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Abstract

Large Pre-trained Language Models (PLMs)
have become ubiquitous in the development
of language understanding technology. How-
ever, while advances reported for English us-
ing PLMs are unprecedented, advances using
PLMs reported for Hebrew are few and far be-
tween. The problem is twofold. First, Hebrew
resources for training large language models
have not been of the same magnitude as their
English counterparts. Second, most bench-
marks available to evaluate progress in He-
brew NLP require morphological boundaries
which are not available in the output of standard
PLMs. In this work we remedy both aspects.
We present AlephBERT, a large PLM for Mod-
ern Hebrew, trained on larger vocabulary and
larger dataset than any Hebrew PLM before.
Moreover, we introduce a novel neural architec-
ture that recovers the morphological segments
encoded in contextualized embeddings. Based
on this new morphological component we of-
fer an evaluation suite consisting of multiple
tasks and benchmarks that cover sentence-level,
word-level and sub-word level analyses. On
all tasks, AlephBERT obtains state-of-the-art
results beyond all existing Hebrew models. We
make AlephBERT, the morphological extrac-
tion model, and the novel evaluation pipeline
publicly available for evaluating future PLMs.

1 Introduction

Contextualized word representations, provided
by models such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), GPT3 (Brown et al.,
2020), TS5 (Raffel et al., 2020) and more, were
shown in recent years to be a critical component for
obtaining state-of-the-art performance on a wide
range of Natural Language Processing (NLP) tasks,
from surface syntactic tasks as tagging and parsing,
to downstream semantic tasks as question answer-
ing, information extraction and text summarization.

While advances reported for English using such
models are unprecedented, in Modern Hebrew, pre-

viously reported results using PLMs are far from
satisfactory. Specifically, the BERT-based Hebrew
section of multilingual-BERT (Devlin et al., 2019)
(henceforth, mBERT) did not provide a similar
boost in performance as observed by the English
section of mBERT. In fact, for several reported
tasks, the mBERT model results are on par with
pre-neural models, or neural models based on non-
contextualized embedding (Tsarfaty et al., 2020;
Klein and Tsarfaty, 2020). An additional Hebrew
BERT-based model, HeBERT (Chriqui and Yahav,
2021), has been recently released, yet without em-
pirical evidence of performance improvements on
key components of the Hebrew NLP pipeline.
Development of PLMs for morphologically-rich
and medium-resourced languages such as Modern
Hebrew introduces two challenges. First, contex-
tualized word representations are obtained by pre-
training a large language model on massive quanti-
ties of unlabeled textual data. In Hebrew, however,
the size of published texts available for training is
relatively small. To wit, Hebrew Wikipedia (300K
articles) used for training mBERT is orders of
magnitude smaller compared to English Wikipedia
(6M articles). Second, commonly accepted bench-
marks for evaluating Hebrew models, via morpho-
syntactic tagging and parsing (Sadde et al., 2018),
or named entity recognition (Bareket and Tsarfaty,
2020) require decomposition of words into mor-
phemes,! which are distinct of the sub-words (a.k.a.
word-pieces) provided by standard PLMs, and are
not readily available in their output embeddings.
Evaluating BERT-based models on morpheme-
level tasks is in fact non trivial. PLMs employ
sub-word tokenization, such as WordPiece, for min-
imizing Out-Of-Vocabulary cases. Word-pieces
are statistically generated in a pre-processing step
without utilization of any linguistic information.

!'These morphemes are affixes and clitics bearing their own
POS. They are termed syntactic words in UD (Zeman et al.,
2018), or segments in previous literature on Hebrew NLP.
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Figure 1: Illustration of the morphological extraction
process. The two-word phrase “]:‘:n n"ab”, transliter-
ated as “Ibit hlbn”, is mapped to word-pieces which are
consumed by a PLM to generate contextualized vectors
and extract the sub-word morphological units.

‘ Corpus H File Size Sentences  Words ‘
Oscar (deduped) 9.8GB 209M 1,043M
Twitter 6.9GB 71.5M 774M
Wikipedia 1.1GB 6.3M 127M
Total 17.9GB 98.7M 1.9B

Table 1: Data Statistics for AlephBERT"s training sets.

Crucially, word-pieces do not reflect morphologi-
cal segments. Extracting morphological units from
contextualized vectors generated by PLMs is thus
challenging, yet necessary in order to enable the
evaluation of Hebrew PLMs on standard bench-
marks. To address this we introduce a novel neural
architecture that recovers the morphological sub-
word segments encoded in contextualized embed-
dings. See Figure 1 for the relationships between
the different processing units.

We present AlephBERT, a Hebrew pre-trained
language model, trained on more data and a larger
vocabulary than any Hebrew PLM before. Then,
using the proposed extraction model we confirm
SOTA results on all existing Hebrew benchmarks.?
We thus present an evaluation suite tailored to fit
MRLs, i.e., covering sentence-level, word-level and
importantly sub-word morphological-level tasks
(Segmentation, Part-of-Speech Tagging, full Mor-
phological Tagging, Dependency Parsing, Named
Entity Recognition and Sentiment Analysis), pre-
senting new and improved SOTA on all tasks.

2 AlephBERT Pre-Training

Data. We acknowledge the gap in training data
size compared with resource-savvy languages® and
address it by including massive amounts of tweets.

*We make our PLM and online demo publicly avail-
able www . anonymous . org allowing to qualitatively assess
present and future Hebrew PLMs.

3See Appendix B for a cross-linguistic survey & statistics.

Specifically, we employ the following datasets:
(i) Oscar: Deduplicated Hebrew portion extracted
from Common Crawl via language classifica-
tion, filtering and cleaning (Ortiz Suarez et al.,
2020). (ii) Wikipedia: Texts from all of He-
brew Wikipedia, extracted using Attardi (2015).
(iii) Twitter: Hebrew tweets collected between
2014-09-28 and 2018-03-07. We removed markers
(“RT:”, “@” user mentions and URLSs), and elimi-
nated duplicates.* For data statistics, see Table 1.

Model. We used the Transformers training
framework of Huggingface (Wolf et al., 2020) and
trained two different models: (i) small, with 6 hid-
den layers learned from the Oscar portion of our
dataset, and (ii) base, with 12 hidden layers trained
on the entire dataset. The processing units used
are the default word-pieces generated by training
BERT tokenizers over the respective datasets, with
a vocabulary size of 52K in both cases.’

3 Morphological Extraction

Modern Hebrew is a Semitic language with rich
morphology and complex orthography. As a result,
the basic processing units in the language are typi-
cally smaller than raw words’ span. Subsequently,
most standard evaluation tasks require knowledge
of internal morphological boundaries within the
raw words (illustrated in Table 2):

(i) Segmentation: A sequence of morphological
segments representing basic processing units.°

(i) Part-of-Speech (POS) Tagging: Tag each seg-
ment with a single POS.

(iii) Morphological Tagging: Tag each segment
with a POS and a set of morphological features.’
(iv) Dependency Parsing: Use each segment as a
node in the predicted dependency tree.

(v) Morpheme-Based NER: Tag each segment
with a BIOES along with its entity-type label.

To accommodate the input granularity of these
tasks, we developed a neural model designated
to produce the disambiguated morphological seg-
ments for each word in context. These linguistic
segmentations are thus distinct of the WordPieces.

“For more details and an ethical discussion, see Section 6.

5See Appendix C for training details, times & compute.

®These units comply with the 2-level representation
of tokens defined by UD, each unit with a single POS
tag. https://universaldependencies.org/u/
overview/tokenization.html

"Equivalent to the AllTags evaluation metric
defined in the CoNLL18 shared task. https:
//universaldependencies.org/conlll18/
results—alltags.html
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Raw input 1351 35 (Ibit hlbn)

Space-delimited words 1257 (hlbn) \ a5 (Ibit)

Index 5 3 2 1
Segmentation 12% (Ibn) 1 (h) n"a (bit) 1 (h) 5()
POS ADJ DET NOUN DET ADP
Morphology Gender=Masc|Number=Sing | PronType=Art | Gender=Masc|Number=Sing | PronType=Art -
Dependencies 3/amod 5/det 1/0bj 3/def 0/ROOT
Word-level NER E-ORG B-ORG

Morpheme-level NER E-ORG | I-ORG I-ORG | BORG | O

Table 2: Illustration of Evaluated Word and Morpheme-Based Downstream Tasks. The input is the two-word input
phrase “]:15.'[ n"25”, transliterated as “Ibit hibn” (to the White House), which is decomposed to 5 morphological
segments (‘to the white the house’). The Hebrew text goes from right to left.

This morphological extraction network works as
follows. Each input word is represented as (one or
more) word-pieces associated with contextualized
embedding vectors produced by the PLM. For each
word, we average the word-pieces vectors and feed
the result into a seq2seq module (The “Morphologi-
cal Extraction Model” in Figure 1) that encodes the
surface form as a sequence of characters using a
BiLSTM, followed by a decoder that generates out-
put sequence of characters, space used as a special
symbol signalling morphological segment bound-
aries. We train it for 15 epochs optimized using
next-char prediction loss.

For tasks involving labels (POS, Morphological
Features, NER) we expand this network in a multi-
task learning setup; when generating am end-of-
segment symbol, the model also predicts task labels
and we combine the segment-label losses.

4 Experiments

We set out to evaluate Hebrew PLMs on stan-
dard benchmarks covering sentence, word and sub-
word (morphological) levels. We compare the
performance of AlephBERT with all existing He-
brew BERT instantiations. First, we evaluate on
Word Segmentation, Part-of-Speech Tagging,
Full Morphological Tagging, Dependency Pars-
ing using two available benchmarks: (i) The He-
brew Section of the SPMRL Task (Seddah et al.,
2013), (i1) the Hebrew Section of the Universal De-
pendencies (UD) treebanks (Sadde et al., 2018).
Next, we evaluate Named Entity Recognition.
We provide Word-based NER evaluation based
on the Ben-Mordecai (henceforth BMC) corpus
(Ben Mordecai and Elhadad, 2005), and evaluate
Word-based and Morpheme-based NER based on
the Named Entities and MOrphology (NEMO) cor-
pus (Bareket and Tsarfaty, 2020). Finally, we evalu-
ate sentence-based Sentiment Analysis on a dedu-

Task NER (Morpheme) NER (Word) Sentiment
Corpus NEMO (SPMRL) || NEMO BMC FB
Prev. SOTA 77.11 7775 8522 NA
mBERT 72.97 79.07 87.77 79.07
HeBERT 74.86 8148 89.41 81.48
AlephBERT g1 72.46 78.69  89.07 78.69
AlephBERThe 79.15 8491 91.12 84.91

Table 3: Morpheme-based and Word-based NER F1.
Previous SOTA is reported by Bareket and Tsarfaty
(2020). Sentiment Analysis accuracy is reported on a
deduplicated version of Amram et al. (2018).

plicated version of Amram et al. (2018).

To evaluate sentence-level classification we re-
port sentence accuracy. To evaluate word-level
NER performance we report F1 scores on entity
spans. To evaluate morpheme-level tasks we use
two variants that have been used in the literature:
the Aligned MultiSet F1 Scores as in previous work
on Hebrew (More et al., 2019; Seker and Tsarfaty,
2020) and the Aligned Segment F1 scores used in
the UD shared tasks (Zeman et al., 2018).%

Sentence-Level Tasks Sentiment analysis accu-
racy results are provided in Table 3. Sentence level
predictions are achieved by directly fine-tuning the
PLMs using an additional sentence-classification
head. All BERT-based models substantially out-
perform the original CNN Baseline reported by
Amram et al. (2018), where AlephBERT},4 is set-
ting a new SOTA.’

Word-Level Tasks In Table 3 we report F1 NER
scores on the two word-level test sets. Word-
level NER predictions are achieved by directly
fine-tuning the PLMs using an additional token-
classification head. While we see noticeable im-
provements for the mBERT and HeBert variants

8For further discussion of the metrics (strengths weak-
nesses and comparison) we refer the reader to Appendix E

For more sentence-level and word-level experimental de-
tails see Appendix D.



Task H Segment POS  Features UAS LAS ‘
Prev. SOTA NA 90.49 8598 7573 69.41
mBERT 9736 9337 8936 80.17 749
HeBERT 97.97 9461 9093 81.86 76.54
AlephBERT gman 9771  94.11  90.56 81.5 76.07
AlephBERTpyse 98.10 9490 9141 82.07 769

Table 4: Morpheme-Based results on the SPMRL cor-
pus. Aligned MultiSet (mset) F1 on Segmentation, POS
tags and Morphological Features - previous SOTA re-
ported by (Seker and Tsarfaty, 2020) (POS) and (More
et al., 2019) (Features). Un/Labeled Accuracy Scores
on morphological-level Dependency Parsing - previous
SOTA reported by (More et al., 2019).

Task H Segment POS  Features ‘
Prev. SOTA 96.03 93.75 91.24
mBERT 97.17 9427  90.51
HeBERT 97.54 95.60  92.15
AlephBERT 97.31 95.13 91.65
AlephBERT}5¢ 97.70 95.84 92.71

Table 5: Morpheme-Based Aligned (CoNLL shared
task) F1 on the UD corpus. Previous SOTA reported by
Minh Van Nguyen and Nguyen (2021)

over the current SOTA, the most significant in-
crease is achieved by AlephBERTy,, setting a
new and improved SOTA on this task.

Morpheme-Level Tasks As a particular novelty
of this work, we report BERT-based results on mor-
phological sub-words (segment-level) information.
Specifically, we evaluate Word segmentation, POS,
Morphological Features, NER and dependencies
compared against morphologically-labeled test sets.
In all cases we use raw space-delimited words as
input and produce morphological segments with
our new morphological extraction model.

Table 4 presents evaluation results for the
SPRML dataset, compared against the previous
SOTA of (More et al., 2019). For segmentation,
POS tagging, and morphological tagging we report
aligned multiset F1 scores. BERT-based segmen-
tations are similar, all scoring in the high range
of 97-98 F1, which are hard to improve further.'®
For POS tagging and morphological features, all
BERT-based models considerably outperform pre-
vious SOTA. For syntactic dependencies we report
labeled and unlabeled accuracy scores of the trees
generated by YAP (More et al., 2019) on our pre-
dicted segmentation. Here we see impressive im-
provement compared to the previous SOTA joint

10 According to error analysis, most of these errors are an-
notation errors or truly ambiguous cases.

morpho-syntactic framework. It confirms how mor-
phological errors early in the pipeline negatively
impact downstream tasks, and highlight the impor-
tance of morphologically-driven benchmarks as an
integral part of PLM evaluation for MRLs.

We see a repeating trend placing AlephBERTpqs¢
first on all morphological tasks, indicating the
depth of the model and a larger pre-training dataset
improve the ability of the PLM to capture word-
internal structure. These trends are replicated on
the UD Hebrew corpus reported in Table 5.

Earlier in this section we considered NER as a
word-based task that simply requires fine-tuning
on the word level. However, this setup is not
accurate enough and less useful for downstream
tasks, since exact entity boundaries are often word-
internal (Bareket and Tsarfaty, 2020). We hence
report morpheme-based NER evaluation, respect-
ing exact boundaries of entity mentions. To obtain
morpheme-based NER labels we use the multi-task
model that predicts NER labels while performing
segmentation. The results are reported in Table 3.
The differences in NER scores are substantial and
draw our attention to the relationship between the
size of the PLM, the size of the pre-training data
and the quality of the final NER predictions. Also,
we see that while AlephBERT excels at morphosyn-
tactic tasks, on tasks with a more semantic flavour
there is room for improvement.

5 Conclusion

Modern Hebrew, a morphologically-rich and
medium-resource language, has for long suffered
from a gap in the resources available for NLP
applications, and lower level of empirical results
than observed in other, resource-rich languages.
This work provides the first step in remedying
the situation, by making available a large Hebrew
PLM, nicknamed AlephBERT, with larger vocabu-
lary and larger training set than any Hebrew PLM
before. Crucially, we augment the PLM with
a morphological disambiguation component that
matches the input granularity of the downstream
tasks. AlephBERTy,s. Obtains state-of-the-art re-
sults on the tasks of morphological segmentation,
POS tagging, morphological feature extraction, de-
pendency parsing, named-entity recognition, and
sentiment analysis outperforming all existing He-
brew PLMs. Our proposed morphologically-driven
suite serves as a solid foundation for future evalua-
tion of Hebrew PLMs and of MRLs in general.



6 Ethical Statement

We follow the proposal of Bender and Friedman
(2018) regarding professional practice for NLP
technologists and address ethical issues that result
from the use of data in the development of the mod-
els described in our work.

Pre-Training Data. The two initial data sources
we used to pre-train the language models are Os-
car and Wikipedia. In using the Wikipedia and
Oscar we followed standard language model train-
ing efforts, such as BERT and RoBERTa (Devlin
etal., 2019; Liu et al., 2019). We use the language-
specific Oscar data according to the terms specified
in (Ortiz Sudrez et al., 2020) and we extract texts
from language-specific Wikipedia dumps. On top
of that, a big portion of the data used to train our
AlephBERT language model originates from the
Twitter sample stream.'! As shown in Table 1 this
data set includes 70M Hebrew tweets which were
collected over a period of 4 years (from 2014 to
2018). We acknowledge the potential inherent con-
cerns associated with Twitter data (population bias,
behavior patterns, bot masquerading as humans
etc.) and note that we have not made any explicit at-
tempt to identify these cases. We only used the text
field of the tweets and completely discard any other
information included in the stream (such as iden-
tities, network of followers, structure of threads,
date of publication, etc). We have not made any
effort to identify or filter out any samples based on
user properties such as age, gender and location nor
have we made any effort to identify content charac-
teristics such as genre or topic. To reduce exposure
of private information we cleaned up all user men-
tions and URLSs from the text. Honoring ethical and
legal constraints we have not manually analyzed
nor published this data source. While the free form
language expressed in tweets might differ signifi-
cantly from the text found in Oscar/Wikipedia, the
sheer volume of tweets helps us close the substan-
tial resource gap with minimal effort.

Training and Evaluation Benchmarks. The
SPMRL (Seddah et al., 2013) and UD (Sadde et al.,
2018) datasets we used for evaluating segmentation,
tagging and parsing, were used to both train our
morphological extraction model as well as provide
us with the test data to evaluate on morphological

Uhttps://developer.twitter.com/en/
docs/twitter—-api/tweets/volume—-streams/
api-reference/get-tweets-sample-stream

level tasks. Both datasets are publicly available and
widely used in research and industry.

The NEMO corpus (Bareket and Tsarfaty, 2020)
used to train and evaluate word and morpheme
level NER is an extension of the SPMRL dataset
augmented with entities and follows the same li-
cense terms. The BCM dataset used for training
and evaluating word-leve NER was created and
published by Ben Mordecai and Elhadad (2005)
and it is publicly available for NER evaluation.'?.

We used the sentiment analysis dataset of Am-
ram et al. (2018) for training and evaluating Aleph-
BERT on a sentence level task, and we follow their
terms of use. As mentioned, this dataset has major
flows, and while we describe carefully the steps
we’ve taken to fix them before using this corpus in
our experiments, we performed this cleaning for
internal evaluation purposes and we note that we
have not published the fixed version of the corpus.
We will make our in-hous cleaning scripts and split
information publically available.
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A Related Work

Contextualized word embedding vectors are a ma-
jor driver for improved performance of deep learn-
ing models on many NLP tasks. Initially, ELMo
(Peters et al., 2018) and ULMFit (Howard and
Ruder, 2018) introduced contextualized word em-
bedding frameworks by training LSTM-based mod-
els on massive amounts of texts. The linguistic
quality encoded in these models was demonstrated
over 6 NLU tasks: Question Answering, Textual
Entailment, Semantic Role labeling, Coreference
Resolution, Name Entity Extraction, and Sentiment
Analysis. The next big leap was obtained with
the introduction of the GPT-1 framework by Rad-
ford and Sutskever (2018). Instead of using LSTM
layers, GPT is based on 12 layers of Transformer
decoders with each decoder layer is composed of
a 768-dimensional feed-forward layer and 12 self-
attention heads. Devlin et al. (2019) followed along
the same lines as GPT and implemented Bidirec-
tional Encoder Representations from Transformers,
or BERT in short. BERT attends to the input tokens
in both forward and backward directions while op-
timizing a Masked Language Model and a Next
Sentence Prediction objective objectives.

BERT Benchmarks An integral part involved in
developing various PLMs is providing NLU multi-
task benchmarks used to demonstrate the linguistic
abilities of new models and approaches. English
BERT models are evaluated on 3 standard major
benchmarks. The Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) is used
to test paragraph level reading comprehension abil-
ities. Wang et al. (2018) selected a diverse and rel-
atively hard set of sentence and sentence-pair tasks
which comprise the General Language Understand-
ing Evaluation (GLUE) benchmark. The SWAG
(Situations With Adversarial Generations) dataset
(Zellers et al., 2018) presents models with partial
description of grounded situations to see if they can
consistently predict relevant scenarios that come
next thus indicating the ability for commonsense
reasoning. When evaluating Hebrew PLMs, one of
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the key pitfalls is that there are no Hebrew versions
for these benchmarks. Furthermore, none of the
suggested benchmarks account for examining the
capacity of PLMs for encoding the word-internal
morphological structures which are inherent for
MRLs.

A.1 Multilingual vs Monolingual BERT

Devlin et al. (2019) produced 2 BERT models for
English and Chinese. To support other languages
they trained a multilingual BERT (mBERT) model
combining texts covering over 100 languages. They
hoped to benefit low resourced languages with
the linguistic information obtained from other lan-
guages with large dataset sizes. In reality however
mBERT performance on specific languages have
not been as successful as English.

Consequently several research efforts focused
on building monolingual BERT models as well
as providing language specific evaluation bench-
marks. Liu et al. (2019) trained CamemBERT, a
French BERT model evaluated on syntactic and
semantic tasks in addition to natural language infer-
ence tasks. Rybak et al. (2020) trained HerBERT,
a BERT PLM for Polish. They evaluated it on a
diverse set of existing NLU benchmarks as well
as a new dataset for sentiment analysis for the e-
commerce domain. Polignano et al. (2019) created
Alberto, a BERT model for Italian, using a massive
tweet collection. They tested it on NLU tasks - sub-
jectivity, polarity (sentiment) and irony detection
in tweets. In order to obtain a large enough training
corpus in low-resources languages such as Finnish
(Virtanen et al., 2019) and Persian (Farahani et al.,
2020) a great deal of effort went into filtering and
cleaning text samples obtained from web crawls.

Languages with rich morphology introduce an-
other challenge involving identification and ex-
traction of sub-word morphological information.
Nguyen and Tuan Nguyen (2020) applied a special-
ized segmenter on the training data and normalized
all the syllables and words before training their
Vietnamese PheBERT model. In Arabic, like in
Hebrew, words are composed of sub-word mor-
phological units with each morpheme acting as
a single syntactic unit (the way words are in En-
glish). Antoun et al. (2020) acknowledged this by
pre-processing the training data using a morpho-
logical segmenter producing segments that were
used instead of the actual words to train AraBERT.
Doing so they were able to produce output vectors

that correspond to morphological segments as op-
posed to the original words. On the other hand,
this approach requires the application of the same
segmenter at inference time as well.

Like any pipeline approach, this setup is suscep-
tible to error propagation stemming from the fact
that words can be morphologically ambiguous and
the predicted segments in fact might not represent
the correct interpretation of the words. As a result,
the quality of the PLM depends on the accuracy
achieved by the segmenting component. We, on the
other hand, do not make any changes to the input,
letting the PLM encode relevant morphological in-
formation associated with complete Hebrew words.
Rather, we post-process the output by transform-
ing contextualized vectors into morphological-level
segments to be used by the downstream tasks.

Across all of the above-mentioned language-
specific PLMs, evaluation was performed on the
token-,sentence- or paragraph-level. Non of these
benchmarks examine the capacity of PLMs to en-
code sub-word morphological-level information
which we focus on in this work.

B PLM Training Data Size Comparison

The Hebrew portions of Oscar and Wikipedia pro-
vides us with a training set size order of magnitude
smaller compared with resource-savvy languages,
as shown in Table 6.

Language H Oscar Size  Wikipedia Articles

English 2.3T 6,282,774
Russian 1.2T 1,713,164
Chinese 508G 1,188,715
French 282G 2,316,002
Arabic 82G 1,109,879
Hebrew 20G 292,201

Table 6: Corpora Size Comparison: High-resource (and
Medium-resourced) languages vs. Hebrew.

C AlephBERT Pre-training Details

Following the work of Liu et al. (2019) we optimize
AlephBERT with a masked-token prediction loss.
We deploy the default masking configuration - 15%
of word-piece tokens are masked, In 80% of the
cases, they are replaced by [MASK], in 10% of the
cases, they are replaced by a random token and in
the remaining cases, the masked tokens are left as
is. We trained for 5 epochs with learning rate set



to le-4 followed by an additional 5 epochs with
learning rate set to Se-5 for a total of 10 epochs.

To optimize GPU utilization and decrease train-
ing time we split the dataset into 4 chunks based
on the number of tokens in a sentence and conse-
quently we are able to increase batch sizes, result-
ing in dramatically shorter training times.

chunkl | chunk2 | chunk3 chunk4
max tokens 0>32 | 32>64 | 64>128 | 128>512
num sentences 70M 20M M 2M

We trained AlephBERTy, over the entire
dataset on an NVidia DGX server with 8 V100
GPUs which took us 8 days. AlephBERT,,;; was
trained over the Oscar portion only using 4 GTX
2080ti GPUs taking 5 days in total.

D Sentence-based and Word-based
Experimental Details

D.1 Sentiment Analysis

We first report on a classification task, assigning a
sentence with one of three values: negative, posi-
tive, neutral. By appending a classification head we
turn a BERT model into a sentence level classifier
(utilizing sentence level embedded vector repre-
sentation associated with the special [CLS] BERT
token).

We used a version of the Hebrew Sentiment
dataset which we corrected by removing the leaked
samples and re-partitioned to add a development
set. This version has a total of 8,465 samples. We
fine-tuned all models for 15 epochs with 5 different
seeds and report the mean accuracy.

D.2 Word-based Named Entity Recognition

Here we assume word-based sequence labeling
model. The input comprises of the sequence of
words in the sentence, and the output contains
BIOES tags indicating entity spans. By appending
a token-classification head we predict NER class
labels for each word vector provided by the PLM
(in cases of multiple word pieces we use the first
one).

We evaluate this model on two corpora. We first
evaluate on the BMC corpus which provides word-
level annotations. It contains 3294 sentences and
4600 entities, and has seven different entity cate-
gories (date, location, money, organization, person,
percent, time). To remain compatible with the orig-
inal work we train and test the models on the 3

different splits as in Bareket and Tsarfaty (2020).'3
We then move to evaluate on the NEMO corpus
which is an extension of the SPMRL dataset with
Named Entities, marked by BIOES tags. This cor-
pus provides both word and morpheme based entity
annotations, where the latter contains the accurate
(word-internal) entity boundaries. The NEMO cor-
pus has nine categories (Language, Product, Event,
Facility, Geo-Political, Location, Organization, Per-
son, Work-Of-Art). It contains 6220 sentences and
7713 entities, and we used the standard SPMRL
train-dev-test. Both word-based and morpheme-
based models were trained for 15 epochs.

E Morpheme Level Evaluation Metrics

Aligned Segment The CoNLL18 Shared Task
evaluation campaign'# reports scores for segmen-
tation and POS tagging'> for all participating lan-
guages. For multi-segment words, the gold and pre-
dicted segments are aligned by their Longest Com-
mon Sub-sequence, and only matching segments
are counted as true positives. We use the script
to compare aligned segment and tagging scores
between oracle (gold) segmentation and realistic
(predicted) segmentation.

Aligned Multi-Set In addition we compute F1
scores similar to the aforementioned with a slight
but important difference as defined by More et al.
(2019) and Seker and Tsarfaty (2020). For each
word, counts are based on multi-set intersections of
the gold and predicted labels ignoring the order of
the segments while accounting for the number of
each segment. Aligned mset is based on set differ-
ence which acknowledges the possible undercover
of covert morphemes which is an appropriate mea-
sure of morphological accuracy.

Discussion To illustrate the difference between
aligned segment and aligned mset, let us take for
example the gold segmented tag sequence: b/IN,
h/DET, bit/NOUN and the predicted segmented tag
sequence b/IN, bit/NOUN. According to aligned
segment, the first segment (b/IN) is aligned and
counted as a true positive, the second segment how-
ever is considered as a false positive (bit/NOUN)
and false negative (//DET) while the third gold seg-

ment is also counted as a false negative (bit/NOUN).
13WWW .anonymous.org
“https://universaldependencies.org/conll18/results.html

Brespectively referred to as 'Segmented Words’ and
"UPOS’ in the CoNLL18 evaluation script


www.anonymous.org

On the other hand with aligned mulit-set both b/IN
and bit/NOUN exist in the gold and predicted sets
and counted as true positives, while #/DET is mis-
matched and counted as a false negative. In both
cased the total counts across words in the entire
datasets are incremented accordingly and finally
used for computing Precision, Recall and F1.
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