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Abstract

Recent years have seen significant progress in
developing spiking neural networks (SNNs) as a
potential solution to the energy challenges posed
by conventional artificial neural networks (ANNs).
However, our theoretical understanding of SNNs
remains relatively limited compared to the ever-
growing body of literature on ANNs. In this
paper, we study a discrete-time model of SNNs
based on leaky integrate-and-fire (LIF) neurons,
referred to as discrete-time LIF-SNNs, a widely
used framework that still lacks solid theoretical
foundations. We demonstrate that discrete-time
LIF-SNNs with static inputs and outputs realize
piecewise constant functions defined on polyhe-
dral regions, and more importantly, we quantify
the network size required to approximate continu-
ous functions. Moreover, we investigate the im-
pact of latency (number of time steps) and depth
(number of layers) on the complexity of the input
space partitioning induced by discrete-time LIF-
SNNs. Our analysis highlights the importance of
latency and contrasts these networks with ANNs
employing piecewise linear activation functions.
Finally, we present numerical experiments to sup-
port our theoretical findings.

1. Introduction
Artificial neural networks (ANNs) have emerged as a fun-
damental component of artificial intelligence, exhibiting
remarkable achievements across a wide range of applica-
tions (Abiodun et al., 2018; Sarker, 2021; Choudhary et al.,
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2022). However, it is well-established that the implemen-
tation of ANNs in modern applications often necessitates
a considerable allocation of computational resources, with
hardware requirements exhibiting an unsustainable rate of
growth (Thompson et al., 2021). Spiking neural networks
(SNNs), often referred to as the third generation of ANNs
(Maass, 1997a), have been developed as a potential energy-
efficient alternative thanks to their event-driven nature in-
spired by biological neuronal dynamics and compatibility
with neuromorphic hardware (Mehonic et al., 2024).

Despite the rapid advancements in neuromorphic computing
and SNNs (Guo et al., 2023; Yuan et al., 2022; Fang et al.,
2023b; Lv et al., 2024), our foundational understanding of
SNNs remains incomplete. A fundamental characteristic
of any model class is its expressivity—both in terms of the
functions it can accurately represent or approximate, and the
computational efficiency with which these representations
can be obtained. Analyzing the representational power of
ANNs has been a central concern in deep learning that show-
cased their (universal) capabilities (Cybenko, 1989; Hornik
et al., 1989; Leshno et al., 1993; Hanin, 2019; Shen et al.,
2020; Petersen & Voigtlaender, 2018; Gühring et al., 2020;
Bölcskei et al., 2019). The expressivity of SNNs has been
discussed by several papers (Maass, 1994; 1997a; Zhang &
Zhou, 2022; Singh et al., 2023; Neuman et al., 2024), which
derived results comparable to those established for ANNs.
However, these works focus on continuous-time models of
SNNs, mostly based on the spike response model (Gerst-
ner & van Hemmen, 1992), combined with specific coding
schemes such as time-to-first-spike coding (Singh et al.,
2023; Neuman et al., 2024) or instantaneous rate coding
(Zhang & Zhou, 2022). While there exist implementations
of the continuous-time models on specific analog neuro-
morphic hardware (Göltz et al., 2021), the setting differs
crucially from the more commonly applied SNN framework
based on time discretization (Eshraghian et al., 2023; Fang
et al., 2023a), which is currently more prevalent due to its
straightforward applicability on (commercially) available
digital neuromorphic hardware like Loihi 2 or Spinnaker 2
(Orchard et al., 2021; Gonzalez et al., 2023).

Therefore, this paper directly focuses on the computational
power and expressivity of SNNs designed with discrete
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time dynamics. Based on the simple and computationally
efficient leaky-integrate-and-fire (LIF) neuron model (Ger-
stner et al., 2014), we mathematically formalize and in-
vestigate the discrete-time LIF-SNN, a framework formally
introduced in Section 2, that accommodates a broad range of
practically employed model classes. Due to their prevalence,
our focus is on LIF neurons but in principle, our framework
can be easily extended to different types of integrate-and-fire
models and beyond.

In SNN literature (Gerstner et al., 2014; Maass, 1997a),
the LIF model is usually referred to as a special case of
the spike response model, while the discrete-time setting
is obtained by discretizing the continuous-time framework.
However, discrete-time LIF-SNNs are shown to preserve
expressive power that is comparable to the more general
continuous-time models. This is true although discrete-time
LIF-SNNs inherently realize discrete functions, meaning
that the input space is partitioned into polyhedral regions,
i.e., regions with linear boundaries, associated with constant
outputs.

Our goal is to elucidate the internal mechanisms of discrete-
time SNNs, highlighting their capacity in a learning frame-
work. We analyze their expressivity through approximation
properties and input partitioning into linear regions (Mon-
túfar et al., 2014), focusing on the case of static data—a
common benchmark in SNN research (Eshraghian et al.,
2023).

Contributions. We demonstrate that discrete-time LIF-
SNNs partition the input space differently from ReLU-
ANNs, with the temporal aspect—the third dimension along-
side width and depth—playing a crucial role. Our main
contributions are:

• We show that discrete-time LIF-SNNs are universal
approximators of continuous functions on compact do-
mains by demonstrating that they realize piecewise con-
stant functions with polyhedral regions and, conversely,
can express any such function in a single time step. Ad-
ditionally, we establish upper and lower bounds on the
number of neurons required, yielding order-optimal
approximation rates.

• We formalize constant (polyhedral) regions in discrete-
time LIF-SNNs and establish a tight upper bound on
their number. Although they could theoretically grow
exponentially with time, we surprisingly show that
they scale quadratically. Crucially, we show that the
temporal dimension introduces parallel hyperplanes
forming the boundaries of the polyhedral regions for
each neuron in the first hidden layer, while subsequent
layers do not increase the number of regions.

• Our empirical results support the theoretical analysis.

In low-latency SNNs with a narrow first hidden layer,
adding neurons to deeper layers yields limited accuracy
gains compared to ANNs. In contrast, high-latency
SNNs benefit from richer input partitioning, leading
to significant improvements. We also experimentally
demonstrate how the temporal dimension shapes paral-
lel hyperplanes as the parameters of our discrete SNN
model vary.

Related work. While ANN expressivity has been exten-
sively studied, research on this topic in SNNs remains lim-
ited. Exceptions include (Maass, 1994; 1995; 1996a;b;
1997a;b; Comsa et al., 2020; Mostafa, 2018; Singh et al.,
2023; Neuman et al., 2024) that analyze approximation
properties of continuous-time SNNs based on temporal
coding and the spike response model. However, these ap-
proaches differ conceptually from our model, which aligns
with the widely used discretized implementation framework
(Eshraghian et al., 2023; Fang et al., 2023a). In case of
a single time step, our model simplifies to Heaviside (or
threshold) ANNs, for which approximation results have
been established (Leshno et al., 1993; Anthony, 2001). How-
ever, our results emphasize the rates of approximation in
terms of the number of neurons.

The expression of constant functions on polyhedra by dis-
cretized LIF networks and the generation of parallel hyper-
planes by single neurons with increased latency are high-
lighted in (Kim et al., 2022), motivating their neural archi-
tecture search algorithm, but without offering theoretical
insights. In Heaviside ANNs, bounds on linear regions have
been established (Khalife et al., 2024), though they do not
address the role of time as our results do. A more detailed
discussion of related works on the expressive power and
properties of ANNs and SNNs is provided in Appendix D.

2. The network model and its neuronal
dynamics

SNNs in discrete time are computational models that pro-
cess time series data (x(t))t∈[T ] and produce binary spike
outputs (s(t))t∈[T ], where s(t) ∈ {0, 1}. Similar to con-
ventional ANNs, SNNs consist of neurons organized in a
graph, with dynamics inspired by biological neurons. Each
neuron maintains a membrane potential u(t), evolving over
time based on input contributions. When the membrane
potential exceeds a threshold, the neuron fires, producing a
spike encoded as 1, followed by a reset mechanism.

This work focuses on a discrete-time formulation of leaky
integrate-and-fire (LIF) neurons, a widely used model that
approximates membrane potential dynamics with a resistor-
capacitor analogy. Our formulation builds on and formalizes
existing frameworks, providing a structured representation
that incorporates encoding and decoding schemes, facili-
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tating both analysis and implementation. Details on the
biological motivations and connections to continuous-time
dynamics are provided in Appendix E.

The key properties required for the definition of the discrete-
time LIF-SNN model considered in this paper are as fol-
lows:

1. Network (spatial) architecture (L,n) ∈ N× NL+2.
Neurons are arranged in layers with information being
propagated from input to output layer feed-forwardly,
where L is the number of hidden layers (referred to
as the depth) and n = (n0, . . . , nL+1) is the number
of neurons in each layer (referred to as the width)
with input dimension n0 := nin and output dimension
nL+1 := nout.

2. Neuronal (temporal) dynamics. T ∈ N denotes the
number of time steps, also referred to as the network’s
latency. For each hidden layer ℓ ∈ [L], the spike (ac-
tivation) vector sℓ(t) ∈ {0, 1}nℓ and the membrane
potential vector uℓ(t) ∈ Rnℓ at time step t ∈ [T ] are
given by{
sℓ(t) = H

(
βℓuℓ(t− 1) +W ℓsℓ−1(t) + bℓ − ϑℓ1nℓ

)
uℓ(t) = βℓuℓ(t− 1) +W ℓsℓ−1(t) + bℓ − ϑℓsℓ(t),

(1)
where H is the Heaviside function (applied entry-wise)
and (s0(t))t∈[T ] are the initial spike activations. The
remaining parameters including W ℓ, bℓ are defined
below.

3. Coding schemes E : Rnin → Rnin×T and D :
{0, 1}nL×T → Rnout , where the input encoding
E maps an input vector x ∈ Rnin to a time se-
ries

(
x(t)

)
t∈[T ]

representing the initial spike activa-
tions and the output decoding D maps any time se-
ries

(
s(t)

)
t∈[T ]

∈ {0, 1}nL×T to an output vector

D
((

s(t)
)
t∈[T ]

)
∈ Rnout .

4. (Hyper)parameter
(
(W ℓ, bℓ), (uℓ(0), βℓ, ϑℓ)

)
ℓ∈[L]

,

where the weight matrices W ℓ ∈ Rnℓ×nℓ−1 and bias
vectors bℓ ∈ Rnℓ represent the parameters commonly
used in ANNs, whereas the initial membrane poten-
tial vector uℓ(0) ∈ Rnℓ , the leaky term βℓ ∈ [0, 1]
and the threshold ϑℓ ∈ (0,∞) represent SNN-specific
temporal (hyper)parameters.

Definition 2.1 (Discrete-time LIF-SNN). An SNN in the
discrete-time LIF model is given by the tuple

Φ :=
((

W ℓ, bℓ
)
ℓ∈[L]

,
(
uℓ(0), βℓ, ϑℓ

)
ℓ∈[L]

, T, (E,D)
)

and realizes the mapping R(Φ) : Rnin → Rnout according
to (1):

R(Φ)(x) = D
((

sLΦ(t)
)
t∈[T ]

)
with s0 = E(x).

Remark (Learnable parameters). For an SNN satisfy-
ing Definition 2.1, the learnable parameters include(
(W ℓ, bℓ), (uℓ(0), βℓ, ϑℓ)

)
ℓ∈[L]

along with the decoder D,
which is typically parameterized (as specified in Defini-
tion 2.2). In fact, the learnability of temporal parameters,
namely (uℓ(0), βℓ, ϑℓ), is flexible and varies across imple-
mentations. Earlier works often keep these parameters fixed,
while more recent studies propose making them learnable
(Fang et al., 2021; Shen et al., 2024).

Remark (Extensions). Our definition of discrete-time LIF-
SNNs decomposes the model into modular components (1–4
above), each of which can be flexibly modified or gener-
alized. In particular, the neuronal dynamics can be easily
adapted to incorporate alternative integrate-and-fire or even
more advanced models, balancing biological plausibility
and computational efficiency. Additionally, the model can
accommodate recurrent network architectures in place of
the feed-forward architecture, and the encoding schemes
can be extended to handle time-series data in Rnin×T , rather
than ‘static’ inputs in Rnin .

Coding schemes. In this paper, we assume a discrete-time
LIF-SNN with direct encoding and membrane potential out-
puts, which are general enough to capture a wide range of
applications including image classification, while also al-
lowing us to demonstrate our theoretical insights. In direct
encoding, the core idea is to directly input analog signals
without converting them into binary spike trains. This ap-
proach, appearing under different names (Rueckauer et al.,
2017; Wu et al., 2019; Fang et al., 2021), turned out as a
practical alternative to more biologically plausible schemes
(Rathi & Roy, 2023). The idea behind membrane potential
outputs is often explained as adding one more layer after
the last spike layer without firing and threshold mechanism
(Henkes et al., 2024; Eshraghian et al., 2023). This is equiv-
alent to adding an affine layer to convert the binary spike
activations into real-valued outputs, a technique also com-
monly applied in non-spiking ANNs. Please see Appendix
E for more details.

Definition 2.2 (Direct input encoding, membrane potential
decoding). Let E : Rnin → Rnin×T and D : {0, 1}nL×T →
Rnout be an encoder and decoder for a discrete-time LIF-
SNN, respectively. The encoder E employs a direct encod-
ing scheme if

E(x)(t) = x ∀t ∈ [T ].

The decoder D relies on membrane potential outputs if

D
((

s(t)
)
t∈[T ]

)
=

T∑
t=1

at(V s(t) + c)

for a = (a1, . . . , aT ) ∈ RT , c ∈ Rnout , and V ∈ Rnout×nL .
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3. Structure of computations in SNNs
Our goal is to deepen the understanding of the computa-
tional framework underlying the discrete-time LIF model.
We begin by examining fundamental properties that arise
directly from its definition, followed by a more in-depth
analysis of its computational structure, focusing on (func-
tional) approximation capabilities and input partitioning.

3.1. Elementary properties

One immediately observes an intrinsic recursiveness of the
model even without explicit recursive connections in the
spatial feedforward architecture (Neftci et al., 2019). This
inherent statefulness property indicates the ability of this
model to process dynamical (neuromorphic) data effectively
(Rathi et al., 2023). Nevertheless, we study SNNs in a
simpler setting with static data to carve out the underlying
properties.

In the considered setting, discrete-time LIF-SNNs are
closely linked to ANNs with Heaviside activation func-
tion; see Appendix E.6 for more details. Crucially, for
T = 1 discrete-time LIF-SNNs are equivalent to Heaviside
ANNs meaning that discrete-time LIF-SNNs can realize any
Boolean function and approximate continuous functions
to arbitrary degree inheriting these properties from Heav-
iside ANNs (Leshno et al., 1993; Anthony, 2001). More
exactly, we conclude that one-layer (i.e., L = 1) discrete-
time LIF-SNNs possess the universal approximator property
for continuous functions, which similarly as in the case
of ANNs can be extended to arbitrary T, L ∈ N by the
following result.

Proposition 3.1 (Identity mapping). Let Φ be a discrete-
time LIF-SNN with latency T ∈ N and L ∈ N layers with
constant width n ∈ N in each layer. Then, there exists a
configuration of parameters such that

(
sLΦ(t)

)
t∈[T ]

= s0

for any s0 ∈ {0, 1}n×T .

Proof sketch. It suffices to consider the case L = 1. It is
straightforward to verify that

Φ :=
((

W , b
)
,
(
u(0), β, ϑ

)
, T, (E,D)

)
with W = (1 + ε)In for 0 < ε < 1

T , b = 0, u(0) = 0,
β = 1, and ϑ = 1 satisfies

(
sLΦ(t)

)
t∈[T ]

= s0 for any

s0 ∈ {0, 1}n×T . Details are provided in Appendix B.1.

3.2. Approximation properties

(Khalife et al., 2024) extended the observation that Heavi-
side ANNs compute piecewise constant functions on poly-
hedra, analogous to how ReLU ANNs compute continuous
piecewise linear functions, by proving that two-layer Heavi-
side ANNs can represent any function realizable by Heavi-

side ANNs of arbitrary depth. We leverage the insights from
(Khalife et al., 2024) to enhance the universal approxima-
tion property for discrete-time LIF-SNNs (which for T = 1
are equivalent to Heaviside ANNs) and derive approxima-
tion rates for Lipschitz continuous functions (on compact
domains). We recall that a function f : Ω ⊂ Rnin → R is
Γ-Lipschitz with respect to the ∥ · ∥∞ norm if

|f(x)− f(y)| ≤ Γ∥x− y∥∞ for all x,y ∈ Ω,

where the ℓ∞-norm is defined as ∥x∥∞ = maxi∈[n] |xi|.
Theorem 3.2. Let f be a continuous function on a compact
set Ω ⊂ Rnin . For all ε > 0, there exists a discrete-time LIF-
SNN Φ with direct encoding, membrane potential output,
L = 2 and T = 1 such that

∥R(Φ)− f∥∞ ≤ ε. (2)

Moreover, if f is Γ-Lipschitz, then Φ can be chosen with
width parameter n = (n1, n2) given by

n1 =

(
max

{⌈
diam∞(Ω)

ε
Γ

⌉
, 1

}
+ 1

)
nin,

n2 = max

{⌈
diam∞(Ω)

ε
Γ

⌉nin

, 1

}
, (3)

where diam∞(Ω) = supx,y∈Ω ∥x− y∥∞.

Proof sketch. The proof consists of showing the following
two statements: (1) continuous functions can be approx-
imated by step functions, and (2) step functions can be
realized by discrete-time LIF-SNNs. More precisely, as-
suming w.l.o.g. that Ω ⊂ [−K,K]nin for some K ∈ R, we
prove that f can be approximated to arbitrary precision by
a function that is constant on a partition of [−K,K]nin into
hypercubes {Ci}mi=1, i.e., f̄ =

∑m
i=1 f̄i1Ci . Next, we show

that there exists a discrete-time LIF-SNN Φ that realizes f̄ ,
i.e., R(Φ) = f̄ , using exactly the number of neurons given
in equation 3. The complete proof is given in Appendix
B.1.

Remark (Lipschitz condition). The Lipschitz assumption
primarily serves to make the result more explicit but is not
essential. Since f is continuous on a compact set, it is
uniformly continuous, allowing us to replace

⌈
diam∞(Ω)

ε Γ
⌉

with
⌈
diam∞(Ω)

ω†(ε)

⌉
, where ω†(s) = inft{t : ω(t) > s} is the

generalized inverse of the modulus of continuity ω.

Notably, when Γ = 0, i.e., f is constant, equation 3 yields a
width parameter of n = (2nin, 1). Here, 2nin corresponds
to the minimum number of hyperplanes required to define a
hypercube covering Ω.

Remark (Approximation rates). Theorem 3.2 provides ex-
plicit convergence rates in terms of both the width parameter
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n and input dimension nin, as shown in equation 3. This
represents an improvement over traditional universal ap-
proximation results, which typically lack quantitative guar-
antees. While (Khalife et al., 2024) recently established
bounds on neural network size, our result differs in two
crucial aspects. First, their analysis focuses on represent-
ing functions that are constant on polyhedral pieces, rather
than approximating general continuous functions. Second,

their bound exhibits quadratic scaling in
⌈
diam∞(Ω)

ε Γ
⌉nin

,
whereas our bound achieves linear scaling in this term.

Our next results tell us that there exist (Lipschitz) continu-
ous functions for which reducing significantly the width of
the first hidden layer provokes a significant increase in the
approximation error. This demonstrates that our bound on
the required number of neurons is optimal up to constant
factors in the worst case. Specifically, we can construct
continuous functions for which this number of neurons is
necessary for achieving the desired approximation accuracy,
establishing a matching lower bound. We prove it in the
special case of Ω = [0, 1], the proof is deferred to Appendix
B.1.

Proposition 3.3. For any Γ > 0, define f : [0, 1] → R by
f(x) = Γx. For any ε ∈ (0, 1], there exists a discrete-time
LIF-SNN Φ with T = 1, L = 2 and n1 = ⌈Γ/ε⌉+ 1, such
that

∥R(Φ)− f∥∞ ≤ ε,

but any discrete-time LIF-SNN Φ′ with T = 1, L = 2 and
first layer width n′

1 ≤ Γ/εα − 1, with α < 1, will satisfy

∥R(Φ′)− f∥∞ ≥ 1

2
εα.

Remark (Multidimensional case). Although we have not
formally proven it, we believe our result extends to the multi-
dimensional case. A weaker version of Proposition 3.3 holds
for any nin ∈ N, as the construction in Theorem 3.2 remains
order-optimal for certain continuous functions, specifically
Lipschitz functions depending on a single coordinate. Refin-
ing this condition in the multivariate setting is left for future
work.

Our insights into the computational structure so far still lack
in describing two important aspects: What exactly is the
contribution of the depth L and the latency T to the com-
putational capacity, respectively? When T = 1, our model
reduces to standard Heaviside ANNs, for which the role
of depth has been thoroughly analyzed (see (Khalife et al.,
2024)[Theorem 1]). While these networks, regardless of
depth, can only realize functions that are piecewise constant
on polyhedra, a fundamental question remains: Can deeper
architectures achieve faster convergence rates or provide
more precise approximation guarantees?

While discrete-time LIF-SNNs and Heaviside ANNs are
not equivalent for T > 1, they maintain structural simi-
larities: discrete-time LIF-SNNs can be reformulated as
Heaviside ANNs with block-diagonal weight matrices (re-
peated T times) and time-varying bias terms that depend on
initial spike activation (see equation 18 in Appendix E.6).
This raises a fundamental question about how the trade-off
between constrained weights and time-dependent biases af-
fects the computational capabilities of discretized LIF SNNs
relative to Heaviside ANNs—a question we address through
input partitioning.

4. Input space partitioning complexity of
discrete-time LIF-SNNs

The seminal works (Pascanu et al., 2014; Montúfar et al.,
2014) pioneered research on the complexity of input par-
titioning in ANNs to address model expressivity in deep
learning (see Appendix D for details). The direct corre-
spondence between a discrete-time LIF-SNN’s realizable
values and its space partitions suggests that partition com-
plexity even better characterizes SNN computation than
the corresponding results in ANNs. While the partitioning
mechanisms of ANNs are well understood, this question re-
mains largely unexplored for SNNs, with only experimental
insights from (Kim et al., 2022).

(a) t = 1, ℓ = 1 (b) t = 1, ℓ = 2

(c) t = 2, ℓ = 1 (d) t = 2, ℓ = 2

Figure 1. Each color represents a distinct constant value of R(Φ)
in the corresponding region. At t = 2, neurons define parallel
hyperplanes, while at ℓ = 2 some regions merge.

This section establishes a theoretical framework for under-
standing input patterns in discrete-time LIF-SNNs. We
extend the concepts of activation patterns and regions from
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(Hanin & Rolnick, 2019b) to the discrete-time LIF-SNN
setting.

Definition 4.1 (Regions). Let Φ be a discrete-time LIF-
SNN and denote by s1(t;x) the spike activations s1(t) ∈
{0, 1}n1 in the first hidden layer for t ∈ [T ] given an input
vector x ∈ Rnin . The activation patterns of Φ for x are
defined as

A(x) :=
(
s1(t;x)

)
t∈[T ]

∈ {0, 1}n1×T
.

The activation regions of Φ are defined as the (non-empty)
sets of input vectors that lead to an activation pattern A:

R(A) := {x ∈ Rnin : A(x) = A} .

Finally, the constant regions of Φ are defined as the sets of
input vectors that lead to the same output vector y ∈ Rnout :

C(y) := {x ∈ Rnin : R(Φ)(x) = y} .

We study the cardinality of the sets

R := {R(A) : A ∈ {0, 1}n1 is activation pattern of Φ} ,

and
C :=

{
C
(
R(Φ)(x)

)
: x ∈ Rnin

}
referred to as the number of activation regions and the num-
ber of constant regions, respectively. Here, activation re-
gions are maximal input subsets yielding identical spike
patterns in the first hidden layer, while constant regions are
maximal subsets yielding identical outputs.

Remark (Activation versus constant regions). For any ac-
tivation region R(A), all inputs x ∈ R(A) yield the same
spike pattern

(
s1(t;x)

)
t∈[T ]

= A in the first hidden layer,
resulting in identical inputs to subsequent layers. Therefore,
each activation region maps to a unique constant output,
implying C ⊆ R. However, multiple activation regions may
map to the same output, potentially reducing the number of
constant regions.

For shallow ANNs with piecewise linear activations (e.g.,
ReLU or Heaviside), the input partition can be characterized
geometrically via hyperplane arrangements (Pascanu et al.,
2014). Each hidden neuron corresponds to a hyperplane in
Rnin , forming an arrangement whose number of regions is
determined by Zaslavsky’s theorem (Zaslavsky, 1975; Stan-
ley, 2011), a key result in enumerative combinatorics. The
maximum number of regions created by an ANN with n hid-
den neurons is 2n for n ≤ nin and

∑nin
i=0

(
n
i

)
for n ≥ nin,

achieved only when the hyperplanes are in general posi-
tion. We refer to Appendix B.2 for a formal discussion of
hyperplane arrangements and the notion of general position.

In the case of discrete-time LIF-SNNs, each neuron in the
hidden layer corresponds to multiple hyperplanes in the

input space. Indeed, the spike activation s1k(t) of an arbitrary
hidden neuron k can be shown to be equal to

H

(
wT

k x+ bk+
βtuk(0)− ϑ

(
1 +

∑t−1
i=1 β

isk(t− i)
)

∑t−1
i=0 β

i︸ ︷︷ ︸
=:gt−1(sk(1),...,sk(t−1))

)
,

(4)
where wk and bk are the k-th row and element of W and b,
respectively, with the layer indices omitted for convenience
(see Appendix B.2.2 for the detailed derivation). Two key
observations follow: (1) Since the spatial transformation
(W , b) is shared across all time steps, all induced hyper-
planes are parallel, whether they originate from different
time steps or distinct spike activations of previous steps, as
highlighted by the shift term gt in equation 4. (2) With 2t−1

possible spike sequences in {0, 1}t−1, a neuron at time t
may correspond to up to 2t−1 hyperplanes. This results in
1+

∑T
t=1 2

t−1 = 2T input space regions, each mapped to a
unique spike pattern

(
sk(t)

)
t∈[T ]

∈ {0, 1}T , matching the

cardinality of {0, 1}T . However, we show that the actual
number grows only quadratically with T .

Lemma 4.2 (Temporal input separation). Consider an arbi-
trary neuron k in the first hidden layer of a discrete-time LIF-
SNN with T time steps. Then k partitions the input space
Rnin via parallel hyperplanes into at most T 2+T+2

2 regions,
on each of which the time series

(
s1k(t)

)
t∈[T ]

takes a differ-

ent value in {0, 1}T . This upper bound on the maximum
number of regions is tight in the sense that there exist values
of the spatial parameters uk(0), β, ϑ ∈ R × [0, 1] × R+

such that the bound is attained.

The proof of the statement is provided in Appendix B.2.2.
Next, we aim to refine the estimation of activation and con-
stant regions in discrete-time LIF-SNNs by incorporating
(1) the spatial arrangement of hyperplanes from different
neurons in the first hidden layer and (2) the effect of deeper
layers. The first requires reconsidering Zaslavsky’s theorem,
as the hyperplanes are not in general position. The second
follows naturally from the observation that increasing depth
does not add activation regions; see also Figure 1. The proof
of the next statement can be found in Appendix B.2.4.

Theorem 4.3 (Maximum number of regions). Consider the
set Ψ of discrete-time LIF-SNNs with T time steps, input
dimension nin, and n1 neurons in the first hidden layer. Then
the number of constant and activation regions generated by
any Φ ∈ Ψ is upper bounded by

|C| ≤ |R| ≤


∑nin

i=0

(
T 2+T

2

)i (
n1

i

)
if n1 ≥ nin,(

T 2+T+2
2

)n1

otherwise.

Moreover, the upper bound is tight: There exist certain Φ ∈
Ψ that attain the bound with appropriate configurations of
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the network parameters. In particular, for the first inequality
to become an equality Φ must have at least n1 neurons in
each layer.

Remark (Comparison with ReLU). The maximum num-
ber of activation regions for shallow ReLU or Heaviside
ANNs scales as either Θ(2n1), i.e., exponential in n1 when
n1 ≪ nin, or Θ(nnin

1 ), i.e., polynomial in n1 when n1 ≫ 1
with nin treated as a constant (Pascanu et al., 2014). For
shallow discrete-time LIF-SNNs, we instead obtain the scal-
ing behaviour Θ(T 2n1) and Θ

(
(T 2n1)

nin

)
, respectively.

The multiplicative factor T 2 indicates that shallow discrete-
time LIF-SNNs with high latency T can generate signifi-
cantly more activation regions than shallow ReLU ANNs.

However, the maximum number of activation regions in
discrete-time LIF-SNNs does not scale with depth L as
it does in ReLU ANNs. While the number of activation
regions in ReLU ANNs increases exponentially with depth
(Montúfar et al., 2014; Serra et al., 2018; Arora et al., 2018),
the exponential growth is based on a linear dependence on
n1, typically on a value even smaller than n1. Therefore,
the growth of activation regions in discrete-time LIF-SNNs
with latency is much faster than the growth in depth for deep
ReLU ANNs.

This observation highlights the distinct data-fitting ap-
proaches of discrete-time LIF-SNNs and ReLU ANNs. In
ReLU ANNs, increasing depth and width refines the input
partition, improving training data interpolation. In contrast,
the input partition of a discrete-time LIF-SNN is fixed with
depth but detailed from the first hidden layer, given suffi-
cient latency T . While adding more layers doesn’t refine
the input partition, it can improve the accuracy of the func-
tion realized by these layers, which combine regions and
map to the output. Although one additional Heaviside layer
could suffice, its neuron count would be large compared to
deeper architectures, similar to expressing a boolean func-
tion with negation and OR operations, achievable through
linear combinations of neuron outputs.

5. Experimental results
5.1. First hidden layer as a bottleneck layer

In this subsection, we conduct experiments to assess the
contribution of subsequent hidden layers to network expres-
sivity. Specifically, we compare ANNs and SNNs (with
varying time steps). For each model, we have four layers
and we first set the first hidden layer as a bottleneck, with a
small number of neurons that limits expressivity. We then
progressively increase the width of subsequent layers to
evaluate how this affects network expressivity.

Fig. 2 presents results for CIFAR10 classification, where
the first hidden layer is set to 20 neurons, and the number of

(a) Training accuracy achieved by an ANN and SNNs with different
numbers of time steps but identical spatial architectures

(b) The improvement of training accuracy when increasing the width
of the subsequent hidden layers.

Figure 2. Comparison of train accuracies achieved by ANN and
SNNs with different numbers of time steps. Both types of networks
share the same spatial architectures: the first hidden layer is a
bottleneck with only 20 neurons and the subsequent layers are
progressively widened in each experiment. We consider 4 layers
in both cases.

neurons in subsequent layers ranges from 20 to 200. Due to
the bottleneck layer, all networks are limited in their ability
to fit the training data, even after extensive training, pre-
venting full interpolation. Additionally, increasing latency
in SNNs consistently improves training accuracy, aligning
with Theorem 4.3, which shows that the representational
complexity of SNNs, measured by the maximum number of
generated regions, increases with T .

While increasing T in SNNs quite consistently enhances
the training accuracy, the particular gain differs in each
setting. For very small values of T , growing the width of
all subsequent layers from 20 neurons to 200 neurons only
improves the training accuracy by approximately 7%. For
T = 4 and T = 8, the gain in training accuracy becomes
much higher, almost reaching 20%. Nevertheless, this still
lags behind the gain of ANN (approximately 21%) and of
SNN with T = 16 (approximately 30%) on average.

This phenomenon can be explained by the fact that discrete-
time LIF-SNNs generate regions only in the first hidden
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layer, with subsequent layers merging regions rather than
augmenting their number. In the low-latency regime, the
first hidden layer may not generate a sufficiently rich input
partition, limiting the ability of later layers, even with high
capacity, to form effective decision boundaries.

5.2. Shifting of parallel hyperplanes

We analyze the hyperplane shifts gt−1 defined in equation 4
for a single neuron k in the first hidden layer. Fixing the
initial membrane potential uk(0), threshold ϑ, and bias
bk, we compute

(
gt−1(sk(1), . . . , sk(t− 1))

)T
t=1

for given
values of ⟨wk,x⟩+bk and β. When β = 1, the shifts appear
to converge to ⟨wk,x⟩+ bk with some oscillation at large t,
as shown in Figure 3 for ⟨wk,x⟩+ bk = 0.7 (this behavior
persists across different values in [0, 1]). In contrast, with
β = 0.8, the shifts exhibit a periodic pattern up to numerical
precision.

For certain values of β (e.g., β = 0.8), the shift term gt−1

takes only a few distinct values due to periodic behavior,
a pattern not observed for β = 1, where the values do not
repeat, but their differences diminish over time. Thus, al-
though the number of regions grows with T , their widths
appear to vanish with T , raising questions about the model’s
effective capacity. In the bottleneck experiments, see Fig.
2a, latency appears to influence final accuracy, possibly
because the small T value maintains relatively large oscilla-
tions in gt−1 and thus wider regions. This opens the question
about the utility of considering larger values for T . How-
ever, accuracy also depends on factors not analyzed here,
such as training process and data complexity, presenting an
intriguing direction for future research.

Figure 3. Value of gt−1 for β = 1 and β = 0.8 and ⟨w,x⟩+ b =
0.7.

5.3. Counting regions: pre-training versus post-training

We consider a discrete-time LIF SNN with L = 2 and
T = 1, 2, and count the number of linear regions before
and after training on a linearly separable dataset depicted in

Figure 4. Table 1 compares the number of regions per layer
across five random initializations (see Appendix C) against
the theoretical upper bound. As expected, the number of

pre-training post-training theory
T n1 ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2 ℓ = 1

1
2 4 3 4 3 4
3 7 4 7 3 7
4 10 4 6 4 11

2
2 16 14 4 3 16
3 35 14 10 5 37
4 59 14 12 5 67

Table 1. Maximum number of regions pre versus post training

Figure 4. Illustration of the toy dataset consisting of points in
[−1, 1]2 from two classes separated by the yellow line and vi-
sualized by color.

regions often decreases after training, as the model is trying
to fit the very simple decision boundary of this toy dataset.
A natural extension of our theory will be to prove whether
randomly initialized discrete-time LIF-SNNs achieve or
approximate the theoretical bound in Theorem 4.3.

6. Conclusion
As a core component of neuromorphic computing, SNNs
have made rapid practical strides in recent years. We
complement this progress with theoretical insights into
their computational power, particularly for discretized-time
implementations. While the low-latency regime’s equiv-
alence to Heaviside-activated ANNs is well understood,
the model’s distinctive features emerge in the high-latency
regime. Here, SNNs differ not only from Heaviside ANNs
but also from ANNs with piecewise linear activations due
to the impact of depth. An important question is whether
and when these computational distinctions can be exploited
in practical applications. Increasing latency for static tasks
may improve SNN performance, which is however not a
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given in light of our numerical experiments, but at the cost
of higher energy consumption, which depends on spike den-
sity (Dampfhoffer et al., 2023; Lemaire et al., 2023). Thus,
the true potential of SNNs may lie in dynamic, event-driven
tasks, an area still lacking rigorous theoretical analysis and
requiring further exploration.
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A. Roadmap to the Appendix
The appendix is organized as follows

• In Section B, we provide the paper’s main proofs. Section B.1 and Section B.2 contain proofs for the results in Sections
3 and 4, respectively.

• Section C presents details of our experimental methodology.

• Section D provides an expanded review of related literature and an in-depth discussion of existing research.

• Section E motivates the discrete-time LIF-SNN model, reviews alternative SNN models, and discusses practical
encoding schemes. Furthermore, we derive elementary properties and suggest potential extensions of our theory. While
not essential, this section is included for self-containment and to aid readers unfamiliar with SNNs.

Table 2 summarizes the notation used throughout the paper and appendix to aid reader comprehension.

Type Notion Notation Domain

Network sizes
Number of spike layers L N

Layer width nℓ N
Latency (number of time steps) T N

Neuron states Membrane potential vector uℓ(t) Rnℓ

Spike activation vector sℓ(t) {0, 1}nℓ

(Hyper-)Parameters1

Weight matrix W ℓ Rnℓ×nℓ−1

Bias vector bℓ Rnℓ

Initial membrane potential vector uℓ(0) Rnℓ

Leaky parameter βℓ [0, 1]
Threshold value ϑℓ R+

Input/output/target
vectors

Input vector x Rnin

Output vector z Rnout

Label or target vector y Rnout

Table 2. Table of SNN notions

B. Proofs
B.1. Proofs of Section 3

B.1.1. EXPRESSING THE IDENTITY

We start with the proof of Proposition 3.1 in Section 3, which we repeat for convenience
Proposition B.1. Let Φ be a discrete-time LIF-SNN with latency T ∈ N and L ∈ N layers with constant width n ∈ N in
each layer. Then, there exists a configuration of parameters such that

(
sLΦ(t)

)
t∈[T ]

= s0 for any s0 ∈ {0, 1}n×T .

Proof. It suffices to consider the case L = 1 since the presented argument can be repeated for any subsequent layer. Fix the
parameter of

Φ :=
((

W , b
)
,
(
u(0), β, ϑ

)
, T, (E,D)

)
as W = (1 + ε)In with 0 < ε < 1

T , b = 0, u(0) = 0, β = 1, and ϑ = 1. Then, equation 1 implies for each neuron i ∈ [n]
the dynamic {

si(t) = H
(
ui(t− 1) + (1 + ε)s0i (t)− 1

)
ui(t) = ui(t− 1) + (1 + ε)s0i (t)− si(t)

, where s0 =
(
s0(t))t∈[T ] ∈ {0, 1}n×T

.

1The leaky parameters and threshold values can be either hyperparameters or trainable parameters depending on the implementation
(Fang et al., 2021).
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We show by induction over t ∈ [T ] that ui(t) ∈ Et := {kε : k ≤ t}. For t = 0, it trivially holds true as ui(t) = 0. Assuming
that ui(t− 1) ∈ Et−1, we consider the induction step from t− 1 to t for some fixed t > 0. If the input at time t is zero, i.e.,
s0i (t) = 0, then we have

si(t) = H
(
ui(t− 1) + (1 + ε)s0i (t)− 1

)
= H

(
ui(t− 1)− 1︸ ︷︷ ︸
<0 by induction

)
= 0

and thus
ui(t) = ui(t− 1) + (1 + ε)s0i (t)− si(t) = ui(t− 1) ∈ Et−1 ⊂ Et.

On the other hand, if s0i (t) = 1, we have

si(t) = H
(
ui(t− 1) + (1 + ε)s0i (t)− 1

)
= H

(
ui(t− 1) + ε︸ ︷︷ ︸

>0

)
= 1

and
ui(t) = ui(t− 1) + (1 + ε)s0i (t)− si(t) = ui(t− 1)︸ ︷︷ ︸

∈Et−1

+ε ∈ Et.

Note that the induction also showed that si(t) = s0i (t) for all t ∈ [T ] which implies that
(
sLΦ(t)

)
t∈[T ]

= s0 for any

s0 ∈ {0, 1}n×T as required.

B.1.2. UNIVERSAL APPROXIMATION

We now present the proof of the main result of Section 3, which addresses the approximation of continuous functions by
discrete-time LIF-SNNs. Throughout this section, we consider the constant encoder as fixed. We remind the reader of the
result we aim to prove, which corresponds to Theorem 3.2. For simplicity, we will henceforth replace nin with n in the
notation.

Theorem B.2. Let n ∈ N, ε > 0, Ω ⊂ Rn be a compact domain and f ∈ C(Ω) be an arbitrary continuous function on Ω.
Then there exists a discrete-time LIF-SNN Φ with T = 1 time step, L = 2 spike layers, constant encoding, and membrane
potential outputs, which satisfies

∥R(Φ)− f∥∞ := sup
x∈Ω

|R(Φ)(x)− f(x)| < ε.

In words, discrete-time LIF-SNNs are universal approximators for continuous functions on Ω. Additionally, if f is Γ-Lipschitz,
then Φ can be chosen with width parameter n = (n1, n2) given by

n1 =

(
max

{⌈
diam∞(Ω)

ε
Γ

⌉
, 1

}
+ 1

)
n,

n2 = max

{⌈
diam∞(Ω)

ε
Γ

⌉n
, 1

}
, (5)

where diam∞(Ω) = supx,y∈Ω ∥x− y∥∞.

The proof involves two main steps: (1) demonstrating that such SNNs can represent any constant function defined on
hyperrectangles (step functions), and (2) establishing that step functions can approximate any continuous function on a
compact set with arbitrary precision. For clarity, we formally define the relevant geometric notions below.

Definition B.3 (Polyhedra, hyperrectangles, indicator functions, step functions). Let n ∈ N.

• A subset P ⊆ Rn is called a polyhedron if there exist A ∈ Rp×n, b ∈ Rp, p ∈ N such that

P = {x ∈ Rn : Ax ≤ b} ,

where ”≤” is understood entry-wise. If P is bounded, we also refer to it as a polytope.
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• A subset R ⊆ Rn is called a hyperrectangle or hyperbox in Rn if it is the Cartesian product of n one-dimensional
(non-degenerate) intervals Ii ⊆ R, i = 1, . . . , n. A hypercube is a particular case of hyperrectangle where all
the intervals Ii are of equal length. In the sequel, all hypercubes and hyperrectangles in Rn are assumed to be
non-degenerate (with positive Lebesgue measure).

• For some subset Q ∈ Rn, the indicator function on Rn is defined by 1Q(x) = 1 if x ∈ Q and 1Q(x) = 0 if x ∈ Rn\Q.

• Step functions (on hyperrectangles) are defined as linear combinations of indicator functions on hyperrectangular
pieces. More precisely, a function f : Rn → R is called a step function if there exist m ∈ N, f1, . . . , fm ∈ R and
polyhedra R1, . . . , Rm ⊆ Rn such that f =

∑m
i=1 fi1Ri

.

In summary, polyhedra are subsets defined by finitely many linear boundaries, with hyperrectangles as a special case where
all boundaries are parallel to the coordinate axes. Although constant functions on polyhedra are not strictly necessary to
prove Theorem B.2, as can be seen in the proof of Lemma B.7, they naturally arise in this context as showcased in the
intermediate Lemmas B.4 and B.6. Additionally, this concept is important in the study of linear regions in Section 4.

The following two results demonstrate that step functions can be expressed by a discrete-time LIF-SNN with T = 1 and
L = 2 using suitable weights and biases. Furthermore, they establish that the depth L = 2 is optimal, as there exist step
functions that cannot be approximated to arbitrary precision by a discrete-time LIF-SNN with L = 1.

Lemma B.4. Let m,n ∈ N, f1, . . . , fm ∈ R, P1, . . . , Pm ⊆ Rn be arbitrary polyhedra and C1, . . . , Cm be disjoint (up to
Lebesgue measure zero ) hypercubes in Rn with the same volume , such that ∪m

i=1Ci = C, where C is a hypercube in Rn.
Then the following holds:

(i) The function f :=
∑m

i=1 fi1Pi
can be expressed by a single time step discrete-time LIF-SNN with two hidden layers.

Moreover, if Pj = {x ∈ Rn : Ajx ≤ bj}, with A ∈ Rpj×n, then the width of the SNN that realizes f is described by

n1 =

m∑
i=1

pi, n2 = m

(ii) The (step) function f :=
∑m

i=1 fi1Ci , can be expressed by a two-layer discrete-time LIF-SNN with first and second
layer widths given by

n1 =
(
m1/n + 1

)
n, n2 = m

Proof. We begin by proving part (i). Observe that a general polyhedron P = {x ∈ Rn : Ax ≤ b}, with A ∈ Rn×p and
b ∈ Rp, contains a point x ∈ Rn if and only if ⟨ai, x⟩ ≤ bi for every i ∈ [p] (here ai is the i-th row of A) , or equivalently

H
(
bi − ⟨ai, x⟩

)
= 1, ∀i ∈ [p].

Since the Heaviside function takes only values 0 or 1, this is in turn equivalent to

p∑
i=1

H
(
bi − ⟨ai, x⟩

)
= p,

or, equivalently,

H

(
p∑

i=1

H
(
bi − ⟨ai,x⟩

)
− p︸ ︷︷ ︸

=1⊤
p H(b−Ax)−p

)
= 1.

This means that the indicator function 1P can be written as a discrete-time LIF-SNN with T = 1, L = 2, and p neurons in
the first hidden layer. Note that a discrete-time LIF-SNN corresponding to the previous network can be constructed with
parameters (here we consider β = 1)

W 1 = −A, b1 = b+ 1 ϑ1 = 1, u1(0) = 0

W 2 = 1⊤
p , b2 = −p+ 1 ϑ2 = 1, u2(0) = 0.
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For the desired function f , one can simply stack (the hidden layers) of each of the LIF-SNN expressing 1Pi
, i ∈ [p] together

and set the weight matrix of the output layer to be [f1, . . . , fm]. Thus, the size of the hidden layers is

n1 =

m∑
i=1

pi, n2 = m.

We now prove part (ii). Consider f :=
∑m

i=1 fi1Ci
. Given that C = ∪m

i=1Ci is a hypercube, we can write C = ×n
j=1Ij ,

where Ij is an interval, for all j ∈ [n]. Defining N := m1/n ∈ N, we divide each of intervals in {Ij}nj=1 as follows

Ij = ∪N
k=1[r

j
k, r

j
k+1],

where rj1 and rjN+1 are the upper and lower limits of the interval Ij , respectively, and rjk+1 − rjk = 1/N , for k ∈ [N ].
Thus, given that the hypercubes C1, . . . , Cm have the same volume and their union is C, we have that for each Ci with
i = 1, . . . ,m, there exists a sequence {kij}Nj=1 ⊂ [N ] such that

Ci = ×n
j=1[r

j
kij

, rjkij+1].

With this, for any input x = (x1, . . . , xn), 1Ci
(x) is a boolean function that can be written as

1Ci(x) =

n∏
j=1

1[rjkij
,rjkij+1]

(xj).

On the other hand, for any sequence of boolean variables χ1, . . . , χn we have

n∏
j=1

χj = H

 n∑
j=1

χj − n

 . (6)

From the above, it follows that if we know how to express χj := 1[rjkij
,rjkij+1]

(xj) using the first layer of a discrete-time

LIF-SNN network, then the second layer can be used to implement equation 6 straightforwardly, with m neurons. Indeed,
the expression inside the Heaviside in equation 6 is an affine transformation of χ = (χ1, . . . , χn). From this, it is clear that

χj = H(xj − rjkij
)−H(xj − rjkij+1).

Hence, χ can be written as an affine transformation of the variables in {H(xj − rjkij
)}j∈[n],i∈[N+1]. Consequently, we

built a discrete-time LIF-SNN with the first hidden layer having (N + 1)n neurons, each of which will implement one of
the elements of the set {H(xj − rjkij

)}j∈[n],i∈[N+1]. To finish the proof, we can set the weights in the output layer to be
[f1, . . . , fm], as in the proof of part (i).

Minimality with respect to the number of neurons. Our proof of Theorem B.2, will use elements on the span({1Ci}mi=1)
for some m and hypercubes {Ci}mi=1, that partition a larger cube C. In part (ii) of Lemma B.4, we demonstrated that any
function in this space can be realized by a discrete-time LIF-SNN. We now prove that the construction provided in Lemma
B.4 is minimal, meaning it uses the smallest possible number of neurons necessary to construct a discrete-time LIF-SNN
with two hidden layers, capable of expressing any function in span({1Ci

}mi=1). For that, note that considering the L2-inner
product ⟨f, g⟩ =

∫
Rn f(x)g(x)dx, the functions {1Ci

}mi=1 are orthogonal (because Ci ∩ Cj = ∅, for i ̸= j, modulo a set of
measure zero). So, as a subspace of L2(Rn), span({1Ci}mi=1) has dimension m.

Lemma B.5. Let C1, . . . , Cm be hypercubes in Rn satisfying the conditions of Lemma B.4. If F is a family of discrete-time
LIF-SNN networks with T = 1, L = 2, such that for any f ∈ span({1Ci

}mi=1) there exist a network in F that realizes f ,
then there exist an element in F , with spatial architecture parameters (L = 2,n = (n1, n2)), with n1 = (m1/n + 1)n and
n2 = m.

Proof. To prove that n2 = m is necessary, it suffices to note that in the output layer, the boolean functions obtained in the
second hidden layer are multiplied by constants and added. This operation cannot increase the linear dimension of the space
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of functions realized up to the second hidden layer. Given that span({1Ci
}mi=1) has dimension m, and that each neuron

in the second hidden layer implements one boolean function, it is clear that to express all elements in span({1Ci}mi=1),at
least m neurons in the second hidden layer are necessary, i.e., n2 = m. On the other hand, given that up to the second
layer we can express a boolean function with each neuron, each neuron should express a function of the form 1∪iCi

. We
now consider a function f ∈ span({1Ci

}mi=1), such that, f has different values for each cube {Ci}mi=1. In particular, if x̄i

is the center of the cube Ci, then f(x̄i) ̸= f(x̄j) for i ̸= j. Given that ∪m
i=1Ci = C, the points {x̄i}mi=1 form a regular

grid in Rn. The minimum number of hyperplanes needed to separate a regular grid with m points in Rn is (m1/n − 1)n.
Indeed, fixing d ∈ [n] and considering x̄i,d, the d-th coordinate of x̄i, we have that |{x̄i,d}mi=1| = m1/n, and the number of
hyperplanes needed to separate m1/n collinear points is m1/n − 1. To separate the points x̄i, we need to be able to separate
each of the sets {x̄i,d} for d ∈ [n]. Therefore, at least (m1/n − 1)n hyperplanes are required to perform the separation
of the points in {x̄i}mi=1. Note that in the previous argument for each coordinate d there where two unbounded regions
(corresponding to mini x̄i,d and maxi x̄i,d). Thus, to obtain closed regions, we need two extra hyperplanes per coordinate.
Then the total number of hyperplanes needed is (m1/n + 1)n. Since each neuron in the first hidden layer generates one of
these hyperplanes, we deduce that n1 has to be at least (m1/n + 1)n.

Remark (Point separability). In the proof, we repeatedly use the fact that a grid point set of size m can be separated by
(m1/n + 1)n hyperplanes. A similar observation is made in (Har-Peled & Jones, 2018)[page 4], where the more general
problem of point separability (not necessarily on a grid) is discussed (mainly in R2).

Minimality with respect to the depth. We now prove that expressing an indicator function over an arbitrary polyhedron
(excluding half-spaces and stripes between two half-spaces) fundamentally requires at least two layers. A comparable result
for threshold Artificial Neural Networks was independently established in (Khalife et al., 2024), although with a different
proof.

Lemma B.6. Let n ≥ 2, Ã := [ã⊤
1 , ã

⊤
2 ]

⊤ ∈ Rn×2, and P = {x ∈ Rn : Ãx+ b̃ ≥ 0} be a non-empty polyhedron with
two non-parallel linear boundaries, i.e., Ã has full rank. Then the indicator function 1P cannot be expressed by any (neither
with spike output nor membrane potential output) single time step discrete-time LIF-SNN with only one hidden (spike) layer.

Proof. Toward a contradiction, we assume there exists such a polyhedron P ⊆ Rn that can be expressed by a discrete-time
LIF-SNN with T = 1 and L = 1. We first consider the case of spike outputs. Since the output vectors have only one
dimension, the spike layer is allowed to have only one neuron. It follows that the network has the form x 7→ H(a⊤x+ b)
for some a ∈ Rn and b ∈ R. However, this only realizes the indicator function of a half-space, which is not P (by our
assumption on ã1 and ã2).

Now we consider the more general case where we use membrane potential outputs, i.e., the decoder D : Rm → R is an
affine map of the form Rm ∋ y = [y1, . . . , ym]⊤ 7→ w0 +

∑m
i=1 wiyi ∈ R, where m is the number of neurons in the last

spike layer while w⊤ = [w1, . . . , wm] and w0 denote the weights and bias of the decoder. Then the network realizes the
following mapping

x 7→ w0 +

m∑
i=1

wiH
(
⟨ai,x⟩+ bi

)
=: f(x), (7)

where A = [a⊤
1 , . . . ,a

⊤
m]⊤ ∈ Rm×n and b = [b1, . . . , bm]⊤ ∈ Rm are the weight matrix and bias vector of the spike layer.

To simplify notations, we set
Hi = {x ∈ Rn : ⟨ai,x⟩+ bi = 0}

to be the hyperplane defined by the i-th neuron in the spike layer, i = 1, . . . ,m. Without loss of generality, we assume that
Hi are distinct hyperplanes and wi ̸= 0 for all i. We will show that the union of the hyperplanes Hi must be equal to the
union of the hyperplanes A that define P , i.e.,

A :=
{
x ∈ Rn : ∃i ∈ {1, 2} such that ⟨ãi,x⟩+ b̃i = 0

}
.

To see that ∪m
i=1Hi ⊆ A, let x ∈ Hi for some arbitrary i ∈ [m]. Observe that if x /∈ A, then there exists some neighborhood

of x that lies completely in Rn \ A. Then Hi divides this neighborhood into two regions that correspond to the same value
when evaluated by 1P but different values when evaluated by f (as wi ̸= 0). This means that f ̸= 1P .
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On the other hand, to see A ⊆ ∪m
i=1Hi let x ∈ A. If x does not belong to any hyperplane Hi, then similarly there exists

some neighborhood of it that possesses only one constant value of f but two different values of 1P , so that f ̸= 1P .

Next, we proceed with the case m = 2, i.e., there are only two neurons in the hidden layer. Observe that Rn is divided into 4
different regions by H1 and H2, and inserting some arbitrary element of each of these regions subsequently gives (via (7))

w0 + w1 + w2 = y1,

w0 + w1 = y2,

w0 + w2 = y3,

w0 = y4,

whereas among y1, y2, y3, y4 ∈ {0, 1}, there is exactly one 1 and three 0’s (so that indeed the indicator function of P is
realized in the end). Here, the exact values of the yi’s depend on (the signs of) the equations corresponding to H1 and H2;
however, for any configuration of (yi)4i=1, this always leads to the contradiction that y2+y3 = y1+y4. Finally, the case that
we have more than two neurons in the hidden layer can be reduced to the case of two neurons by restricting the functions
f and 1P to the interior of the regions created by H1 and H2 (since we showed that ∪m

i=1Hi = A). This completes the
proof.

Approximation with step functions. We now prove that step functions can be used to approximate continuous functions.
More precisely, we prove that given any continuous functions f defined on a compact set Ω, one can select a finite set of
hypercubes {Ci}mi=1, for some m, such that f is close to span({1Ci}mi=1).

Lemma B.7. The set of step functions on hypercubes can approximate any continuous function on a compact subset Ω ⊂ Rn,
n ∈ N, arbitrarily well. In particular, for all f ∈ C(Ω) and for every ε > 0 there exists m ∈ N such that the following
holds: there exists hypercubes C1, . . . , Cm of same volume with their union forming again a hypercube and f̄1, . . . , f̄m ∈ R
such that ∥f − f̄∥∞ ≤ ε with f̄ =

∑m
i=1 f̄i1Ci .

Proof. Let f ∈ C(Ω) be a continuous function and ε > 0 be arbitrary. Since Ω is compact, there exists a constant K > 0
such that Ω ⊆ [−K,K]n and, moreover, f is uniformly continuous on Ω. Hence, there exists δ > 0 such that for any
x,y ∈ Ω with ∥x− y∥∞ := maxi∈[d] |xi − yi| < δ, it holds |f(x)− f(y)| ≤ ε.

Now we partition the domain Ω ⊆ [−K,K]n into hypercubes Ci, i = 1, . . . ,m by dividing the interval [−K,K] into
⌈ 2K

δ ⌉ sub-intervals of size at most δ. We define a step function f̄ =
∑m

i=1 f̄i1Ci
on Ω by specifying its value f̄i on each

hypercube Ci to be the mean value of f on the intersection of Ci ∩ Ω. For any arbitrary cube Ci, it can be observed that for
any x ∈ Ci ∩ Ω it holds

∣∣f(x)− f̄(x)
∣∣ = ∣∣∣∣f(x)− 1

|Ci ∩ Ω|

∫
Ci∩Ω

f(y)dy

∣∣∣∣ ≤ 1

|Ci ∩ Ω|

∫
Ci∩Ω

|f(x)− f(y)| dy < ε, (8)

where for any Lebesgue measurable set A ⊂ Rn, |A| represents its Lebesgue measure. Since both x and Ci are arbitrary,
this means that ∥∥f − f̄

∥∥
∞ = sup

x∈Ω

∣∣f(x)− f̄(x)
∣∣ ≤ ε.

B.1.3. APPROXIMATION RATES

In this section we provide approximation rates for a discrete-time LIF-SNN in term of its size. More specifically, we combine
Lemmas B.4 and B.7 for the special case of Lipschitz functions (chosen for analytical tractability) to give an estimate on the
number of neurons needed to approximate a Lipschitz function using a discrete-time LIF-SNN. We recall that a function
f : Ω → R is Γ-Lipschitz (with respect to the ∥ · ∥∞ norm) if for all x,y ∈ Ω, we have

|f(x)− f(y)| ≤ Γ∥x− y∥∞.
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Ω

2K

δ

Figure 5. Illustration of the grid and cube partition used in the proof of Lemma B.7.

Corollary B.8. Let f be a Γ-Lipschitz continuous functions on the hypercube [−K,K]n. Then for all ε > 0 there exists a
discrete-time LIF-SNN with T = 1, L = 2 and

n1 =

(
max

{⌈
2K

ε
Γ

⌉
, 1

}
+ 1

)
n, n2 = max

{⌈
2K

ε
Γ

⌉n
, 1

}
such that ∥R(Φ)− f∥∞ ≤ ε.

Proof. Similar to the proof of B.7, we will construct a function of the form f̄ =
∑m

i=1 f̄i1Ci
, where m := ⌈ 2K

δ ⌉n for some
δ to be determined. In particular, δ corresponds to the size of the hypercubes Ci with ∪m

i=1Ci = [−K,K]n. By applying
equation 8 and Lipschitz continuity we have, for x ∈ Ci ∩ [−K,K]n,

∥f − f̄∥∞ ≤ 1

|Ci ∩ Ω|

∫
Ci∩Ω

|f(x)− f(y)| dy ≤ Γδ,

given that ∥x− y∥∞ ≤ δ for x,y ∈ Ci ∩ [−K,K]n. Thus, choosing δ = min{ ε
Γ , 2K} we get

∥f − f̄∥∞ ≤ ε,

and, by Lemma B.4 part (ii), that a discrete-time LIF-SNN with L = 2, n1 = (m1/n + 1)n, n2 = m can be constructed to
express f̄ . Replacing the value of m, we have n1 = (

⌈
2K
δ

⌉
+ 1)n. With our choice of δ, this becomes

n1 =

(
max

{⌈
2K

ε
Γ

⌉
, 1

}
+ 1

)
n

Remark. In Theorem B.2, we use diam∞(Ω) instead of K, but it is easy to see that K can be chosen as diam∞(Ω) given
that Ω is a compact set.

We now finish the proof of Theorem B.2 by simply applying Lemma B.4, B.7 and Corollary B.8.

Proof of Theorem B.2. By Lemma B.4, we can express any linear combination of indicator functions of hypercubes of the
same volume forming a larger hypercube by discrete-time LIF-SNNs with T = 1 and L = 2. By Lemma B.7, these step
functions can uniformly approximate any continuous function on compact subsets of Rn to arbitrary precision. Therefore,
the class of SNNs described above forms a universal approximator for continuous functions. Finally, the last statement in
Theorem B.2, for a Lipschitz f , follows from Corollary B.8.
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Lower bound on neuronal requirements for SNN function approximation. The construction in the proof of Lemma
B.7 reveals that two-layer discrete-time LIF-SNNs approximate continuous functions by discretizing them on a grid of
hypercubes. We aim to prove that for certain classes of functions, this grid-based approximation strategy is optimal up to
constant factors, leading to a lower bound on the required number of neurons. The next proposition, which is a restatement
of Proposition 3.3 in the main paper, establishes the order-optimal approximation bound for one-dimensional functions
defined on the unit interval [0, 1].

Proposition B.9. For any Γ > 0, we define f : [0, 1] → R by f(x) = Γx. For any ε ∈ (0, 1], there exists a discrete-LIF-SNN
Φ with two layers and the width of the first hidden layer n1 = ⌈Γ/ε⌉+ 1, such that ∥R(Φ)− f∥∞ ≤ ε. On the other hand,
any discrete-time LIF-SNN Φ′ with first layer hidden width n′

1 ≤ Γ/εα − 1, for α < 1, will satisfy ∥R(Φ′)− f∥∞ ≥ 1
2ε

α.

Proof. The first statement is a direct consequence of Corollary B.8. In particular, by construction in Corollary B.8,
respectively Lemma B.4, R(Φ) is constant on a regular grid with n1 points defined by { i

n1−1}
n1−1
i=0 (corresponding to n1−1

intervals on [0, 1]).

Now consider a discrete-time LIF-SNN Φ′ with n′
1 neurons in the first layer. In that case, R(Φ′) is constant on (at most)

n′
1 + 1 intervals. Then, (via the pigeonhole principle) there exists at least one interval that contains q =

⌈
n1

n′
1+1

⌉
points of

the set { i
n1−1}

n1−1
i=0 . This means that this interval contains a segment of length q/(n1 − 1). Given that the function R(Φ′)

is constant on this interval and that f is linear, the error satisfies

∥R(Φ′)− f∥∞ ≥ 1

2
Γq/(n1 − 1) =

1

2
Γ

⌈
n1

n′
1 + 1

⌉
1

n1 − 1
≥ 1

2
Γ

⌈
1

n′
1 + 1

⌉
≥ 1

2
εα.

In the last inequality, we used our assumption on n′
1.

Remark (Extensions). The proof remains valid when n′
1 takes the more general form h( 1ε ), where h is any function

satisfying limx→∞
h(x)
x = 0, rather than the specific form 1

εα with α < 1 used above. While we focused on the unit interval
for clarity, the results naturally extend to arbitrary compact sets. More interestingly, we believe that extensions to the
n-dimensional case are possible, but this general case is left for future work. However, a weaker version of Proposition
B.9 holds for arbitrary dimension n ∈ N, as can be shown by considering Lipschitz continuous functions that depend on a
single coordinate.

B.2. Proofs of Section 4

In this section, we present a detailed proof of Theorem 4.3, which states a tight upper bound on the number of regions
created by discrete-time LIF-SNNs. The process is organized as follows.

We start by introducing in Subsection B.2.1 the basic notions of hyperplane arrangements and general position as well
as analyzing a special case of hyperplane arrangements, where the arrangement is a collection of families of parallel
hyperplanes. In particular, we introduce an upper bound on the number of regions created in this case and prove that the
bound is attained in order of magnitude if the hyperplane arrangements satisfy a certain refined general position condition.

Next, in Subsection B.2.2, we consider the mapping from the input to the first hidden layer (or equivalently a shallow SNN)
and show that each neuron in the first hidden layer corresponds to a number of parallel hyperplanes in the input space which
scales exponentially in the number of time steps T . This allows us to apply the previous result and characterize an upper
bound for the maximal number of regions created by a shallow discrete-time LIF-SNN. To see the tightness of this bound,
one has to show the existence of a shallow discrete-time LIF-SNN that realizes the mentioned general position condition,
which is discussed in Subsection B.2.3.

Finally, in Subsection B.2.4, we analyze deeper spatial architectures and derive the main result for the number of regions
created by discrete-time LIF-SNNs which is stated in Theorem 4.3.

B.2.1. NUMBER OF REGIONS CREATED BY FAMILIES OF PARALLEL HYPERPLANES

First, we give a formal definition for hyperplane arrangements and general position, which will be used below to characterize
the input space partitioning of discrete-time LIF-SNNs. In Def. B.10, the notions of hyperplane arrangements and their
general position are taken from (Stanley, 2011), while the notion of general position for families of parallel hyperplanes
focuses on the special case of hyperplane arrangements that are created by discrete-time LIF-SNNs on the input space.
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Definition B.10 (Hyperplane arrangements, general position). Let d ∈ N.

• A hyperplane arrangement A ⊂ Rd is defined as a finite collection of hyperplanes in Rd. Furthermore, we say that A
is (respectively the hyperplanes in A are) in general position if the intersection of any p distinct elements from A is
either (1) the empty set if p > d or (2) a (d− p)-dimensional affine subspace if p ≤ d.

• Let ∪n
i=1Ai ⊂ Rd be a hyperplane arrangement that consists of n different families Ai, i ∈ [n], of finitely many

hyperplanes, where the hyperplanes within each family Ai are parallel. We say that the families Ai are in general
position if the set {a1, . . . , an} with any choices ai ∈ Ai, i ∈ [n] form a hyperplane arrangement in general position.
We call such a subset {a1, . . . , an} a representative subset of ∪n

i=1Ai.

Remark. Informally, a hyperplane arrangement in Rd is in general position if and only if no pair of hyperplanes is parallel
and no set of d + 1 hyperplanes coincides. The notion of general position for families of parallel hyperplanes requires
the same conditions for every representative subset. It is obvious that whenever the non-parallelism is satisfied by any
representative subset, it is satisfied by all such subsets. However, it is in general more difficult to control whether the second
condition is satisfied.

While the fundamental theorem of Zaslavsky (Zaslavsky, 1975; Stanley, 2011) establishes an abstract way to compute the
number of regions in the general case via the so-called characteristic polynomials, we only focus on the special case of
hyperplanes created by discrete-time LIF-SNNs, which consist of a collection of families of (the same number of) parallel
hyperplanes. The following lemma demonstrates a tight upper bound on the number of regions created in hyperplanes in
those special configurations.

Lemma B.11. Let n, k, d ∈ N. Consider a hyperplane arrangement A = ∪n
i=1Ai in Rd consisting of n different families

Ai, i = 1, . . . , n. Assume that each family Ai consists of at most k distinct parallel hyperplanes. Then the hyperplane
arrangement A partitions Rd into a number of regions, which is upper bounded by{∑d

i=0 k
i
(
n
i

)
if n ≥ d,

(k + 1)n if n ≤ d.

Furthermore, the upper bound is attained if the families Ai, i = 1, . . . , n, are in general position.

The proof is based on the ‘deletion-restriction’ principle (Stanley, 2011) (or simply recursion), but simplified to our special
case.

Proof. We denote the maximal number of regions created by an arrangement of n families of k parallel hyperplanes in Rd

by rkn,d. In the following, we will compute rkn,d recursively over n and d.

First, we consider removing a family from the hyperplane arrangement A, say An. To that end, let h ∈ An be an arbitrary
hyperplane removed from A. Note that in the cases h is parallel to or coincides with a hyperplane in Ai, the number of
regions created by An is strictly smaller than rkn,d, thus we exclude those cases in the computation of rkn,d. Then, each pair
of hyperplanes formed by h and a hyperplane from Ai, i ≤ n− 1 may have one intersection, which is a (d− 2)-dimensional
affine subspace.

Observe that these (d− 2)-dimensional affine subspaces are in turn hyperplanes if restricted to h, which is of dimension
d− 1. Furthermore, among all such (d− 2)-dimensional hyperplanes of h, the ones coming from the same families Ai,
i ∈ [n− 1], are parallel. Hence, h is divided into at most rkn−1,d−1 regions.

On the other hand, observe that when adding h back to A \ An, the number of regions added is exactly equal to the number
of regions that A \An creates on h. Also, recall that h is only an arbitrary representative from k elements of An. Therefore,
we arrive at the following recursive formula

rkn,d = rkn−1,d + krkn−1,d−1.

With the convention
(
n
i

)
= 0 for any i > n, we can prove by induction over n+ d that

rkn,d =

d∑
i=0

ki
(
n

i

)
.
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Indeed, the claim holds trivially for n = 0 as an empty hyperplane arrangement would leave the space Rd not partitioned.
If the claim holds for any pair (n′, d′) with n′ + d′ ≤ n + d − 1 for some fixed pair (n, d), then by the above recursive
formula and induction hypothesis, we get

rkn,d = rkn−1,d + krkn−1,d−1 =

d∑
i=0

ki
(
n− 1

i

)
+ k

d−1∑
i=0

ki
(
n− 1

i

)

= 1 +

d∑
i=1

ki
(
n− 1

i

)
+

d∑
i=1

ki
(
n− 1

i− 1

)
= 1 +

d∑
i=1

ki
(
n

i

)

=

d∑
i=0

ki
(
n

i

)
.

In case n ≤ d, it follows that rkn,d =
∑n

i=0 k
i
(
n
i

)
= (k + 1)n. Finally, notice that the hyperplane arrangement A attains the

upper bound of rkn,d if and only if ∪n−1
i=1 Ai attains rn−1,d and the (d− 2)-dimensional intersections of elements of An and

elements of other families all exist and also attain rn−1,d−1. This condition recursively recovers the property of general
position and completes the proof.

B.2.2. CHARACTERIZATION OF THE HYPERPLANE ARRANGEMENTS CREATED BY THE FIRST HIDDEN LAYER

In this subsection, we only consider the mapping from the input to the first hidden layer, or equivalently, a shallow
architecture. Hence, the layer indices can be dropped for convenience. In particular, we will write W , b, β, ϑ,u(t), s(t) for
W 1, b1, β1, ϑ1,u1(t), s(t) respectively. With the introduced reduced notation, we obtain the following dynamics{

s(t) = H
(
βu(t− 1) +Wx+ b− ϑ1

)
u(t) = βu(t− 1) +Wx+ b− ϑs(t),

t ∈ [T ].

For convenience, we repeat the statement of Lemma 4.2 in the main paper in the introduced notation. Note that Lemma B.12
is stated for shallow discrete-time LIF-SNNs only because of notational convenience. It is straightforward to extend this
result to deeper architectures as stated in Lemma 4.2.
Lemma B.12. Consider a shallow discrete-time LIF-SNN with T time steps and an arbitrary neuron k in the hidden layer.
Then the input space Rnin is partitioned by k via a number of parallel hyperplanes into at most T 2+T+2

2 ∈ O(T 2) regions,
on each of which the time series

(
sk(t)

)
t∈[T ]

takes a different value in {0, 1}T . This upper bound on the maximum number
of regions is tight in the sense that there exist values of the spatial parameters uk(0), β, ϑ ∈ R× [0, 1]× R+ such that the
bound is attained.

Proof.

1. Introducing notations.
The dynamics with the introduced simplified notations imply

βiu(t− 1− i) = βi+1u(t− 2− i) + βi(Wx+ b)− ϑβis(t− 1− i).

Taking the sum for i = 0, . . . , t− 2, we obtain

u(t− 1) = βt−1u(0) +

t−2∑
i=0

βi(Wx+ b)− ϑ

t−2∑
i=0

βis(t− 1− i).

Therefore, the spike activation s(t) is determined by

s(t) = H
(
βu(t− 1) +Wx+ b− ϑ1

)
= H

(
βtu(0) +

t−1∑
i=0

βi(Wx+ b)− ϑ
(
1+

t−1∑
i=1

βis(t− i)
))

.
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For the given neuron k ∈ [n1] in the first hidden layer, this becomes

sk(t) = H

(
t−1∑
i=0

βi(⟨wk,x⟩+ bk) + βtuk(0)− ϑ
(
1 +

t−1∑
i=1

βisk(t− i)
))

= H

(
⟨wk,x⟩+ bk +

βtuk(0)− ϑ
(
1 +

∑t−1
i=1 β

isk(t− i)
)

∑t−1
i=0 β

i

)
, (9)

where wi ∈ Rnin denotes the i-th row vector of W . This means that at time step t ∈ [T ], the value of sk(t) ∈ {0, 1}
gives information about the half-space the input vector x ∈ Rnin lies in with respect to the hyperplane

ht−1(sk(1), . . . , sk(t− 1)) := {x ∈ Rnin : ⟨wk,x⟩+ bk − gt−1(sk(1), . . . , sk(t− 1)) = 0} ⊂ Rnin

where the function gt−1 is defined by

gt−1 : {0, 1}t−1 7→ R, gt−1(a1, . . . , at−1) =
−βtuk(0) + ϑ

(
1 +

∑t−1
i=1 β

iat−i

)
∑t−1

i=0 β
i

. (10)

Furthermore, for each binary code (ai)i∈[t−1] ∈ {0, 1}t−1, we define the corresponding region

Rt−1(a1, . . . , at−1) := {x ∈ Rnin : sk(i) = ai ∀i ∈ [t− 1]} = ∩t−1
i=1 {x ∈ Rnin : sk(i) = ai} .

Note that such a region can be empty (see below) and we denote by N(t) the number of non-empty such regions (which
is also the total number of regions created at time step t). Our starting point is the step t = 1, i.e., t− 1 = 0, where
the whole space Rnin , which corresponds to the empty code (ai)

0
i=1, is divided by exactly 20 = 1 hyperplane, namely

(according to (10)) the one given by the shift g0 = −βuk(0) + ϑ, into 2 different regions (depending on whether
a1 = 0 or a1 = 1).

2. Not every binary code corresponds to a non-empty region.
In principle, after time step t−1, or equivalently, before time step t, there can be 2t−1 possible binary codes (ai)i∈[t−1] ∈
{0, 1}t−1 and accordingly the same number of hyperplanes ht−1(a1, . . . , at−1). Each of these hyperplanes may
separate (at most) one region into two sub-regions, thus increasing the total number of regions by one. This means that
the number of regions might be doubled in each time step, i.e., N(t)−N(t− 1) might reach 2t−1, which possibly
leads to 1 +

∑T
t=1 2

t−1 = 2T regions in total at time step T .

However, in reality, a hyperplane can divide a region into two sub-regions only if it intersects (in our case, as the
hyperplanes are parallel, if it lies inside) that region, because otherwise the region remains one whole region. More
specifically in our case, a region Rt−1(a1, . . . , at−1) corresponding to the code (a1, . . . , at−1) defined before time t is
separated into two sub-regions at time t if and only if it contains the hyperplane ht−1(a1, . . . , at−1) (created at time
step t), i.e.,

ht−1(a1, . . . , at−1) ⊂ Rt−1(a1, . . . , at−1). (11)

According to our previous notion of (non-)empty regions, this means that if ht−1(a1, . . . , at−1) falls outside of
Rt−1(a1, . . . , at−1), i.e., the condition (11) is violated, then the whole region Rt−1(a1, . . . , at−1) must lie on one side
of the hyperplane ht−1(a1, . . . , at−1) and therefore either Rt(a1, . . . , at−1, 0) or Rt(a1, . . . , at−1, 1) is empty, while
the other set is the same as Rt−1(a1, . . . , at−1).

The requirement (11) significantly reduces the number of separated regions, or equivalently, reduces the increase
N(t)−N(t− 1) in the number of regions from time step t− 1 to t.

3. Showing N(t)−N(t− 1) ≤ t and deriving the bound on N(T ).
We fix a time step t ∈ [T ] and consider the transition from t− 1 to t. Moreover, let m ∈ {0, . . . , t− 1} be arbitrary
and consider the set

Am :=

{
(ai)i∈[t−1] ∈ {0, 1}t−1

:

t−1∑
i=1

at−i = m and Rt−1(a1, . . . , at−1) ̸= ∅

}
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00 01 10 11

(a) The separation after time step t = 2: there are at most 4
regions {s(1) = a1, s(2) = a2} for (a1, a2) ∈ {0, 1}2. The
regions are sorted in the lexicographic order of their corre-
sponding code. A region corresponding to the code (a1, a2)
in (a) is divided into 2 sub-regions in the next time step, i.e.,
t = 3, if and only if it contains the hyperplane h2(a1, a2).

000 001 01 10 110 111

(b) At t = 3, the hyperplane h2(a1, a2) induces one more
region if it lies in the "correct" region R2(a1, a2). Since the
hyperplane h2(0, 1) lies on the left of h2(1, 0), while the
region (0, 1) lies on the right of (1, 0), no more than one of
them can lie in the correct region.

Figure 6. Illustration of the proof. From time step t − 1 to time step t, at most 1 additional region is created in the regions with∑t−1
i=1 ai = m for any fixed m ∈ {0, . . . , t− 1}. Therefore, at most t regions are additionally created in this time step.

of all binary codes of length t−1 that have m ones in their representation and correspond to a non-empty region created
before time t. Observe that if we arrange the codes (a1, . . . , at−1) in Am in increasing lexicographic order, then the
corresponding values

∑t−1
i=1 at−iβ

i are in decreasing order (since βi decreases with increasing i). This means that
while the regions Rt−1(a1, . . . , at−1) are arranged in increasing lexicographic order of (a1, . . . , at−1)

2, the position
of their corresponding hyperplanes ht−1(a1, . . . , at−1) are arranged in the reversed order, i.e., in lexicographic order
of (at−1, . . . , a1); see Figure 6 for an illustration. Since the regions are all disjoint, it follows that there is at most
one hyperplane belonging to the ‘correct’ region, i.e., the region that corresponds to the same binary code. Since
m ∈ {0, . . . , t− 1} was arbitrary, we deduce that there are at most t hyperplanes belonging to the ‘correct’ regions at
time step t. Hence, at the transition from time step t− 1 to t, we obtain

N(t) ≤ N(t− 1) + t.

Taking the sum over t ∈ [T ], we get

N(T ) ≤ 1 +

T∑
t=1

t = 1 +
T (T + 1)

2
∈ O(T 2).

4. Tightness of the bound.
Now it is left to show that the number of O(T 2) parallel hyperplanes can indeed be achieved. For this, we simply let
β = 1 and ϑ = 1. Then the shifts at the transition from time step t− 1 to t, as given in (10), become

gt−1(a1, . . . , at−1) =
−uk(0) + 1 +

∑t−1
i=1 at−i

t
.

Therefore, for any fixed m ∈ {0, . . . , t− 1}, any binary code (a1, . . . , at−1) ∈ Am corresponds to the same hyperplane{
x ∈ Rnin : ⟨wk,x⟩+ bk − 1 +m− uk(0)

t
= 0

}
.

One observes the followings:

(a) For any m ∈ {1, . . . , t− 2}, the set ∪(a1,...,at−1)∈Am
Rt−1(a1, . . . , at−1), i.e., the union of all non-empty regions

with
∑t−1

i=1 at−i = m, is exactly the region between the hyperplanes corresponding to the shifts m−uk(0)
t and

1+m−uk(0)
t . In the transition from time step t− 1 to t, if it holds that

m− uk(0)

t
<

1 +m− uk(0)

t+ 1
<

1 +m− uk(0)

t
, (12)

then the hyperplane corresponding to the shift 1+m−uk(0)
t+1 must belong to the set

∪(a1,...,at−1)∈Am
Rt−1(a1, . . . , at−1). Thus, it must lie in one of such regions and separates it into two

sub-regions.

2Intuitively, the new sub-region at any time step i lies on the left of the hyperplane hi−1(a1, . . . , ai−1) if ai = 0 and on the right if
ai = 1, and this process is performed from i = 1 on. The process actually reflects the ordering of binary codes in lexicographic order.
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(b) For the outer-most regions, namely Rt−1(0, . . . , 0) and Rt−1(1, . . . , 1), observe that if

1− uk(0)

t+ 1
<

1− uk(0)

t
and

t+ 1− uk(0)

t+ 1
>

t− uk(0)

t
, (13)

then those two regions are divided each into two sub-regions respectively by the hyperplanes corresponding to the
shift 1−uk(0)

t+1 and t+1−uk(0)
t+1 .

(c) If we can, in addition to the two above conditions, ensure that for any m ∈ {0, . . . , t} and m′ ∈ {0, . . . , t′} as
well as for any t > t′ it holds

m− uk(0)

t
̸= m′ − uk(0)

t′
(14)

(i.e. there do not exist two time steps such that some shift of the current time step is equal to some shift of a
step far away in the past), then at each time step t the number of regions is increased by exactly t and thus the
maximum number of regions is achieved.

Note that condition (12) holds for uk(0) = 0 and condition (13) holds for any uk(0) ∈ (0, 1). For an arbitrary but fixed
T , it is simple to see that for uk(0) sufficiently small both these conditions are satisfied (since the involved terms are
all continuous in uk(0)) and so is condition (14). Another simple way to guarantee (14) is to choose an irrational value
for uk(0). This shows the desired existence statement.

B.2.3. EXISTENCE OF GENERAL POSITIONED FAMILIES OF HYPERPLANES CREATED BY DISCRETE-TIME LIF-SNNS

In the previous subsection, we have seen that each neuron in the first hidden layer of a discrete-time LIF-SNN corresponds
to a family of at most T 2+T

2 parallel hyperplanes, a situation where Lemma B.11 can be applied to obtain an upper bound
on the number of regions. Our only concern left is the tightness of the bound in higher dimensions, which in turn leads to
the question of whether the families of hyperplanes are in general position according to Lemma B.11. Here, we prove that
for appropriate spatial parameters (W , b), our shallow discrete-time LIF-SNNs will satisfy the condition about general
position.
Lemma B.13. Consider a shallow discrete-time LIF-SNN with T time steps with inputs from Rnin and n1 neurons in the
hidden layer. We denote by Ak, k ∈ [n1], the families of parallel hyperplanes corresponding to the k-th neuron of the first
hidden layer. Then one can construct weight matrices W ∈ Rn1×nin and bias vector b ∈ Rn1 such that the families Ak,
k ∈ [n1], of parallel hyperplanes are in general position.

Proof. Observe that for n1 ≤ nin, the notion of general position reduces to the condition that at least one of the representative
subsets of the hyperplane arrangement ∪n1

i=1Ai is in general position. In fact, if there exists a representative subset which
does not have any parallel pair of hyperplanes, then the same holds for any other representative subset, while the condition
of non-parallelism is sufficient for general position when n1 ≤ nin. This means that in this case, one just needs to simply
choose W to be full-ranked so that the corresponding families of hyperplanes are non-parallel. It only remains to consider
the case n1 ≥ nin.

Now, we will show the existence of the desired discrete-time LIF-SNN by iteratively constructing (wi, bi) for i =
1, . . . , nin, . . . , n1. First, we choose (wi, bi) for i ≤ nin such that the families Ai, i ∈ [nin], are in general position (which is
straightforward due to the above observation). Thus, it suffices to show how to choose (wn+1, bn+1) properly given (wi, bi)
for i ≤ n for some fixed n ≥ nin such that the corresponding families Ai, i ∈ [n], are in general position.

Obviously, the families Ai, i ∈ [n], have only finitely many intersection points, in particular, each intersection point is the
intersection of nin hyperplanes from nin different families. Let (wn+1, b̃n+1) define a hyperplane

H̃n+1 =
{
x ∈ Rnin : ⟨wn+1,x⟩+ b̃n+1 = 0

}
that is not parallel to any family Ai, i ∈ [n], and all the intersection points lie on the same side of H̃n+1. It is not difficult to
see that the shifts (as defined in the proof of Lemma B.11) are bounded, say by some constant B > 0. Thus, by translating
H̃n+1 towards the half-space that does not contain the intersection points of Ai, i ∈ [n], we obtain a hyperplane

Hn+1 = {x ∈ Rnin : ⟨wn+1,x⟩+ bn+1 = 0}
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so that all the intersection points of Ai, i ≤ [n] lie on the same side of all of its shifted versions with the shifts bounded by
B. This way we gain a collection of families Ai, i ∈ [n+ 1] where no nin + 1 hyperplanes coincide.

Finally, we obtain a hyperplane arrangement ∪n1
i=1Ai which satisfies the following property by construction: (1) no pairs of

hyperplanes from different families are parallel, (2) no sets of nin hyperplanes coincide. Thus, the hyperplane arrangement
is in general position (according to Remark B.2.1) and the proof is complete.

Remark. While Lemma B.13 is proven in a constructive manner, the choice of the spatial parameters is quite flexible. We
believe that for ’almost all’ choices of (W , b), i.e., up to a set of zero measure on the set of all spatial parameters, the
resulting shallow discrete-time LIF-SNN creates families of parallel hyperplanes, which are in general position.

B.2.4. COMPLETING THE PROOF OF THEOREM 4.3

In this subsection, we combine the auxiliary lemmata discussed in previous subsections to finalize the proof of Theorem 4.3,
repeated here in a slightly revised version.

Theorem B.14. Consider a discrete-time LIF-SNN Φ with T time steps, input dimension nin, and n1 neurons in the first
hidden layer. Then the maximum number of constant and activation regions taken over all choices of spatial and temporal
parameters θ =

(
(W ℓ, bℓ), (uℓ(0), βℓ, ϑℓ)

)
ℓ∈[L]

is upper bounded by

max
θ

|C| ≤ max
θ

|R| ≤


∑nin

i=0

(
T 2+T

2

)i (
n1

i

)
if n1 ≥ nin,(

T 2+T+2
2

)n1

otherwise,

The first inequality becomes equality if each spike layer has at least n1 neurons. The second inequality becomes equality for
appropriate choices of the network parameters θ.

Proof. By Lemma B.12, each neuron k ∈ [n1] in the first hidden layer corresponds to a family Ak of at most T 2+T
2 parallel

hyperplanes. Lemma B.11 shows the desired upper bound on maxθ |R|. To see the tightness of this bound, we choose(
u(0), β, ϑ

)
according to Lemma B.12 and (W 1, b1) according to Lemma B.13 so that the families Ak are in general

position while having the maximum number of hyperplanes.

For the first inequality to become an equality, we apply Proposition 3.1 to construct an identity mapping from the first to
(the first n1 neurons) of the last spike layer,

(
s11(t), . . . , s

1
n1
(t)
)
t∈[T ]

7→
(
sL1 (t), . . . , s

L
n1
(t)
)
. Note that this construction

only involves the subsequent layers ℓ ≥ 2 and does not involve the first hidden layer. One can observe that any two distinct
activation regions are mapped to two distinct output time series, thus |C| = |R|.

C. Experimental details
C.1. Additional experiment results

In this section, we complement the experimental results shown in Section 5.1 with (1) similar experiments on the SVHN
dataset (Netzer et al., 2011) (in place of CIFAR10) and (2) a comparison of test accuracies. In particular, for SVHN,
we conduct experiments with the same models as well as technical settings as for CIFAR10 (see Section C.2 below).
The corresponding results are presented in Fig. 7, which shows a similar trend as before for CIFAR10, with a few
minor exceptions (possibly due to training instability in the cases of low spatial and temporal model sizes). While our
experiments aim to verify our theoretical results on the expressivity of discrete-time LIF-SNNs, for completeness, we
include the comparison of test accuracies achieved by the considered SNN models, see Fig. 8. Note that in both datasets the
generalization performance is quite limited for both ANNs and SNNs (of any latency). The reason behind this is that we did
not apply any techniques to avoid overfitting, since as a justification of our theoretical expressivity results, the networks
should have the same architectures as in the theoretical expressivity findings and aim merely to fit the training data (and
not to generalize well to test data). In such a setting, ANNs are observed to generalize better than SNNs (of any presented
latency) and SNNs, even with low latency such as T = 4 or T = 8, show certain overfitting phenomena when the width of
the subsequent becomes large enough.
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(a) Train accuracy achieved by an ANN and SNNs with different
numbers of time steps but identical spatial architectures

(b) The improvement of training accuracy when increasing the
width of the subsequent hidden layers.

Figure 7. Comparison of train accuracies achieved by ANN and SNNs on SVHN dataset with different numbers of time steps. Both types
of networks share the same spatial architectures: the first hidden layer is a bottleneck with only 20 neurons and the subsequent layers are
progressively widened in each experiment. We consider 4 layers in both cases.

(a) Test accuracy on CIFAR10 dataset (b) Test accuracy on SVHN dataset

Figure 8. Test accuracies achieved by ANN and SNNs on CIFAR10 and SVHN dataset with different numbers of time steps. Both types
of networks share the same spatial architectures: the first hidden layer is a bottleneck with only 20 neurons and the subsequent layers are
progressively widened in each experiment. We consider 4 layers in both cases.

C.2. Experimental setting

We employ the snntorch package (Eshraghian et al., 2023) for implementing discrete-time LIF-SNNs, where all leaky
parameters βℓ and thresholds ϑℓ are set to be learnable (Fang et al., 2021) while the initial membrane potential vectors uℓ(0)
are set to 0 as default. Furthermore, we deploy the cross-entropy loss applied to spike count outputs (see Example E.1 in
Supplementary Material E.5). For the training, we apply backpropagation through time (Lee et al., 2016; Neftci et al., 2019;
Eshraghian et al., 2023) with the arctan surrogate function (Fang et al., 2021).

The numerical experiments described in Section 5.1 were conducted under the following set-up: Both ANNs and SNNs are
trained in 200 epochs using the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9 and β2 = 0.999. The learning rate is
initialized at 10−3 and decays by a factor of 10 after 100 epochs. The batch size is set to 512. We used the pytorch default
Kaiming initialization (He et al., 2015) in all our experiments.

The numerical experiments described in Section 5.3 were performed in the same set-up only the learning rate, number of
epochs, and batch size were adjusted to a fixed value 5× 10−4, 1000 and 256, respectively.

D. Related works
Here, we provide a more detailed discussion of the relevant literature going beyond the discussion in Section 1. We contrast
the extensive work on the expressive power of ANNs with the currently still (in comparison) limited insights for ANNs.
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D.1. The expressive power of ANNs

Understanding the expressive power of ANNs is a central concern in the field of deep learning, with a long and rich history
of research. Investigations in this topic can be broadly divided into the following two key areas.

Approximation capabilities This field focuses on the ability of ANNs to approximate certain function classes as well
as the complexity of the network to attain a prescribed accuracy of the approximation. A starting point are the Universal
Approximation Theorems (Cybenko, 1989; Hornik et al., 1989; Leshno et al., 1993), which established that shallow
ANNs with sufficient neurons and appropriate activation functions can approximate any continuous function on a compact
domain arbitrarily well. Building on these foundational results, subsequent research has focused on various extensions
and refinements, ranging from investigations on the effect of diverse architectural aspects such as depth, width, number of
neurons, convolutional layers, etc., to approximation certain function classes (Telgarsky, 2016; Yarotsky, 2017; Lu et al.,
2017; Hanin, 2019; Shen et al., 2020; Zhou, 2020) to deriving (optimal) approximation rates (Yarotsky, 2017; Petersen &
Voigtlaender, 2018; Gühring et al., 2020; Bölcskei et al., 2019; Kutyniok et al., 2022).

Input partitioning The focus in this field lies on understanding the internal processing in ANNs more deeply, specifically
their ability to represent complex patterns and hierarchical features. Notably, the pioneering works (Pascanu et al., 2014;
Montúfar et al., 2014) have sparked research work on the piecewise linearity of ANNs with piecewise linear, including
ReLU, activation functions (Raghu et al., 2017; Serra et al., 2018; Arora et al., 2018; Hanin & Rolnick, 2019a;b). Hence, a
natural metric to theoretically quantify the expressivity of an ANN in this case is the maximum number of linear regions into
which it can separate its input space. By reducing the problem to counting the number of regions created by a hyperplane
arrangement and directly applying Zaslavsky’s Theorem (Zaslavsky, 1975; Stanley, 2011), (Pascanu et al., 2014) proved a
simple yet tight upper bound for this number for shallow ReLU networks. In the follow-up works (Montúfar et al., 2014;
Raghu et al., 2017; Serra et al., 2018; Arora et al., 2018), various theoretical upper and lower bounds on the maximum
number of regions have been derived and improved. The study of input partitioning has subsequently broadened, leading
to connections with diverse impactful aspects of neural network theory, such as practical expressivity (Hanin & Rolnick,
2019a;b), functionality and geometry of decision boundaries (Balestriero & Baraniuk, 2018; Balestriero et al., 2019; Grigsby
& Lindsey, 2022) and local complexity, generalization and robustness (Humayun et al., 2024; Patel & Montúfar, 2024) of
ANNs. Finally, for a more comprehensive survey on the relation of deep learning and polyhedra theory, please refer to
(Huchette et al., 2023).

For a comprehensive overview on the mathematical theory of ANN expressivity, we also want to highlight the dedicated
sections in the recent books (and references therein) (Jentzen et al., 2023; Petersen & Zech, 2024).

D.2. The expressive power of SNNs

Approximation capabilities While the literature on the expressivity of ANNs is extensive, the theory for SNNs still
remains quite limited. A valuable foundation for the theory of SNNs lies in the research conducted by Maass in the 90s.
These early works introduced several expressivity results for both discrete and continuous-time models with temporal
coding often focusing on the spike response model (Maass, 1994; 1996a; 1997a) or its stochastic extensions (Maass, 1995;
1996b; 1997a;b) for describing the neuronal dynamics. The continuous-time spike response model has been revisited
in several recent works (Comsa et al., 2020; Stanojevic et al., 2024; Singh et al., 2023; Neuman et al., 2024), which
provide more quantitative approximation results as well as discussions on related theoretical aspects of SNNs. However, as
mentioned in (Neuman et al., 2024) the analyzed continuous-time models have not yet found broad applications on dedicated
neuromorphic platforms, thus limiting the adaptability of these results to practical settings. Meanwhile, the works (Zhang
et al., 2024; Zhang & Zhou, 2022) examine various SNN models that are closely related to each other and establish several
approximation properties. However, these works often include self-connections and rate coding in the continuous-time
framework in a smoothed form, which diverges significantly from common practical SNN implementations.

In contrast to the previously mentioned approaches, our research directly targets a straightforward and widely adopted SNN
model frequently used in practical SNN implementation frameworks (Eshraghian et al., 2023; Fang et al., 2023a; Gonzalez
et al., 2023). Given that SNNs are still evolving with new models being proposed progressively, we do not claim that our
paper introduces the most appropriate model of SNNs, but rather that it focuses on the one that is widely used today.

Input partitioning With regard to the input partitioning of SNNs, the piecewise functionality has been observed in (Singh
et al., 2023; Mostafa, 2018), which discuss the continuous-time framework (see above discussion). More precisely, these
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works consider continuous-time SNNs based on the spike response model combined with the time-to-first-spike coding
and narrow the focus to the single spike scenario, i.e., a context where the (unique) continuous firing time of each neuron
can be seen as its activation. Informally speaking, since the input current depends on the (differences of) firing times in a
certain linear manner (possibly after change of variables as in (Mostafa, 2018)), the activation of a post-synaptic neuron
also depends linearly on its pre-synaptic neurons’ activations. In our case, the linearity dependence between pre- and
post-synaptic activations is in a stricter sense, namely because the activations take only binary values.

Kim et al. (2022) investigate an SNN model that is most closely related to ours, differing mainly in the membrane potential
reset mechanism, and also points out the piecewise linearity of the realization. Notably, the authors introduce a time-
dependent input partitioning concept as the motivation for the proposed neural architecture search, where regions at each
time step are defined based on neuron transitions as outlined in (Raghu et al., 2017). Compared to (Kim et al., 2022), our
work provides a deeper theoretical analysis of the piecewise constant functionality of discrete-time LIF-SNNs, characterizing
the complexity of their input partition.

E. The discrete-time LIF-SNN model
In this section we provide further background information for reader less familiar with SNNs. We start with the description
of the leaky-integrate-and-fire model and a short derivation to obtain the discretized LIF model employed in this work.
Subsequently, we discuss further models of neuronal dynamics and embed the LIF dynamic in this vast space. Moreover, we
introduce practically applied coding schemes and show that our coding framework encompasses them. Finally, we derive
elementary properties of discrete-time LIF-SNNs.

E.1. The leaky-integrate-and-fire neuronal model

The leaky-integrate-and-fire (LIF) neuron is one of the simplest models of neuronal dynamics to study information
processing (in biological neural networks) (Gerstner et al., 2014). A linear differential equation, which also underlies a basic
capacitor-resistor electrical circuit, describes the LIF dynamics

τ
du(t)

dt
= −u(t) +RI(t), (15)

where u(t) and I(t) represent the membrane potential and input current at time t, respectively, while τ and R denote the
membrane time and impedance constant. The second component, a thresholding operation with parameter ϑ, translates the
dynamics of the potential into spike emission: whenever u(t) reaches the threshold ϑ (from below) a spike is generated
and u is immediately reset to a new value below the threshold – mimicking the observed biological patterns in a severely
simplified fashion.

Solving the differential equation via a forward Euler discretization with equidistant time steps tn as well as including the
thresholding with the so-called reset-by-subtraction method, i.e., subtracting the value of the threshold ϑ from the potential
after a spike, yields {

s(tn) = H
(
βu(tn−1) + (1− β)RI(tn)− ϑ

)
u(tn) = βu(tn−1) + (1− β)RI(tn)− ϑs(tn)

, (16)

where H = 1[0,∞) denotes the Heaviside step function and β > 0 is a coefficient depending on the step size; see for instance
(Eshraghian et al., 2023). As a computational model, it is natural to consider networks of spiking neurons and introduce
learnable parameters analogously to the structure of (non-spiking) ANNs (independent from biological plausibility). The
latter can be achieved by assuming that incoming weighted spikes from pre-synaptic neurons, the so-called spike trains,
generate the input current of neuron i

Ii(tn) =
∑

j:j presynaptic neuron of i

wi,jsj(tn) + bi,

where wi,j ∈ R denotes a synaptic weight replacing/absorbing the coefficient (1 − β)R in equation 16) and bi ∈ R is
a synaptic bias, whereas sj(tn) ∈ {0, 1} specified via equation 16 indicates whether neuron j emitted a spike at time
tn. This leads to the computational model of a network of spiking LIF neurons, which we refer to as the discrete-time
LIF-SNN model, formally introduced in Definition 2.1. The discrete-time LIF-SNN model is a fairly general and flexible
framework to study SNNs encompassing a wide range of practically applied models (see below). Its advantage is that it
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incorporates spike-based processing into artificial neural networks while still maintaining advantageous properties from
ANNs such as the sequential optimization process with gradient methods although some new obstacles arise (Eshraghian
et al., 2023). Nevertheless, the number of SNN models employed in practice is vast and therefore we summarize and relate
other approaches to the discrete-time LIF-SNN framework. We approach this task from two perspectives. First, we embed
the LIF neuron in the landscape proposed by neuroscience to model realistic behaviour of biological neurons. Second, we
discuss adaptations of the discrete-time LIF-SNN as a computational model to obtain better performance in practice, i.e., by
making it easier to train or exploiting task-dependent properties.

E.2. Neuronal models in biology

For a detail-oriented biological motivation of various neuronal models we refer to (Gerstner et al., 2014; Yamazaki et al.,
2022), instead we only provide a short summary. One take-away is that integrate-and-fire (IF) models, thereof LIF is a
prominent example, are one of the main classes to describe neuronal dynamics. As the name suggests, these models capture
the integration of incoming action potential/spikes and the resulting generation of new spikes, i.e., firing, via differential
equations. Single exponential, double exponential, or more general non-linear (leaky) IF models extend the basic LIF
model, which is based on linear differential equations, to achieve more biological plausibility. The spike response model, a
superset of IF models, goes a step further by emphasizing various effects occurring in a neuron after emitting a spike, i.e.,
the spike response, such as refractoriness. Besides, there exists a vast amount of models focusing on various biophysical and
biochemical aspects of biological neurons, among them the famous Hodgkin-Huxley model. These models are more apt to
study physiological processes but (currently) less amenable as computational models employed in computer science since
the increased biological plausibility of the models often comes at the cost of higher computational complexity. Hence, the
LIF model provides a reasonable balance between complexity and efficiency to study the effectiveness of more biologically
inspired neurons (in comparison with classical artificial neurons) as a computing framework.

E.3. LIF SNNs as a computational model

Having established the goal of computational power and efficiency, one is bound by biological plausibility to a lesser degree
and is inclined to adjust the model to achieve the desired goal. First, employing networks of (LIF) neurons as a computing
model requires the implementation and subsequent optimization of the network on a computing platform to solve a given
task. One key distinction in implementations is the time-discrete versus time-continuous approach. Both are viable from a
theoretical perspective but currently, time-discrete solutions are favored in practice, mainly due to two reasons. First, the
discretization framework aligns well with the typically employed digital hardware platforms, which however may change
with the development of (analog) neuromorphic hardware (Mehonic et al., 2024). Second, after discretization, the obtained
model such as the discrete-time LIF-SNN can be mostly treated via the established and high-performance optimization
pipeline already developed for ANNs (Eshraghian et al., 2023). Moreover, the time-continuous implementation needs to
overcome specific obstacles, which makes the networks currently difficult to scale, although progress has been made in this
regard (Göltz et al., 2021; Mostafa, 2018; Comsa et al., 2020).

In the discretized setting, various options are still available. First, depending on the assumptions the discretization via the
Euler method might lead to slightly different dynamics (Eshraghian et al., 2023; Neftci et al., 2019). Moreover, the reset
mechanism, i.e., the rule how to reset the potential of a neuron once a spike is emitted (meaning the potential crossed the
threshold), does not need to follow the introduced reset-by-subtraction method but can be implemented for instance as a
reset-to-zero approach. Additionally, the choice of learnable parameters and fixed (hyper)parameters also influences the
model capacity. Less learnable parameters ease the training process whereas more learnable parameters obviously extend
the computational capacity of the model. Therefore, research focused on obtaining efficient training pipelines incorporating
many learnable parameters and/or improving the spiking neuron model to exhibit better learning characteristics; see (Fang
et al., 2023b) and the references therein. We skip the specific details but we would like to emphasize that research is still
progressing, e.g., by modifying the model to allow for more parallelization in the computing process and thereby more
efficiency. Finally, the coding scheme is highly relevant for the performance of the full computational pipeline, independent
of the specific spiking model employed. Next, we will deepen this discussion with an emphasis on the output decoding
scheme since the input encoding already mostly converged towards direct and learnable schemes.
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E.4. Input encoding schemes

Classical encoding schemes such as rate or temporal coding often exhibit several inherent drawbacks that may negatively
impact model performance and efficiency (Rueckauer et al., 2017; Wu et al., 2019). First, each input neuron can usually
represent only a grid of T + 1 different values, thus requiring high latency T to achieve high precision. Second, the
analog-spike transformation based on rate coding is likely to introduce variability into the firing of the network. In other
words, one analog input signal, e.g., an image, may be transformed into a number of rate-coded spike trains and thus lead to
totally different output predictions, which not only impairs the model performance but also raises concerns regarding the
well-definedness and stability of the model. To prevent such shortcomings as well as to seek for low-latency computations,
direct coding has nowadays become a standard input encoding regime for SNNs (Rueckauer et al., 2017; Wu et al., 2019;
Fang et al., 2021).

E.5. Output decoding schemes

An important component of any SNN model is how the information encoded in the spikes is decoded into a final output.
In the discrete LIF-SNN model as defined in Section 2, this appears as an output decoding mapping D from the space of
spike trains to the actual output space, e.g., a real vector space in the considered case of static data. This abstraction covers
many common decoding schemes as will be demonstrated in this section. To this end, we categorize them into two main
approaches based on whether the output codes directly act on the (binary) spike activations of the final layer (’spike output’)
or an additional spatial transform is interconnected (’membrane potential output’).

E.5.1. SPIKE OUTPUTS

To apply the concept of spike outputs, one would certainly require that the size of the last layer of the network is designed to
be equal to the dimension of the target vectors, i.e., nL = nout. In our treatment of spike outputs, we will always assume
that this condition is satisfied. Two of the simplest decoding schemes are rate coding and count coding, where the output
signal is understood as the average and spike count of the output spike trains over time, respectively

Example E.1 (Spike rate coding and spike count coding). The output rate decoding mapping is given by

Drate : {0, 1}nout×T → Rnout ,
(
s(t)

)
t∈[T ]

7→ 1

T

T∑
t=1

s(t).

The output count decoding mapping can be written as

Dcount : {0, 1}nout×T → Rnout ,
(
s(t)

)
t∈[T ]

7→
T∑

t=1

s(t).

Note that these decoding schemes restrict the output values to be on the grid {0, 1, . . . , T} – possibly rescaled by the factor
1/T . However, these approaches have shown effectiveness in applications where the target set is simple and small such as
classification tasks (Eshraghian et al., 2023; Fang et al., 2021). For instance, for nout different classes with one-hot encoded
labels y ∈ {0, 1}nout , i.e., for class c ∈ [nout] the corresponding label y satisfies yi = 1 if i = c and zero otherwise, the
training objective given a discrete-time LIF-SNN Φ is to minimize L(R(Φ)(xi)),yi) averaged over all samples in the
dataset (xi,yi)i, for some loss function L : Rnout × Rnout → R+. Minimizing the objective corresponds to aligning the
output vector R(Φ)(xi) with the one-hot encoded label yi with respect to some measure. In the case of rate-coded outputs,
this is equivalent to requiring that the neuron in the last spike layer corresponding to the correct class fires as many times as
possible, while all other neurons in the last layer stay silent as often as possible. The idea of forcing many spikes at the
neuron associated with the correct class and few spikes at the other neurons can be also applied without an explicit decoding
scheme by incorporating the decoding step in the training pipeline, i.e., finding the optimal decoding scheme is part of the
learning objective. However, it is not a priori clear how to embed this setting into our framework.

A completely different approach for the output decoding is to rely on the spike times instead of the spike rates/counts via
temporal coding. The first spike time of a neuron i in the last layer is simply

fi :=

{
f0, if sLi (t) = 0 ∀t ∈ [T ]

min
{
t ∈ [T ] : sLi (t) = 1

}
, otherwise,
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where f0 ∈ R is a value specified beforehand in case neuron i does not spike. The spike time vector f := (fi)i∈[nout] ∈ Rnout

is then used to define the final output vector, possibly after some transformation.

Example E.2 (Spike time/temporal coding). The output spike time mapping can be written as

Dtime : {0, 1}nout×T → Rnout ,
(
s(t)

)
t∈[T ]

7→ h(f)

for some function h : [T ] ∪ {f0} → R applied entry-wise.

For the previously considered classification task with one-hot encoded label, setting f0 = T +1 and h(x) = 1/x encourages
the neuron associated with the correct class to spike early and all other neurons to spike late or not at all.

E.5.2. MEMBRANE POTENTIAL OUTPUTS

The decoding regimes that are based on the spike outputs often lead to outputs restricted to the grid {0, . . . , T} accompanied
by a simple transformation such as rescaling, inverting, etc. This might be too restrictive in certain tasks where finer accuracy
is required, e.g. in regression tasks (Henkes et al., 2024). However, this problem can be addressed by transforming the
output spike train of the last layer sL(t), t ∈ [T ] via an affine mapping first. Informally, this can be thought of as adding
another layer to the network but without any firing or reset mechanism (which is comparable to the last affine layer in ANNs
typically employed in regression tasks). More precisely, let WL+1 ∈ Rnout×nL be the weight matrix and bnout the bias
vector of the affine transformation from layer L to the newly introduced layer L+ 1. Furthermore, let βL+1 be the leaky
parameter of that layer and define the membrane potential vector by

uL+1(t) := βL+1uL+1(t− 1) +WL+1sL(t) + bL+1, t ∈ [T ],

with some initial membrane potential vector uL+1(0) ∈ Rnout given beforehand. The explicit formula can now be expressed
as

uL+1(t) = (βL+1)tuL+1(0) +

t−1∑
i=0

(βL+1)iWL+1sL(t− i) +

t−1∑
i=0

(βL+1)ibL+1,

Now, the time series of membrane potential vectors
(
uL+1(t)

)
t∈[T ]

∈ Rnout×T can be treated analogously to spike outputs(
sL(t)

)
t∈[T ]

∈ {0, 1}nout×T . For instance, similarly to the spike rate coding, we can also define the output vector to be the

average of the membrane potential time series
(
uL+1(t)

)
t∈[T ]

over time. To embed, this decoding scheme in our framework,

we first aim to express the time series
(
uL+1(t)

)
t∈[T ]

as function of the spike time series
(
sL(t)

)
t∈[T ]

in a more compact
way. For this, we stack the quantities of different time steps together as a matrix (with each column representing a time step):

U :=
[
uL+1(1), . . . ,uL+1(T )

]
∈ Rnout×T and S :=

[
sL(1), . . . , sL(T )

]
∈ RnL×T .

Furthermore, we define the temporal weight vectors

a(t) :=
[
(βL+1)t−1, (βL+1)t−2, . . . , (βL+1)t−(t−1), (βL+1)t−t, 0, . . . , 0

]⊤ ∈ RT

and stack them as well as the bias vectors to matrices

A :=
[
a(1), . . . ,a(t)

]
∈ RT×T and B := bL+1 ⊗ 1⊤

T = [bL+1, . . . , bL+1] ∈ Rnout×T .

For clarity, we assume that uL+1(0) = 0 (the general case is a simple extension) and obtain

u(S) := U = (WL+1S +B)A for u : {0, 1}nL×T → Rnout×T .

z :=
1

T

T∑
t=1

uL+1(t) =
1

T

T∑
t=1

u(t) = U1T .

Example E.3 (Membrane potential rate coding). The membrane potential rate coding mapping can be written as

Dpot-rate : RnL×T → Rnout ,
(
s(t)

)
t∈[T ]

7→ D̃ ◦ u(S) = 1

T
(WL+1S +B)A1T
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with

D̃ : Rnout×T → Rnout ,
(
u(t)

)
t∈[T ]

7→ 1

T

T∑
t=1

u(t) = U1T .

Hence, in comparison to spike rate coding, membrane potential rate coding incorporates an affine spatial transformation
given by hspat : RnL×T → Rnout×T , h(x) = Wx +B and a linear temporal transformation given by htemp : Rnout×T →
Rnout , htemp(x) = xA1T , which assigns a non-uniform weight distribution to the time steps.

In combination with commonly used loss functions, membrane potential rate coding drives the membrane potential of the
neuron corresponding to the correct class to be large, while diminishing the other ones.

E.5.3. SUMMARY

The notion of membrane potential outputs is a generic decoding scheme without fixing any specific output decoding regime.
It simply assumes that the last spike activations are further passed to a subsequent layer via an affine mapping over all time
steps similar to spikes being transmitted in the internal layers. This analogy motivates the notion of membrane potential
outputs, which are averaged over all time steps given some (temporal) weights. However, note that by substituting the affine
mapping with the identity function one recovers a ’spike output approach’ that directly relies on the final (binary) spike
activations and consequently allows for less flexibility. In practice, the parameters of the decoder, particularly the affine
mapping, are considered trainable parameters of the model, which is comparable to the fact that the last layer in conventional
ANNs usually consists of a trainable affine transformation.

E.6. Elementary properties of discretized LIF SNNs

We want to highlight that discrete-time LIF-SNNs can be linked to feedforward ANNs with Heaviside activation function.
The realization of an ANN Ψ can be expressed as

RANN(Ψ) = AL ◦ σ ◦AL−1 ◦ σ . . . ◦ σ ◦A1,

where σ : R → R is an activation function that acts entry-wise and Aℓ : Rnℓ−1 → Rnℓ , Aℓ(x) = W ℓx+ bℓ are affine trans-
formations between layers ℓ− 1 and ℓ of size nℓ−1 and nℓ, respectively, encompassing the trainable parameters (W ℓ, bℓ) ∈
Rnℓ×nℓ−1 × Rnℓ . In contrast, given a discrete-time LIF-SNN Φ =

((
W ℓ, bℓ

)
ℓ∈[L]

,
(
uℓ(0), βℓ, ϑℓ

)
ℓ∈[L]

, T, (E,D)
)

, its
realization can be written as

R(Φ) = D ◦ σT
LIF(·) ◦WL ◦ σT

LIF(·) ◦ . . . ◦W 2 ◦ σT
LIF(·) ◦W 1 ◦ E,

where the weight matrices W ℓ represent the affine, in fact linear, mappings and the activation σT
LIF(·) : RT → RT operates

on the sets of (spatially one-dimensional) time series of length T

σT
LIF(b̃)(z) = H(z + b̃) for some b̃ ∈ RT .

For an actual initial spike activation s0 = (s(t))t∈[T ] ∈ Rn1×T the composition σT
LIF(·) ◦ W ℓ simple represents the

(time-enrolled) computation in the ℓ-th layer according to equation 1(
σT

LIF((b̃(t))t∈[T ]) ◦W ℓ
)
(sℓ−1)t∈[T ] = H(W ℓ(sℓ−1)t∈[T ] + (b̃(t))t∈[T ])

= H(W ℓ(sℓ−1)t∈[T ] + (βℓuℓ(t− 1) + bℓ − ϑℓ1nℓ
)t∈[T ]),

if (b̃(t))t∈[T ] is chosen as (βℓuℓ(t−1)+bℓ−ϑℓ1nℓ
)t∈[T ]. Hence, the activation σT

LIF(·) is not fixed throughout the network
but depends via the membrane potential on the initial spike activation. A more insightful option to express the realization of
Φ is given by

R(Φ) = D ◦H ◦AL(·) ◦H ◦ . . . ◦A2(·) ◦H ◦A1(·) ◦ E (17)

with Aℓ(·) : Rnℓ−1×T → Rnℓ×T specified by(
Aℓ(b̃)

)
(s) = (W ℓs(t) + b̃(t))t∈[T ] = W ℓs+ b̃ for s = (s(t))t∈[T ] ∈ Rnℓ−1×T , b̃ = (b̃(t))t∈[T ] ∈ Rnℓ×T .

Note that now the specific form of the affine mapping Aℓ(·) depends on the variable b̃ (which represents the dynamical
aspects including the membrane potential of the neuronal model), whereas the activation function H is kept fixed. For the
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same choice of b̃ as before, one immediately verifies that the expression in equation 17 is equivalent to the one provided in
Definition 2.1.

The benefit of equation 17 is the previously mentioned link to feedforward ANNs. In particular, for T = 1 (and appropriate
choices for E and D) the model is equivalent to ANNs with Heaviside activation function. Indeed, since there are no
temporal dynamics that need to be taken into account the layer-wise affine mapping is simply Aℓ(s) = W ℓs+ b̃ for some
b̃ ∈ Rnℓ as in case of ANNs.

For T > 1, the equivalence between ANNs and discrete-time LIF-SNNs is not entirely valid anymore, however, structural
similarities remain and can potentially be exploited. In particular, vectorizing the spike activations sℓ = (sℓ(1) · · · sℓ(T ))T ∈
Rnℓ·T (instead of stacking them in a matrix) and using that the weight matrix is shared over all time steps in a layer, the
affine mappings in the realization can be rewritten as

Aℓ(·) : Rnℓ−1·T → Rnℓ·T ,
(
Aℓ(b̃)

)
(s) =

W ℓ

. . .
W ℓ

 s+ b̃ for b̃ = (b̃(1) · · · b̃(T ))T ∈ Rnℓ·T . (18)

Hence, we observe that Aℓ(·) represents a special case of the affine mapping in a Heaviside ANN with the weight matrix
taking a block-diagonal structure (where the same block is repeated T times), i.e., the time dimension is expressed in a
higher-dimensional spatial structure. In contrast to ANNs, the bias term is not fixed but varies (based on the neuronal
dynamics) and is therefore dependent on the initial spike activation.
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