);)) . It can be proven

that speculative sampling can preserve the same
output distribution as the target model (Leviathan
et al., 2023; Chen et al., 2023) while possessing
an upper bound on the acceptance rate of naive
sampling (Appendix C).

3 Multi-Candidate Speculative Decoding

Behind the success of SD lies the effective utiliza-
tion of parallel computing on computing devices:
the latency of parallel scoring of short continua-
tions is comparable to that of sampling a single
token from the larger target model. Ideally, the
length of draft tokens generated by the draft model
(i.e.,) can be increased all the way up to the upper
limit of computing devices. However, there comes
the diminishing marginal utility with an increase in
~ rapidly, as the acceptance of a draft token for a
given position depends not only on itself but also
on the acceptance of all preceding tokens.

In short, there is a portion of potential comput-
ing resources that have not been fully utilized. Our
work involves utilizing this portion of resources to
perform parallel verification on another dimension
(i.e., the batch dimension) to significantly improve
the acceptance rate of draft tokens. This requires
the draft model to sample more than one token at
each step, eventually generating a batch of candi-
dates. This batch of candidates is fed together into
the target model to obtain the output distribution at
each position, as shown in Fig. 1(b).

The verification process for multiple candidates
is roughly the same as SD: starting from the first
step of generation, input the output distributions
q,p and candidate tokens %', - -- , Z* for the cur-
rent step into the speculative sampling algorithm.
If the algorithm accepts one of the k tokens, the
candidate corresponding to that token is retained
in the batch for the next step of verification. If
the tokens are all rejected, the algorithm returns a
new token as the endpoint, and the next verifica-
tion procedure is aborted. Finally, if a candidate in
the batch survives to the end, the endpoint token is
sampled from the output distribution corresponding
to this candidate. Taking a look at the process, it is

() for each step

[Draft Model |

I saw a

->[Speculative Sampling
focio

Tp(-\c,fu) EP('\Cyh,is)

Target Model

éD 1 é saw é{b a .’34 big ':535,' dog

Generate Draft|_ ________________________._

q(:) for each step €2 sampling 2 tokens per step,_ lb’g dog

]

l [Draft Model
: red car

red bus

fails verification. In Appendix A, we prove that the
tokens output from Algorithm 1 follow the distribu-
tion p(z), which ensures that the output obtained
by our algorithm has the same distribution as the
target model.

Algorithm 1: Multi-Candidate Speculative
Sampling
Input: Distributions p, ¢; The candidate tokens
~1 ~k
T, ,2% ~q.

Output: If accept, returns True and the accepted
token, otherwise returns False and a new
token as the endpoint.

1 fori < 1tokdo
2 r~U(0,1)

3 ifr < ’;g:g then
return (True, &*)

> Accept 7
+]

5 else
6 > Normalize the residual p(x)

L max(0,p(z)—q(x))
P(2) = 5 nax(0,p() —aCe))

s end
9 Tend ~ p(T)

10 return (False, Tend)

[:Verification """" l;f‘;’,_ T '(f',,' """ in

v v @

Multi-Candidate Speculative Sampling]
focio

[Target Model
| /I\ /I\ =1 gD |
| éD @) (@) @ Eglae
: Z 8 :
0 @ @ BB
' 1 saw a 25 = :
: @ @ @ Ly Ly ! bus '
: =3 red ~=c :
@ & @ B @

Figure 1: The procedure for standard SD (a) and
MCSD (b).

similar to walking from the root of a tree to a leaf
node, where each step chooses a path from one of
the k branches or aborts early.

3.1 Multi-Candidate Speculative Sampling

Now the problem is that the original speculative
sampling algorithm described in Section 2 cannot
be directly used for verification of multiple candi-
dates. This motivates us to design the speculative
sampling algorithms for multi-candidate verifica-
tion, as shown in Algorithm 1. The algorithm op-
erates in the same manner as the standard SD to
verify each candidate token. However, the distribu-
tion p is recalibrated based on ¢ whenever a token

Algorithm 2: Multi-Candidate Speculative
Sampling without Replacement

Input: Distributions p, ¢; The candidate tokens
g, 2", where ' ~ Gi_1(x).
Output: If accept, returns True and the accepted
token, otherwise returns False and a new
token as the endpoint.
1 fori < 1tokdo
2 r~U(0,1)

3 ifr < sglg then > Accept #°
4 | return (True, ")
5 else
> Normalize the residual p(x) and
q(x)
. __max(0,p(z)—q(x))
7 P(2) = 5= ax(0,p@ — a(e)
8 q() <0
’ 9(@) = <1

10 end
11 Tend ~ p(T)

12 return (False, Tend)

3.2 Multi-Candidate Speculative Sampling
without Replacement

Notice that the & tokens sampled by the draft model
at each step are independently and identically dis-
tributed. As k increases, the possibility of colli-
sions arises, meaning that there may be duplicates
in z!,--- , Z*. Even if a token is repeatedly sam-
pled, there is no way to increase the probability
of accepting it, because once it is rejected the first
time, it has a probability of O in the residual distri-

bution p, and thus will never be accepted again.

An intuitive way to prevent token collisions is
to do sampling without replacement in draft model
generation. Without loss of generality, assume that
#', .., @* are sampled without replacement from
q sequentially, that is 2/ ~ ¢_1 (), where

Qo(x) = q(z),

— 0’
gi(z) = a(=)

Yppsl .. i d(@)?

ze{z, -, @ D)
otherwise ’

We also propose the version without replace-
ment as shown in Algorithm 2 and the proof that it
preserves the distribution p(z) in Appendix B.

3.3 Tree Attention

Target Model

éD @5 é@ zy &) & & &) &
1 big

red dog cat bus car

saw a

Vv
MVANVIVIN,
wl]
MVIVINIVIERW QU on
w || v
w V]V v
HIVINVIVIERW, v

Key and Value

Figure 2: Processing multiple candidates in a single
sequence concurrently based on Tree Attention, which
contains an attention mask that exclusively permits each
token to access its ancestors.

The generative Transformer (Vaswani et al.,
2017), which serves as the backbone of LLM:s,
employs a left-to-right manner in text generation
based on causal language modeling. To generate
each new token, the attention mechanism requires
accessing the keys and values of all preceding to-
kens. Due to the forward dependency, once a token
is generated, the keys and values at that position
remain unchanged in the following iterations, so
it is very common to cache the keys and values of
generated tokens for reuse. In multiple candidate
generation and verification, these cached keys and
values should be copied within the batch, for both
the target and draft models. Although the copying
incurs a slight overhead, the situation worsens as
these keys and values need to be transferred to the
computational unit at each layer of the model, even
if they are numerically duplicated.

Here we employ Tree Attention (Miao et al.,
2023; Cai et al., 2023) to mitigate the communi-
cation overhead resulting from replicated caches,
which enables multiple candidates to share the
caches of generated tokens. This time, all can-
didates are squeezed onto a single sequence in the
order in which they were generated®. Then, a well-
designed attention mask is applied to the sequence
to prevent information contamination among can-
didates and preserve causal relationships between
tokens, as shown in Fig. 2. With multiple candidate
sequences arranged in a single sequence, the length
of the sequence is slightly increased compared to
the original. Accordingly, the total computational
overhead is increased, but it is negligible compared
to the communication overhead saved, since the
contextual prefixes are generally much longer than
the length of the candidates generated by the draft
model. In our architecture, multiple candidates
can be maximally squeezed into a single sequence
without adding too much length, thanks to the k-ary
tree formed by the candidate tokens, which allows
a previously generated token to be shared by its
descendants in the sequence.

4 Experiments

4.1 Experiment Settings

Models. Our evaluation is based on the pub-
licly available LLM suite LLaMA (Touvron et al.,
2023a), as well as its fine-tuned version Vi-
cuna (Chiang et al., 2023), which is fine-tuned with
instruction data to better perform dialogues and
instructions. We select the 13B and 33B size ver-
sions as target models. Since there are no small
models suitable for rapid draft generation included
in the LLaMA suite, we employ LLaMA-68M and
LLaMA-160M (Miao et al., 2023) as draft models,
which are trained from scratch on the Wikipedia
dataset and part of the C4 dataset (Raffel et al.,
2020).

Datasets. We evaluate our approach on the con-
versational dataset Alpaca (Taori et al., 2023; Peng
et al., 2023) and the translation dataset WMT
EnDe (Bojar et al., 2014), which were used in pre-
vious works (Leviathan et al., 2023; Zhou et al.,
2023) to evaluate decoding acceleration for LLM,
and we observe that the performance of SD varies
dramatically between the two datasets. For the

3The positional encoding of each token keeps the respec-
tive position in the previous sequence unchanged.

LLaMA-13B Vicuna-13B

LLaMA-33B Vicuna-33B

4
©

o
©

o
~

o
o

/ ~#- Alpca, Temp=0 | 44 f

-#- Alpca, Temp=1 /

i —— WMT,Temp=0 | ¢ 5| ’,‘
—e- WMT, Temp=1 J;

~#— Alpca, Temp=0
-%- Alpca, Temp=1
—— WMT, Temp=0
-e- WMT, Temp=1

Acceptance Rate a

o
n
»

°
IS

/| —#- Alpca, Temp=0 | 0.4+ /7
0.54%/ ~%- Alpca, Temp=1 EYV/3
H —— WMT, Temp=0 | 0.3
—e- WMT, Temp=1

—#— Alpca, Temp=0
~#- Alpca, Temp=1
—— WMT, Temp=0

0.41 -e- WMT, Temp=1

0.2+

12 4 8 16 32 12 4 8 16 32

k k

12 4 8 16 32 12 4 8 16 32
k k

Figure 3: Acceptance rate («) curves given different k using LLaMA-68M as draft model.

WMT dataset, the source text is embedded in an in-
struction template to prompt the model to perform
the translation task.

Efficiency Measures. We use the acceptance
rate o to evaluate the probability that a candidate
token is accepted at each step, which basically in-
dicates the distributional consistency between the
draft model and the target model.

Since the draft model generates candidate seg-
ments of v tokens at a time for verification,
the block efficiency 7 is commonly used as
the expected number of generated tokens per
block (Leviathan et al., 2023). Note that in the
worst case, 7 = 1, since the algorithm at least re-
turns a token as the endpoint; if all candidate tokens
are accepted, the target model appends an extra to-
ken at the end, see Fig. 1(b), and so 7 = vy + 1.

In a real-world deployment, calling the draft
model and executing our algorithm incurs addi-
tional overheads, so we report average wall clock
speedups besides block efficiency.

Platform. The experiments were conducted on
a single node, of which is equipped with four
NVIDIA RTX A6000 48GB GPUs. All systems
serves in half precision. The 13B versions are de-
ployed on one GPU and the 33B versions are de-
ployed across two GPUs. The draft models are
deployed along with the target models and does not
occupy additional GPUs.

Inference Settings. Since LLaMA base models
are unlikely to stop generating naturally, we limit
the generation length to a maximum of 128 new
tokens. Our experiments involve two popular sam-
pling setups, argmax sampling (temp=0) and stan-
dard sampling (temp=1). For other sampling meth-
ods, they can all easily be cast into standard sam-
pling from an adjusted probability distribution.

4.2 Acceptance Rate Improvement

We begin by looking at the impact of different fac-
tors, such as the dataset, supervised fine-tuning,

Draft model | Target model | Temp | Alpaca WMT
LLaMA-13B 0.76 0.55
Vicuna-13B 0 0.49 0.36
LLaMA-33B 0.75 0.58
Vicuna-33B 0.52 0.22

LLaMA-68M
LLaMA-13B 0.51 0.39
Vicuna-13B 1 0.36 0.25
LLaMA-33B 0.51 0.38
Vicuna-33B 0.35 0.24
LLaMA-13B 0.80 0.59
Vicuna-13B 0 0.54 0.39
LLaMA-33B 0.78 0.61
Vicuna-33B 0.54 0.25

LLaMA-160M
LLaMA-13B 0.57 0.43
Vicuna-13B 1 0.42 0.29
LLaMA-33B 0.57 0.42
Vicuna-33B 0.42 0.25

Table 1: Baseline acceptance rate (o) at &k = 1 on
Alpaca and WMT datasets.

and sampling method, on acceptance rates. As
shown in Table 1, on the unfine-tuned target model,
i.e., LLaMA, the draft models generate candidates
with good acceptance rates if the inference is per-
formed on the Alpaca dataset with argmax sam-
pling. However, fine-tuning the target model (Vi-
cuna, a fine-tuned version of LLaMA), changing
the dataset* or the sampling method can lead to a
decrease in acceptance rates. In most cases, we
did not observe a significant effect of changing
the target model size on acceptance rates, while
increasing the size of the draft model had a limited
positive effect on it.

Fig. 3 illustrates the acceptance rates at differ-
ent k£ using LLaMA-68M as a draft model, with
LLaMA-160M results in Appendix D. As k in-
creases, we observe a consistent improvement in
acceptance rates across the different models and
datasets. The « curves tend to converge when k
exceeds 32, at which point it becomes difficult and
uneconomical to increase k further. These results

“The discrepancy between the datasets can be attributed to

the variation in prompt length: WMT averages 29 words per
sample, compared to Alpaca’s 9.

LLaMA-33B Vicuna-33B
Dataset | Methods Temp k Config. Speedup T k Config. Speedup T
Baseline \ N/A N/A 1x 1 N/A 1x 1
SD (same 7) Ix1x1x1x1 271x 3.19 1x1x1x1 1.64x 197
Alpaca SD (best) 0 IxIxIxIxIxIx1x1x1 2.89x 3.70 | IxlxlxIxlIx1 1.70x 2.03
p Ours 4x2x2x1x1 3.06x 3.93 8x2x1x1 2.06x 2.56
SD (same 7) Ix1x1x1 1.69x 1.98 1x1x1 1.33x 1.53
SD (best) 1 I1x1x1x1x1 1.73x 2.02 I1x1x1x1x1 1.34x 1.58
Ours 8x2x1x1 217x 271 16x1x1 1.73x 2.10
| Baseline | N/A | N/A 1x 1| N/A 1x 1
SD (same ~y) Ix1x1xIx1 2.02x 2.38 1x1 1.15x 1.29
WMT SD (best 7) 0 IxIxIxIxIxIx] 2.06x 252 1x1 1.15x 1.29
Ours 4x2x2x1x1 2.24x 2.87 16x2 145x 1.73
SD (same 7) 1x1x1 1.41x 1.63 1x1 1.13x 1.26
SD (best) 1 Ix1x1x1x1 143x 1.69 1x1x1 1.14x 1.31
Ours 8x2x1 1.72x 2.08 16x2 142x 1.70

Table 2: Performance of each method on Alpaca and WMT datasets using LLaMA-68M as draft model, and

LLaMA-33B and Vicuna-33B as target models.

LLaMA-33B Vicuna-33B
Dataset | Methods Temp k Config. Speedup 7 | k Config. Speedup T
| Baseline | N/A | N/A 1x 1| N/A 1x 1
SD (same 7) Ix1x1x1 2.10x 3.20 1x1x1 1.33x 197
Alpaca SD (best «y) 0 Ix1x1x1x1 2.16x 3.49 1x1 1.40x 1.81
P Ours 4x2x2x1 242x 3.87 8x2x2 1.72x 2.59
SD (same 7) 1x1x1 1.43x 2.05 1x1 1.24x 1.60
SD (best) 1 1x1 1.47x 190 1x1 1.24x 1.60
Ours 8x2x2 1.85x 2.79 16x2 1.62x 221
\ Baseline \ N/A \ N/A 1x 1 \ N/A 1x 1
SD (same 7) Ix1x1x1 1.54x 242 1 1.06x 1.25
WMT SD (best) 0 1x1x1 1.57x 2.25 1 1.06x 1.25
Ours 8x2x1x1 1.81x 2.96 32 1.33x 1.66
SD (same 7) 1x1 1.22x 1.62 1 1.06x 1.25
SD (best 7y) 1 1x1 1.22x 1.62 1 1.06x 1.25
Ours 16x2 1.52x 2.14 32 1.30x 1.63

Table 3: Performance of each method on Alpaca and WMT datasets using LLaMA-160M as draft model, and

LLaMA-33B and Vicuna-33B as target models.

demonstrate the effectiveness of our method in im-
proving the acceptance rate with only a small value
of k.

4.3 Main Results

Given a draft of size 7, our method samples
multiple tokens at each step, assuming they are
ki,k1,--- , k, respectively, generating a total of
K =[]/, ki candidates. This constitutes a huge
search space of hyperparameter. For efficiency
reasons, we restrict the total budget K to a maxi-
mum of 32, and k; € {1,2,4,8,16,32}. For the
performance of our method under different hyper-
parameters, see Section 4.4. For each setting, we
report the performance of our method for the best

combination of ks, as well as the SD with the same
~ and the SD with the best v. We place the results
of 13B versions in Appendix E to save space.
Table 2 shows the performance of each method
using LL.aMA-68m as the draft model. SD accel-
erates the LLaMA-33b model well on the Alpca
dataset with argmax sampling, while the boost of
our method is limited. However, when we observe
a degradation in acceptance rate, as seen when us-
ing Vicuna as the target model, employing standard
sampling, or working with the WMT dataset, the
performance of SD degrades significantly. In these
scenarios, our method demonstrates considerable
improvement over SD. Furthermore, the difference
observed between SD (same) and SD (best)

Speedup

2.4+

2.14

2.0

1.8

LLaMA-13B Temp=0

LLaMA-13B Temp=1

Vicuna-13B Tem

p=0

Vicuna-13B Temp=1

® sD baseline ax28x2 gt ® SD baseline g ® 5D baseline 8x? ® sD baseline 16x1
Budget=4 oxa % mm 1.9 Budget=4 4§2 £ mi6x1{1.87 Budget=4 8x411:§6x1 164 Budget=4 ax4
® Budget=8 4x4 % Budget=8 % % Budget=8 ot . # Budget=8 ® Sx2
B Budget=16 16.><1 B Budget=16 8x1 W Budget=16 250 B Budget=16 8x1 1
¥ Budget=32 Bél ¥V Budget=32 = 2Xx4 1.74 v Budget=32 x4 321X1 ¥V Budget=32 32le
181 »* 32x1 = 151 5o 16x2
1x8 v 8x416x2 2x4% "o vazw
X1 w 8xa |167 *
L] 32x1 1.74 1x8 vy 1.4
v 3 16x2 1x1 .
8x4 1.5 3 Ixlxt
1x1
4 1x1
16')(2 1.6 L] IxIx1 1§3 1.34 ®
® 1.44 1 1x1x1
11 1541 1 ° 01§s
1e 13]e O
20 24 2.6 1.4 1.8 2.0 2.2 2.4 1.6 1.8 2.0 2.2 1.4 1.6 1.8 2.0

Block Acceptance T Block Acceptance T

Block Acceptance T Block Acceptance T

Figure 4: Speedup and block efficiency (7) for different k£ configurations, where the dataset is Alpaca, using

LLaMA-68M as the draft model.

Algorithm Tree Attn. LLaMA-13B Vicuna-13B LLaMA-33B Vicuna-33B
Speedup 7 | Speedup 7 | Speedup 7 | Speedup T
MCSS w/o Replacement. v 1.91x 245 1.64x 2.00 2.17x 271 1.73x 2.10
MCSS w/ Replacement. v 1.89x 2.39 1.55x 1.95 2.04x 2.55 1.66x 2.01
MCNS v 1.21x 152 1.45x 1.78 1.33x 1.65 1.50x 1.80
MCSS w/o Replacement. X 1.61x 247 1.36x 1.99 1.84x 2.68 1.51x 2.09

Table 4: Ablation experiments on Tree Attention and different verification algorithms, where the dataset is Alpaca,
the draft model is LLaMA-68M, and temp = 1 (standard sampling).

validates our claim that further increasing v does
not yield significant gains.

Replacing the draft model with LLaMA-160m,
the results are shown in Table 3. The notable dif-
ference from LLaMA-68m is that the latency of
LLaMA-160m is much higher. Consequently, the
higher cost of the invocations leads to a general
shrinkage of . Our method achieves a similar
improvement as in Table 2, and in some cases,
our method can works at a larger v compared to
SD (best y), because it compensates for the addi-
tional overhead of the draft model by improving
the acceptance rate.

Overall, our approach consistently achieves
higher speedup and block efficiency compared to
and SD baseline, demonstrating the effectiveness
in improving the efficiency of the target model.

4.4 Budget Configuration

In this section, we examine the performance varia-
tions under different budget configurations. Fig. 4
shows the performance of the 13B-sized target
model with different k& configurations on the Al-
paca dataset, where we fixed v = 2 for clarity.
Our analysis yields three key insights. Firstly,
the monotonically decreasing configuration always
outperforms the monotonically increasing configu-
ration for the same budget (monotonic rule), e.g.,
4x2 outperforms 2x4. This is because the accep-
tance of the next token is governed by the accep-
tance of the preceding tokens. Therefore, it is a

natural strategy to use a monotonically decreasing
configuration to preferentially improve the accep-
tance of the preceding tokens. The monotonic rule
is practically useful in reducing the overhead in
hyperparameter search. Secondly, configurations
with the same budget have roughly the same per-
formance if we follow the monotonic rule. For
instance, the 16-budget group is roughly centrally
distributed, as is the 32-budget group. This un-
derscores the robustness of our approach given a
specific budget. Lastly, despite a higher block effi-
ciency, the 32-budget group demonstrates a lower
speedup than the 16-budget group. This counterin-
tuitive outcome stems from the diminishing returns
of block efficiency gains as budget increases, which
fail to compensate for the latency inherent to larger
budgets.

4.5 Ablation Study

We conduct an ablation study to investigate the
impact of our proposed improvements on perfor-
mance, given optimal k configurations as in Sec-
tion 4.3. Our focus is on Tree Attention and verifi-
cation algorithms that handle multiple candidates.
More specifically, we look at multi-candidate spec-
ulative sampling (MCSS) both with and without
replacement, as well as a multi-candidate variant
of naive sampling (MCNS)>. The experiments are

SMCNS first sample a token from p(z) and accepts 7
ifz € {#',---,&"}, otherwise it rejects the candidates and
returns x.

based on standard sampling. For argmax sampling,
MCSS with replacement degenerates to SD, as sam-
pling with temp = 0 consistently produces the
topl token. Additionally, it can be conclusively
demonstrated that MCSS without replacement is
equivalent to MCNS when using argmax sampling.

The findings, as presented in Table 4, reveal
that MCSS offers the most significant improve-
ment when compared to MCNS. Tree Attention
also contributes a crucial role, not altering the ex-
pected block efficiency but substantially reducing
the communication overhead. The improvement
brought by MCSS without replacement is limited,
probably because repeated sampling is not as likely
to happen when k; is small.

5 Generalization Across Models

We evaluate the effectiveness of our method across
arange of draft and target models. For draft models,
we explore the intuitive hypothesis that fine-tuning
the draft model would enhance the alignment with
target models. We also examine the compatibility
of our method when applied to the fine-tuned draft
models. To accomplish this, we use ShareGPT data
to fine-tune the LLaMA-68M and LLaMA-160M
models, following the training setup provided by
the Vicuna suite (Chiang et al., 2023). The re-
sulting fine-tuned models are subsequently named
Vicuna-68M and Vicuna-160M. With regard to the
target models, our consideration extended to the
LLaMAZ2 suite (Touvron et al., 2023b) and the OPT
suite (Zhang et al., 2022; Iyer et al., 2022).

We report a@k with k£ from 1 to 4 for each
model pair, as shown in Table 7. Fine-tuned draft
models, Vicuna-68/160M, exhibit better alignment
with both the Vicuna model and the LLaMA2-
chat model, with a slight loss of alignment to the
LLaMA/LLaMA?2 base models. Fine-tuning, how-
ever, shows domain-specific limitations, yielding
less improvement in baseline acceptance on the
WMT dataset compared to the Alpaca dataset. The
delta value suggests that our method is fully super-
imposable with fine-tuning, and even surpasses the
improvements achieved prior to fine-tuning. In the
context of the OPT suite, our approach achieves
peak enhancements in acceptance rates for the OPT-
iml-30B model on the WMT dataset.

6 Related Work

The quest for enhancing the inference efficiency of
deep neural networks encompasses a broad spec-

trum of strategies, including but not limited to distil-
lation (Hinton et al., 2015), quantisation (Dettmers
et al., 2022), and sparcification (Jaszczur et al.,
2021). These techniques often introducing some
level of loss. In contrast, speculative decoding, as
introduced by Leviathan et al., 2023 and Chen et al.,
2023, effectively reduces the inference latency of
LLMs without compromising model performance.
Before them, blockwise parallel decoding (Stern
et al., 2018) speeds up the inference of autoregres-
sive models based on a similar principle, but it only
supports argmax decoding. And Xia et al., 2023
shares similar idea, but uses a lossy verification
algorithm.

Given the pivotal role of distributional con-
sistency between the draft and target models,
researchers have focused on aligning the draft
model with the target model through additional
training (Miao et al., 2023; Zhou et al., 2023;
Liu et al., 2023). However, our empirical find-
ings suggest that this alignment is less robust on
out-of-distribution data (WMT) compared to in-
distribution data (Alpaca). In line with our research,
some studies have employed multiple candidates
to improve the acceptance rate. Miao et al., 2023
utilises multiple draft models to generate diverse
candidates, while Cai et al., 2023 trains additional
prediction heads for the same purpose. Their work
also incorporates tree attention to reduce the com-
munication overhead associated with multiple can-
didates. Similar to our approach, Sun et al., 2023
also sample multiple candidates from the draft
model. The difference is that they derive the al-
gorithm for multi-candidate verification from the
perspective of optimal transport, which requires
linear programming for its implementation.

7 Conclusion

This paper introduces multi-candidate speculative
decoding. This method leverages the full poten-
tial of multiple candidates generated by the draft
model, thereby improving the acceptance rate with-
out compromising the output quality of the target
model. We further augment this approach with
Tree Attention that reduces communication over-
head. Extensive testing across various models, de-
coding settings, and datasets has shown that our
method consistently reduces latency compared to
standard speculative decoding. Our method works
out-of-the-box and also benefits from works that
improve acceptance rates with additional training.

Limitations

Our method, including speculative decoding, de-
mands additional computational resources for paral-
lel verification compared to incremental decoding.
Consequently, the acceleration may be diminished
when decoding multiple sequences simultaneously,
which depends on the parallel computing capabil-
ities of the device. On the other hand, the opti-
mal hyperparameter configuration for our method
is dependent on the model, dataset, and decoding
settings. While our experiments indicate robust per-
formance under the same budget, fut ure work can
involve more efficiently determining the optimal
hyperparameter configuration.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, et al. 2014. Findings of the 2014 workshop
on statistical machine translation. In Proceedings of
the ninth workshop on statistical machine translation,
pages 12-58.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
and Tri Dao. 2023. Medusa: Simple framework for
accelerating llm generation with multiple decoding
heads. https://github.com/FasterDecoding/
Medusa.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, lon
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.

2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. arXiv preprint
arXiv:2208.07339.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru,
Todor Mihaylov, Daniel Simig, Ping Yu, Kurt Shus-
ter, Tianlu Wang, Qing Liu, Punit Singh Koura, et al.
2022. Opt-iml: Scaling language model instruc-
tion meta learning through the lens of generalization.
arXiv preprint arXiv:2212.12017.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mo-
hiuddin, Lukasz Kaiser, Wojciech Gajewski, Henryk
Michalewski, and Jonni Kanerva. 2021. Sparse is
enough in scaling transformers. Advances in Neural
Information Processing Systems, 34:9895-9907.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274-19286. PMLR.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto-
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
2023. Online speculative decoding. arXiv preprint
arXiv:2310.07177.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and
Zhihao Jia. 2023. Specinfer: Accelerating generative
IIm serving with speculative inference and token tree
verification. arXiv preprint arXiv:2305.09781.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485-5551.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

David R So, Wojciech Marnke, Hanxiao Liu, Zihang
Dai, Noam Shazeer, and Quoc V Le. 2021. Primer:
Searching for efficient transformers for language
modeling. arXiv preprint arXiv:2109.08668.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information
Processing Systems, 31.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ah-
mad Beirami, Himanshu Jain, and Felix Yu. 2023.
Spectr: Fast speculative decoding via optimal trans-
port. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu
Wei, and Zhifang Sui. 2023. Speculative decod-
ing: Exploiting speculative execution for accelerat-
ing seq2seq generation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 3909-3925, Singapore. Association for Com-
putational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, San-
jiv Kumar, Jean-Frangois Kagy, and Rishabh Agar-
wal. 2023. Distillspec: Improving speculative de-
coding via knowledge distillation. arXiv preprint
arXiv:2310.08461.

10

A Proof of Multi-Candidate Speculative
Sampling

Given any distributions p(z) and ¢(z), we now
prove that the token returned from Algorithm 1 are
distributed identically to those sampled from p(z)
alone.

Proof. Let &', , Z* be the candidate tokens sam-
pled from g(x). We define

RO = ®7

()
R, := Reject 5:1,

~n
IR

p(z),
max(pp—1(x) —

~ Y, max(pu_i(z) —

According to Algorithm 1, there is

3)

q(z),0)
q(z),0)’

ﬁn—l(fﬂ))

P(Accept i"|7" = 2, Rn_1) = min(1,
(Accept 22" = x, Rn—1) = min(e

4

Thus we have

P(x, Accept " |Rn—1)
= P(Accept ", 3" = z|Rn-1)
= P(Z" = z|Rn-1)P(Accept " |Z" = 2, Rpn—1)
= P(z" = z)P(Accept "|Z" = 2, Rn-1)
ﬁn—l(x))

q(z)
= min(g(x), pn—1(z)).

&)

¢(z) min(1,

The probability of rejecting ™ is
P(Reject 2"|Rp—1) = 1 — P(Accept 2" |Rp—1)
=1- ZP Accept 2", 2" = x|Rp—1)

—1—Zm1n)y Pn—1(x))

= max(pn_1(z) - ¢(x),0).
(0)
Let A, := P(z|R,). We have

An = P(z|Rn)

= P(x, Accept " R.,)

= P(x, Accept "' |R.,)
+ P(Reject £"+1|R YP(2|Rni1)

+ Z max pn
+ Z max pn

+ P(z,Reject 2" R,)

¢(z) min(1, pn) —q(2),0)Anis

= min(q(z —q(z),0)Ant1.

@)

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257
https://doi.org/10.18653/v1/2023.findings-emnlp.257

According to Algorithm 1, Ag P(z|Rk)
Pr(x). So we get the recursive formula

Ag—1 = min(q(x), pr—1(x))
+ 3 max(pr (@) — gfe),0)Ax

= min(q(z), pr—1(x))
+ Z max(pr—1(x) — q(x), 0)pr ()

= min(q(z), pr—1(x))

R ol max(pr-1(z) — ¢(2),0)
- szmax(pk_l(m) q(x),0) S (et () — 40, 0)
= min(q(x), ps—1(2)) + max(pe—1 () - q(x),0)
= Pr-1(z).
(®)
Iteratively, we have
Ao :]50(%’) :p(l'), 9)
P(z) = P(z|Ro) = Ao = p().
O

B Proof of Multi-Candidate Speculative
Sampling without Replacement

Given any distributions p(z) and ¢(z), we now
prove that the token returned from Algorithm 2 are
distributed identically to those sampled from p(z)
alone.

Proof. Letd!, .-, Z* be the candidate tokens sam-
pled without replacement from ¢, as in Eq. (1). We
define

150(%) = p(ﬂf),
~ max(pp-1(x) — Gn-1(x),0) (10)
pn(x) = — 7 '
>, max(Pp—1(z) — gn-1(z),0)
According to Algorithm 2, there is
P(Accept i" R, &1, - 2"
5 (sntl 11)
= min(1, IM .
qn(xn—l—l)

Here we reuse the definition of R from Eq. (2).
Thus we have

~n

P(z,Accept iR, 2, -+, E™)
= P(E"" =z, Accept " R, E - - -
=PE" = 2R, &, ,7")
x P(Acceptz" R, &, - - -,
) n (T
= @n(x) min(1, qungx;)
= min(Gn (), pn(x)).

~n

7:L.)

s (12)

11

and

P(x,Reject 2" R, &', &)
= Y P(x,Reject " "M Ry, 31, E")
Fntl
= S (P@E R)
gn+1
x P(z,Reject #" T Ry, &, -, ")
= S (PE R)
gn+1
x P(Reject i" Ry, &', - 3")
X P(x|Rpgr, &', -, 2"
(13)
= S PE R,)
£7z+1
x (1 — P(Accept " Ry, &', -+, ")
X P(x‘Rn+17~i17 e 7.%”1"!‘1)]
a4t o Pa(E)
- n 1- 17 o
>l (&)1 = min(1, 2

Fn+1

X P(x‘Rn+1a‘%15 e 75n+1)]

= 3 (i) = min(q, (@), (@)

gn+1

X P($‘Rn+1,jl,“~ 7i'n+1)}'
Let A, := P(x|R,, &%, -+ ,2"). We have
Ap = P(z|Rn, 2, ,2™)

~n

= P(x, Accept #" TR, 2", - &™)
+ P(z,Reject 2" TR, &', &)
= min(Gn (), pn(x))
+ > g (@) = min(@. (@), pa (3") A }.

gn+1

(14)

Because G, (z) is independent of #"*1. Thus p,

is independent of x,, holds forn = 1,--- | k. Ac-
cording to Algorithm 2,
Ay = P(a|[Ry, &, ,3%) = pr(), (15)

so Ay, is also independent of Z¥. We have

Ag—1

= min(Ge—1(x), Pk
+Z{[’1k 1 k

= mln(Qk—l() Pr—1(x))
+ Ag Z[@c_ﬂf?k) — min(qe—1(8*), pr—1(3"))]

ik

~1(2))

— min(gx— 1($k), Dk—1 (jk))]Ak}

= min(gr—1(x), pr—-1(x))

"FAk[lekfl me Gr—1(
zk

:min(qk,1($),pk—l())
+ AR P (@) = D min(ge1 (%), o1 (5))]
= min(gx—1(x), pr—1(x))

— min(Gy_1(Z"), pr_1(&"))]

+ Ay Z[ﬁkfl (f
zk

= min(Gr—1(x), pr—1())
+ Ar Y max(pe-1(3*) — Ge—1(2"), 0)

Fk

= min(ge—1(x), pr—1(x))

o max(pr—1(x) — gr—1(x), 0)
>, max(pr—1(x)—Qk 1(z),0)
meaX (Pe—1(3") — qe—1(3"),0)]

= mln(Qk—l()s Pr—1(x)) + max(pr—1(x) — Gx—1(x),0)
= pr-1().

16)
Iteratively, we have
A = D =
P(z) = P(z|Ro) = Ao = p().
O

C Upper Bound on Acceptance Rate for
Naive Sampling

We show that for any k € N, the acceptance rate
of multi-candidate speculative sampling (with re-
placement) has an upper bound for multi-candidate
naive sampling. Our proof references Miao et al.,
2023.

Proof. We use Pg and Py to denote the probabil-
ities involved in speculative sampling and naive
sampling algorithms, respectively.

Since the acceptance rate is equal to 1 —
Y. P(z,Ry), where we reuse the definition of
R from Eq. (2). We now prove that Ps(x, Ry) <
Py (z,Ry) always holds.

12

For speculative sampling, we have

Ps(x, Ry)
= P(z|Rk)P(Rk)
; (18)
= pi(x) [[P(Reject #|R; 1)
i=1
For naive sampling, there is
Py(z,Ry) = p(a)(1 —q(x)*. (19)
If there is p;(z) — ¢q(x) < 0, then pj(x) = 0
holds for j > 4. Thus Pg(z,Rg) = 0 <

Pn(z,Ry). Otherwise p;(z) — q(z) > 0 holds

fori =0,---,k—1, and we get
R pi—1(z) — q(z)
i = - 20
Pi) = i () — a0
By mathematical induction, if £ = 1, there is
Ps(.r,Rl) = Al(x)P(Rejectx |Ro)
) 0) ~ (e
=p(z) — q(x)
< p(x) — p(x)gq(z)
=p(2)(1 - q(z))
= PN(ac,’R,l),
21

where the value of P(Reject #!|Rg) comes from
Eq. (6).

Assume that Ps(z, Ry) < Pyn(z, Ry) holds for
k < n, then

n

pn(z) | [P(Reject &'|Ri—1)

=1

Ps(z,Rn) =

n—1
= pu(@) P(Reject " [Rp—1) [[P(Reject 7| Ri-1)

i=1

_ Pn— 1()
>, max(pr—1(Z max(Pn-1(
X ﬁ P(Reject §:i|’Ri,1)
pu-1(2) — a(@)] [P(Reject3'(R: 1)
< -1 (&) — o1 (@)a(@)] [] P(Refect #R: 1)
= [~ a@)pa1(2) [P(Reject3'[R: 1)
< [1 - g(@)lp(@)(1 — gle))"?
< p(x)(1 - q(x))"
= PN(:E,Rn),
(22)
O

—4(z),0)

LLaMA-13B

Vicuna-13B

LLaMA-33B

Vicuna-33B

o e e °
o ~ ©

Acceptance Rate a

o
o
=k

~#— Alpca, Temp=0
~%- Alpca, Temp=1 | 0.4
—— WMT, Temp=0 4
—e- WMT, Temp=1 | .34

4 ~#— Alpca, Temp=0
~%- Alpca, Temp=1
—— WMT, Temp=0
-e- WMT, Temp=1

054 f

0.4+

~#- Alpca, Temp=0
-#- Alpca, Temp=1
/ —— WMT, Temp=0
$ —e- WMT, Temp=1

0.44

0.31

—#— Alpca, Temp=0
~#- Alpca, Temp=1
—— WMT, Temp=0
-e- WMT, Temp=1

Table 5: Performance of each method on Alpaca and WMT datasets

8 16 32

k

32

32

32

Figure 5: Acceptance rate («) curves given different k using LLaMA-160M as draft model.

LLaMA-13B Vicuna-13B
Dataset | Methods Temp k Config. Speedup 7 | kConfig. Speedup T
| Baseline | N/A | N/A 1x 1| N/A 1x 1
SD (same 7) Ix1x1x1x1 246x 3.35 1x1 149%x 1.72
Alpaca SD (best 7) 0 Ix1x1xIx1x1x1 2.57x 372 1x1 1.49x 1.72
P Ours 2x2x2x1x1 2.75x 3.89 8x2 1.82x 218
SD (same 7) 1x1x1 1.54x 193 1x1 1.30x 1.50
SD (best) 1 1x1 1.56x 1.79 1x1 1.30x 1.50
Ours 4x2x2 191x 245 16x1 1.64x 2.00
| Baseline | N/A | N/A 1x 1| N/A 1x 1
SD (same) 1x1x1 1.69x 2.05 1x1 1.29x 1.52
WMT SD (best) 0 1x1x1 1.69x 2.05 Ix1x1x1 1.31x 1.63
Ours 4x2x1 1.88x 2.37 8x1 1.54x 1.85
SD (same 7) 1x1 1.30x 1.55 1x1 1.14x 134
SD (best) 1 1x1x1 1.31x 1.63 1 1.15x 1.25
Ours 8x2 1.57x 195 16x1 1.39x 1.72

LLaMA-13B and Vicuna-13B as target models.

using LLaMA-68M as draft model, and

LLaMA-13B Vicuna-13B

Dataset | Methods Temp k Config. Speedup 7 | k Config. Speedup T
| Baseline | N/A | N/A 1x 1| N/A 1x 1

SD (same) 1x1x1 1.53x 291 1x1 1L15x 1.83

SD (best 7) IxIxI 153x 291 1 1.16x 1.54

Alpaca |y o 0 4x2x2 170x 3.36 4x4 1.39x 225
SD (same 7) IxI 1.17x 190 1 1.09% 142

SD (best) 1 | 1.19% 1.57 | 1.09% 142

Ours 8x2 141x 237 32 1.29x 1.83

\ Baseline \ N/A \ N/A 1x 1 \ N/A 1x 1

SD (same) IxI 1.18x 194 1 1.07x 139

SD (best 7) IxI 1LI18x 1.94 1 1.07x 139

WMT 1 G 0 16x1 134x 231 16 125x 1.68
SD (same) 1 1.04% 143 1 099% 1.29

SD (best) 1 1.04x 143 1 099% 129

Ours 32 127x 181 32 120x 1.68

Table 6: Performance of each method on Alpaca and WMT datasets using LLaMA-160M as draft model, and
LLaMA-13B and Vicuna-13B as target models.

D Acceptance Rate Improvement

Fig. 5 shows the acceptance rate improvement from
increasing k£ when using LLaMA-160M as a draft

model.

13

E Main Results for 13B Models

Table 5 and Table 6 shows the performance of each
method when using target models of size 13B.

a@1 - a@4 (Ax)

Draft model Target model Temp Alpaca WMT
LLaMA-13B 0 076088 (+0.12) 0.55— 0.68 (+0.13)
Vicuna-13B 0 049067 (+0.19) 036 — 051 (+0.14)
LLaMA-68M |y’ \iA2-13B 0 0755088 (+0.13) 0.57 — 0.71 (+0.14)
LLaMA2-13B-chat 0 047 — 0.66 (+0.19) 0.30 — 0.44 (+0.15)
LLaMA-13B 0 075090 (+0.14) 0.56 — 0.69 (+0.13)
Viewnaggy | Vicuna-13B 0 056076 (+0.20) 038 — 0.57 (+0.19)
LLaMA2-13B 0 074089 (+0.14) 056 — 0.69 (+0.13)
LLaMA2-13B-chat 0 0.55— 0.75 (+021) 0.32 — 0.53 (+0.21)
LLaMA-13B 0 080091 (+0.11) 059 — 0.72 (+0.13)
Vicuna-13B 0 054-073(+0.19) 039 — 0.54 (+0.15)
LLaMA-160M ;' \ia2 138 0 0785090 (+0.12) 0.61 — 0.74 (+0.14)
LLaMA2-13B-chat 0 052 0.72 (+0.19) 0.32 — 048 (+0.16)
LLaMA-13B 0 078091 (+0.12) 0.59 — 0.72 (+0.13)
Viewna 6oy Vieuna-13B 0 0.62—081(+0.19) 040 — 0.58 (+0.18)
LLaMA2-13B 0 0770090 (+0.13) 059 — 0.72 (+0.13)
LLaMA2-13B-chat 0 0.61 — 0.81 (+0.20) 033 — 0.54 (+0.22)
OPT-13B 0 086 095(+0.09) 0.97 — 0.99 (+0.02)
OPT-125M OPT-30B 0 083-—094(+0.11) 0.80 — 0.89 (+0.09)
OPT-iml-30B 0 081-093(+0.12) 040 — 0.77 (+0.37)
LLaMA-13B 1 051 5072(+021) 039 — 0.56 (+0.17)
Vicuna-13B 1 035057 (+022) 025 — 041 (+0.16)
LLaMA-68M |y’ \iA2-13B 1 0.51—071(+020) 038 — 057 (+0.18)
LLaMA2-13B-chat 1 035 0.57 (+022) 025 — 0.39 (+0.14)
LLaMA-13B I 048069 (+021) 038 — 0.55 (+0.18)
Viewnaggy | Vicuna-13B 1 046 0.68 (+0.22) 029 — 0.45 (+0.16)
LLaMA2-13B I 049069 (+020) 038 — 0.56 (+0.18)
LLaMA2-13B-chat 1 046 — 0.69 (+0.22) 0.30 — 0.49 (+0.18)
LLaMA-13B I 057076 (+0.19) 043 — 0.61 (+0.17)
Vicuna-13B 1 042063 (+021) 029 — 0.45 (+0.16)
LLaMA-160M 1y ' \ia2 138 1 0.57-075(+0.19) 043 — 0.61 (+0.18)
LLaMA2-13B-chat 1 041 — 0.63 (+022) 0.29 — 044 (+0.15)
LLaMA-13B 1 054—073(+0.20) 041 — 0.58 (+0.18)
Viewnateop Vieuna-13B 1 053—074(+0.22) 031 — 0.48 (+0.18)
LLaMA2-13B 1 054073 (+0.19) 041 — 0.59 (+0.18)
LLaMA2-13B-chat 1 0.54 — 0.75 (+022) 0.33 — 0.51 (+0.18)
OPT-13B 1 0.63—081(+0.18) 059 — 0.78 (+0.19)
OPT-125M OPT-30B 1 060079 (+0.18) 0.56 — 0.76 (+0.20)
OPT-iml-30B 1 061078 (+0.17) 044 — 0.68 (+0.24)

Table 7: Acceptance rate (o) improvements with &k from 1 to 4 on Alpaca and WMT datasets using various draft and
target models. Underlining highlights o @£k increases after fine-tuning, while bold indicates A« improvements.

14

	Introduction
	Background: Speculative Decoding
	Multi-Candidate Speculative Decoding
	Multi-Candidate Speculative Sampling
	Multi-Candidate Speculative Sampling without Replacement
	Tree Attention

	Experiments
	Experiment Settings
	Acceptance Rate Improvement
	Main Results
	Budget Configuration
	Ablation Study

	Generalization Across Models
	Related Work
	Conclusion
	Proof of Multi-Candidate Speculative Sampling
	Proof of Multi-Candidate Speculative Sampling without Replacement
	 Upper Bound on Acceptance Rate for Naive Sampling
	Acceptance Rate Improvement
	Main Results for 13B Models

