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Abstract

Large Language Models (LLMs) demonstrate human-level or even superior lan-
guage abilities, effectively modeling syntactic structures, yet the specific com-
putational units responsible remain unclear. A key question is whether LLM
behavioral capabilities stem from mechanisms akin to those in the human brain. To
address these questions, we introduce the Hierarchical Frequency Tagging Probe
(HFTP), a tool that utilizes frequency-domain analysis to identify neuron-wise
components of LLMs (e.g., individual Multilayer Perceptron (MLP) neurons) and
cortical regions (via intracranial recordings) encoding syntactic structures. Our
results show that models such as GPT-2, Gemma, Gemma 2, Llama 2, Llama 3.1,
and GLM-4 process syntax in analogous layers, while the human brain relies on
distinct cortical regions for different syntactic levels. Representational similarity
analysis reveals a stronger alignment between LLM representations and the left
hemisphere of the brain (dominant in language processing). Notably, upgraded
models exhibit divergent trends: Gemma 2 shows greater brain similarity than
Gemma, while Llama 3.1 shows less alignment with the brain compared to Llama
2. These findings offer new insights into the interpretability of LLM behavioral
improvements, raising questions about whether these advancements are driven
by human-like or non-human-like mechanisms, and establish HFTP as a valuable
tool bridging computational linguistics and cognitive neuroscience. This project is
available at https://github.com/LilTiger/HFTP.

1 Introduction

Language is fundamental to human communication, thought, and cultural transmission. According to
the framework proposed by Noam Chomsky, language is divided into three key components: seman-
tics (meaning), phonology (sound), and syntax (hierarchical sentence structure) [Chomsky, 1965].
Syntax is particularly crucial as it governs how words combine into meaningful expressions, under-
pinning the recursive and generative capacity unique to human language. The theory of Universal
Grammar proposes that all human languages share innate structural principles [Chomsky, 1980].
Building on this foundation, cognitive neuroscience has shown that syntactic processing recruits
mechanisms distinct from other linguistic functions, particularly within the left inferior frontal and
posterior temporal regions [Matchin and Wood, 2020, Friederici, 2011]. Moreover, increases in
syntactic complexity yield graded activation in left inferior frontal and posterior temporal cortices,
consistent with the computation and maintenance of hierarchical dependencies rather than simple
lexical associations [Pallier et al., 2011, Nelson et al., 2017]. As our understanding of human syntactic
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computation deepens, artificial intelligence models have increasingly sought to emulate this ability to
capture and represent structured language.

In recent years, large language models (LLMs) have evolved rapidly, achieving human-level or better
performance on a range of linguistic benchmarks and professional exams [Achiam et al., 2023].
Their success in understanding, translation, and summarization has led to claims of human-
like fluency, particularly in generating text that conforms to surface syntactic regulari-
ties [Mahowald et al., 2024, He et al., 2024, Van Veen et al., 2024]. Yet it remains unclear whether
such models truly represent the hierarchical sentence structures that characterize human syn-
tax. Some findings indicate that LLMs can implicitly capture and manipulate structural rela-
tions [Manning et al., 2020], while others suggest their success can rely on shallow statistical heuris-
tics rather than genuine structural understanding [Linzen et al., 2016, McCoy et al., 2019]. This
ongoing debate underscores the need for a unified analytic framework capable of directly comparing
syntactic representations in human and model systems, which is essential for probing the depth and
nature of syntactic alignment between the human brain and artificial models.

Ding et al. [Ding et al., 2016] introduced the hierarchical frequency tagging (HFT) technique to
uncover how the human brain processes hierarchical linguistic structures during natural speech
comprehension. In this paradigm, monosyllabic words are presented at a rate of 4 Hz to form
phrases at 2 Hz, which combine into sentences at 1 Hz. Using frequency-domain analysis of
electrophysiological signals, Ding et al. deconstruct the processing of linguistic structures such as
phrases and sentences. Subsequent work has extended the HFT framework along complementary
axes. Attention is required to group lower-level inputs into higher-order linguistic units, and divert-
ing attention attenuates word- and phrase-rate tracking [Ding et al., 2018]. MEG source analyses
dissociate cortical signatures for word- versus phrase-level rhythms and link phrasal tracking to
comprehension [Keitel et al., 2018]. Computational modelling shows that oscillatory architectures
can implement hierarchical parsing and reproduce HFT-like spectra [Martin and Doumas, 2017].
Natural-speech EEG reveals endogenous word-rate tracking that interacts with exogenous rhythmic
cues [Luo and Ding, 2020]. Naturalistic experiments show that phrase-rate tracking reflects inter-
nally generated structure rather than compositional meaning per se, yet remains sensitive to the
lexical–syntactic cues that support structure building [Coopmans et al., 2022]. Together, these studies
demonstrate that HFT effectively isolates neural markers of hierarchical language processing.

Building on hierarchical frequency-tagging [Ding et al., 2016], we introduced the Hierarchical
Frequency-Tagging Probe (HFTP), a unified framework that probes internal representational structure
and systematically assesses the alignment of syntactic representations between LLMs and the human
brain. The key contributions of this paper are: (i) We innovatively employed frequency-domain
analysis using HFTP to characterize the syntactic structure representations of every computational
unit in each layer of LLMs; (ii) HFTP provides a simple, universally applicable approach for
detecting and aligning syntactic structure representations in LLMs (via neuron-wise probing) and the
human brain (via population-level analyses), and extends seamlessly to naturalistic text. (iii) Using
syntactic templates derived from HFTP, we identified brain regions highly correlated with LLMs,
predominantly located in key language-processing areas of the left hemisphere; (iv) By comparing six
LLMs, we observed divergent trends in upgraded versions, with some showing increased similarity
to brain representations while others exhibited reduced alignment. In sum, HFTP effectively detects
syntactic structure representations in both LLMs and the human brain, providing a novel framework
for alignment study.

2 Related work

Syntactic processing in the human brain In humans, syntactic processing recruits a left-
dominant fronto-temporal network that supports hierarchical combination from finite ele-
ments. A series of classic lesion and neuroimaging work documents a left-hemisphere advan-
tage [Friederici and Brauer, 2009, Hagoort, 2013, Blank et al., 2016], with hemispheric temporal
sensitivities aiding speech segmentation [Albouy et al., 2020]. Converging evidence shows that
syntactic operations are distributed across frontal and temporal cortex with substantial overlap with
semantic integration [Blank et al., 2016, Fedorenko et al., 2020]. Artificial-grammar fMRI further
indicates that hierarchically structured strings reliably engage left inferior frontal gyrus and posterior
superior temporal regions [Chen et al., 2021]. Overall, syntactic processing relies on a left-dominant,
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distributed fronto–temporal network that substantially overlaps with semantic integration, rather than
a single locus.

Syntactic processing in language models Early work shows that LSTM language models
are able to capture syntax–sensitive dependencies, such as the phenomenon of subject–verb
agreement [Linzen et al., 2016, Kuncoro et al., 2018]. Using the structural probe, a landmark
study demonstrates that transformer-based models such as BERT encode hierarchical syn-
tactic trees, enabling these models to represent complex syntax without explicit supervi-
sion [Hewitt and Manning, 2019]. Transformer-based models excel at tracking both local and long-
range dependencies through specialized attention mechanisms and distribute syntactic knowledge
across layers [Clark, 2019, Tenney et al., 2019, Manning et al., 2020]. However, methodological
choices in these language-model studies make it challenging to directly relate the findings to human
brain activity.

Alignment between LLMs and the human brain A growing body of work shows that sentence-level
contextual embeddings from predictive language models strongly predict cortical responses during
comprehension [Sun et al., 2020, Schrimpf et al., 2021]. Disentanglement analyses that factorize
activations into lexical, compositional, syntactic, and semantic components indicate distributed
contributions—often with compositional/lexical signals explaining much of the alignment, rather than
syntax alone [Caucheteux et al., 2021, Caucheteux and King, 2022]. Neuroimaging manipulations
that dissociate semantics from syntax reveal distinct patterns (including frontal engagement) without
establishing syntactic dominance [Wang et al., 2020]. Intervention studies that selectively remove
linguistic properties from model representations yield reliable drops in brain alignment, with syntactic
properties (e.g., tree depth, top constituents) exerting large cross-layer effects [Oota et al., 2023].
These findings are consistent with convergence on shared representational axes across brains and
models [Hosseini et al., 2024] and with demonstrations that model-derived stimuli can causally drive
or suppress the human language network [Tuckute et al., 2024], while alignment varies systematically
across layers as contextual information accrues [Goldstein et al., 2022]. However, methodological
heterogeneity—spanning representation choices, tokenization, brain–model alignment metrics, and
control analyses—precludes systematic comparison of how syntactic structure is encoded across
models and neural populations. A unified analytical framework is therefore needed to harmonize
methodological dimensions and support comparable, interpretable cross-system evaluations.

Figure 1: A framework for Hierarchical Frequency Tagging Probes (HFTP) and an illustration of
computational units involved in different levels of hierarchical linguistic processing in both LLMs
and the human brain. A, hierarchical linguistic structure in English and Chinese including syllable,
phrase, and sentence. B, hierarchical linguistic pattern (1 Hz: sentence feature, 2 Hz: phrase feature)
observed both in LLMs and C, human brain.
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3 Methods

We present the framework of the proposed HFTP methodology (see Figure 1). This framework is
organized into four parts: Section 3.1 describes the syntactic corpora used and the LLM architectures;
Section 3.2 details the syntactic structure probe in LLMs to detect syntactic units; Section 3.3 explains
the syntactic structure probe applied to human intracranial stereo-electroencephalography (sEEG)
data; and Section 3.4 correlates syntactic structure representations in LLMs and the human brain by
comparing frequency-domain representations and detecting similarities in how syntactic structures
are encoded across both systems.

3.1 Data and LLMs

We mainly utilized Chinese and English corpora adapted from [Ding et al., 2016], consisting of
four-syllable sequences in Chinese or four-word sequences in English, where the first two and last two
units form phrases (see Figure 1). Further details regarding the corpus can be found in Appendix H.
We also adopted naturalistic texts to test the generalizability of our HFTP method (see E). For both
the sEEG and model–brain alignment experiments, we used the same two Chinese corpora—the
sentence and phrase corpora—from [Sheng et al., 2019]. While these corpora share a similar
structure to the Chinese syntactic corpus used in the LLM experiments, they differ in content. Guided
by evidence that periodic lexical regularities alone can produce peaks at word-, phrase-, and sentence-
rate frequencies [Frank and Yang, 2018], we added a within-sentence word-order–randomized control
in all experiments: items are permuted across positions so that lexical and part-of-speech categories
do not recur at fixed positions and any consistent phrase- or sentence-level patterns are prevented,
while the lexical set is preserved. This control isolates the syntactic and lexical contribution to 1, 2,
and 4 Hz power.

We applied HFTP to six LLMs of varying architectures and sizes—GPT-2, Gemma, Gemma 2,
Llama 2, Llama 3.1, and GLM-4 (see Table 5). Note that the GPT-2 model we used is Chinese-pre-
trained and supports both Chinese and English. To avoid tokenization artefacts, we average MLP
activations over sub-tokens at the syllable level for Chinese and word level for English. This ensures
that the 1 Hz and 2 Hz spectral components reflect linguistic boundaries rather than tokenization
boundaries, enabling consistent cross-lingual and cross-model comparisons. Notably, the term
“MLP neuron” denotes a computational unit in the intermediate hidden layer of the MLP sub-layer
within a Transformer model. This sub-layer consists of two linear transformations separated by a
nonlinear activation function. We target MLP neurons because they house localized, interpretable
units—conceptualized as “knowledge neurons” [Dai et al., 2021] that causally control factual recall
and lexical–syntactic concepts [Geva et al., 2022]. This mechanistic specificity provides the discrete,
concept-aware handles required by HFTP to robustly localize syntactic structures.

3.2 Syntactic structure probe in LLMs

For each LLM, sequences from the Chinese and English corpora were concatenated separately into
continuous texts to capture neural-like activations. During this process, each Chinese syllable (or
English word) outputs an activation value, allowing the signal corresponding to every individual
linguistic unit to be traced. These time-domain activations were then transformed into frequency-
domain information via fast-fourier transform (FFT). Because LLM activations are indexed by token
order rather than physical time, we imposed an explicit 4Hz clock and sampled at 4Hz, which by
Nyquist confines the analyzable band to 0–2Hz. This explicit time axis mirrors prior continuous-time
encoding approaches that reconstruct model features on a continuous timeline before comparing
them with neural data [Jain et al., 2020], thereby enabling temporally interpretable model–brain
correspondence. This adjustment ensured that the syntactic rhythms analogous to those observed in
human brain data could be captured within the model activations.

LLMs, with their multiple layers and thousands of MLP neurons per layer, require a systematic
approach to detect which neurons are responsible for either sentence or phrase processing. HFTP
introduces a unified probe to detect significant syntactic processing units, applicable to both LLMs and
human brain data. For the LLMs, we conducted a permutation test, randomizing the model activations
derived from the structured input corpus 1000 times. The original frequency bins at 1 Hz and 2 Hz,
representing sentence and phrase rhythms respectively (their real parts of amplitudes are denoted as
real[amp(1 Hz)], real[amp(2 Hz)]), were compared to the 95% confidence interval (CI) generated
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by the distribution of permuted activations. Neurons whose real[amp(1 Hz)] and real[amp(2 Hz)]
values exceeded this threshold were classified as significant MLP neurons (see 1), indicating their
involvement in syntactic processing with statistical robustness against random noise.
Definition 1 (Significant MLP Neurons). For a fixed frequency f , a neuron is a significant MLP
neuron, if and only if its FFT result satisfies

real[amp(f)] /∈ 95% CI of permuted distribution. (1)

The set containing all the significant MLP neurons in terms of frequency f is denoted as Sf .

Since the significant MLP neurons are distributed almost uniformly across all layers, detecting
the specific neurons that contribute to sentence and phrase processing requires a more objective
and systematic method. We then applied z-scores to the FFT amplitudes at 1 Hz and 2 Hz in
both the experimental and control groups for all significant MLP neurons across layers. The z-
score deviation zf (n) between the experimental and control groups was then calculated for each
neuron.This deviation helps minimize semantic confounds by isolating frequency-specific syntactic
effects. Sentence and phrase MLP neurons were defined as those whose z-scores deviated by more
than two standard deviations from the mean, at 1 Hz and 2 Hz, respectively (see 2).
Definition 2 (Sentence MLP Neurons and Phrase MLP Neurons). A neuron n is defined as a
sentence/phrase MLP neuron if it satisfies

n ∈ Sf , zf (n) ≥ µzf + 2σzf , (2)

where zf (n) denotes the z-score deviation of the FFT amplitude between experimental and control
groups for neuron n at frequency f , µzf denotes the mean z-score across all neurons for the frequency
f , σzf denotes the standard deviation of z-scores across all neurons for the frequency f , and the
frequency f is specified as 1 Hz and 2 Hz for sentence and phrase MLP neuron respectively.

Following this, we identified and analysed sentence and phrase MLP neurons across layers and LLMs,
with full details provided in Section 4.1. We also conducted bilingual experiments to assess the ability
of different LLMs to perceive syntactic structures across Chinese and English (see Appendix C).

3.3 Syntactic structure probe in the human brain

We recorded sEEG from 26 native Chinese speakers while they listened to two Chinese auditory
corpora. In the sentence corpus, nine four-syllable sentences were concatenated per trial; in the
phrase corpus, eighteen two-syllable phrases were concatenated. Each corpus comprised 40 trials
per subject. Syllables were 250 ms long, and signals were sampled at 512 Hz (2048 Hz for one
participant). To minimize onset-related responses, subsequent analyses used only the final 32 syllables
of each trial.

To analyze the sEEG data, we employed inter-trial phase coherence (ITPC), a frequency-domain
method relatively resistant to noise that quantifies the consistency of phase relationships in oscillatory
brain activity across multiple trials [Cohen, 2014]. sEEG channel localization was performed similarly
to previous studies [Xu et al., 2023, Wang et al., 2024]; all channels were mapped to brain regions
defined by the Automated Anatomical Labeling (AAL) system. We then grouped certain AAL regions
to form 12 brain regions of interest (ROIs) (details in Appendix I). Subsequent experiments were
conducted based on brain ROIs.

As previously outlined, the HFTP proposes a unified syntactic structure probe for both LLMs and
human brain data. For the human brain analysis, we employed the same permutation testing procedure
on the time-domain sEEG data that captured cortical activity during listening to Chinese corpora.
Specifically, ITPC results were randomized 1000 times for each channel in each subject. The original
frequency bins, real[amp(1 Hz)] and real[amp(2 Hz)], were then assessed to determine whether
they fell within the 95% confidence interval of the permuted ITPC distribution (see 3).
Definition 3 (Sentence channels and Phrase channels). A channel c is defined as a sentence/phrase
channel if its ITPC result satisfies

real[amp(f)] /∈ 95% CI of permuted ITPC, (3)

where f = 1 Hz for sentence channel and f = 2 Hz for phrase channel.

Using this probe, we identified and analyzed the distribution of sentence and phrase channels across
various brain ROIs, with full details provided in Section 4.2.
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Figure 2: Alignment pipeline between LLMs and the human brain. SRDMs are computed for
exclusive sentence/phrase and sentence&phrase MLP neurons and brain channels by comparing
cosine similarities across different conditions. Subsequently, RSA (using Spearman correlation) is
applied to quantify the similarity between the two SRDMs, thereby assessing the correspondence
between model and brain representations.

3.4 Alignment of syntactic structure representations of LLMs with the human brain

To explore syntactic structure representation alignment between LLMs and the human brain, we
compared their frequency-domain representations using the same sentence and phrase corpora
as in the sEEG experiment. For each computational unit (a MLP neuron in LLMs or an sEEG
channel in the human brain), we extracted amplitude in the frequency spectrum as the feature
vector. This approach creates a multi-dimensional space based on frequency-domain features,
where each syntactic structure corresponds to a specific point in this space (see Figure 2). We
then computed the distances between these points for different syntactic structures within the same
computational unit using cosine similarity. Through pairwise comparisons, we constructed Structure
Representational Dissimilarity Matrices (SRDMs) for each computational unit, which are similar
to Representational Dissimilarity Matrices (RDMs) but specifically capture the representations of
syntactic structures [Cichy et al., 2014, Khaligh-Razavi and Kriegeskorte, 2014]. We then applied
Representational Similarity Analysis (RSA) to enable cross-modal comparisons between LLMs
and brain data, correlating the representations in both systems [Kriegeskorte et al., 2008]. This
approach quantified alignment and used statistical tests to detect significant overlaps. We introduced
two measures: model-brain similarity S(m, b) and model-region similarity S(m, br), to evaluate
alignment globally and in specific brain ROI. We also used the contribution ratio CRr to assess
the impact of each region on the alignment (see Appendix D). For more details on the alignment
pipeline, see Appendix A. The comprehensive discussion of the alignment results can be found in
Section 4.3. Additionally, as an orthogonal check, we implemented a predictive encoding analysis
(see Appendix B) to assess alignment independently of SRDM-RSA.

4 Experiments

We used HFTP to assess syntactic processing in the human brain and LLMs, and aligned their
frequency-domain representations to evaluate their similarity.

4.1 MLP neurons represent sentences and phrases in LLMs

Using the HFTP method, we identified neurons in all six models that selectively represent sen-
tences (sentence MLP neurons), phrases (phrase MLP neurons), and neurons that simultaneously
represent both (sentence & phrase MLP neurons). In Figure 3, we highlight representative MLP
neurons exhibiting four hierarchical frequency patterns: a significant peak at the sentence frequency
(fsentence = 1 Hz), a significant peak at the phrase frequency (fphrase = 2 Hz), dual peaks at both
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Figure 3: Hierarchical frequency patterns of MLP neurons selectively represent sentence features,
phrase features, shared features of both and non-sensitive feature (from left to the right). Here,
“experiment" denotes the original corpus, while “random" indicates the randomized version. Shaded
bands show ±1 s.e.m. computed across 10 shuffled-input activation partitions. Significant peaks
(*p < 0.05, FDR corrected) indicate amplitudes stronger than neighboring frequencies within
±0.5 Hz. "Normalized Amplitude" represents the curves and bands scaled to a range of 0 to 1.

(a) GPT-2 (b) Gemma (c) Gemma 2

(d) Llama 2 (e) Llama 3.1 (f) GLM-4

Figure 4: Statistics of exclusive sentence/phrase MLP neurons and sentence & phrase MLP neurons
in each layer across six LLMs.

fsentence and fphrase, and no significant peaks. Frequencies beyond 2 Hz have been artificially set to
zero for smoothness in the representation.

Figure 4 shows the distribution of exclusive sentence/phrase neurons and sentence & phrase across
different layers, based on experiments using the Chinese syntactic corpus (see Table 6). All the models
contain neurons dedicated to capturing sentences and phrases, demonstrating their ability to encode
the syntactic hierarchies of human language. However, distinct distribution patterns suggest varied
syntactic processing strategies: Llama and GLM primarily process syntactic information in later
layers, reflecting a more integrated approach. GPT, on the other hand, exhibits higher concentrations
of sentence and phrase MLP neurons in its middle layers, suggesting a balanced intermediate strategy.
In contrast, Gemma demonstrates a distinct preference for dense concentrations of neurons in the early
layers, indicating an emphasis on initial-stage syntactic processing. These divergences may reflect
where hierarchical composition occurs: models that infer constituent structure from short-range cues
may compute sentence/phrase integration early and propagate it via residual paths, whereas models
that rely on broader context may defer integration to later layers. Training dynamics may further
partition depth into composition versus context-mixing stages, reallocating syntactic signals across
layers even under identical inputs.

A comparative analysis reveals a significant decrease in the maximum proportions of all syntactic
MLP neurons in the Llama and Gemma models, dropping from 11% in Llama 2 to 4.5% in Llama
3.1, and from 27% in Gemma to 22% in Gemma 2. As Llama 3.1 and Gemma 2 are updated versions
of Llama 2 and Gemma, respectively, this trend suggests a potential shift in computational resource
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Figure 5: Hierarchical frequency patterns of sEEG channels selectively represent sentence features,
phrase features, shared features of both and non-sensitive feature (from left to the right). Here,
“setence" denotes the original sentence corpus, while “random" indicates the randomized version.
Shaded bands show ±1 s.e.m. computed across channels. Significant peaks (*p < 0.05, FDR
corrected) indicate amplitudes stronger than neighboring frequencies within ±0.5 Hz. "Normalized
ITPC" represents the curves and bands scaled to a range of 0 to 1.

allocation. To enhance performance on complex tasks, Llama 3.1 and Gemma 2 may reduce their
specialized processing of syntactic structures (sentence and phrase), reallocating neurons to support
these advanced capabilities.

Additionally, correlations between sentence- and phrase-selective MLP neurons across layers were
observed in all six models, with high coefficients (GPT-2 (r = 0.754), Gemma (r = 0.994), Gemma 2
(r = 0.994), Llama 2 (r = 0.912), Llama 3.1 (r = 0.886), GLM (r = 0.993)). This evidence indicates
that the same layers are co-recruited for phrase- and sentence-level processing, consistent with a
shared compositional mechanism rather than segregated pathways.

4.2 Sentences and phrases representations in the human brain

Using the syntactic structure probe, we identified sEEG channels that selectively represent sentence-
and phrase-level structure in the sentence corpus. Each channel reflects collective responses from
nearby neuronal populations, providing high temporal resolution and sufficient spatial specificity. As
shown in Figure 5, we found channels representing sentence and phrase, as well as channels with
shared representations, alongside channels with no selectivity. These patterns parallel those in LLMs,
indicating that HFTP effectively interrogates internal syntactic representations in both systems.

(a) sEEG channel locations and Brain ROIs (b) Significant sEEG channel distribution

Figure 6: (a) Brain ROIs of the left and right hemispheres used in this study. The black markers
represent the sEEG channel locations across all participants. (b) Distribution of significant exclusive
sentence/phrase and sentence & phrase channels (sentence corpus) in different brain ROIs.

Analogous to our analysis of the distribution of syntactic MLP neurons across LLM layers, we
computed the proportions of sentence- and phrase-selective channels within each brain ROI. As
shown in Figure 6, phrase channels decrease from lower layers (A1) to higher layers (e.g., IFG),
while sentence channels show the opposite trend, increasing at higher brain layers. This pattern
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Table 1: Averaged top-100 Spearman correlations between sEEG-channel SRDMs and MLP-neuron
SRDMs for the sentence corpus, separated by left (L) and right (R) hemispheres. ‘/’ indicates that
no channels from that hemisphere appear in the top-100 set. The first data row reports the overall
model–brain similarity S(m, b); each subsequent brain ROI row reports the model–region similarity
S(m, br). Bold in the S(m, b) row flags the model with the highest overall alignment, while bold
entries within each brain ROI row mark the three regions most strongly correlated for that model.

GPT-2 Gemma Gemma 2 Llama 2 Llama 3.1 GLM-4

L R L R L R L R L R L R

S(m, b) 0.654 0.442 0.582 0.411 0.644 0.450 0.645 0.439 0.514 0.405 0.630 0.445

A1 0.683 0.423 0.642 0.358 0.702 0.333 0.649 0.547 0.514 0.403 0.664 0.374
STG 0.667 0.422 0.593 0.386 0.654 0.410 0.672 0.453 0.507 0.392 0.647 0.412
MTG 0.674 0.392 0.584 0.383 0.659 0.411 0.674 0.409 0.521 0.408 0.645 0.397
ITG 0.637 0.444 0.578 0.406 0.631 0.448 0.629 0.426 0.509 0.401 0.615 0.439

Insula 0.624 0.460 0.551 0.425 0.600 0.476 0.630 0.446 0.518 0.422 0.604 0.475
TPJ 0.610 0.452 0.566 0.373 0.641 0.410 0.619 0.400 0.518 0.408 0.606 0.438

Temporal Pole 0.648 0.473 0.556 0.470 0.643 0.558 0.610 0.469 0.494 0.448 0.616 0.483
Sensorimotor 0.637 0.462 0.567 0.426 0.622 0.448 0.624 0.446 0.505 0.396 0.617 0.463

IFG 0.694 0.463 0.603 0.466 0.670 0.496 0.665 0.491 0.513 0.410 0.646 0.490
MFG 0.615 0.436 0.557 0.401 0.585 0.489 0.597 0.367 0.510 0.397 0.588 0.473

Hippocampus 0.698 0.405 0.553 0.408 0.626 0.428 0.657 0.413 0.534 0.390 0.613 0.434
Amygdala / 0.489 0.566 0.454 / 0.472 / 0.558 0.496 0.377 / 0.508

aligns with earlier MEG studies Sheng et al. [2019], supporting distinct processing mechanisms for
sentences and phrases. Correlations between sentence and phrase channels across brain ROIs in both
hemispheres revealed no significant relationship (left: r = -0.169, p = 0.870; right: r = -0.197, p =
0.539), suggesting that sentence and phrase processing operate independently. This contrasts with the
behavior of LLMs, implying that while the human brain segregates sentence and phrase processing
across different regions, LLMs integrate both syntactic levels within the same model layers. This
highlights that the layered representations of LLMs may not align directly with the distinct processing
roles observed in brain ROIs.

4.3 Alignment of syntactic structure representations between LLMs and the human brain

As the layered representations of LLMs do not correspond directly to the distinct processing functions
of different brain ROIs, we sought to investigate whether overall syntactic structure representations in
LLMs are comparable to those in the human brain, both globally and across individual brain ROIs.
To accomplish this, we used representational alignment to quantify correspondence between model
and brain frequency-domain features. Detailed procedures are provided in Appendix A.

The alignment results across both sentence and phrase corpora revealed consistent patterns of
model-brain correspondence. As shown in Tables 1 and 2, we observed that the similarity between
LLMs and the left hemisphere is notably higher than that with the right hemisphere across both
structure levels. Brain-wise one-way ANOVAs confirmed significant model differences for sentence-
level (F = 59.74, η2 = 0.027, p < 0.001) and phrase-level processing (F = 12.10, η2 = 0.018, p
< 0.001). Region-wise ANOVAs (FDR-corrected) further showed a strongly left-lateralized effect
across corpora, concentrated in core language cortex (e.g., STG, MTG, IFG).

Examining individual model performance, GPT-2 exhibited the highest average correlation with
human brain activity across both sentence (S(m, b) = 0.654, denoted S; L) and phrase levels (S =
0.654, L). Gemma 2 (S = 0.644, L for sentence; S = 0.628, L for phrase) consistently outperformed
Gemma (S = 0.582, L for sentence; S = 0.575, L for phrase) at both corpora, attributed to architec-
tural improvements [Team et al., 2024a]. Most notably, Llama 3.1 (S = 0.514, L for sentence; S =
0.522, L for phrase) showed consistently lower alignment than Llama 2 (S = 0.645, L for sentence;
S = 0.648, L for phrase) across both processing levels. This counterintuitive pattern is explained
at the pretraining level: Llama 3.1 was trained on a substantially larger corpus emphasizing code,
reasoning, and multilingual text, which dilutes language-specific regularities. Additionally, extensive
reliance on synthetic data for capability-targeted curation introduces distributional shifts away from
naturalistic language statistics [Dubey et al., 2024, Touvron et al., 2023]. These findings echo evidence
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Table 2: Averaged top-100 Spearman correlations between sEEG-channel SRDMs and MLP-neuron
SRDMs for the phrase corpus, separated by left (L) and right (R) hemispheres. ‘/’ indicates that
no channels from that hemisphere appear in the top-100 set. The first data row reports the overall
model–brain similarity S(m, b); each subsequent brain ROI row reports the model–region similarity
S(m, br). Bold in the S(m, b) row flags the model with the highest overall alignment, while bold
entries within each brain ROI row mark the three regions most strongly correlated for that model.

GPT-2 Gemma Gemma 2 Llama 2 Llama 3.1 GLM-4

L R L R L R L R L R L R

S(m, b) 0.654 0.441 0.575 0.416 0.628 0.443 0.648 0.435 0.522 0.404 0.626 0.437

A1 0.669 0.420 0.610 0.315 0.665 0.326 0.628 0.576 0.526 0.372 0.627 0.374
STG 0.665 0.415 0.591 0.388 0.643 0.395 0.674 0.447 0.530 0.402 0.649 0.401
MTG 0.665 0.391 0.564 0.408 0.645 0.415 0.675 0.415 0.521 0.401 0.641 0.408
ITG 0.637 0.447 0.558 0.421 0.611 0.440 0.632 0.421 0.518 0.398 0.621 0.427

Insula 0.627 0.468 0.556 0.433 0.596 0.465 0.632 0.453 0.519 0.409 0.602 0.470
TPJ 0.616 0.442 0.563 0.405 0.608 0.423 0.615 0.384 0.542 0.399 0.588 0.433

Temporal Pole 0.680 0.453 0.555 0.394 0.626 0.501 0.623 0.456 0.505 0.450 0.583 0.442
Sensorimotor 0.645 0.475 0.565 0.443 0.607 0.449 0.629 0.442 0.511 0.391 0.613 0.460

IFG 0.700 0.450 0.635 0.424 0.656 0.491 0.674 0.488 0.514 0.436 0.636 0.480
MFG 0.618 0.409 0.562 0.421 0.583 0.500 0.601 0.365 0.505 0.379 0.577 0.475

Hippocampus 0.656 0.398 0.541 0.418 0.602 0.432 0.640 0.398 0.516 0.406 0.566 0.434
Amygdala / 0.483 / 0.433 / 0.475 / 0.552 0.468 0.386 / 0.492

that scaling alone fails to secure robust predicate–argument structure—especially for long-range,
boundary-sensitive roles—revealing persistent human–model structural gaps [Cheng et al., 2024].

Additionally, the key brain ROIs for each model, which are primarily located in the left hemisphere,
highlighted regions that are critical for syntactic processing at both levels of the syntactic hierarchy.
These regions include the left A1, STG, MTG, and IFG, with many of the LLMs exhibiting particularly
strong correlations in these areas across both structure, emphasizing their role in syntactic functions.
These converging findings reinforce the robustness of the HFTP approach and suggest its potential as
a valuable tool for future studies of model-brain alignment.

5 Conclusion

This study advances syntactic processing by introducing the Hierarchical Frequency Tagging Probe
(HFTP), a unified framework for dissecting neuron-wise sentence and phrase representations in
LLMs, population-level patterns in the human brain, and generalizing seamlessly to naturalistic text.
The results reveal that while LLMs exhibit hierarchical syntactic processing and alignment with
left-hemisphere brain activity, the mechanisms underlying their representations diverge significantly
from those in human cortical regions. Notably, newer models like Gemma 2 demonstrate improved
alignment, whereas others, such as Llama 3.1, show weaker human-model correlations despite
enhanced task performance. These findings underscore the need to refine LLM architectures for more
human-like syntactic processing and establish HFTP as a bridge between computational linguistics
and cognitive neuroscience. Finally, the societal implications of this work are two-sided: positively,
HFTP can support safer, more controllable models and inform non-invasive diagnostics via spectral
markers; negatively, the same interpretability could be misused to optimize persuasive manipulation
and, if linked with personal neural data, undermine privacy.

6 Limitation

Although we applied HFTP to both Chinese and English corpora for LLMs, our sEEG data were
collected in China and primarily involve Chinese stimuli. We have preliminary English responses
from a single Chinese native participant (see Appendix F), but deeper cross-linguistic analyses are
pending; future work will recruit native English speakers to validate alignment on English and enable
rigorous cross-linguistic tests. Additionally, we evaluated only a small set of model architectures and
parameter scales, so the key universal mechanisms driving model–brain syntactic alignment remain
unclear and warrant further investigation.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction sections explicitly enumerate the HFTP frame-
work, its application to both LLMs and brain data, and summarize the key empirical and
methodological contributions, accurately reflecting the paper’s scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 6, We explicitly acknowledge two limitations: (i) our sEEG data are
restricted to Chinese stimuli, so future work must include native-English recordings to test
cross-language generalization; and (ii) we evaluate only six LLM architectures and sizes,
leaving the core drivers of model–brain syntactic alignment for further study.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This work is empirical and method-driven—defining how to compute sentence
and phrase unit responses, layer-wise alignment similarity, and contribution ratios—but does
not present formal theorems that require assumption lists or mathematical proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We give end-to-end details of every experiment—how to detect sentence and
phrase representations in LLMs (Section 3.2), how to identify corresponding signals in
human sEEG data (Section 3.3), and how to compute layer-wise model–brain alignment
(Section 3.4 and Appendix A). These sections include all parameters, sampling-rate choices,
FFT settings, permutation tests, and alignment-pipeline steps needed to reproduce the
analyses.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification:We provide all corpora used for LLM experiments—Chinese and English four-
syllable/word corpora and naturalistic texts—in Section H. For our sEEG and brain–LLM
alignment studies, we adopted the sentence/phrase corpus from [Sheng et al., 2019], which
follows the exact structural format of the four-syllable Chinese corpus, with only semantic
content differing. This project is available at https://github.com/LilTiger/HFTP..
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We give full details of the LLM evaluation—concatenating each Chi-
nese/English corpus sentence stream and extracting MLP-layer activations in inference
mode—in Section 3.2, and describe the human sEEG passive-listening paradigm with fixed
512/2048 Hz audio stimuli in Section 3.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: We used paired t-tests in Figures 3 and 5 to confirm that power at hierarchical
frequencies is significantly higher in the experimental than in the control conditions, and we
report Pearson correlations in Sections 4.1 and 4.2 to assess covariation across layers and
ROIs, as well as one-way ANOVAs to test model alignment effects (Sections 4.3, B); all
p-values are FDR-corrected for multiple comparisons. Additionally, we employ permutation
tests for both the LLM and sEEG probes (Sections 3.2, 3.3).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We ran all LLM inference and permutation tests on a server with AMD EPYC
7282 (16 cores, 32 threads, 256 GB RAM) and two NVIDIA A100-40 GB GPUs using
bfloat16 precision. The permutation tests used to probe sentence/phrase MLP neurons
require several hours on a single GPU, whereas all other representational analyses complete
in under an hour with minimal additional resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All human data were collected under IRB-approved protocols with informed
consent, no personal identifiers are used, and our computational methods present no foresee-
able harm.
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Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work offers a transparent, neuro-inspired lens on LLM internals. Positive
impacts include safer, more controllable models—by revealing which neurons drive hier-
archical syntax we can design targeted safeguards and debiasing interventions; improved
language-disorder diagnostics—spectral markers could serve as non-invasive probes of
syntactic deficits; and richer human-AI interfaces that align model parsing with human
cognition. Negative impacts also merit consideration: the same interpretability could be
weaponised to optimise persuasive text or amplify covert influence; detailed brain-model
correspondences might facilitate adversarial “neuro-phishing” that mimics neural rhythms;
and, if paired with personal neural data, fine-grained model maps could erode privacy.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any externally scraped or dual-use models or datasets.
Our study uses (i) in-house sEEG recordings collected under institutional ethical approval
with informed consent, and (ii) analyses of existing, publicly available language-model
checkpoints (e.g. GPT-2, Gemma, Llama 2/3) without redistributing their weights.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We correctly cite and credit the Chinese and English syntactic corpora
from [Ding et al., 2016] and [Sheng et al., 2019], and we list each LLM—GPT-2, Gemma,
Gemma 2, Llama 2, Llama 3.1, and GLM-4—with version, source, and license information
in Section G.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduced a diverse, curated suite of corpora for the HFTP exper-
iments: (i) two four-syllable/word syntactic corpora (Chinese and English) adapted
from [Ding et al., 2016]; (ii) four human-generated naturalistic texts in Chinese and English;
and (iii) two Wikipedia-derived corpora in Chinese and English. Detailed descriptions for
all non-Wikipedia corpora are provided in Section H; the Wikipedia-derived corpora are
hosted on https://github.com/LilTiger/HFTP.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: In our sEEG experiment participants received a brief oral instruction (“please
listen carefully to the Chinese corpus”) and then completed 40 trials per condition (sen-
tence, phrase, random). Compensation was ¥200 for full participation, prorated for partial
completion.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The study protocol received approval from our institution’s IRB, minimal
auditory-stimulation risks were disclosed to participants during the consent process, and all
participants provided informed consent prior to data collection.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The HFTP method is built on extraction of MLP activations from six LLMs
(GPT-2, Gemma, Gemma 2, Llama 2, Llama 3.1, GLM-4). Model parameters are listed in
Section G, the HFTP procedure for LLMs is detailed in Section 3.2, and the LLM–brain
alignment pipeline is described in Section A.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Alignment pipeline for syntactic processing between LLMs and the human
brain

In this appendix, we provide the detailed pipeline used to align the syntactic structure representations
in LLMs with those in the human brain, with a focus on detecting and comparing sentence- and
phrase-level representations across both systems.

Data and experimental setup For system-level comparability, we presented the exact same input
corpora to both systems in the alignment analyses: the sentence corpus (four-syllable Chinese
sequences) and the phrase corpus (two-syllable Chinese sequences).. The word-order randomized
version of each corpus was used as a control condition, as detailed in Section 3.1. Each corpus
comprised 40 trials, and each trial contained 36 syllables. For SRDM calculation, the corpora were
divided into six experimental conditions, each with 20 trials. To attenuate onset-locked transients,
sEEG signals and model activations were extracted for the final 32 syllables of each trial. These time
series were then transformed to the frequency domain via FFT, and the resulting amplitude spectra
were used in the subsequent alignment analyses.

Frequency-domain analysis and SRDM construction For the LLMs, neuron activations were
transformed using FFT to capture the frequency components of structure processing across the six
conditions. From this transformation, we calculated the cosine similarity between each pair of
conditions, constructing an SRDM for each MLP neuron. We then averaged the SRDM for each
MLP neuron in the same layer to obtain layer-wise SRDMs. Similarly, for the human brain, we
calculated the ITPC to capture frequency-domain representations for each brain channel, yielding a
channel-wise SRDM..

To assess the structural alignment between LLMs and the human brain, we computed the Spearman
correlation ρ between the SRDM of each LLM layer and the SRDM of each brain channel. We
then formed layer-level model SRDMs by averaging neuron-level cosine-similarity matrices within
each layer. The top 100 most relevant brain channels for each model layer were identified based on
Spearman correlation, and the overlap of sentence and phrase channels in these top 100 channels was
evaluated using a chi-square test. A significant overlap indicated alignment in structural processing
between LLMs and brain ROIs.

Quantification of cross-system alignment Two key metrics were defined to quantify the structural
alignment between LLMs and the human brain. The first, model-brain similarity S(m, b), represents
the overall similarity of syntactic processing between an LLM m and the human brain b. It is
computed as the average Spearman correlation between the SRDM of each LLM layer and the top
100 most relevant brain channels:

S(m, b) =
1

M

M∑
j=1

1

100

100∑
i∈top(j)

ρ(Lj , Ci), (4)

where M is the number of layers in an LLM; Lj and Ci denote the model layer and the brain channel
indexed by j and i, respectively; top(j) denotes the indices of the top 100 channels for model layer
Lj ; and ρ(Lj , Ci) denotes the Spearman correlation between the model SRDM at layer Lj and the
SRDM of brain channel Ci.

The second metric, model-region similarity S(m, br), measures the alignment between LLMs and
specific brain ROIs. This is computed by averaging the Spearman correlations over the subset of the
top 100 channels that fall within a particular brain ROI:

S(m, br) =
1

M

M∑
j=1

1

n(j, r)

n(j,r)∑
i∈top(j)∩Cr

ρ(Lj , Ci), (5)

where Cr denotes the indices of all channels belonging to region r, and n(j, r) is the cardinality of
top(j) ∩ Cr, i.e., the number of channels in region r that are also among the top 100 channels for
model layer Lj .
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Note that we have sentence, phrase, and sentence & phrase neurons for the sentence corpus, thus we
average S(m, b) and S(m, br) across the three neuron types; and, for the phrase corpus, there are
only phrase neurons, so no averaging is required.

B Predictive encoding control analysis

To provide an orthogonal test of model–brain alignment that does not depend on representational
similarity analysis, we implemented a predictive encoding model that asks whether layer-wise features
extracted from an LLM can predict the frequency–domain sEEG responses of individual channels.
All experimental settings (e.g. sentence/phrase corpora, block structure) were matched to those in
the RDM–RSA pipeline (Section A). We also adopt the same two measures, model–brain similarity
S(m, b) and model–region similarity S(m, br), so that the predictive encoding results are directly
comparable to the SRDM-RSA results reported above.

Model features For each model layer Lj we first selected significant neurons using the same
procedure as in the SRDM-RSA pipeline. Within a given block, the time courses of the significant
neurons were averaged to obtain one 32-syllable sequence per layer and block (the last 32 syllables).
We then applied FFT to this layer-average and retained the complex coefficients within 0.5–2 Hz.
Each retained coefficient was represented by its real part and imaginary part (the canonical cosine and
sine components), which we treat as two features at that frequency. With two blocks per corpus, we
formed the predictor matrix Xj ∈ RN×2 by stacking samples across blocks and frequencies, where
K denotes the number of frequency bins in 0.5–2 Hz and N = 2K reflects the two blocks times K
frequencies. Thus each of the N samples corresponds to one (block, frequency) pair and is described
by a two-dimensional feature vector containing the real and imaginary parts of the aligned model
coefficient.

Brain responses For each sEEG channel Ci, we computed ITPC exactly as in the SRDM-RSA
analysis, yielding a complex spectrum per block. We then aligned the frequency axes of the model and
brain spectra by nearest-neighbor matching (model sampling 4 Hz; sEEG 512 Hz) within the 0.5–2 Hz
band. The target for predictive modeling was the band-limited spectral profile of stimulus-locked
synchrony for channel Ci; specifically, we concatenated the ITPC amplitudes across the two blocks
and across all K frequencies to obtain an observation vector yi ∈ RN . This vector summarizes the
oscillatory response of channel Ci within the syntactic band while preserving block-specific structure.

Predictive model and cross-validation For each pair (Lj , Ci) we fit a ridge regression with stan-
dardized predictors,

β̂ = argmin
β

∥∥yi −Xjβ
∥∥2
2
+ α∥β∥22, (6)

using five random splits (train/test = 70/30). The ridge penalty α was chosen only on the training
split via inner ridge-CV over a logarithmic grid; the fitted model was then evaluated on the held-out
test data. Predictive accuracy for a split was defined as Spearman correlation ρ between the predicted
and observed test targets. We averaged the split-wise correlations to obtain a predictive score

P (Lj , Ci) = Esplits
[
ρ
(
ŷ test
i , ytest

i

)]
, (7)

and repeated this procedure independently for left and right hemispheres and for both corpora. Note
that feature selection is performed exclusively on the model side; the sEEG data are never used to
select features, preventing circularity (double-dipping)).

Aggregation into alignment metrics To summarize predictive alignment, we follow the exact
aggregation used for SRDM-RSA pipeline and therefore reuse the definitions of S(m, b) and S(m, br)
introduced in Section A. The only substitution is that SRDM correlations ρ(Lj , Ci) are replaced by
the predictive scores P (Lj , Ci). Concretely, for each layer Lj we rank channels by P (Lj , Ci), take
the top 100, and compute S(m, b) and S(m, br) by the same layer-averaging rules as before. For the
sentence corpus, we compute these summaries separately for sentence, phrase and sentence & phrase
neurons and then report their arithmetic mean to yield a single value per model and hemisphere. For
the phrase corpus, the selection procedure yields only phrase-selective neurons; consequently no
averaging across syntactic MLP neuron types is required. This results in one model–brain score
S(m, b) and one score per ROI S(m, br) for each model in each hemisphere, directly comparable to
the SRDM-RSA results while relying on predictive encoding rather than representational geometries.

Across both corpora (Tables 3 and 4), a one-way ANOVA on layer-averaged top-100 predictive
scores revealed reliable between-model differences in brain-level alignment S(m, b) (sentence:
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Table 3: Predictive alignment results for the sentence corpus. The first row reports the overall
model–brain similarity S(m, b); subsequent rows report the model–region similarity S(m, br). Bold
in the S(m, b) row marks the highest value(s) across models/hemispheres; within each model, bold
highlights the three highest S(m, br) entries across all ROIs and hemispheres (ties bolded).

GPT-2 Gemma Gemma 2 Llama 2 Llama 3.1 GLM-4

L R L R L R L R L R L R

S(m, b) 0.487 0.371 0.467 0.364 0.469 0.371 0.472 0.364 0.463 0.365 0.471 0.367

A1 0.515 0.375 0.473 0.368 0.474 0.360 0.470 0.388 0.470 0.360 0.485 0.376
STG 0.499 0.384 0.469 0.357 0.472 0.369 0.480 0.369 0.464 0.373 0.476 0.374
MTG 0.487 0.370 0.468 0.366 0.470 0.375 0.475 0.369 0.465 0.366 0.469 0.371
ITG 0.479 0.370 0.463 0.361 0.466 0.367 0.466 0.360 0.457 0.362 0.466 0.364

Insula 0.486 0.373 0.459 0.368 0.468 0.377 0.476 0.376 0.463 0.363 0.473 0.370
TPJ 0.474 0.345 0.468 0.349 0.466 0.361 0.463 0.347 0.462 0.347 0.467 0.350

Temporal Pole 0.484 0.384 0.467 0.362 0.455 0.373 0.475 0.365 0.459 0.362 0.469 0.351
Sensorimotor 0.491 0.373 0.470 0.363 0.471 0.375 0.470 0.362 0.466 0.366 0.472 0.370

IFG 0.480 0.370 0.465 0.365 0.465 0.366 0.466 0.360 0.462 0.359 0.467 0.364
MFG 0.475 0.367 0.457 0.374 0.462 0.364 0.466 0.355 0.453 0.373 0.462 0.376

Hippocampus 0.481 0.358 0.464 0.365 0.458 0.366 0.462 0.353 0.458 0.360 0.469 0.362
Amygdala 0.472 0.334 0.463 0.345 0.465 0.362 0.452 0.353 0.463 0.358 0.471 0.349

Table 4: Predictive alignment results for the phrase corpus. TThe first row reports the overall
model–brain similarity S(m, b); subsequent rows report the model–region similarity S(m, br). Bold
in the S(m, b) row marks the highest value(s) across models/hemispheres; within each model, bold
highlights the three highest S(m, br) entries across all ROIs and hemispheres (ties bolded).

GPT-2 Gemma Gemma 2 Llama 2 Llama 3.1 GLM-4

L R L R L R L R L R L R

S(m, b) 0.454 0.356 0.465 0.362 0.465 0.366 0.446 0.350 0.451 0.354 0.449 0.349

A1 0.448 0.351 0.478 0.343 0.482 0.345 0.451 0.365 0.452 0.333 0.443 0.344
STG 0.463 0.363 0.468 0.364 0.470 0.363 0.448 0.356 0.455 0.352 0.458 0.357
MTG 0.450 0.357 0.464 0.362 0.462 0.366 0.445 0.363 0.448 0.348 0.445 0.345
ITG 0.449 0.348 0.465 0.359 0.460 0.363 0.445 0.346 0.448 0.352 0.448 0.345

Insula 0.453 0.360 0.461 0.360 0.462 0.365 0.446 0.348 0.451 0.354 0.452 0.344
TPJ 0.454 0.350 0.462 0.361 0.460 0.361 0.444 0.343 0.450 0.350 0.448 0.349

Temporal Pole 0.461 0.371 0.464 0.363 0.464 0.365 0.450 0.347 0.448 0.354 0.452 0.344
Sensorimotor 0.461 0.371 0.464 0.363 0.464 0.365 0.450 0.347 0.448 0.354 0.452 0.344

IFG 0.450 0.351 0.454 0.362 0.453 0.358 0.437 0.343 0.454 0.353 0.448 0.347
MFG 0.451 0.328 0.466 0.333 0.460 0.361 0.455 0.330 0.455 0.353 0.457 0.351

Hippocampus 0.454 0.354 0.453 0.363 0.463 0.357 0.436 0.344 0.454 0.354 0.434 0.354
Amygdala 0.403 0.361 0.420 0.391 0.450 0.355 0.385 0.349 0.402 0.386 0.389 0.381

F = 43.37, p < 0.001, η2 = 0.008; phrase: F = 13.80, p < 0.001, η2 = 0.008), with con-
sistently higher alignment in the left hemisphere. At the region level, FDR-controlled one-way
ANOVAs showed significant between-model effects within left-dominant language cortices (e.g.,
STG, MTG, ITG) for both corpora. These findings align with the SRDM–RSA analyses, which
likewise demonstrate significant between-model variation at both whole-brain and region-specific
levels.

Mirroring the SRDM–RSA trend, the predictive results exhibit an almost identical trend for model
upgrade comparison. In the sentence corpus, the left-hemisphere model–brain scores reproduce
the RSA ordering—Gemma 2 exceeds Gemma (S(m, b) = 0.469 vs. 0.467, L), while Llama 3.1
falls below Llama 2 (0.463 vs. 0.472, L). In the phrase corpus, the gaps compress: Gemma 2 is
essentially tied with Gemma (both S(m, b) = 0.465, L), and Llama 3.1 is slightly higher than Llama 2
(0.451 vs. 0.446, L). This compression likely arises because phrase analyses use only phrase neurons
and provide fewer, noisier frequency samples, which together reduce model separability. Taken
together, the predictive encoding and SRDM–RSA analyses converge on a consistent, method-robust
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conclusion: inter-model differences are statistically reliable at both the brain and region levels, and,
at the brain level, model-upgrade trends are essentially identical across methods, with only minor
fluctuations.

C Bilingual sentence- and phrase-level representations in LLMs

Previous studies have explored how LLMs handle different languages, concluding that while most
neurons are shared across languages, a smaller subset of neurons is dedicated to processing specific
languages [Tang et al., 2024]. But does this hold true for syntactic structure perception? This
appendix provides insights into this question. It is important to note that the GPT-2 model used in
this study was pre-trained on a Chinese corpus using the Universal Encoder Representations (UER)
framework [Zhao et al., 2019], equipping it with the capability to process both Chinese and English
text effectively. This stands in contrast to the original GPT-2 model [Radford et al., 2019], which
lacks the ability to handle Chinese text.

(a) GPT-2 (b) Gemma

(c) Gemma 2 (d) Llama 2

(e) Llama 3.1 (f) GLM-4

Figure 7: Cross-language neural representations extracted from five multilingual models (Gemma,
Gemma 2, Llama 2, Llama 3.1, and GLM-4) depicting syntactic processing capabilities.
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We used semantically matched Chinese and English syntactic corpora in this bilingual experiment
(see Tables 6 and 7). The results in Figure 7 suggest that language-specific syntactic MLP neurons
(i.e., exclusive sentence/phrase neurons) tend to cluster toward the final layers of Llama 2, Llama 3.1,
and GLM-4, with the proportion of bilingual neurons (Chinese & English) increasing progressively
in deeper layers. In contrast, Gemma and Gemma 2 display different patterns. In Gemma, both
language-specific and bilingual neurons are found not only in the deeper layers but also in the initial
layers, whereas this is only observed in the early layers of Gemma 2. GPT-2, on the other hand,
exhibits a more balanced distribution, with both language-specific and bilingual neurons present in
almost every layer in roughly equal proportions. Furthermore, English-specific neurons are more
prominent in the early layers, while Chinese-specific neurons are more concentrated in the later
layers. Interestingly, Llama 3.1 shows a notably lower count of Chinese-specific neurons compared
to English-specific neurons in the final layer, and fewer Chinese & English neurons than the other
five LLMs. Although Llama 3.1 was pre-trained on 176 languages [Dubey et al., 2024], it appears
to have less specialization in Chinese, which may explain the reduced presence of Chinese-specific
neurons and, consequently, fewer bilingual neurons.

D Contribution Ratios of LLMs

To further investigate the role of specific brain ROIs in syntactic processing, we introduced the contri-
bution ratio CRr. The contribution ratio highlights which brain ROIs contribute most significantly
to the syntactic alignment between LLMs and the human brain. Fixing a model layer, this metric
quantifies the influence of each brain ROIs by calculating the proportion of channels from a given
region within the top 100 most relevant channels, normalized by the overall representation of the
ROIs. The contribution ratio is defined as:

CRr(Lj) =
N top

r (Lj)/N
top

N total
r /N total , (8)

where N top
r (Lj) is the number of channels in region r within the top 100 channels in terms of the

LLM layer Lj , N top is the total number of top channels, which is specified as 100 in this case, N total
r

is the total number of channels in region r, and N total is the total number of brain channels.

We present the contribution ratio results for six LLMs used in this study: GPT-2, Gemma, Gemma
2, Llama 2, Llama 3.1, and GLM-4. Specifically, the contribution ratio for each model was calcu-
lated based on the number of top 100 significant channels within each brain ROIs, as described in
Appendix A. Below, we present the results for both the left (L) and right (R) hemispheres of each
model (See Figures 15, 16, 17, 18, 19 and 20). These figures offer further insights into how different
LLMs align with human brain ROIs in terms of syntactic processing.

From these figures, we observe that across all LLMs, regions such as A1 and STG in the left
hemisphere, and the Insula, Temporal Pole, and Amygdala in the right hemisphere contribute more
significantly to the alignment with human brain syntactic processing. These regions are known to be
involved in language-specific processes in the human brain, particularly in the left hemisphere, where
the STG and A1 are crucial for auditory and syntactic processing. Overall, these contribution profiles
suggest that these models may be capturing aspects of hierarchical syntactic structures in ways that
are functionally similar to human neural mechanisms. The Insula, Temporal Pole, and Amygdala,
though not traditionally highlighted as primary language regions, may also play supporting roles in
language comprehension, possibly through emotion and memory-related pathways.

E HFTP on naturalistic corpus

Beyond validating HFTP with tightly controlled four-syllable/word sequences, we show that it
generalises to naturalistic text spanning everyday dialogue, news reports, literature, and poetry. We
tested eight- and nine-syllable Chinese corpora alongside matched English 8- and 9-word corpora
(see Tables 8–9, 10–11). Spectral analysis reveals four pronounced peaks in each condition. For the
eight-syllable set, peaks arise at 0.5, 1.0, 1.5 and 2.0 Hz, corresponding to the full–sentence envelope,
the canonical 4-character phrase rhythm, an intermediate 2–3-beat grouping around 1.5 Hz, and
the ubiquitous 2-character lexical rhythm (Figure 8), with the English 8-word corpus exhibiting the
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same four-peak pattern at the corresponding sentence and phrase rates (Figure 10). In nine-syllable
sentences the peaks shift to ∼ 0.44, 0.89, 1.33, and 1.78 Hz: the lowest peak reflects the whole
sentence, 1.33 Hz aligns with abundant 3-character phrases, 1.78 Hz captures rapid two-to-three-
character alternations, and the 0.89 Hz component indexes a prosodic half-sentence “breath group”
of four–to–five characters (Figure 9), and the English 9-word corpus shows the analogous four peaks
near these frequencies (Figure 11).

Figure 8: Hierarchical frequency patterns of MLP neurons, using a naturalistic Chinese 8-syllable
corpus, selectively represent sentence features, phrase features, shared features of both, and non-
sensitive features (from left to right).

Figure 9: Hierarchical frequency patterns of MLP neurons, using a naturalistic Chinese 9-syllable
corpus, selectively represent sentence features, phrase features, shared features of both, and non-
sensitive features (from left to right).

Figure 10: Hierarchical frequency patterns of MLP neurons, using a naturalistic English 8-word
corpus, selectively represent sentence features, phrase features, shared features of both, and non-
sensitive features (from left to right).

We further evaluated HFTP on Chinese and English Wikipedia 8-syllable/word corpora (Fig-
ures 12–13). In both languages a clear sentence peak appears at 0.5 Hz, and phrase-rate peaks
persist at 1.0, 1.5, and 2.0 Hz; however, relative to non-Wikipedia corpora the peaks are attenu-
ated, and the separation between experiment and random controls is smaller. Although sequence
length was strictly controlled to eight syllables/words, Wikipedia text is less regular in content:
mixed scripts/orthographies (e.g., simplified vs. traditional in Chinese), frequent abbreviations and
alphanumeric tokens, bibliographic fragments and formulaic titles, heterogeneous named entities,
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Figure 11: Hierarchical frequency patterns of MLP neurons, using a naturalistic English 9-word
corpus, selectively represent sentence features, phrase features, shared features of both, and non-
sensitive features (from left to right).

Figure 12: Hierarchical frequency patterns of MLP neurons, using a Chinese Wikipedia 8-syllable
corpus, selectively represent sentence features, phrase features, shared features of both, and non-
sensitive features (from left to right).

inconsistent prosodic phrasing, etc. These factors reduce cross-sentence periodicity and weaken
harmonic reinforcement, thereby weakening tracking at sentence- and phrase-rate rhythms.

We speculate that the four dominant frequencies arise from tokenization statistics and prosodic
templating shared across languages: frequent two- and three-token words and binomial/trinomial
chunks in English, and abundant 2-/3-character words and 4-character idioms in Chinese; both
yield stable 2- and 3-beat groupings, while clause-level phrasing produces a half-sentence rhythm.
Transformer layers further reinforce harmonics of the basic word cycle. For example, in the nine-
syllable corpus, a 3-beat unit around 1.33 Hz naturally gives rise to a higher harmonic near 1.78 Hz.
The half-sentence peak at 0.89 Hz emerges because speakers often place a prosodic break near the
midpoint of nine-character or nine-word clauses, creating a stable sub-sentence rhythm that the model
entrains to. Because the underlying rhythmic structure is shared, we believe HFTP is highly likely to
generalize to other character-centric languages (Japanese, Korean) and to space-delimited alphabetic
languages (French, German).

F Preliminary bilingual HFTP test on native Chinese speakers

As noted above, our HFTP analysis was originally conducted on native Chinese speakers listening to
a Chinese corpus. To probe cross-linguistic generalization in human sEEG, we constructed bilingual
materials by taking the Chinese corpus from [Sheng et al., 2019] and manually translating it into
four-word English sequences. All experimental settings (e.g., presentation duration, sampling rate)
were identical to those in the original sEEG experiment. We report preliminary results from one
native Chinese speaker who listened to both the Chinese and the English corpora. Hierarchical
frequency patterns for the Chinese corpus closely match those in Figure 5, and the corresponding
English results are shown in Figure 14.

In the English condition, we observe the canonical hierarchical fingerprint: sentence-selective
channels peak at 1 Hz, phrase-selective channels peak at 2 Hz, channels sensitive to both show peaks
at both frequencies, and non-sensitive channels show no systematic peaks. This replication in English
indicates that the frequency-tagged response generalizes across languages when the hierarchical
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Figure 13: Hierarchical frequency patterns of MLP neurons, using a English Wikipedia 8-word corpus,
selectively represent sentence features, phrase features, shared features of both, and non-sensitive
features (from left to right).

Figure 14: Hierarchical frequency patterns of sEEG channels from one participant, using four-word
English sequence, selectively represent sentence features, phrase features, shared features of both and
non-sensitive feature (from left to the right). Shaded bands show ±1 s.e.m. computed within each
channel by bootstrapping across sliding-window ITPC estimates.

structure of the input is preserved, arguing that HFTP tracks syntactic organization rather than
language-specific acoustics or phonotactics. While promising, these observations are based on one
participant and should be treated as proof-of-principle rather than definitive. Future work will expand
the sample, balance materials across languages, and use more robust statistical analyses to quantify
cross-linguistic effect sizes.

G Model details

In this appendix, we present the details of the LLMs used in this study. Table 5 summarizes key
parameters, including model size, number of layers, attention heads, and MLP neurons. Notably, the
GPT-2 variant used here was pre-trained on a Chinese corpus, enabling it to process both Chinese
and English; by contrast, the original GPT-2 does not support Chinese.

Table 5: Comparison of model parameters.
Model Size Layers Attention heads MLP neurons

GPT-2 [Radford et al., 2019] 774M 36 20 5120
Gemma [Team et al., 2024a] 7B 28 16 24576

Gemma 2 [Team et al., 2024b] 9B 42 16 14336
Llama 2 [Touvron et al., 2023] 7B 32 32 11008
Llama 3.1 [Dubey et al., 2024] 8B 32 32 14336

GLM-4 [GLM et al., 2024] 9B 40 32 13696
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H Syntactic corpora

For LLM experiments, we used a diverse suite of corpora spanning languages, structure, and
length. Specifically, we used Chinese four-syllable and English four-word syntactic corpora adapted
from [Ding et al., 2016] (Tables 6, 7), alongside human-generated naturalistic Chinese corpora
(eight- and nine-syllable; Tables 8, 9) and parallel English counterparts (eight- and nine-word; Ta-
bles 10, 11). These corpora were used to assess model sensitivity to hierarchical structure. In addition,
we constructed Wikipedia-derived Chinese and English 8-syllable/word corpora for out-of-domain
validation; these corpora are available on https://github.com/LilTiger/HFTP.

Table 6: Chinese syntactic corpus.
Four-syllable sequences

老牛耕地 朋友请客 厨师做饭 竹鼠啃笋 农民种菜
青草发芽 和尚念经 老师讲课 鲸鱼喷水 绵羊吃草
英雄救火 游客爬山 鸭子划水 蜘蛛结网 祖父下棋
医生看病 护士打针 母鸡下蛋 行人过街 法官判案
狮子吃肉 老鹰捕鱼 蜜蜂采花 小孩读书 司机开车
画家作画 船夫摇桨 诗人吟诗 麻雀筑巢 猴子摘桃
渔夫撒网 骆驼饮水 狐狸捕鼠 海豹顶球 小猫抓鱼
老马拉车 鸽子衔枝 孩童拾贝 雏鸡啄米 山雀捉虫
青鸟啄木 樵夫砍柴 黑熊爬树 土狼挖洞 军鸽传信
燕雀喂仔 野猪拱地 渔民划船 蚯蚓钻土 蚕蛾吐丝

Table 7: English syntactic corpus.
Four-word sequences

Old ox plows field A friend invites guests The chef cooks dinner
Bamboo rat gnaws shoots A farmer plants vegetables Green grass sprouts up
The monk chants scriptures A teacher gives lecture The whale spouts water
The sheep eats grass A hero extinguishes fire The tourist climbs mountain
Pond duck paddles water A spider spins web My grandfather plays chess
The doctor treats patients The nurse administers vaccine A hen lays eggs
The pedestrian crosses street The judge decides case A lion eats meat
An eagle catches fish Honey bee gathers nectar The child reads books
The driver operates vehicle A painter creates art The boatman rows oars
The poet recites verses The sparrow builds nest A monkey picks peaches
A fisherman casts net The camel drinks water The fox catches mice
A seal balances ball A kitten catches fish Old horse pulls cart
A dove carries branch The child collects shells A chick pecks grain
A titmouse catches insects The bluebird pecks wood A woodcutter chops firewood
Black bear climbs tree A coyote digs burrow War pigeon delivers messages
The swallow feeds chicks Wild boar roots earth A fisherman rows boat
The earthworm burrows soil Silkworm moth spins silk

For the human brain experiment, we utilized two Chinese corpora: the sentence and phrase corpora.
To ensure consistent analysis of syntactic processing across both LLMs and the human brain, the same
corpora were applied to the alignment experiment. These corpora originated from [Sheng et al., 2019].
Participants received a brief oral instruction to listen carefully to each stimulus, completed 40 trials
per condition (sentence, phrase, and random), and were compensated approximately ¥200 for full
participation, with pay prorated if they completed only a subset of trials.

I Brain ROIs

As discussed in Section 3.3, we reorganized the original sEEG data by grouping the Auto-
mated Anatomical Labeling (AAL) annotations into newly defined brain ROIs for our experi-
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Table 8: Naturalistic Chinese corpus.
Eight-syllable sequences

森林火势得到控制。 列车准点抵达站台。 今晚，一起看电影吗？
中央推出税收优惠。 请稍等，我来核对价。 空调滤网需要更换。
研究论文成功发表。 画展现场气氛静谧。 港口货轮密集靠泊。
明天，早饭想吃啥呢？ 请问洗手间在哪呀？ 他缓缓走入雨巷中。
古桥石栏苔痕深留。 图书馆今天人较多。 教育部发布新课程。
快看，雨停了出门吧！ 市场需求逐步回暖。 点单吗？我们有套餐。
快递包裹正在派送。 图书销量榜单更新。 雨夜街灯映成河影。
证券监管再次收紧。 服务员，来两杯绿茶！ 警方破获网络诈骗。
同学，你借我下笔吧？ 科研团队揭量子谜。 春雷滚过江南田畔。
旅行社推出特价游。 学生提交毕业论文。 他戴上耳机工作中。
老师，这题怎么写呢？ 他整理旧照片回忆。 海浪轻拍沙滩细岸。
亲爱的，晚餐想吃啥？ 喂，你现在到哪里了？ 股市午盘震荡收高。
你好，咖啡需要糖吗？ 桂花香飘整条街上。 日出染红东海天际。
月光洒落在城墙上。 乡村集市热闹开张。 记者现场连线报道。
航班因雾全部延误。 数据中心全面升级。 雨天，道路易积水患。
智能巴士全线运营。 剧院上演经典芭蕾。 博物馆新增夜场票。
南部遭遇强降雨灾。 想不到你如此嚣张。

Table 9: Naturalistic Chinese corpus.
Nine-syllable sequences

临床试验数据公布了。 姐姐，这裙子有蓝色吗？ 软件更新，漏洞已修复。
晚上一起吃寿司如何？ 孩子，慢点吃别噎到啊。 付款可用微信，是不是？
医护人员彻夜守病房。 智能家居系统升级中。 校园社团招募新成员。
我们有可乐、果汁、豆浆。 高中将设人工智能课。 你好，考试时间改了吗？
摄影展聚焦城市微光。 他翻身查看夜空星图。 街角花店玫瑰已售罄。
师傅，去火车站多少钱？ 大雨突临，烟花秀取消。 他低声读完那封旧信。
科研数据平台上线啦。 社区篮球赛今晚开哨。 市场监管局突击检查。
木星再添两颗小卫星。 疏影横斜暗上书窗敲。 晚餐菜单更新完毕了。
明早七点机场见，好吗？ 老板，这条鱼再便宜点？ 卫星成功捕捉极光影。
雨滴敲击玻璃声清脆。 电商推广使用绿色包。 他轻扣门板等待回应。
喂，你到公司门口了吗？ 旅行箱在传送带循环。 服务员，账单麻烦拿来。
凌晨街头灯火渐稀少。 国家队再夺巴黎首金。 音乐渐缓舞步更轻盈。
早高峰地铁挤满乘客。 新剧首播口碑节节攀。 灯光映照湿润青石路。
医生，这药饭前还是后？ 请坐，这里视线最好哦。 你好，请填写到访登记。
咖啡豆飘散焦糖香气。 请稍候，我去取电影票。 他轻敲键盘修改代码。
图书销量排行榜刷新。 同学，笔记本借我一下？ 志愿者分发食物物资。
快递无人签收被退回。 博主分享无人机航拍。

ments [Rolls et al., 2015]. In this appendix, we provide the full names of AAL regions, the cor-
responding AAL labels used in the sEEG data, and their mapped brain ROIs in Table 12.
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Table 10: Naturalistic English corpus.
Eight-word sequences

With malice toward none, with charity toward all. Tonight, shall we watch the meteor shower together?
A man can be destroyed but not defeated. Excuse me, where’s the nearest restroom around

here?
The library felt crowded during rainy examination
week.

Market demand seems gradually rebounding during
this quarter.

Book sales rankings were refreshed early this
morning.

Waiter, two cups of hot green tea please.

Quantum research team unveiled perplexing
entanglement results yesterday.

Students submitted their final graduate theses by
noon.

He sorted aging photographs, reminiscing about
bygone days.

Hello, where are you right now, my friend?

Moonlight spilled gently across the ancient city walls. Flights were delayed nationwide due to dense fog.
Autonomous buses now operate on every urban route. Southern region suffered severe flooding after

relentless rain.
Plum blossoms scented the courtyard with delicate
sweetness.

Please hold on, I’ll check your booking details.

Central bank announced fresh stimulus to boost
economy.

Port cranes unloaded containers under brilliant
afternoon sky.

He slowly wandered into the rainy narrow alleyway. Education ministry announced updated national
curriculum guidelines today.

Ready to order? We have today’s special combo. Rainy night streetlights shimmered like a glowing
river.

Police dismantled an extensive online fraud network
operation.

Spring thunder rolled over rice paddies in Jiangnan.

He put on headphones and focused on coding. Gentle waves lapped softly against the sandy
shoreline.

Could you use some sugar in your coffee? The rural marketplace opened lively at dawn today.
The data center completed a comprehensive system
upgrade.

The theater staged a timeless classical ballet tonight.

I never imagined you could be this arrogant. City skyline glittered beneath a crisp winter moon.
Train whistle echoed across fields drenched with mist. Research findings published in a prestigious journal

today.
Tomorrow, what would you like for breakfast, friend? Ancient stone bridge retained mossy grooves through

centuries.
Look, the storm passed; let’s explore the streets. Parcel delivery is currently out for neighborhood

distribution.
Financial regulators tightened oversight on
speculative securities trading.

Hey classmate, may I borrow your pen briefly?

Travel agency launched discounted spring break tour
packages.

Teacher, could you explain this problem once more?

Darling, what would you like for dinner tonight? Osmanthus fragrance drifted along the entire narrow
street.

Reporter delivered live coverage from bustling
downtown square.

On rainy days, roads easily accumulate dangerous
puddles.

Museum introduced extended evening hours for
visitors’ convenience.

Night market vendors grilled skewers over glowing
charcoal.
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Table 11: Naturalistic English corpus.
Nine-word sequences

Clinical trial data were publicly released this morning
nationwide.

Shall we share sushi together tonight by the river?

War is peace, freedom is slavery, ignorance is
strength.

We offer cola, soda, juice, and soy milk today.

Photography exhibition focuses on city’s hidden
pockets of light.

Driver, how much is the fare to the station?

Scientific data platform finally went live to the public. Jupiter just gained two additional tiny moons last
week.

See you at the airport tomorrow seven sharp, alright? Raindrops drummed against windowpanes in a crisp
cadence tonight.

Hey, have you reached the company entrance yet
today?

Early morning city lights gradually faded as traffic
intensified.

Morning rush subway overflowed with restless
hurried commuters again.

Doctor, should this new medicine be taken before
dinner?

Coffee beans release subtle caramel aroma
throughout the cafe.

Book sales leaderboard refreshed, surprising many
independent authors today.

Undelivered parcels were returned after nobody
signed for them.

Sister, does this blue dress come in medium size?

Child, slow down and chew, avoid choking on food. Smart home automation system is currently installing
new firmware.

High school will introduce artificial intelligence
elective next year.

He rolled over, consulting a star chart at midnight.

Sudden downpour forced cancellation of tonight’s
fireworks display completely.

Community basketball tournament tips off under
bright evening floodlights.

Slanting shadows tapped an old window softly at
dusk.

Boss, could this fish be a little cheaper please?

Ecommerce campaign now promotes sustainable
green packaging materials nationwide.

Luggage carousel kept circling the unattended silver
suitcase indefinitely.

National team claimed its first gold medal in Paris. New drama premiere received soaring reviews across
social media.

Please sit here; the view remains the best available. Please wait, I will retrieve our cinema tickets now.
Classmate, may I borrow your notebook for a
moment?

Influencer shared breathtaking drone footage of
mountain sunrise yesterday.

Software update completed, critical vulnerabilities
have been fixed already.

Payment through WeChat is available, is that alright
sir?

Campus club seeks enthusiastic freshmen to join this
semester.

Hello, has the final exam schedule been changed
recently?

Corner flower shop sold out all roses before noon. He whispered while finishing that fading wartime
love letter.

Market supervision bureau conducted an unexpected
compliance inspection today.

Dinner menu has been fully updated for the evening.

Satellite captured brilliant aurora images above polar
orbit yesterday.

He gently knocked, waiting patiently for someone to
respond.

Please bring the bill, waiter, we are finished here. Music slowed, dancers embraced lighter steps
beneath dimmed lights.

Lantern glow reflected onto slick cobblestones after
evening drizzle.

Hello, kindly complete the visitor registration form at
reception.

He tapped the keyboard softly, refining his source
code.

Volunteers distributed food supplies to displaced
families after flood.
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Table 12: Automated Anatomical Labeling (AAL) annotations from the original sEEG data, along
with their mapped brain ROIs. Note that the regions are distinguished by the left and right hemi-
spheres.

AAL Full Name AAL Label ROI
Heschl Gyrus Heschl A1

Superior Temporal Gyrus Temporal_Sup STG
Middle Temporal Gyrus Temporal_Mid MTG
Inferior Temporal Gyrus Temporal_Inf ITG
Parahippocampal Gyrus ParaHippocampal ITG

Fusiform Gyrus Fusiform ITG
Insular Cortex Insula Insula
Angular Gyrus Angular TPJ

Supramarginal Gyrus SupraMarginal TPJ
Inferior Parietal Lobule Parietal_Inf TPJ
Superior Temporal Pole Temporal_Pole_Sup Temporal_Pole
Middle Temporal Pole Temporal_Pole_Mid Temporal_Pole

Paracentral Lobule Paracentral_Lobule Sensorimotor
Supplementary Motor Area Supp_Motor_Area Sensorimotor

Rolandic Operculum Rolandic_Oper Sensorimotor
Precentral Gyrus Precentral Sensorimotor
Postcentral Gyrus Postcentral Sensorimotor

Inferior Frontal Gyrus, Opercular part Frontal_Inf_Oper IFG
Inferior Frontal Gyrus, Triangular part Frontal_Inf_Tri IFG

Inferior Frontal Gyrus, Orbital part Frontal_Inf_Orb IFG
Middle Frontal Gyrus Frontal_Mid MFG

Middle Frontal Gyrus, Orbital part Frontal_Mid_Orb MFG
Hippocampus Hippocampus Hippocampus

Amygdala Amygdala Amygdala

Figure 15: Contribution ratios for GPT-2: Left hemisphere (top) and Right hemisphere (bottom).
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Figure 16: Contribution ratios for Gemma: Left hemisphere (top) and Right hemisphere (bottom).

Figure 17: Contribution ratios for Gemma 2: Left hemisphere (top) and Right hemisphere (bottom).
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Figure 18: Contribution ratios for Llama 2: Left hemisphere (top) and Right hemisphere (bottom).

Figure 19: Contribution ratios for Llama 3.1: Left hemisphere (top) and Right hemisphere (bottom).

36



Figure 20: Contribution ratios for GLM-4: Left hemisphere (top) and Right hemisphere (bottom).
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