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Abstract

Large Pre-trained Language Models (PLMs)001
have become ubiquitous in the development002
of language understanding technology. How-003
ever, while advances reported for English us-004
ing PLMs are unprecedented, advances using005
PLMs reported for Hebrew are few and far be-006
tween. The problem is twofold. First, Hebrew007
resources for training large language models008
have not been of the same magnitude as their009
English counterparts. Second, most bench-010
marks available to evaluate progress in He-011
brew NLP require morphological boundaries012
which are not available in the output of standard013
PLMs. In this work we remedy both aspects.014
We present AlephBERT, a large PLM for Mod-015
ern Hebrew, trained on larger vocabulary and016
larger dataset than any Hebrew PLM before.017
Moreover, we introduce a novel neural architec-018
ture that recovers the morphological segments019
encoded in contextualized embeddings. Based020
on this new morphological component we of-021
fer an evaluation suite consisting of multiple022
tasks and benchmarks that cover sentence-level,023
word-level and sub-word level analyses. On024
all tasks, AlephBERT obtains state-of-the-art025
results beyond all existing Hebrew models. We026
make AlephBERT, the morphological extrac-027
tion model, and the novel evaluation pipeline028
publicly available for evaluating future PLMs.029

1 Introduction030

Contextualized word representations, provided031

by models such as BERT (Devlin et al., 2019),032

RoBERTa (Liu et al., 2019), GPT3 (Brown et al.,033

2020), T5 (Raffel et al., 2020) and more, were034

shown in recent years to be a critical component for035

obtaining state-of-the-art performance on a wide036

range of Natural Language Processing (NLP) tasks,037

from surface syntactic tasks as tagging and parsing,038

to downstream semantic tasks as question answer-039

ing, information extraction and text summarization.040

While advances reported for English using such041

models are unprecedented, in Modern Hebrew, pre-042

viously reported results using PLMs are far from 043

satisfactory. Specifically, the BERT-based Hebrew 044

section of multilingual-BERT (Devlin et al., 2019) 045

(henceforth, mBERT) did not provide a similar 046

boost in performance as observed by the English 047

section of mBERT. In fact, for several reported 048

tasks, the mBERT model results are on par with 049

pre-neural models, or neural models based on non- 050

contextualized embedding (Tsarfaty et al., 2020; 051

Klein and Tsarfaty, 2020). An additional Hebrew 052

BERT-based model, HeBERT (Chriqui and Yahav, 053

2021), has been recently released, yet without em- 054

pirical evidence of performance improvements on 055

key components of the Hebrew NLP pipeline. 056

Development of PLMs for morphologically-rich 057

and medium-resourced languages such as Modern 058

Hebrew introduces two challenges. First, contex- 059

tualized word representations are obtained by pre- 060

training a large language model on massive quanti- 061

ties of unlabeled textual data. In Hebrew, however, 062

the size of published texts available for training is 063

relatively small. To wit, Hebrew Wikipedia (300K 064

articles) used for training mBERT is orders of 065

magnitude smaller compared to English Wikipedia 066

(6M articles). Second, commonly accepted bench- 067

marks for evaluating Hebrew models, via morpho- 068

syntactic tagging and parsing (Sadde et al., 2018), 069

or named entity recognition (Bareket and Tsarfaty, 070

2020) require decomposition of words into mor- 071

phemes,1 which are distinct of the sub-words (a.k.a. 072

word-pieces) provided by standard PLMs, and are 073

not readily available in their output embeddings. 074

Evaluating BERT-based models on morpheme- 075

level tasks is in fact non trivial. PLMs employ 076

sub-word tokenization, such as WordPiece, for min- 077

imizing Out-Of-Vocabulary cases. Word-pieces 078

are statistically generated in a pre-processing step 079

without utilization of any linguistic information. 080

1These morphemes are affixes and clitics bearing their own
POS. They are termed syntactic words in UD (Zeman et al.,
2018), or segments in previous literature on Hebrew NLP.
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Figure 1: Illustration of the morphological extraction
process. The two-word phrase “ !Nהלב ,”לבית transliter-
ated as “lbit hlbn”, is mapped to word-pieces which are
consumed by a PLM to generate contextualized vectors
and extract the sub-word morphological units.

Corpus File Size Sentences Words
Oscar (deduped) 9.8GB 20.9M 1,043M
Twitter 6.9GB 71.5M 774M
Wikipedia 1.1GB 6.3M 127M
Total 17.9GB 98.7M 1.9B

Table 1: Data Statistics for AlephBERT’s training sets.

Crucially, word-pieces do not reflect morphologi-081

cal segments. Extracting morphological units from082

contextualized vectors generated by PLMs is thus083

challenging, yet necessary in order to enable the084

evaluation of Hebrew PLMs on standard bench-085

marks. To address this we introduce a novel neural086

architecture that recovers the morphological sub-087

word segments encoded in contextualized embed-088

dings. See Figure 1 for the relationships between089

the different processing units.090

We present AlephBERT, a Hebrew pre-trained091

language model, trained on more data and a larger092

vocabulary than any Hebrew PLM before. Then,093

using the proposed extraction model we confirm094

SOTA results on all existing Hebrew benchmarks.2095

We thus present an evaluation suite tailored to fit096

MRLs, i.e., covering sentence-level, word-level and097

importantly sub-word morphological-level tasks098

(Segmentation, Part-of-Speech Tagging, full Mor-099

phological Tagging, Dependency Parsing, Named100

Entity Recognition and Sentiment Analysis), pre-101

senting new and improved SOTA on all tasks.102

2 AlephBERT Pre-Training103

Data. We acknowledge the gap in training data104

size compared with resource-savvy languages3 and105

address it by including massive amounts of tweets.106

2We make our PLM and online demo publicly avail-
able www.anonymous.org allowing to qualitatively assess
present and future Hebrew PLMs.

3See Appendix B for a cross-linguistic survey & statistics.

Specifically, we employ the following datasets: 107

(i) Oscar: Deduplicated Hebrew portion extracted 108

from Common Crawl via language classifica- 109

tion, filtering and cleaning (Ortiz Suárez et al., 110

2020). (ii) Wikipedia: Texts from all of He- 111

brew Wikipedia, extracted using Attardi (2015). 112

(iii) Twitter: Hebrew tweets collected between 113

2014-09-28 and 2018-03-07. We removed markers 114

(“RT:”, “@” user mentions and URLs), and elimi- 115

nated duplicates.4 For data statistics, see Table 1. 116

Model. We used the Transformers training 117

framework of Huggingface (Wolf et al., 2020) and 118

trained two different models: (i) small, with 6 hid- 119

den layers learned from the Oscar portion of our 120

dataset, and (ii) base, with 12 hidden layers trained 121

on the entire dataset. The processing units used 122

are the default word-pieces generated by training 123

BERT tokenizers over the respective datasets, with 124

a vocabulary size of 52K in both cases.5 125

3 Morphological Extraction 126

Modern Hebrew is a Semitic language with rich 127

morphology and complex orthography. As a result, 128

the basic processing units in the language are typi- 129

cally smaller than raw words’ span. Subsequently, 130

most standard evaluation tasks require knowledge 131

of internal morphological boundaries within the 132

raw words (illustrated in Table 2): 133

(i) Segmentation: A sequence of morphological 134

segments representing basic processing units.6 135

(ii) Part-of-Speech (POS) Tagging: Tag each seg- 136

ment with a single POS. 137

(iii) Morphological Tagging: Tag each segment 138

with a POS and a set of morphological features.7 139

(iv) Dependency Parsing: Use each segment as a 140

node in the predicted dependency tree. 141

(v) Morpheme-Based NER: Tag each segment 142

with a BIOES along with its entity-type label. 143

To accommodate the input granularity of these 144

tasks, we developed a neural model designated 145

to produce the disambiguated morphological seg- 146

ments for each word in context. These linguistic 147

segmentations are thus distinct of the WordPieces. 148

4For more details and an ethical discussion, see Section 6.
5See Appendix C for training details, times & compute.
6These units comply with the 2-level representation

of tokens defined by UD, each unit with a single POS
tag. https://universaldependencies.org/u/
overview/tokenization.html

7Equivalent to the AllTags evaluation metric
defined in the CoNLL18 shared task. https:
//universaldependencies.org/conll18/
results-alltags.html
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Raw input !Nהלב לבית (lbit hlbn)
Space-delimited words !Nהלב (hlbn) לבית! (lbit)
Index 5 4 3 2 1
Segmentation !Nלב (lbn) ה! (h) בית! (bit) ה! (h) ל! (l)
POS ADJ DET NOUN DET ADP
Morphology Gender=Masc|Number=Sing PronType=Art Gender=Masc|Number=Sing PronType=Art -

Dependencies 3/amod 5/det 1/obj 3/def 0/ROOT
Word-level NER E-ORG B-ORG
Morpheme-level NER E-ORG I-ORG I-ORG B-ORG O

Table 2: Illustration of Evaluated Word and Morpheme-Based Downstream Tasks. The input is the two-word input
phrase “ !Nהלב ,”לבית transliterated as “lbit hlbn” (to the White House), which is decomposed to 5 morphological
segments (‘to the white the house’). The Hebrew text goes from right to left.

This morphological extraction network works as149

follows. Each input word is represented as (one or150

more) word-pieces associated with contextualized151

embedding vectors produced by the PLM. For each152

word, we average the word-pieces vectors and feed153

the result into a seq2seq module (The “Morphologi-154

cal Extraction Model” in Figure 1) that encodes the155

surface form as a sequence of characters using a156

BiLSTM, followed by a decoder that generates out-157

put sequence of characters, space used as a special158

symbol signalling morphological segment bound-159

aries. We train it for 15 epochs optimized using160

next-char prediction loss.161

For tasks involving labels (POS, Morphological162

Features, NER) we expand this network in a multi-163

task learning setup; when generating am end-of-164

segment symbol, the model also predicts task labels165

and we combine the segment-label losses.166

4 Experiments167

We set out to evaluate Hebrew PLMs on stan-168

dard benchmarks covering sentence, word and sub-169

word (morphological) levels. We compare the170

performance of AlephBERT with all existing He-171

brew BERT instantiations. First, we evaluate on172

Word Segmentation, Part-of-Speech Tagging,173

Full Morphological Tagging, Dependency Pars-174

ing using two available benchmarks: (i) The He-175

brew Section of the SPMRL Task (Seddah et al.,176

2013), (ii) the Hebrew Section of the Universal De-177

pendencies (UD) treebanks (Sadde et al., 2018).178

Next, we evaluate Named Entity Recognition.179

We provide Word-based NER evaluation based180

on the Ben-Mordecai (henceforth BMC) corpus181

(Ben Mordecai and Elhadad, 2005), and evaluate182

Word-based and Morpheme-based NER based on183

the Named Entities and MOrphology (NEMO) cor-184

pus (Bareket and Tsarfaty, 2020). Finally, we evalu-185

ate sentence-based Sentiment Analysis on a dedu-186

Task NER (Morpheme) NER (Word) Sentiment
Corpus NEMO (SPMRL) NEMO BMC FB

Prev. SOTA 77.11 77.75 85.22 NA
mBERT 72.97 79.07 87.77 79.07
HeBERT 74.86 81.48 89.41 81.48
AlephBERTsmall 72.46 78.69 89.07 78.69
AlephBERTbase 79.15 84.91 91.12 84.91

Table 3: Morpheme-based and Word-based NER F1.
Previous SOTA is reported by Bareket and Tsarfaty
(2020). Sentiment Analysis accuracy is reported on a
deduplicated version of Amram et al. (2018).

plicated version of Amram et al. (2018). 187

To evaluate sentence-level classification we re- 188

port sentence accuracy. To evaluate word-level 189

NER performance we report F1 scores on entity 190

spans. To evaluate morpheme-level tasks we use 191

two variants that have been used in the literature: 192

the Aligned MultiSet F1 Scores as in previous work 193

on Hebrew (More et al., 2019; Seker and Tsarfaty, 194

2020) and the Aligned Segment F1 scores used in 195

the UD shared tasks (Zeman et al., 2018).8 196

Sentence-Level Tasks Sentiment analysis accu- 197

racy results are provided in Table 3. Sentence level 198

predictions are achieved by directly fine-tuning the 199

PLMs using an additional sentence-classification 200

head. All BERT-based models substantially out- 201

perform the original CNN Baseline reported by 202

Amram et al. (2018), where AlephBERTbase is set- 203

ting a new SOTA.9 204

Word-Level Tasks In Table 3 we report F1 NER 205

scores on the two word-level test sets. Word- 206

level NER predictions are achieved by directly 207

fine-tuning the PLMs using an additional token- 208

classification head. While we see noticeable im- 209

provements for the mBERT and HeBert variants 210

8For further discussion of the metrics (strengths weak-
nesses and comparison) we refer the reader to Appendix E

9For more sentence-level and word-level experimental de-
tails see Appendix D.
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Task Segment POS Features UAS LAS
Prev. SOTA NA 90.49 85.98 75.73 69.41
mBERT 97.36 93.37 89.36 80.17 74.9
HeBERT 97.97 94.61 90.93 81.86 76.54
AlephBERTsmall 97.71 94.11 90.56 81.5 76.07
AlephBERTbase 98.10 94.90 91.41 82.07 76.9

Table 4: Morpheme-Based results on the SPMRL cor-
pus. Aligned MultiSet (mset) F1 on Segmentation, POS
tags and Morphological Features - previous SOTA re-
ported by (Seker and Tsarfaty, 2020) (POS) and (More
et al., 2019) (Features). Un/Labeled Accuracy Scores
on morphological-level Dependency Parsing - previous
SOTA reported by (More et al., 2019).

Task Segment POS Features
Prev. SOTA 96.03 93.75 91.24
mBERT 97.17 94.27 90.51
HeBERT 97.54 95.60 92.15
AlephBERTsmall 97.31 95.13 91.65
AlephBERTbase 97.70 95.84 92.71

Table 5: Morpheme-Based Aligned (CoNLL shared
task) F1 on the UD corpus. Previous SOTA reported by
Minh Van Nguyen and Nguyen (2021)

over the current SOTA, the most significant in-211

crease is achieved by AlephBERTbase, setting a212

new and improved SOTA on this task.213

Morpheme-Level Tasks As a particular novelty214

of this work, we report BERT-based results on mor-215

phological sub-words (segment-level) information.216

Specifically, we evaluate Word segmentation, POS,217

Morphological Features, NER and dependencies218

compared against morphologically-labeled test sets.219

In all cases we use raw space-delimited words as220

input and produce morphological segments with221

our new morphological extraction model.222

Table 4 presents evaluation results for the223

SPRML dataset, compared against the previous224

SOTA of (More et al., 2019). For segmentation,225

POS tagging, and morphological tagging we report226

aligned multiset F1 scores. BERT-based segmen-227

tations are similar, all scoring in the high range228

of 97-98 F1, which are hard to improve further.10229

For POS tagging and morphological features, all230

BERT-based models considerably outperform pre-231

vious SOTA. For syntactic dependencies we report232

labeled and unlabeled accuracy scores of the trees233

generated by YAP (More et al., 2019) on our pre-234

dicted segmentation. Here we see impressive im-235

provement compared to the previous SOTA joint236

10According to error analysis, most of these errors are an-
notation errors or truly ambiguous cases.

morpho-syntactic framework. It confirms how mor- 237

phological errors early in the pipeline negatively 238

impact downstream tasks, and highlight the impor- 239

tance of morphologically-driven benchmarks as an 240

integral part of PLM evaluation for MRLs. 241

We see a repeating trend placing AlephBERTbase 242

first on all morphological tasks, indicating the 243

depth of the model and a larger pre-training dataset 244

improve the ability of the PLM to capture word- 245

internal structure. These trends are replicated on 246

the UD Hebrew corpus reported in Table 5. 247

Earlier in this section we considered NER as a 248

word-based task that simply requires fine-tuning 249

on the word level. However, this setup is not 250

accurate enough and less useful for downstream 251

tasks, since exact entity boundaries are often word- 252

internal (Bareket and Tsarfaty, 2020). We hence 253

report morpheme-based NER evaluation, respect- 254

ing exact boundaries of entity mentions. To obtain 255

morpheme-based NER labels we use the multi-task 256

model that predicts NER labels while performing 257

segmentation. The results are reported in Table 3. 258

The differences in NER scores are substantial and 259

draw our attention to the relationship between the 260

size of the PLM, the size of the pre-training data 261

and the quality of the final NER predictions. Also, 262

we see that while AlephBERT excels at morphosyn- 263

tactic tasks, on tasks with a more semantic flavour 264

there is room for improvement. 265

5 Conclusion 266

Modern Hebrew, a morphologically-rich and 267

medium-resource language, has for long suffered 268

from a gap in the resources available for NLP 269

applications, and lower level of empirical results 270

than observed in other, resource-rich languages. 271

This work provides the first step in remedying 272

the situation, by making available a large Hebrew 273

PLM, nicknamed AlephBERT, with larger vocabu- 274

lary and larger training set than any Hebrew PLM 275

before. Crucially, we augment the PLM with 276

a morphological disambiguation component that 277

matches the input granularity of the downstream 278

tasks. AlephBERTbase obtains state-of-the-art re- 279

sults on the tasks of morphological segmentation, 280

POS tagging, morphological feature extraction, de- 281

pendency parsing, named-entity recognition, and 282

sentiment analysis outperforming all existing He- 283

brew PLMs. Our proposed morphologically-driven 284

suite serves as a solid foundation for future evalua- 285

tion of Hebrew PLMs and of MRLs in general. 286
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6 Ethical Statement287

We follow the proposal of Bender and Friedman288

(2018) regarding professional practice for NLP289

technologists and address ethical issues that result290

from the use of data in the development of the mod-291

els described in our work.292

Pre-Training Data. The two initial data sources293

we used to pre-train the language models are Os-294

car and Wikipedia. In using the Wikipedia and295

Oscar we followed standard language model train-296

ing efforts, such as BERT and RoBERTa (Devlin297

et al., 2019; Liu et al., 2019). We use the language-298

specific Oscar data according to the terms specified299

in (Ortiz Suárez et al., 2020) and we extract texts300

from language-specific Wikipedia dumps. On top301

of that, a big portion of the data used to train our302

AlephBERT language model originates from the303

Twitter sample stream.11 As shown in Table 1 this304

data set includes 70M Hebrew tweets which were305

collected over a period of 4 years (from 2014 to306

2018). We acknowledge the potential inherent con-307

cerns associated with Twitter data (population bias,308

behavior patterns, bot masquerading as humans309

etc.) and note that we have not made any explicit at-310

tempt to identify these cases. We only used the text311

field of the tweets and completely discard any other312

information included in the stream (such as iden-313

tities, network of followers, structure of threads,314

date of publication, etc). We have not made any315

effort to identify or filter out any samples based on316

user properties such as age, gender and location nor317

have we made any effort to identify content charac-318

teristics such as genre or topic. To reduce exposure319

of private information we cleaned up all user men-320

tions and URLs from the text. Honoring ethical and321

legal constraints we have not manually analyzed322

nor published this data source. While the free form323

language expressed in tweets might differ signifi-324

cantly from the text found in Oscar/Wikipedia, the325

sheer volume of tweets helps us close the substan-326

tial resource gap with minimal effort.327

Training and Evaluation Benchmarks. The328

SPMRL (Seddah et al., 2013) and UD (Sadde et al.,329

2018) datasets we used for evaluating segmentation,330

tagging and parsing, were used to both train our331

morphological extraction model as well as provide332

us with the test data to evaluate on morphological333

11https://developer.twitter.com/en/
docs/twitter-api/tweets/volume-streams/
api-reference/get-tweets-sample-stream

level tasks. Both datasets are publicly available and 334

widely used in research and industry. 335

The NEMO corpus (Bareket and Tsarfaty, 2020) 336

used to train and evaluate word and morpheme 337

level NER is an extension of the SPMRL dataset 338

augmented with entities and follows the same li- 339

cense terms. The BCM dataset used for training 340

and evaluating word-leve NER was created and 341

published by Ben Mordecai and Elhadad (2005) 342

and it is publicly available for NER evaluation.12. 343

We used the sentiment analysis dataset of Am- 344

ram et al. (2018) for training and evaluating Aleph- 345

BERT on a sentence level task, and we follow their 346

terms of use. As mentioned, this dataset has major 347

flows, and while we describe carefully the steps 348

we’ve taken to fix them before using this corpus in 349

our experiments, we performed this cleaning for 350

internal evaluation purposes and we note that we 351

have not published the fixed version of the corpus. 352

We will make our in-hous cleaning scripts and split 353

information publically available. 354
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A Related Work 563

Contextualized word embedding vectors are a ma- 564

jor driver for improved performance of deep learn- 565

ing models on many NLP tasks. Initially, ELMo 566

(Peters et al., 2018) and ULMFit (Howard and 567

Ruder, 2018) introduced contextualized word em- 568

bedding frameworks by training LSTM-based mod- 569

els on massive amounts of texts. The linguistic 570

quality encoded in these models was demonstrated 571

over 6 NLU tasks: Question Answering, Textual 572

Entailment, Semantic Role labeling, Coreference 573

Resolution, Name Entity Extraction, and Sentiment 574

Analysis. The next big leap was obtained with 575

the introduction of the GPT-1 framework by Rad- 576

ford and Sutskever (2018). Instead of using LSTM 577

layers, GPT is based on 12 layers of Transformer 578

decoders with each decoder layer is composed of 579

a 768-dimensional feed-forward layer and 12 self- 580

attention heads. Devlin et al. (2019) followed along 581

the same lines as GPT and implemented Bidirec- 582

tional Encoder Representations from Transformers, 583

or BERT in short. BERT attends to the input tokens 584

in both forward and backward directions while op- 585

timizing a Masked Language Model and a Next 586

Sentence Prediction objective objectives. 587

BERT Benchmarks An integral part involved in 588

developing various PLMs is providing NLU multi- 589

task benchmarks used to demonstrate the linguistic 590

abilities of new models and approaches. English 591

BERT models are evaluated on 3 standard major 592

benchmarks. The Stanford Question Answering 593

Dataset (SQuAD) (Rajpurkar et al., 2016) is used 594

to test paragraph level reading comprehension abil- 595

ities. Wang et al. (2018) selected a diverse and rel- 596

atively hard set of sentence and sentence-pair tasks 597

which comprise the General Language Understand- 598

ing Evaluation (GLUE) benchmark. The SWAG 599

(Situations With Adversarial Generations) dataset 600

(Zellers et al., 2018) presents models with partial 601

description of grounded situations to see if they can 602

consistently predict relevant scenarios that come 603

next thus indicating the ability for commonsense 604

reasoning. When evaluating Hebrew PLMs, one of 605
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the key pitfalls is that there are no Hebrew versions606

for these benchmarks. Furthermore, none of the607

suggested benchmarks account for examining the608

capacity of PLMs for encoding the word-internal609

morphological structures which are inherent for610

MRLs.611

A.1 Multilingual vs Monolingual BERT612

Devlin et al. (2019) produced 2 BERT models for613

English and Chinese. To support other languages614

they trained a multilingual BERT (mBERT) model615

combining texts covering over 100 languages. They616

hoped to benefit low resourced languages with617

the linguistic information obtained from other lan-618

guages with large dataset sizes. In reality however619

mBERT performance on specific languages have620

not been as successful as English.621

Consequently several research efforts focused622

on building monolingual BERT models as well623

as providing language specific evaluation bench-624

marks. Liu et al. (2019) trained CamemBERT, a625

French BERT model evaluated on syntactic and626

semantic tasks in addition to natural language infer-627

ence tasks. Rybak et al. (2020) trained HerBERT,628

a BERT PLM for Polish. They evaluated it on a629

diverse set of existing NLU benchmarks as well630

as a new dataset for sentiment analysis for the e-631

commerce domain. Polignano et al. (2019) created632

Alberto, a BERT model for Italian, using a massive633

tweet collection. They tested it on NLU tasks - sub-634

jectivity, polarity (sentiment) and irony detection635

in tweets. In order to obtain a large enough training636

corpus in low-resources languages such as Finnish637

(Virtanen et al., 2019) and Persian (Farahani et al.,638

2020) a great deal of effort went into filtering and639

cleaning text samples obtained from web crawls.640

Languages with rich morphology introduce an-641

other challenge involving identification and ex-642

traction of sub-word morphological information.643

Nguyen and Tuan Nguyen (2020) applied a special-644

ized segmenter on the training data and normalized645

all the syllables and words before training their646

Vietnamese PheBERT model. In Arabic, like in647

Hebrew, words are composed of sub-word mor-648

phological units with each morpheme acting as649

a single syntactic unit (the way words are in En-650

glish). Antoun et al. (2020) acknowledged this by651

pre-processing the training data using a morpho-652

logical segmenter producing segments that were653

used instead of the actual words to train AraBERT.654

Doing so they were able to produce output vectors655

that correspond to morphological segments as op- 656

posed to the original words. On the other hand, 657

this approach requires the application of the same 658

segmenter at inference time as well. 659

Like any pipeline approach, this setup is suscep- 660

tible to error propagation stemming from the fact 661

that words can be morphologically ambiguous and 662

the predicted segments in fact might not represent 663

the correct interpretation of the words. As a result, 664

the quality of the PLM depends on the accuracy 665

achieved by the segmenting component. We, on the 666

other hand, do not make any changes to the input, 667

letting the PLM encode relevant morphological in- 668

formation associated with complete Hebrew words. 669

Rather, we post-process the output by transform- 670

ing contextualized vectors into morphological-level 671

segments to be used by the downstream tasks. 672

Across all of the above-mentioned language- 673

specific PLMs, evaluation was performed on the 674

token-,sentence- or paragraph-level. Non of these 675

benchmarks examine the capacity of PLMs to en- 676

code sub-word morphological-level information 677

which we focus on in this work. 678

B PLM Training Data Size Comparison 679

The Hebrew portions of Oscar and Wikipedia pro- 680

vides us with a training set size order of magnitude 681

smaller compared with resource-savvy languages, 682

as shown in Table 6. 683

Language Oscar Size Wikipedia Articles
English 2.3T 6,282,774
Russian 1.2T 1,713,164
Chinese 508G 1,188,715
French 282G 2,316,002
Arabic 82G 1,109,879
Hebrew 20G 292,201

Table 6: Corpora Size Comparison: High-resource (and
Medium-resourced) languages vs. Hebrew.

C AlephBERT Pre-training Details 684

Following the work of Liu et al. (2019) we optimize 685

AlephBERT with a masked-token prediction loss. 686

We deploy the default masking configuration - 15% 687

of word-piece tokens are masked, In 80% of the 688

cases, they are replaced by [MASK], in 10% of the 689

cases, they are replaced by a random token and in 690

the remaining cases, the masked tokens are left as 691

is. We trained for 5 epochs with learning rate set 692
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to 1e-4 followed by an additional 5 epochs with693

learning rate set to 5e-5 for a total of 10 epochs.694

To optimize GPU utilization and decrease train-695

ing time we split the dataset into 4 chunks based696

on the number of tokens in a sentence and conse-697

quently we are able to increase batch sizes, result-698

ing in dramatically shorter training times.699

chunk1 chunk2 chunk3 chunk4
max tokens 0>32 32>64 64>128 128>512
num sentences 70M 20M 5M 2M

We trained AlephBERTbase over the entire700

dataset on an NVidia DGX server with 8 V100701

GPUs which took us 8 days. AlephBERTsmall was702

trained over the Oscar portion only using 4 GTX703

2080ti GPUs taking 5 days in total.704

D Sentence-based and Word-based705

Experimental Details706

D.1 Sentiment Analysis707

We first report on a classification task, assigning a708

sentence with one of three values: negative, posi-709

tive, neutral. By appending a classification head we710

turn a BERT model into a sentence level classifier711

(utilizing sentence level embedded vector repre-712

sentation associated with the special [CLS] BERT713

token).714

We used a version of the Hebrew Sentiment715

dataset which we corrected by removing the leaked716

samples and re-partitioned to add a development717

set. This version has a total of 8,465 samples. We718

fine-tuned all models for 15 epochs with 5 different719

seeds and report the mean accuracy.720

D.2 Word-based Named Entity Recognition721

Here we assume word-based sequence labeling722

model. The input comprises of the sequence of723

words in the sentence, and the output contains724

BIOES tags indicating entity spans. By appending725

a token-classification head we predict NER class726

labels for each word vector provided by the PLM727

(in cases of multiple word pieces we use the first728

one).729

We evaluate this model on two corpora. We first730

evaluate on the BMC corpus which provides word-731

level annotations. It contains 3294 sentences and732

4600 entities, and has seven different entity cate-733

gories (date, location, money, organization, person,734

percent, time). To remain compatible with the orig-735

inal work we train and test the models on the 3736

different splits as in Bareket and Tsarfaty (2020).13 737

We then move to evaluate on the NEMO corpus 738

which is an extension of the SPMRL dataset with 739

Named Entities, marked by BIOES tags. This cor- 740

pus provides both word and morpheme based entity 741

annotations, where the latter contains the accurate 742

(word-internal) entity boundaries. The NEMO cor- 743

pus has nine categories (Language, Product, Event, 744

Facility, Geo-Political, Location, Organization, Per- 745

son, Work-Of-Art). It contains 6220 sentences and 746

7713 entities, and we used the standard SPMRL 747

train-dev-test. Both word-based and morpheme- 748

based models were trained for 15 epochs. 749

E Morpheme Level Evaluation Metrics 750

Aligned Segment The CoNLL18 Shared Task 751

evaluation campaign14 reports scores for segmen- 752

tation and POS tagging15 for all participating lan- 753

guages. For multi-segment words, the gold and pre- 754

dicted segments are aligned by their Longest Com- 755

mon Sub-sequence, and only matching segments 756

are counted as true positives. We use the script 757

to compare aligned segment and tagging scores 758

between oracle (gold) segmentation and realistic 759

(predicted) segmentation. 760

Aligned Multi-Set In addition we compute F1 761

scores similar to the aforementioned with a slight 762

but important difference as defined by More et al. 763

(2019) and Seker and Tsarfaty (2020). For each 764

word, counts are based on multi-set intersections of 765

the gold and predicted labels ignoring the order of 766

the segments while accounting for the number of 767

each segment. Aligned mset is based on set differ- 768

ence which acknowledges the possible undercover 769

of covert morphemes which is an appropriate mea- 770

sure of morphological accuracy. 771

Discussion To illustrate the difference between 772

aligned segment and aligned mset, let us take for 773

example the gold segmented tag sequence: b/IN, 774

h/DET, bit/NOUN and the predicted segmented tag 775

sequence b/IN, bit/NOUN. According to aligned 776

segment, the first segment (b/IN) is aligned and 777

counted as a true positive, the second segment how- 778

ever is considered as a false positive (bit/NOUN) 779

and false negative (h/DET) while the third gold seg- 780

ment is also counted as a false negative (bit/NOUN). 781

13www.anonymous.org
14https://universaldependencies.org/conll18/results.html
15respectively referred to as ’Segmented Words’ and

’UPOS’ in the CoNLL18 evaluation script
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On the other hand with aligned mulit-set both b/IN782

and bit/NOUN exist in the gold and predicted sets783

and counted as true positives, while h/DET is mis-784

matched and counted as a false negative. In both785

cased the total counts across words in the entire786

datasets are incremented accordingly and finally787

used for computing Precision, Recall and F1.788
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