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Abstract

Diffusion models are powerful generative models for complex data distributions,1

yet they often struggle to generate samples that precisely satisfy constraints inherent2

in scientific applications. While recent approaches have introduced regularization3

terms or guidance methods to enforce such constraints, they lead to bias in the4

generative distribution, compromising the model’s ability to faithfully represent the5

true data distribution. In this extended abstract, we propose a different approach that6

embeds arbitrary denoiser architectures with differentiable constraints as inductive7

biases from initialization, maintaining the asymptotic unbiasedness of standard8

denoising score matching. Through experiments on a representative PDE problem,9

we show that our method generates constraint-compliant samples without the10

distributional biases introduced by current methods.11

1 Introduction12

The challenge of generating realistic data that satisfies specific constraints represents a fundamental13

requirement across numerous applications in scientific discovery, ranging from finding solutions for14

ODEs [4] to designing proteins with certain properties [9]. Traditional approaches to constrained gen-15

eration often struggle to balance the competing objectives of maintaining data fidelity while satisfying16

these constraints, frequently resulting in artifacts or suboptimal solutions [16]. Recent advances in dif-17

fusion models have garnered attention due to their high distributional fidelity to data and sample qual-18

ity, with methods exploring their use in inverse problems [5, 25, 3] and solving physical ODEs [15, 2].19

Previous approaches have explored the use of pre-trained unconditional models, i.e. models that20

learn the Stein score ∇xt
log p(xt), to learn a “likelihood-score” adjustment ∇xt

log p(c |xt) on21

a constraint c to guide the diffusion process towards data points that satisfy the constraints [5, 25].22

Another branch of research has additionally explored the use of optimization during training the23

model using a regularizer while training the model [2]. In the former approach, approximations in24

the inference-time adjustments cause bias in the modeled distribution and the end result may not25

improve constraint satisfaction significantly over a standard diffusion model. The latter approaches26

can make optimization more difficult and the methods can suffer from high distributional bias [1].27

In this paper, we present Denoisers with Differentiable Constraint Knowledge (DeDiCo). Inspired28

by guidance literature [5, 25, 26] and second-order autodifferentiation [11] , we propose a method29

to embed constraint knowledge into arbitrary denoisers by incorporating a differentiable constraint30

function rc : Rd 7→ R into the forward pass of the network. Using this approach, we significantly31

improve constraint satisfaction compared to vanilla diffusion models and approximate guidance based32

methods, while keeping a low amount of distribution bias. We present our main ideas and results on a33

toy example and a representative PDE problem.34
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2 Background35

Diffusion models generate samples from a data distribution p(x0) by learning how to denoise samples36

from a forward noising process [24, 27, 13, 17], which is generally assumed to be of the form:37

p(xt) =

∫
N

(
xt;x0, σ(t)

2I
)
p(x0) dx0. (1)

The corresponding reverse denoising process can be formulated as a probability flow ODE [17]:38

dxt = −σ̇(t)σ(t)∇x log p(xt) dt. (2)

Starting with a sample from an isotropic Gaussian N (xt;x0, σ
2
maxI) and integrating the ODE back-39

wards in time, it is possible to recover a sample from the original data distribution x ∼ p(x0), as40

long as the score is learned accurately and σmax is large enough [27]. To get ∇xt
log p(xt), we first41

learn a denoiser conditional on the noise level t:42

L(θ) = Et∼p(t),x0∼pdata,xt∼p(xt|x0)

[
w(t)∥Dθ(xt, t)− x0∥2

]
, (3)

where w(t) and p(t) define the weighting and sampling frequency of noise levels during training.43

At convergence, Dθ(xt, t) ≈ E[x0 |xt]. Combined with Tweedie’s formula E[x0 |xt] = xt +44

σ(t)2∇xt
log p(xt), this ensures that we can recover an approximation of the score ∇xt

log p(xt)45

with sθ(xt) =
Dθ(xt)−xt

σ(t)2 . Accordingly, the loss in Eq. (3) is also called the denoising score matching46

loss in the diffusion literature [28].47

Guided Generation. Assume we have a constraint function rc(x) where the constraint is satisfied48

when rc(x) = 1 and not satisfied when rc(x) = 0. It could be a hard constraint such that rc(x) ∈49

{0, 1}, or a relaxed continuous constraint rc(x) ∈ [0, 1]. Given a diffusion model with the output50

distribution p(x0), we can turn it into a constrained model with distribution p(x0)rc(x0) by adjusting51

the score as follows [25, 5]:52

sadjusted(xt) = ∇xt
log p(xt) +∇xt

log

∫
rc(x0)p(x0 |xt) dx0. (4)

Many methods have been proposed in the diffusion guidance literature for approximating the second53

term on the right hand side [25, 5, 14, 26, 23], which generally can be summarized in choosing an54

approximation for the distribution p(x0|xt) and an approximation scheme for the integral, e.g. Monte55

Carlo integration. The idea is to do these approximations at inference time without any changes56

to the weights of the trained model. While inference-time adjustments are convenient, any error57

in the approximation results in bias in the output distribution of the diffusion model and constraint58

satisfaction is only approximate.59

Regularization. Another approach to constrain the generative space of a model is to use regularizers60

on the training objective. Popularized by Physics Informed Neural Networks [21], the general idea is61

to have an optimization target that is expanded with a differentiable constraint, typically a residual R62

related to a differential equation for a physical system, as follows:63

Ltarget(θ, ŷ) = L(θ, ŷ) + λ∥R(ŷ)∥, (5)

where λ ≥ 0 is a hyperparameter that defines how much weight to give to the constraint compliance64

and ŷ is the output of the trained model. Although intuitively the target distribution of the learning65

task should naturally learn to minimize this residual, studies show that these PDE-based regularizers66

can make the loss landscape hard to optimize [20, 22]. Further, the optimum of Eq. (5) forfeits the67

property that Dθ(xt, t) ≈ E[x0 |xt] at convergence and the connection between the denoiser and68

∇xt
log p(xt) is lost. Thus, the addition of these targets in the loss function can cause bias in the69

modeled distribution as well.70

3 Methods71

Our goal is to propose a method that 1) does not cause uncontrolled bias 2) still improves the constraint72

compliance over a standard diffusion model. The problems with guidance and regularization based73

methods motivates us to propose the following: Instead of using Eq. (4) to define a guidance74

function at inference time, we use it to define a constrained denoiser through Tweedie’s formula and75
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backpropagate through the entire expression during training using second-order autodifferentiation.76

Intuitively, we learn the guidance term to match with the DSM loss in Eq. (3), ensuring no bias.77

Crucially, a benefit remains over a standard unconstrained denoiser: In the limit of a perfect ap-78

proximation to the formula, the diffusion model is forced to generate samples that comply with the79

constraint throughout training, including initialization. We hypothesize that doing this with even80

an approximation of Eq. (4) will have two effects: 1) The model will converge in less steps and81

generate samples that match more accurately with the constraint than an unconstrained model; and82

2) by constraining the space of distributions that the model can represent, the method may be more83

data efficient than an unconstrained model.84

To implement the idea in practice, we need to choose an approximation to p(x0 |xt) and a numerical85

integration scheme. As mentioned in section 2, the guidance literature has developed numerous86

such approaches: we follow [26], with the choice p(x0 |xt) = N
(
Dθ(xt, t), σ

2
0|tI

)
, where σ2

0|t is a87

hyperparameter typically chosen to be σ(t)2

1+σ(t)2 , and using Monte Carlo integration for the expectation:88

∇xt
log p (xt) ≈

Dθ(xt, t)− xt

σ2
t

+∇xt
log

∑
x0∼N

(
Dθ(xt,t),σ2

0|tI
) rc(x0). (6)

We then use the reparameterization x′
0 = x0 −Dθ(xt, t) to allow for backpropagation through the89

network. Accordingly, we define our constrained denoiser as:90

Dc
θ(xt, t) = Dθ(xt, t) + σ2

t∇xt
log

∑
x′

0∼N
(
0,σ2

0|tI
) rc(x′

0 +Dθ(xt, t)). (7)

Now, we can train the model with the standard denoising score matching loss in Eq. (3) by replacing91

Dθ(xt) with Dc
θ(xt). Notice that this requires second-order auto-differentiation: The full forward92

pass contains the regular forward pass through the original denoiser Dθ(xt, t) summed together with93

a backward pass with respect to inputs xt. During optimization, we then backpropagate through this94

expanded computational graph.95

As mentioned in Section 2, for a wide array of problems we have access to a residual function96

R : Rd → R that quantifies how well a data point complies with a constraint, e.g. the solution to an97

ODE. When we have access to such a function, it is easy to define the constraint in our framework as98

rc(·) = exp(−∥R(·)∥) for some norm ∥·∥.99

4 Related Work100

Conditional Generation and Guidance There exists an ample body of work in guidance for diffu-101

sion models: Dhariwal & Nichol [8] introduce classifier guidance, where a pre-trained unconditional102

score is adjusted conditionally through a smaller classifier network. Ho & Salimans [12] propose103

classifier-free guidance, where a diffusion model is adjusted conditionally through a ratio of PDFs,104

balancing a weight between the unconditional score and the conditional adjustment term. In a recent105

development, Karras et al. [19] propose contrasting a smaller model with a larger model in a manner106

similar to classifier-free guidance.107

There is a growing body of work focused on using diffusion models to solve inverse problems.108

Chung et al. [5] and Song et al. [25] propose using pre-trained diffusion models adapted with Eq. (4)109

for particular inverse problems. Song et al. [26] generalized this notion to any differentiable loss110

function. Our work differentiates itself by integrating the constraint information into the denoiser111

itself, embedding an inductive bias in the network at both training and inference.112

Recent theory around guidance includes Guo et al. [10] who study the use of gradient information to113

guide pre-trained diffusion models and give a thorough theoretical analysis of convergence rates for114

Gaussian linear models. Denker et al. [7] use Doob’s h-transform to give insights into conditional115

generation, with a deep control theoretical analysis. Concurrent work by Dasgupta et al. [6] explores116

the adaptation of PDEs for posterior score adjustment on diffusion models with particular interest in117

inverse problem theory. To the best of our knowledge, there is no current work that explores training118

a constraint-adjusted score from scratch.119

Physical Inverse Problems Jacobsen et al. [15] propose CoCoGen, a classifier guidance-based120

diffusion model, where a pre-trained ControlNet is frozen (i.e., its weights are not updated) and used121
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as an unconditional score approximation to train a separate network as the posterior adjustment term.122

They also use additional optimization steps on the diffusion model outputs to refine the residual123

values, which can cause significant overhead during sampling. Bastek, Sun and Kochmann [2] present124

Physics-Informed Diffusion Models (PIDM), a framework to train DDPM-based diffusion models125

with a PDE residual as a regularizer term to minimize along the loss function. Such methods can126

cause a bias in the generative process to try to comply with the constraint, as the authors themselves127

recognize in a toy example. Empirically, we have observed no such bias with our method compared128

to a vanilla diffusion model.129

5 Experiments130

Figure 1: Point distribution learned by different diffusion
model approaches with a given training budget. With a
higher residual scale, PIDM learns a highly biased distri-
bution, while DeDiCo remains unbiased. Mean residual
values are given with c = 1.

Toy example: Circles To showcase131

the unbiasedness of our method, we132

use a simple toy example introduced133

by Bastek et al. [2], where the134

objective is to train a diffusion model135

to fit a circle of radius 1. Given a136

sample (x, y) ∈ R2, we define a137

residual function for this setting with138

the following equation:139

RAE(x, y) = c
∣∣(x2 + y2)− 1

∣∣ ,
(8)

where c ∈ R+ is a constant that scales140

the function. Samples of 500 points141

trained with vanilla diffusion, PIDM142

and our method are shown in Fig. 1.143

The architecture and training details are shown in Appendix B.1. As highlighted by Bastek et al. [2],144

the performance of PIDM is highly sensitive to the value of c, making it prone to bias with relatively145

small changes. In this case, PIDM was trained using c = 1. On the other hand, DeDiCo shows146

resilience to hyperparameter changes, since even using a value of c = 10 in this experiment shows147

no particular bias in the learned distribution.148

Darcy Flow The task is to learn how to produce samples of a permeability field K(x, y) and a149

pressure field p(x, y) in 2 dimensions (x, y) ∈ R2 that satisfy the following PDE:150

R(K, p) = ∇ · (K∇p) + f = 0, (9)
where f is the measurement of the flow of some fluid through a porous medium. This PDE doubles as151

a residual function we can use to verify our generated solutions. For the experiments, the differential152

terms are estimated through finite differences using the same stencils used by Bastek et al. [2],153

meaning K and p are sampled as matrices in Rn×n. To tackle this problem, we use a diffusion model154

with a UNet backbone developed by Karras et al. [18], and use a discretisation of K and p in R64×64.155

The architecture and training details are available in Appendix B.2.156

In Fig. 2, we can see the learned distribution of values of K and p by vanilla diffusion, PIDM,157

DeDiCo and the vanilla diffusion with inference-time guidance using Eq. (6). We can see that, as158

highlighted independently by Baldan et al. [1], although PIDM has the lowest residual values in159

this task, it also shows significant bias in the learned values for the pressure field. On the other160

hand, DeDiCo shows a clear reduction in residuals compared to vanilla diffusion and diffusion with161

guidance, with minimal added bias compared to vanilla. Qualitative samples on solutions generated162

with each method are shown in Appendix A.163

We emphasize that there is a baseline level of bias observed in the distribution learned by the vanilla164

diffusion model. Baldan et al. [1] hypothesized that a contributing factor could be the backbone of165

the diffusion model used, but in our experiments swapping the UNet for a Diffusion Transformer166

showed no particular improvement.167

6 Limitations and Future Work168

One of the limitations is the need of an additional backpropagation through the constraint function and169

through the network in the forward pass, as well as higher-order auto-differentiation in the backward170
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Figure 2: Darcy flow validation. 1000 samples were generated with each approach, using 100
denoising steps for each. Error bars indicate the minimum and maximum from the samples. While
PIDM achieves the lowest residual values, this is likely because the distribution it learns is highly
biased; all other methods have higher distributional fidelity.

pass. This results in at least twice the time in each network evaluation. Future work could focus on171

using cheaper approximations for the constraint term of the denoiser, at the cost of lower constraint172

compliance. Another limitation is that the framework we presented is that only sets an inductive bias173

towards enforcing the constraint, instead of exactly enforcing it. Furthermore, while asymptotically174

the method should converge to an optimal denoiser, a clear misspecification of the constraint could175

make it difficult for the denoiser to fit accurately with the data in practice. Future work could focus on176

quantifying these with error bounds to give better practical guarantees. The current study also does177

not look into the potential data efficiency aspects of the method, or a comparison to other methods in178

the presence of slightly incorrectly specified constraints, which are a likely issue in many applications.179
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Appendices268

A Qualitative samples of Darcy flow using different methods269

In Fig. 3 we present some samples generated with each of the main methods presented in this work.270

Figure 3: Residuals and samples produced by vanilla diffusion, DeDiCo and PIDM.

B Architectures and training details271

The architectures and experiments on this work were implemented using PyTorch 2.4.1. All experi-272

ments were ran on single GPUs, from either NVIDIA A100 or V100 GPUs.273

B.1 Circles274

For the toy example we use a 3 layer MLP with an embedding dimension of 128. To train the networks275

we use the Adam optimizer with β1 = 0.9, β2 = 0.999 and a fixed learning rate of α = 1 · 10−4.276

The dataset consisted of 10000 points sampled from the unit circle, and the models were trained over277

1000 epochs with a batch size of 128.278
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B.2 Darcy Flow279

For Darcy Flow we used Karras et al.’s UNet [18]. The used hyperparameters on the network are280

summarized on Table 1.281

Table 1: Architecture hyperparameters for the Darcy Flow experiments
Hyperparameter Value

Model channels 24
Number of residual blocks 8
Per-resolution multipliers [1, 2, 3, 4]

Attention resolutions [16, 8]

The PIDM results were reproduced with a pre-trained model provided by Bastek et al. [2]. The282

vanilla score-matching and DeDiCo networks were trained using Adam with an initial learning rate283

of 1 · 10−2 and weight decay as detailed by Karras et al. [18]. The vanilla model was trained on 300k284

iterations and DeDiCo was trained on 200k iterations, both with a batch size of 64. For DeDiCo, we285

use 16 Monte Carlo samples for the integral approximation. For all experiments we use Exponentially286

Moving Averages for sample generation with a decay rate of 0.99.287
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