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Abstract

Diffusion models struggle to produce samples that respect constraints, a common
requirement in scientific applications. Recent approaches have introduced reg-
ularization terms in the loss or guidance methods during sampling to enforce such
constraints, but they bias the generative model away from the true data distribution.
This is a problem, especially when the constraint is misspecified, a common issue
when formulating constraints on scientific data. In this paper, instead of changing
the loss or the sampling loop, we integrate a guidance-inspired adjustment into the
denoiser itself, giving it a soft inductive bias towards constraint-compliant samples.
We show that these softly constrained denoisers exploit constraint knowledge to
improve compliance over standard denoisers, and maintain enough flexibility to
deviate from it when there is misspecification with observed data.

1 Introduction

Generating realistic data that satisfies specific constraints is a fundamental requirement across numer-
ous applications in scientific discovery, ranging from finding solutions for ODEs [5] to designing
proteins with certain properties [19]. Deep learning techniques have been proposed to solve many of
these problems, with varying degrees of success [9, 8, 46, 37]. One of the most popular frameworks
used in differential equation-based applications is that of Physics-Informed Neural Networks [44],
where the differential equation residual is used to “inform” the training objective of the neural
network, typically through the addition of a residual that quantifies how much the neural network
solution deviates from “obeying” the differential equation.

A common pain point in these applications of deep learning has been that neural networks struggle
to balance the competing objectives of maintaining data fidelity while satisfying the constraints.
Without careful fine-tuning, these methods tend to get stuck on poor local minima that do not reflect
the true data distribution [32] or simply result in solutions that do not fulfill the constraints [26]. This
is particularly problematic when the training data deviates from the mathematical model used to
formulate the constraints [16, 64].

Diffusion models [20, 53] have garnered attention due to their high sample quality, with recent
methods exploring their use in inverse problems [11, 51, 4] and solving physical differential equations
[25, 2]. Some of these diffusion-based approaches have explored the use of pre-trained unconditional
models, i.e., models that learn the Stein score, to learn a “guidance” adjustment term on some
constraint to guide the diffusion process towards data points that satisfy it [11, 51]. Another branch
of research has explored the use of optimization during training the model using a regularizer while
training the model [25, 2]. In the former approach, approximations in the inference-time adjustments
cause bias in the modeled distribution, and the end result may not improve constraint satisfaction
significantly over a standard diffusion model, as they are based on various simplifying approximations.
The latter approaches can make optimization more difficult and bias the generative distribution away
from the data [64, 1], as illustrated in Fig. 1.
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(a) Problem setup (b) Vanilla diffusion (c) PIDM (baseline) (d) SCD (ours)

Figure 1: Using a regularizer-based Physics Informed Diffusion Model to enforce the misspecified
constraint makes it hard to capture the true data distribution compared to an unconstrained vanilla
diffusion. Our method makes the best of the constraint information and vanilla diffusion properties,
where it satisfies the partial constraint when it is useful, while maintaining enough flexibility to
capture the true geometry.

In this paper, we present Softly Constrained Denoisers (SCD) for diffusion models. Inspired by
guidance literature [11, 51, 52], we propose a method to endow diffusion model denoisers with
constraint knowledge by incorporating a differentiable residual function into the forward pass of
the network. Using this approach, we considerably improve constraint satisfaction compared to
vanilla diffusion models and approximate guidance-based methods, while keeping a low amount
of distributional bias. We present our main ideas and results on an illustrative example and a
representative PDE problem.

The contributions of this paper are summarized as follows.

* We propose a method to transform any denoiser architecture to a “softly constrained denoiser”
that has an inductive bias towards generating samples that satisfy the constraint. The constraints
are embedded in the neural net architecture through the addition of a guidance-like adjustment
term that is optimized end-to-end. This adds little computational overhead and preserves the
asymptotic data fitting guarantees of standard diffusion models.

We prove that previous regularizer-based methods cause bias that breaks the standard distribution-
modeling guarantees of diffusion models. We show empirically that these methods perform
especially poorly with constraint misspecification in representative differential equation prob-
lems. In contrast, our method retains all the distribution-modeling guarantees of standard
diffusion due to only changing the neural net architecture, and can can extract useful knowledge
from the constraint while keeping enough flexibility to deviate from the constraint if the data is
not described by it (see Fig. 1 for an example).

We demonstrate strong empirical results of the effectiveness of our approach through experiments
on both illustrative problems and a PDE benchmark, showing that softly constrained denoisers
achieve superior constraint satisfaction compared to existing methods, while maintaining sample
quality and robustness under constraint misspecification.

2 Background

Diffusion models generate samples from a data distribution p(x¢) by learning how to denoise samples
from a forward noising process [50, 20, 53, 27], which is generally assumed to be of the form:

) = / N (2220, 0(t)T) plzo) dazo. 0

In simpler terms, clean samples @ from the data distribution p(2¢) = pga(o) are corrupted by
a Gaussian process N (0, o (¢)?I) at time ¢. The corresponding reverse denoising process can be
formulated as a probability flow ODE [27]:

dx; = —6(t)o(t) Ve log p(x:) dt. )

Starting with a sample from an isotropic Gaussian N (z¢; xg, 02,,I) and integrating the ODE back-
wards in time, it is possible to recover a sample from the original data distribution & ~ p(xg), as

long as the score is learned accurately and o,y is large enough [53]. To get V, log p(x:), we first



learn a denoiser conditional on the noise level ¢:
ﬁ(@) = ]Eth(t),:l:odia[a,th;l)(wt | xo) [w(t)”De(mtv t) - .’130”2] s 3)

where w(t) and p(t) define the weighting and sampling frequency of noise levels during training,
and Dy is diffusion model’s denoiser with parameters 6. At convergence, Dy(xs,t) =~ E[xq | z+].
Combined with Tweedie’s formula E[zq | z;] = x; + 0(¢)?V 4, log p(z;), this ensures that we can

recover an approximation of the score V4, log p(x:) with sg(x:) = %};zt. Accordingly, the

loss in Eq. (3) is also called the denoising score matching loss [57, 53] in the diffusion literature.

Distributional Bias The core problem in generative modeling is to learn a surrogate distribution
pe(x) parameterized by 6 to approximate a data distribution pgu, () [55]. We call a generative
framework biased if py(x) does not converge to Py, () under optimal conditions, i.e., after finding
the global optimum of the loss with infinite data, the sampling procedure does not result in samples
from pga (). Importantly, the diffusion model training and sampling in Eq. (3) and Eq. (2) is
unbiased in this sense and can thus approximate any data distribution.

Guided Generation Assume we have a constraint function c(x) where the constraint is satisfied
when ¢(x) = 1 and not satisfied when ¢(xz) = 0. Given a diffusion model with output distribution
p(xg), we can turn it into a constrained model with distribution p(xo)c(x() by adjusting the score as
follows [51, 11]:

Sadjusted(wt) = vmt Ing(wt) + vmt IOg/C(a’.O)p<w0 ‘ wt) dxg. “4)

Many methods have been proposed in the diffusion guidance literature for approximating the second
term on the right hand side [21, 51, 11, 52, 47], which generally can be summarized in choosing
an approximation for the distribution p(xq | ;) and an approximation scheme for the integral, e.g.
Monte Carlo integration. The idea is to do these approximations at inference time without any
changes to the weights of the trained model. While inference-time adjustments are convenient,
any error in the approximation results in bias in the output distribution of the diffusion model, and
constraint satisfaction is only approximate.

Regularization Another approach to constrain the generative space of a model is to use regularizers
on the training objective. Popularized by Physics Informed Neural Networks [44], the general idea is
to have an optimization target that is expanded with a differentiable constraint, typically a residual
R : R? — R related to a differential equation for a physical system, as follows:

ﬁtargel(a) = L(G) + >‘HR(0)”7 &)
where A > 0 is a hyperparameter that defines how much weight to give to the constraint compliance,
the residual R is used to evaluate the output of a neural network with parameters 6 and ||-|| is

some scalar norm of choice, e.g., L,. Although intuitively the target distribution of the learning
task should naturally learn to minimize this residual, these PDE-based regularizers can make the
loss landscape hard to optimize [32, 45]. Further, the optimum of Eq. (5) forfeits the property that
Dg(x,t) = E[x | ;] at convergence and the connection between the denoiser and V4, log p(x;)
is lost (see Proposition 3.1). Thus, the addition of these targets in the loss function causes bias in the
generative distribution [2, 1].

Constraint Misspecification In science, we build simplified mathematical models around com-
plex phenomena and systems to allow us to study and make use of them. However, since these
models are inherently approximations to real phenomena, they are bound to have varying degrees
of misspecification. We say a constraint is misspecified if it rules out anything that belongs to
the true data distribution. Formally, for a constraint c¢(x) € {0,1} where {x : ¢(x) = 1} is the
constraint-satisfying set, the constraint is misspecified if for any @, pgan(2)c(€) # Pdan ().

3 Methods

A key limitation of guidance and regularization methods is that they forfeit the theoretical guarantees
provided by training a denoiser with Eq. (3) and directly using it for sampling through Eq. (2). One
aspect not determined by the diffusion model’s mathematics, however, is the neural architecture
of the denoiser Dy(x¢,t). In principle, this can be parameterized freely. This flexibility motivates
us to embed the constraint function ¢(x) directly into Dy(xy,t), imparting an inductive bias



towards constraint satisfaction while still allowing deviations when the constraint does not faithfully
represent the training data. In this section, we present a principled way of constructing such denoiser
parameterizations, building on connections to the guidance literature and Eq. (4).

Class of Constraints In this paper, we consider constraints that are possible to write in a form
R(x) = 0, where R is some function. Thus, ¢(x) = 1 for all  in {x : R(x) = 0} and 0 elsewhere.
This could, for instance, be a finite difference based residual formed from a PDE, or a circle in
2D, where R(x) = 2% + 23 — 1. We further assume R to be continuously differentiable in the
input @, such that we can calculate gradients VR (x). We then define a relaxed constraint function
lo(x) = exp(—||R(-)||) for some choice of norm ||-||, similar to the recipe prescribed by Song et al.
[52], connecting our method with the guidance literature. Importantly, the norm and more broadly
the design of [..(x) is a design choice for our method, and we could design it in any way that provides
information about the constraint to the denoiser architecture.

Guidance Approximation Following common ideas in the guidance literature, we first propose a
practical approximation to Eq. (4).This leads to a formula that nudges the denoiser towards satisfying
the constraint by using the gradient of a (relaxed) constraint function V,l.(xo). We then use
this approximate form as an inspiration for a denoiser parameterization that learns to calibrate this
gradient-based nudge, freeing the base neural network from having to output values that are perfectly
aligned with the constraints.

First we choose an approximation to p(xg | ;) in Eq. (4). A common choice is p(zg|x:) =

N(Dy(xy, 1), E(2)|t1)’ where Eg‘t is a hyperparameter [21, 51, 11, 4, 41, 47]. Similarly to Chung

et al. [11], we choose Uglt = 0. Thus, p(z | x:) turns into a Dirac delta on Dy (¢, t) and taking the
integral in Eq. (4) with this choice produces the following:
oui D 7t -
S ded (z) ~ w + Va, logle (Do, 1)) - (6)
t
This expression results in a vector-Jacobian product through the denoiser, which can result in
considerable computational overhead:

V, logl. (Dg(xs, t))—r = Vp, logl. (Dg(x4, t))T Vz,Do(x4,t). @)

To obtain a more efficient approximation, we recall that the Jacobian is connected to the denoising

covariance through V, Do (x4, t) = % [4]. Analogous to our earlier treatment of p(xq | x+),

we approximate the conditional covariance as Cov[xg | ;] = A, where A; is some diagonal matrix.
Altogether, this yields the following denoiser correction:

Dy guidea(x¢,t) = Do (2, 1) + Ao (t)*V p, loglo(Dg(x,1)). (®)

Softly Constrained Denoiser The key idea in our paper is as follows: since Eq. (8) tends to generate
samples that satisfy the constraint for a suitably chosen A;, we can form a denoiser parameterization
that uses the same structure for easier constraint compliance through a learned A; term

Do, t) = Dg™ (@4, t) + Yo(@e, )o(£)*V e log Le (D™ (21, 1)), ©)

where Dgﬁg(mt, t) is the original denoiser output and vy (¢, t) is a learnable scaling factor that can

be parameterized by the same base neural network as Dy (x;,t), or by a separate network. The
model can then be trained using the standard denoising score matching loss in Eq. (3). Crucially,
the correction term in Eq. (9) only evaluates the gradient of the constraint /. until Dy, avoiding the
costly calculation of a vector-Jacobian product in the forward pass. While we adopt this particular
approximation, many alternative (and potentially more sophisticated) formulations of the guidance
formula are possible. Each such choice would naturally define a corresponding softly constrained
denoiser, making our approach a general recipe for deriving new variants. In our experiments, we
focus on Eq. (9) and leave more sophisticated parameterizations for future work. We show the training
algorithm explicitly in Algorithm 1 and visualize the new denoiser architecture in Fig. 2.

3.1 Analysis of Regularization Bias and ELBO Degradation

In this section, we formally analyze the impact of introducing a regularization term to the training
objective, as proposed in PIDM [2]. We demonstrate that while this regularization enforces constraint



Softly Constrained Denoiser Logic

Algorithm 1 Loss for SCD
Base Denoiser

Require: Data pyq¢. (), constraint [.(x), noise Xe, b DY (%, 1) Xpase
o(t), weights w(t), noise p(t)
Init 8; Sample xq, t, €

Ty < xo+o(t)e

Compute SCD Output z4:
Thase 4~ ngg (mt’ t) Scaling Network
g < Vg logle(Tpase) ’Yeg(xut)
A e ol Ho(t)? .

i@ %ibase‘i“)\'g

Output Loss: Lo
L w(t)|[@e(zs, t) — xo?

Constraint Gradient
vx IOg lc ( )

Noise Level |

R AN A S

Figure 2: Architecture of SCD.
satisfaction, it biases the denoiser away from the true conditional expectation and also necessarily
degrades the variational lower bound (ELBO) of the diffusion model [20, 31].

Consider the regularized objective function for a specific noise level ¢ (ignoring the weighting term
w(t) for brevity):

Licg(0) = Eaya, [I[Do(wt,t) — xol|*] + A|R(Dg(xe, 1)), (10)

where A > 0 is the regularization weight and R is the constraint residual.
Proposition 3.1. Ler D}, (x,,t) be the denoiser that minimizes the regularized objective L,.q. The

optimal denoiser outputr(;i shifted from the true conditional mean of the data distribution by a term
proportional to the gradient of the residual. Specifically:
* T
Dy (@1, 1) = Elzo|ze] — A [V, R(y)] R(y)

reg

b an
where we assume a scalar constraint residual for simplicity, or R represents the norm function
directly. Since E[xq | x{] does not generally satisfy the constraint, and the residual or its gradient
are zero only when the constraint is satisfied, the optimal denoiser output is shifted. The asymptotic
distributional guarantees of diffusion models are thus lost since there is no connection between the
optimal denoiser and the score function V 5, log p(x+).

Proposition 3.2. The use of the regularized denoiser Dy, strictly increases the Evidence Lower
Bound (ELBO) loss component compared to the vanilla denoiser D}, ... That is, the model’s
approximation of the data likelihood deteriorates.

See Appendix A for the proofs. Note that the PIDM paper [2] also considered regularising based on a
DDIM integration output, but their best results were obtained by regularising the Dy (¢, t) directly.

4 Related Work

Here we cover related work most relevant to our approach. See Appendix B for more related work on
enforcing constraints through modifications to the sampling process.

Diffusion Models Applied to PDEs Jacobsen et al. [25] propose conditional PDE generation
using a Controlnet-like conditioning structure [62] and an inference-time adjustment where the final
samples are optimized to have a small PDE residual. Bastek et al. [2] present Physics-Informed
Diffusion Models (PIDM), a framework to train DDPM-based diffusion models with a PDE residual
as a regularizer term to minimize along the loss function. Several works utilize DPS-like guidance
[11] for PDE data assimilation, targeting noisy measurements [49], constraint satisfaction [24],
or infinite-dimensional Banach spaces [61]. Similarly, Cheng et al. [7] employ projection-based
sampling [63]. Unlike these, our method avoids approximate inference-time guidance. Furthermore,
our parameterization is orthogonal to recent architecture-focused works on neural operators [22, 40]
or GNNs [56], as it remains compatible with any base architecture.

Injecting Measurement Structure for Training Inverse Problem Solvers Mathematically, the
closest work is the likelihood-informed Doob’s h-transform by Denker et al. [14], who finetune
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Figure 3: (a) “Chop” misspecification for our experiments. For all points with angles —a < ¢ < o the
x coordinate is projected to x = cos . (b) Average Wasserstein-1 distances on the circles examples
with varying degrees of misspecification on “Chop”. Vanilla and SCD keep steady values of W;
distance which indicates their flexibility to learn the true data distribution, whereas PIDM consistently
increases with higher levels of misspecification. Means drawn with two standard deviations.

adapters using observation gradients V,p(y | ©o), similar to our constraint-informed parameter-
ization using V,l.(xo). However, our motivation and methodology differ: they use likelihoods
p(y | o) for Bayesian inference from noisy observations, whereas we define [.(x() to restrict gen-
eration to a constrained subset. Their goal is an alternative to inference-time adjustment, while we
seek to alleviate distributional biases and constraint misspecification. Furthermore, we train from
scratch, whereas they finetune adapters on larger models. Finally, Liu et al. [34], Chung et al. [12]
propose embedding structure via bridge processes that interpolate between condition and target; this
is inapplicable to our setting, as we do not target a translation problem.

Distributional Constraints Khalafi et al. [29] formulate a distributional constrained generation task
with the constraint that the generative distribution should have a KL divergence below a threshold to
a set of auxiliary distributions ¢*. Khalafi et al. [30] extend the idea to compositional generation.

Soft Inductive Biases Finzi et al. [16] propose using “dual path” layers to build a neural network,
where one path uses a hard-constrained layer, e.g. a rotationally equivariant layer, and the other uses a
more “relaxed” layer. By assigning a lower prior probability to the relaxed path, a soft inductive bias
towards solutions that satisfy the constraint is imposed, without restricting the possible hypothesis
space for the neural network.

S Experiments

We first showcase and analyze our method on an illustrative set of toy examples in Section 5.1. In
Section 5.2, we evaluate our method on the Darcy flow PDE data set, a commonly used benchmark in
the diffusion scientific constrained generation literature [25, 2]. Additional results on the Helmholtz
Equation, with comparisons with FunDPS [61], are accessible in Appendix D. For all experiments,
~o was implemented as a small 2-layer MLP that takes Dy (x;) and ¢ as input and outputs a scalar.
Details are available in Appendix F. We also use a modified version of the loss function by Karras
et al. [27]: in our experiments we observed that the models had issues with refining the fine-grained
details at the lower noise levels, and modifying the distribution from which the noise levels are
sampled significantly improved the results across all models. The details of the modification are
available in Appendix F.1

5.1 Illustrative Examples

We explore our method in new variants of the toy data set introduced by Bastek et al. [2], introducing
new misspecification modalities. The data itself is simply points sampled from the unit circle centered
at the origin, and we train a diffusion model to learn to produce samples on the circle. Given a sample
(x,y) € R?, we define a residual function for this setting with the following equation:

2
Rae(w,y) = (Va2 47 1) . (12)



Table 1: Measured (best) Wasserstein-1 distances from the true data distribution with each method.
All the values are presented as the mean with two standard deviations across 100 estimates with
1000 samples taken from each method. Lower is better. All values are multiplied by 10~3.

Method Unit circle Dent Chop (o = 3)
Vanilla 3.91+0.18 7.534+0.46 3.34+0.11
PIDM 4.044+0.20 6.65+1.44 33.75+3.37

SCD (ours) 2.16+0.15 56+044 242+0.16

The architecture and training details are shown in Appendix F.2. We use 7. = exp(—Reircte (2, y)) as
our constraint term for these experiments. We then evaluate the performance of vanilla diffusion, reg-
ularizer based diffusion (PIDM) and our method on a few examples of misspecification. Specifically,
we use Eq. (12) with PIDM and our method on variations of the circle, namely a circle with a “dent”
on top and a circle that is “chopped” after a particular x coordinate.

For “Dent”, we use a circle with a polynomial interpolation at the top half. This produces the shape
seen in Fig. 1, the details on the interpolation are available in Appendix F.2. For “Chop”, as illustrated
in Fig. 3, we define an angle threshold —a < ¢ < « for which all points on the circle with angle ¢
have their « coordinate projected to cos a.

The results of using vanilla diffusion, PIDM, and our method on the standard circle and the two
described misspecifications are summarized in Table 1. We can see that in the case of the unit circle,
all methods achieve relatively similar W distances, indicating that all are capable of capturing the
underlying geometry. For “Dent”, we see that PIDM starts to have higher values, and we can see
from Fig. 1 that this is because training with PIDM makes the model incapable of putting samples on
the dent. This issue is most prominent with “Chop”, where the W distance with PIDM is almost an
order of magnitude higher than the other two methods: this is because it does not put any mass on the
projected line, it only learns the samples on the arc along the circle.

To measure the effect of varying the misspecifications on the toy data, we vary the angle for “Chop”
and note the change on the W distance. This is seen on Fig. 3. Both vanilla diffusion and our method
stay relatively steady for all different «,, while PIDM sees a steady increase with higher degrees
of misspecification. Note the 1¥/; distance for PIDM is worse than vanilla diffusion even when the
constraint is correctly specified at o« = 0, potentially due to the distribution being biased along the
circle even if the constraint is satisfied. Similar issues were visually noticed in [2] when using a high
weight on the regularization term.

5.2 Darcy Flow

The task is to learn how to produce samples of a permeability field K (x,y) and a pressure field
p(,y) in two dimensions (x,y) € R? that satisfy the following differential equation:

Rparey (K, p) = V- (KVp) + f =0, (13)

where f is the measurement of the flow of some fluid through a porous medium, and corresponds to
the divergence of the vector field defined by K Vp, or the net amount of fluid entering and exiting a
given point. For a brief treatment on the topic, see Appendix C.

This differential equation doubles as a residual function we can use to verify our generated solutions.
For the experiments, the differential terms are estimated through finite differences using the same
stencils used by Bastek et al. [2], meaning K and p are sampled as matrices in R™*". We use this
implementation to define our constraint adjustment r. = exp(— |Rparcy (K, p)|), where K and p
are the denoiser outputs. To tackle this problem, we use a diffusion model with a UNet backbone
developed by Karras et al. [28], and use a discretization of K and p in R64%64 The architecture,
training details and runtimes are available in Appendix F.3. We highlight the small relative overhead
in runtime between our method and a vanilla score matching implementation.

Distributional Fidelity, Misspecification and Residuals Darcy Flow is a mathematical model
particularly used to infer properties of a material in a real physical system. As such, using this model
can be prone to different sources of error, ranging from measurement error (e.g., miscalibrated tools,
noisy environments) to using it on a system with critical flow, where the fluid is in a state between
laminar and turbulent flow. In this section, we present experiments on a simple case where the
measured flow is on a wrong scale (an example of miscalibration).



Table 2: Measured (best, second best) residual values and validation set NLL of the different methods
across different levels of source and sink misspecification. Our method shows good performance
across all misspecification levels. Residual values presented are mean absolute residuals across 1000
samples with two standard deviations and NLL values are on the complete validation set, reported
in bits/dim. Vanilla does not use the constraint knowledge, so we treat it the same for all levels as a
baseline. Lower is better.

Origina[ increasing misspecificication

Metric Method Sfmax = 10 Sfmax = 20 fmax = 30 fmax = 40
Vanilla 0.157 £0.071 0.157 £ 0.071 0.157 £ 0.071 0.157 £0.071
Guided Vanilla 0.141 £ 0.063 0.139 £ 0.067 0.140 £ 0.065 0.139 £ 0.066

Residual PIDM 0.025 £0.010 0.332+0.007 0.647 £ 0.007 0.963 £ 0.009
SCD (ours) 0.113 £0.048 0.106 £ 0.049 0.1144+0.059 0.118 £0.051
Vanilla -10.5 -10.5 -10.5 -10.5
Guided Vanilla —10.3 —10.3 —10.3 —10.3

NLL PIDM -3.7 —-3.7 -3.6 -3.2
SCD (ours) —8.4 —6.9 -5.9 —5.8

To induce the misspecification, we test out different values for the measured flow f in the constraint,
while keeping the original data. The results using vanilla, guided vanilla, PIDM and our method are
shown in Table 2 reported with residual values and NLL. The vanilla diffusion with inference-time
guidance is implemented using Eq. (6) following “Loss Guided Diffusion” by Song et al. [52], and
the guidance scale used for the guided vanilla was tuned to a value of 0.03 based on the residual
values with a grid search. Details on this guidance method can be seen in Appendix E. Qualitative
visualizations and samples from our method are available in Appendix C.1. We highlight that PIDM
is especially sensitive to the induced misspecifications, causing its residuals to go up considerably
to the point that it performs worse than a baseline vanilla diffusion model. On the other hand, our
model shows relative resilience to these changes. We hypothesize that it can still use the information
in the area where the f-field is correctly specified as zero, while learning to adapt the gradient
information used for the source and the sink. Using a guidance method with vanilla diffusion slightly
improves the residuals but not by a significant margin, and the same behavior continues across
different misspecification levels.

6 Discussion and Conclusion

In this work, we introduced the Softly Constrained Denoiser (SCD), a simple way to embed constraint
knowledge directly into diffusion model denoisers. Unlike guidance-based methods that add
constraints only at inference time or regularization-based methods that bias the training distribution,
our approach provides a soft inductive bias that improves constraint satisfaction while retaining
flexibility when constraints are misspecified. We demonstrated these benefits through illustrative
examples (Section 5.1) and PDE benchmarks (Section 5.2), showing that SCD outperforms standard
diffusion models and existing constraint-enforcing approaches when the constraint is partially
misspecified. Our results suggest that SCD can serve as a drop-in upgrade for diffusion-based
generative modeling in applications where constraints are desired.

Limitations and Future Work A limitation of our proposed method is that our denoiser form is,
at the end of the day, an approximation to the score function for the tilted distribution r.(xo)p(xo).
As such, the approximation may limit the usefulness of the inductive bias that it provides. Another
limitation is that our model is not guaranteed to generate samples within a particular hard constraint,
and if an application requires exact constraint satisfaction, further postprocessing of generated samples
is necessary. Finally, even though the inductive bias provided by the denoiser parameterization does
not necessarily inhibit the diffusion model from following the data distribution, the parameterization
may push the model towards particular biases in practice. Further, in the presence of significant
misspecification the new parameterization may cause noise relative to standard denoisers. Future
work could explore deriving SCDs based on more advanced guidance approximations and applying
them in various scientific application areas. Even better robustness to constraint specification could
be achieved by introducing learnable parameters to [.(x) itself.
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Appendices

A Proofs

Proposition 3.1. Let Dy, (y,t) be the denoiser that minimizes the regularized objective L. The
optimal denoiser output is shifted from the true conditional mean of the data distribution by a term
proportional to the gradient of the residual. Specifically:

Djyo(we, t) = Elzolze] — MV, R(y)] " R(y) (11)

’
y=Dy

reg

where we assume a scalar constraint residual for simplicity, or R represents the norm function
directly. Since E[xq | x{] does not generally satisfy the constraint, and the residual or its gradient
are zero only when the constraint is satisfied, the optimal denoiser output is shifted. The asymptotic
distributional guarantees of diffusion models are thus lost since there is no connection between the
optimal denoiser and the score function V 5, log p(x+).

Proof. Lety = Dg(x,t). The objective can be rewritten as the expected risk for a given input z;:

J(y) = Eayla, [Ily — z0ll*] + MR y)[I*. (14)

To find the optimum y*, we take the gradient with respect to y and set it to zero:
Vil (y) = Vy ([lylI* = 25" Elwolae] + Ell|zo]*]) + AV, IR ()] (15)
0 = 2(y — Ezolz]) + 2A(V,R(y)) ' R(y)- (16)

Solving for y yields the result. Consequently, D}, (¢, t) # E[zo|x:] unless A = 0 or the constraint

. . reg
gradient is zero. O

*

Proposition 3.2. The use of the regularized denoiser Dy, strictly increases the Evidence Lower
Bound (ELBO) loss component compared to the vanilla denoiser D, ... That is, the model’s
approximation of the data likelihood deteriorates.

Proof. The standard diffusion loss Lar = E[||Dg (¢, t) — 20]|?] corresponds to the variational bound
on the negative log-likelihood if using a specific weighting w(¢)[31]. It is a well-known result that the

unique global minimizer of this quadratic loss is the conditional expectation D ... (x¢,t) = Elxo|zy].

Since Dy, (w4, t) # E[zo|z:] (from Proposition 3.1), and Ly is strictly convex with respect to the

prediction y, it follows that:

EIOWH [HDfeg(xt) - 'rOHQ] > E1?0|93t [HDjanilla(xt) - xOHQ] . (17)

Specifically, by the bias-variance decomposition, the increase in the diffusion loss is exactly the
squared magnitude of the shift derived in Proposition 3.1:

AL = || D}y (2, t) — Elzo|a]||>. (18)

Thus, optimizing the regularized objective Lge forces the model to trade oft data likelihood for
constraint satisfaction, confirming the distributional bias observed in Table 1. O

B Additional Related Work

Inference Time Adjustment for Inverse Problems Many methods target adjusting diffusion
models at inference time to solve inverse problems, many of them formally targeting approximation
of Eq. (4). Song et al. [53] was one of earliest papers to propose inference-time adjustments to the
diffusion model to solve problems like inpainting and color restoration. Chung et al. [10], Wang et al.
[58], Zhu et al. [63] propose more advanced methods for a wider range of inverse problems. The first
methods to make the explicit connection to Eq. (4) were [21, 11, 51]. While the method by Song
et al. [51] only worked for linear inverse problems, Song et al. [52] generalized it to general guidance
functions through Monte Carlo integration of Eq. (4). Works focused on improving the p(xq | x+)
approximation include [4, 41, 47].
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Hard-Constraint Diffusion via Modified Dynamics Several works impose constraints by changing
the diffusion dynamics so that the support is restricted by construction. Riemannian diffusion models
and flow matching models move the noising and denoising processes to a target manifold, enabling
sampling on spheres, tori, hyperboloids, and matrix groups but requiring smooth geometry and geomet-
ric operators [13, 23, 6]. Fishman et al. [17, 18], Lou and Ermon [35] propose to use noising processes
that are constrained within convex sets defined by inequality constraints. while [33] tackle the problem
by learning standard diffusion models in a dual space created using a mirror map. Star-shaped DDPMs
tailor noise to exponential-family distributions suited to constrained manifolds [39]. These methods
provide hard constraints but are typically specialized to particular geometries or constraint classes.

Optimizing Samples to Match with Constraints Ben-Hamu et al. [3] generate samples with
constraints by optimizing a source point in the noisy latent space such that the generative ODE
solution matches with the constraint. Tang et al. [54] instead optimize the noise injected during
the stochastic sampling process. Poole et al. [42] generate samples by directly optimizing the
target image within a constrained space (e.g., images parameterized by a neural radiance field [38]),
while minimizing the diffusion loss for the image. Wang et al. [59] extends the method with a
particle-based variational framework. In a similar manner, Mardani et al. [36] formulate the sampling
process as a optimizing a variational inference distribution on the clean samples.

C Darcy Flow

Darcy Flow refers to a set of equations used to study the (laminar) flow of fluids in porous media. In
two dimensions it is defined by the following set of equations for x = (x, y) [48, 25, 2]:

u(z) = — K(z)Vp(z) (19)
V- -u=f(x) (20)
u - n =0, boundary condition 2D
/p(ac)da: =0, (22)

where K is a permeability field that describes how easy a fluid flows through the medium, p is the
pressure field that defines where the fluid is pushed and pulled, u the velocity field of the fluid (as
visualized in Fig. 4) and f is the net flow of fluid through a given point. Ner flow means that if there
is the same amount fluid entering and exiting at a given point, then the net flow is zero. As a more
concrete example, we can use Darcy flow to describe how water will flow through a body of sand. We
can expect more water to flow at the areas where we apply more pressure to squeeze out the water.

&
s
s
-~

Figure 4: A simplified visual representation of the Darcy velocity field defined by K'Vp.
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There are many important assumptions around Darcy flow before it is applicable. We must have
laminar flow at steady state, which means that there must not be sudden changes in the flow of the
fluid. This depends on the geometry of the body that the fluid is traversing through, its viscosity, its
speed, among other factors that are generally described through the Reynolds number Schlichting
and Gersten [48], Potter and Ramadan [43]. The Reynolds number needed to break into critical flow
also will change between different configurations, so it may be difficult to know a priori if Darcy flow
is an appropriate way to model the system.

Through experience it has been observed that the Darcy flow approximation can work well for media
that are “fine-grained” enough, as the gaps between the particles in the porous matrix do not break
the flow of water Woessner and Poeter [60]. However, at a big enough particle size, water starts to
bounce more between collisions, causing the flow to become more turbulent.

C.1 Qualitative results from Darcy Flow

Fig. 5 shows a histogram of the learned distribution of values for pressure and permeability using
each of the compared methods. Particularly, as noted by [2], PIDM presents excessive bias compared
to the other methods.

\\:| Vanilla [ Guided Vanilla SCD (Ours) [ PIDM Dutu‘
1()()_
10'— |
A 10-1—
100— ‘e;‘ .
10-2—
21071 / b
z ;, 2103 —
£'1072— Z
£ £ 10—
Q10-3— A
-5—| I
1] 10 Mﬁ
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o] | "] AT
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Figure 5: Darcy flow validation. 1000 samples were generated with each approach, using 100
denoising steps for each. Error bars indicate the minimum and maximum from the samples. The
distribution PIDM learns is highly biased; all other methods have higher distributional fidelity.
Particularly, our method shows low distributional bias compared to vanilla.

Qualitative samples using each of the methods can be seen in Fig. 6.

D Additional Results from the Helmholtz Equation

The Helmholtz Differential Equation is used to model the propagation of waves through (possibly
heterogeneous) media. Its 2-dimensional version is given by:

RHelmholtz (U, a) = V2u(w) + kgu(a:) —a(x)=0, €0, 1)2, (23)

where v is known as the solution field, a the source field and & the wave number. With this
presentation, the solution is given by a spatial wave in 2 dimensions and boundary conditions equal to
0. This equation is particularly important in acoustics and electromagnetics, describing the way sound
and light travel through space. It is generally subject to the measurement of &k, which uniquely defines
the solution of the system given the boundary conditions. The wave number is usually estimated with
sensor readings in noisy media, which subjects the equation to observation error.

Similar to our approach to Darcy Flow, we use Eq. (23) as the residual to define r. =
exp(— ’RHelmhth(u’a) ), where u and a correspond to the denoiser outputs. Following Yao et al. [61],
we use a discretization of u and a in R128*128 modeled by the Diffusion Model with the same UNet
backbone as Darcy and a wave number k£ = 1. The training details are available in Appendix F.4.

Distributional Fidelity, Misspecification and Residuals In this setting, we induce the misspecifi-
cations through the addition of Gaussian noise to the wave number. The degree of misspecification
is handled by the standard deviation of this noise, and this experiment allows us to measure how
sensitive SCD can be to noisy gradients through the constraint function. The results are summarized
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Figure 6: Residuals and samples produced by vanilla diffusion, DPS guidance, SCD and PIDM.

Table 3: Measured (best, second best) residual values and validation set NLL of the different methods
across different levels of source and sink misspecification. Our method shows good performance
across all misspecification levels. Residual values presented are mean absolute residuals across 1000
samples with two standard deviations and NLL values are on the complete validation set, reported
in bits/dim. Vanilla does not use the constraint knowledge, so we treat it the same for all levels as a
baseline. Lower is better.

Original increasing misspecificication
Metric Method Oobs =0 Oobs = 0.05 Oobs = 0.1 Oobs = 0.5
Vanilla 0.035 £ 0.007 0.035 £ 0.007 0.035 £ 0.007 0.035 £ 0.007
Residual ~ FunDPS 13.84 £ 3.4 13.86 + 3.4 13.84 + 3.3 142+ 3.4
DPS 0.032 £ 0.004 0.033 £ 0.005 0.035 £ 0.004 0.034 £ 0.003
SCD (ours)  0.025 +0.003 0.024 +0.003 0.024+0.002 0.023 & 0.003
Vanilla —21.6 —-21.6 —-21.6 —-21.6
NLL FunDPS —7.2 —-7.3 =7.2 —7.2
DPS —-21.6 —21.5 —21.5 —21.5
SCD (ours) —21.6 —21.5 —21.5 —21.5

in Table 3, where we compare our results with the guidance framework FunDPS using a model
trained by the authors [61], a vanilla diffusion model and DPS guidance on the vanilla diffusion
model. The FunDPS sampling is done with a combination of a reconstruction loss based on partial
observations and the residual to observe the issues resulting from imbalanced guidance. SCD manages
to preserve the NLL with the most competitive residual values in this task. It is evident that using
this combined guidance in FunDPS heavily favors the reconstruction error, essentially forfeiting the
physical consistency of the generated samples. On the other hand, regular DPS only sees marginal
improvements in terms of the residuals compared to the vanilla diffusion model.
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E Loss-Guided Diffusion Models

Loss-Guided Diffusion Models were proposed by Song et al. [52] as a “plug-and-play” guidance
method to make pre-trained diffusion models generate better constraint-compliant samples at inference
time. The core idea is that a learned unconditional score s}, ~ V, log p(x;) acts as a prior to which
we can apply Bayes’ rule for a posterior p(x|c) with some condition c:

Va, logp (wi|c) = Va, log (W) (24)
0

= Vg, logp (c|lx) + Vg, logp (x) — Va, c) (25)

= Vg, logp (clxt) + Vg, logp () , (26)

where x; is the diffusion sample at time ¢ and c is a condition for the generative process, and we have
used the fact that log p(c) is a constant so its gradient is 0. The likelihood term p(c|x;) is analytically
untractable, as the condition c only applies to clean samples xy. However, we can write it as follows:

p(C‘wt):/ p(c|$0,$t)p($o|$t)dw0=/ plclxo)p(xo|x:)deo, 27

where we have assumed that c is conditionally independent of «; when given xy. We then take the
approximation:
p(mo‘mt) ~ N (xO‘,Uﬂ E) ) (28)

with mean parameter ; and covariance parameter X, as this allows us to use Tweedie’s formula,
connecting the score function with the exact moments of p(xg|x:) [15, 47]:

p = Elzola:] =z + 07 Va, log p(a:) (29)
¥ = Cov[mo|ze] = 07 | 07 V2, logp(zy) +1 | . (30)
—_——
Hessian

Since the Hessian is expensive to evaluate in high-dimensional data, it is common to see the approx-
imation X =~ Ugl I be used, and this is the choice taken by Song et al. [52]. Then, we can assume

that the likelihood on clean samples p(c|xz) can be expressed with a differentiable, lower-bounded

constraint loss function ¢, : Xy — R by:

exp (—le(20))
7 )

where Z = fmo p(xo) exp (—£.(xo)) dz is a normalizing constant. Plugging equation 31 into

equation 24, we get:

Vaz, logp(xt|c) = Vg, logp (x:) + Ve, log/ exp (—lc(xo)) N (wo; 14 U§|t1> dzg. (32)

Zo

p(clmo) = (3D

Song et al. [52] point out that Chung et al. [11]’s DPS is a special case of this equation taking

oo)¢ — 0 and with /. being a linear projection. Song et al. [52] then proposes the approximation
2

Iy
1+40,2
16 Monte Carlo samples to guide the vanilla diffusion model for our Darcy Flow experiments as a
baseline.

to the integral by using Monte Carlo integration with 03‘ ;= . We adopt this scheme with

F Architectures and training details

The architectures and experiments on this work were implemented using PyTorch 2.4.1. All experi-
ments were ran on single GPUs, from either NVIDIA H200, H100, A100 or V100 GPUs. For both
experiments, 7y, is implemented as a 2-layer MLP with an embedding dimension of 100. The input
for either task is the denoiser output Dy (¢, t) and the diffusion time ¢. Between each layer there is
an ELU activation function to ensure that the scaling factor remains positive.
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F.1 Modified Loss Function

The loss function by Karras et al. [27] has the form seen in Eq. (3) with the choice of distributions ¢ ~
LogNormal(fiin, 02,;,) and @, ~ N (g, tI), and weighting function w(t) = (¢ + 0guaz)/(t03,,) -
Crucially, the choice for the distribution for ¢ is free, i.e. a design choice; Karras et al. [27] choose
the log-normal distribution based on the observation that most of the important denoising steps in a
diffusion model happen in the “intermediate” noise levels, since at high noise levels there is little
distinction between steps and at very-low noise levels the differences are negligible. However, on
the ODE problems presented in this paper we have observed that low noise levels have a substantial
effect on the final residuals. Simply trying to set fiu,i, to a small value can cause numerical stability
issues, because it may start sampling values that are too small and consequently make the weighting
function blow up.

Following this, and based on the observation that in practice most numerical integration samplers
always end at a predetermined minimum time step, we choose the noise level distribution ¢ ~
TruncLogNormal(tiain, 0t21'ain7 a) where a defines the lowest possible noise level to be sampled. With
this change, we noticed a substantial improvement in the residuals in the Darcy Flow experiment, with
the results shown in Table 4. We use a mean of -1.5 and standard deviation of 1.2 for the log-normal
loss and a mean of -2, standard deviation of 1.7 and truncation lower limit of -4 for the truncated
log-normal loss.

Table 4: Residuals obtained in the Darcy flow experiments using the noise level distribution ¢ ~
LogNormal(fiyin, 02,;,) by Karras et al. [27] and our choice ¢t ~ TruncLogNormal(fisin, 024, @)-

Using the truncated log-normal shows a substantial improvement over the log-normal in this task.

Origina[ increasing misspecificication
Distribution = Method Sfmax = 10 Sfmax = 20 fmax = 30 Sfmax = 40
Vanilla 0.874£0.411 0.874£0.411 0.874£0.411 0.874 £ 0.411
log-normal Guided Vanilla  0.869 £0.382  0.862 £ 0.372  0.872 £ 0.404 0.869 £ 0.379
SCD (ours) 0.342£0.136 0.414£0.174 0.429£0.173 0.428 £0.174
Vanilla 0.157£0.071  0.157£0.071  0.157 £0.071 0.157 £ 0.071
Truncated Guided Vanilla  0.141 £0.063  0.139 £ 0.067  0.140 £ 0.065 0.139 £ 0.066
log-normal SCD (ours) 0.113 £0.048 0.106 £0.049  0.114 +£0.059 0.118 £ 0.051

Following these results, we use the truncated log-normal distribution for all our experiments.

F.2 Circles

For the toy example we use a 3 layer MLP with an embedding dimension of 128. To train the networks
we use the Adam optimizer with 81 = 0.9, S = 0.999 and a fixed learning rate of « = 1 - 10~%.

The data set consisted of 10000 points sampled from the unit circle, and the models were trained over
1000 epochs with a batch size of 128.

For the “Dent” variant of misspecification, we use the following parametric curve:

C(0) =(r(9) cos(8),r(0) sin(6)) (33)
us s 2
r(0) 10.25~5(Vm10592_2>,5) : (1+0.6 <1z<wrap(192_2)> )) (34)
wrap(f) = (0 +7) mod 27) — 7 (35)
[ =u?)d <1
f(u,5) = {O otherwise, (36)

where C defines the coordinates of every point in the curve in polar coordinatese.
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F.3 Darcy Flow
For Darcy Flow we used the UNet implementation by Karras et al. [28]. We use the Heun sampler

implementation by Karras et al. [27] with 100 denoising steps. The used hyperparameters on the
network are summarized on Table 5.

Table 5: Architecture hyperparameters for the Darcy Flow experiments

Hyperparameter \ Value
Model channels 24
Number of residual blocks 8
Per-resolution multipliers | [1, 2, 3, 4]
Attention resolutions [16, 8]

F.4 Helmholtz Equation
For the Helmholtz Equation we used the UNet implementation by Karras et al. [28]. We use the Heun

sampler implementation by Karras et al. [27] with 100 denoising steps. The used hyperparameters on
the network are summarized on Table 6.

Table 6: Architecture hyperparameters for the Helmholtz Equation experiments

Hyperparameter \ Value
Model channels 32
Number of residual blocks 8
Per-resolution multipliers | [1, 2, 3, 4]
Attention resolutions [16, 8]

F.5 Runtimes

The details on the runtimes on an NVIDIA H200 GPU with vanilla diffusion and our method are
shown in Table 7. We note that our method sees the most impact at sampling time, since the
overhead duplicates per each sampling iteration because the Heun sampler makes two neural function
evaluations per iteration.

Table 7: Runtimes of vanilla and our method on training and sampling on an NVIDIA H200 GPU.
Sampling is done for eight samples at a time using the Heun sampler implementation by Karras et al.
[27]. Numbers are reported as a mean with two standard errors over 300 iterations. Units of time are
specified for each column.

Method Training iteration wall clock time (ms)  Sampling iteration wall clock time (s)
Vanilla 110 £ 3.62 7.79 £+ 0.021
SCD (ours) 148 £+ 2.25 10.3 +0.029

The baseline PIDM results were reproduced with a pre-trained model provided by Bastek et al.
[2], and for the misspecification experiments we trained a diffusion model with PIDM with each
misspecified residual using the same hyperparameter setups as Bastek et al. [2]. The vanilla score-
matching and SCD networks were trained using Adam with an initial learning rate of 2 - 10~3 and
weight decay as detailed by Karras et al. [28]. Both the vanilla model and SCD were trained for 300k
iterations, although SCD plateaus at around 250k. We use a batch size of 64. For all experiments we
use Exponentially Moving Averages for sample generation with a decay rate of 0.99.
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G Additional ““chop” samples

]
L4 3 ¢
14 { (-
) { YR | &
. \'w
(a) Vanilla diffusion (b) PIDM (baseline) (c) SCD (ours)

Figure 7: Additional samples from the “chop” example.
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