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Abstract

Diffusion models are powerful generative models for complex data distributions,
yet they often struggle to generate samples that precisely satisfy constraints inherent
in scientific applications. While recent approaches have introduced regularization
terms or guidance methods to enforce such constraints, they lead to bias in the
generative distribution, compromising the model’s ability to faithfully represent the
true data distribution. In this extended abstract, we propose a different approach that
embeds arbitrary denoiser architectures with differentiable constraints as inductive
biases from initialization, maintaining the asymptotic unbiasedness of standard
denoising score matching. Through experiments on a representative PDE problem,
we show that our method generates constraint-compliant samples without the
distributional biases introduced by current methods.

1 Introduction

The challenge of generating realistic data that satisfies specific constraints represents a fundamental
requirement across numerous applications in scientific discovery, ranging from finding solutions for
ODEs [4] to designing proteins with certain properties [9]. Traditional approaches to constrained gen-
eration often struggle to balance the competing objectives of maintaining data fidelity while satisfying
these constraints, frequently resulting in artifacts or suboptimal solutions [16]. Recent advances in dif-
fusion models have garnered attention due to their high distributional fidelity to data and sample qual-
ity, with methods exploring their use in inverse problems [5, 25, 3] and solving physical ODEs [15, 2].

Previous approaches have explored the use of pre-trained unconditional models, i.e. models that
learn the Stein score V, log p(x:), to learn a “likelihood-score” adjustment V, log p(c| ) on
a constraint c to guide the diffusion process towards data points that satisfy the constraints [5, 25].
Another branch of research has additionally explored the use of optimization during training the
model using a regularizer while training the model [2]. In the former approach, approximations in
the inference-time adjustments cause bias in the modeled distribution and the end result may not
improve constraint satisfaction significantly over a standard diffusion model. The latter approaches
can make optimization more difficult and the methods can suffer from high distributional bias [1].

In this paper, we present Denoisers with Differentiable Constraint Knowledge (DeDiCo). Inspired
by guidance literature [5, 25, 26] and second-order autodifferentiation [1 1] , we propose a method
to embed constraint knowledge into arbitrary denoisers by incorporating a differentiable constraint
function r., : R? — R into the forward pass of the network. Using this approach, we significantly
improve constraint satisfaction compared to vanilla diffusion models and approximate guidance based
methods, while keeping a low amount of distribution bias. We present our main ideas and results on a
toy example and a representative PDE problem.
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2 Background

Diffusion models generate samples from a data distribution p(x() by learning how to denoise samples
from a forward noising process [24, 27, 13, 17], which is generally assumed to be of the form:

play) = /N(mt;wo,a(t)21) p(xo) dzy. (1)

The corresponding reverse denoising process can be formulated as a probability flow ODE [17]:
dxy = —6(t)o(t) Ve log p(z:) dt. )

Starting with a sample from an isotropic Gaussian N (z¢; xg, 02,,I) and integrating the ODE back-
wards in time, it is possible to recover a sample from the original data distribution  ~ p(xg), as
long as the score is learned accurately and oy, is large enough [27]. To get Vo, log p(x;), we first
learn a denoiser conditional on the noise level ¢:

L(0) = Eth(t),EONPdm,mpr(mtImo) [w(t)||D9(wt7t) - wOHQ} ) 3

where w(t) and p(t) define the weighting and sampling frequency of noise levels during training.
At convergence, Dg(xy,t) ~ E[xg|x:]. Combined with Tweedie’s formula E[xg | x:] = @ +

o (t)?V, log p(x;), this ensures that we can recover an approximation of the score V, log p(x)

with sg(x;) = %. Accordingly, the loss in Eq. (3) is also called the denoising score matching

loss in the diffusion literature [28].

Guided Generation. Assume we have a constraint function r.(x) where the constraint is satisfied
when r.(2) = 1 and not satisfied when r.(x) = 0. It could be a hard constraint such that r.(x) €
{0, 1}, or a relaxed continuous constraint r.(x) € [0, 1]. Given a diffusion model with the output
distribution p(x(), we can turn it into a constrained model with distribution p(x¢)r. (o) by adjusting
the score as follows [25, 5]:

Sadjusted(xt) - vmt logp(xf) + me, log / Tc(mO)p(wO | mt) d.’Bo. (4)

Many methods have been proposed in the diffusion guidance literature for approximating the second
term on the right hand side [25, 5, 14, 26, 23], which generally can be summarized in choosing an
approximation for the distribution p(x¢|x;) and an approximation scheme for the integral, e.g. Monte
Carlo integration. The idea is to do these approximations at inference time without any changes
to the weights of the trained model. While inference-time adjustments are convenient, any error
in the approximation results in bias in the output distribution of the diffusion model and constraint
satisfaction is only approximate.

Regularization. Another approach to constrain the generative space of a model is to use regularizers
on the training objective. Popularized by Physics Informed Neural Networks [21], the general idea is
to have an optimization target that is expanded with a differentiable constraint, typically a residual R
related to a differential equation for a physical system, as follows:

Etarget(ev g) = E(ev Z)) + )\||R(Zj)||a &)

where A > 0 is a hyperparameter that defines how much weight to give to the constraint compliance
and ¢ is the output of the trained model. Although intuitively the target distribution of the learning
task should naturally learn to minimize this residual, studies show that these PDE-based regularizers
can make the loss landscape hard to optimize [20, 22]. Further, the optimum of Eq. (5) forfeits the
property that Dy (x4, t) ~ E[xg | x:] at convergence and the connection between the denoiser and
Vz, log p(x¢) is lost. Thus, the addition of these targets in the loss function can cause bias in the
modeled distribution as well.

3 Methods

Our goal is to propose a method that 1) does not cause uncontrolled bias 2) still improves the constraint
compliance over a standard diffusion model. The problems with guidance and regularization based
methods motivates us to propose the following: Instead of using Eq. (4) to define a guidance
function at inference time, we use it to define a constrained denoiser through Tweedie’s formula and
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backpropagate through the entire expression during training using second-order autodifferentiation.
Intuitively, we learn the guidance term to match with the DSM loss in Eq. (3), ensuring no bias.

Crucially, a benefit remains over a standard unconstrained denoiser: In the limit of a perfect ap-
proximation to the formula, the diffusion model is forced to generate samples that comply with the
constraint throughout training, including initialization. We hypothesize that doing this with even
an approximation of Eq. (4) will have two effects: 1) The model will converge in less steps and
generate samples that match more accurately with the constraint than an unconstrained model; and
2) by constraining the space of distributions that the model can represent, the method may be more
data efficient than an unconstrained model.

To implement the idea in practice, we need to choose an approximation to p(x | ;) and a numerical
integration scheme. As mentioned in section 2, the guidance literature has developed numerous
such approaches: we follow [26], with the choice p(xq | x;) = N (Dg(:ct, t), O'g‘t1>, where O'g‘t isa
o (t)?

hyperparameter typically chosen to be and using Monte Carlo integration for the expectation:

T+o(t)2’
Dy(xy,t) —
Valogp (@) % —— 37—+ Valog) | (Dotaninz) @) ©)

We then use the reparameterization & = xo — Dy (x4, t) to allow for backpropagation through the
network. Accordingly, we define our constrained denoiser as:

D§(xy,t) = Dg(xt,t) + 07V, log Zm/ ) re(xl + Do(x4,t)). 7

~N (0,a2 1

ot

Now, we can train the model with the standard denoising score matching loss in Eq. (3) by replacing
Dg(z,) with D§(x;). Notice that this requires second-order auto-differentiation: The full forward
pass contains the regular forward pass through the original denoiser Dy (x¢,t) summed together with
a backward pass with respect to inputs x;. During optimization, we then backpropagate through this
expanded computational graph.

As mentioned in Section 2, for a wide array of problems we have access to a residual function
R : R? — R that quantifies how well a data point complies with a constraint, e.g. the solution to an
ODE. When we have access to such a function, it is easy to define the constraint in our framework as
re(+) = exp(—||R(+)]]) for some norm |-||.

4 Related Work

Conditional Generation and Guidance There exists an ample body of work in guidance for diffu-
sion models: Dhariwal & Nichol [8] introduce classifier guidance, where a pre-trained unconditional
score is adjusted conditionally through a smaller classifier network. Ho & Salimans [12] propose
classifier-free guidance, where a diffusion model is adjusted conditionally through a ratio of PDFs,
balancing a weight between the unconditional score and the conditional adjustment term. In a recent
development, Karras et al. [19] propose contrasting a smaller model with a larger model in a manner
similar to classifier-free guidance.

There is a growing body of work focused on using diffusion models to solve inverse problems.
Chung et al. [5] and Song et al. [25] propose using pre-trained diffusion models adapted with Eq. (4)
for particular inverse problems. Song et al. [26] generalized this notion to any differentiable loss
function. Our work differentiates itself by integrating the constraint information into the denoiser
itself, embedding an inductive bias in the network at both training and inference.

Recent theory around guidance includes Guo et al. [10] who study the use of gradient information to
guide pre-trained diffusion models and give a thorough theoretical analysis of convergence rates for
Gaussian linear models. Denker et al. [7] use Doob’s h-transform to give insights into conditional
generation, with a deep control theoretical analysis. Concurrent work by Dasgupta et al. [6] explores
the adaptation of PDEs for posterior score adjustment on diffusion models with particular interest in
inverse problem theory. To the best of our knowledge, there is no current work that explores training
a constraint-adjusted score from scratch.

Physical Inverse Problems Jacobsen et al. [15] propose CoCoGen, a classifier guidance-based
diffusion model, where a pre-trained ControlNet is frozen (i.e., its weights are not updated) and used



122
123
124
125
126
127
128
129

130

131
132
133
134
135
136
137
138
139

140
141
142
143
144
145
146
147
148

149
150

151
152
153
154
155
156

157
158
159
160
161
162
163

164
165
166
167

169
170

as an unconditional score approximation to train a separate network as the posterior adjustment term.
They also use additional optimization steps on the diffusion model outputs to refine the residual
values, which can cause significant overhead during sampling. Bastek, Sun and Kochmann [2] present
Physics-Informed Diffusion Models (PIDM), a framework to train DDPM-based diffusion models
with a PDE residual as a regularizer term to minimize along the loss function. Such methods can
cause a bias in the generative process to try to comply with the constraint, as the authors themselves
recognize in a toy example. Empirically, we have observed no such bias with our method compared
to a vanilla diffusion model.

S Experiments

Toy example: Circles To showcase Vanilla PIDM DeDiCo
the unbiasedness of our method, we Raiap=0.392 Raiar=0.025 Ratap=0.039
use a simple toy example introduced

by Bastek et al. [2], where the L s S 1

objective is to train a diffusion model . o | | g ool om0

to fit a circle of radius 1. Given a ; !
sample (z,y) € R2, we define a
residual function for this setting with -1 0 1 -1 0 1 -1 0 1
the following equation: S &1 &1

Rae(w,y) = c|(@® +y%) -1

) Figure 1: Point distribution learned by different diffusion
®) model approaches with a given training budget. With a
higher residual scale, PIDM learns a highly biased distri-
bution, while DeDiCo remains unbiased. Mean residual
values are given with ¢ = 1.

where ¢ € R™ is a constant that scales
the function. Samples of 500 points
trained with vanilla diffusion, PIDM
and our method are shown in Fig. 1.
The architecture and training details are shown in Appendix B.1. As highlighted by Bastek et al. [2],
the performance of PIDM is highly sensitive to the value of ¢, making it prone to bias with relatively
small changes. In this case, PIDM was trained using ¢ = 1. On the other hand, DeDiCo shows
resilience to hyperparameter changes, since even using a value of ¢ = 10 in this experiment shows
no particular bias in the learned distribution.

Darcy Flow The task is to learn how to produce samples of a permeability field K (z,y) and a
pressure field p(z,y) in 2 dimensions (z,y) € R? that satisfy the following PDE:

R(K,p) =V - (KVp)+ f =0, ©)
where f is the measurement of the flow of some fluid through a porous medium. This PDE doubles as
a residual function we can use to verify our generated solutions. For the experiments, the differential
terms are estimated through finite differences using the same stencils used by Bastek et al. [2],
meaning K and p are sampled as matrices in R™*™. To tackle this problem, we use a diffusion model
with a UNet backbone developed by Karras et al. [ 18], and use a discretisation of K and p in R64*64,
The architecture and training details are available in Appendix B.2.

In Fig. 2, we can see the learned distribution of values of K and p by vanilla diffusion, PIDM,
DeDiCo and the vanilla diffusion with inference-time guidance using Eq. (6). We can see that, as
highlighted independently by Baldan et al. [!], although PIDM has the lowest residual values in
this task, it also shows significant bias in the learned values for the pressure field. On the other
hand, DeDiCo shows a clear reduction in residuals compared to vanilla diffusion and diffusion with
guidance, with minimal added bias compared to vanilla. Qualitative samples on solutions generated
with each method are shown in Appendix A.

We emphasize that there is a baseline level of bias observed in the distribution learned by the vanilla
diffusion model. Baldan et al. [1] hypothesized that a contributing factor could be the backbone of
the diffusion model used, but in our experiments swapping the UNet for a Diffusion Transformer
showed no particular improvement.

6 Limitations and Future Work

One of the limitations is the need of an additional backpropagation through the constraint function and
through the network in the forward pass, as well as higher-order auto-differentiation in the backward
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Figure 2: Darcy flow validation. 1000 samples were generated with each approach, using 100
denoising steps for each. Error bars indicate the minimum and maximum from the samples. While
PIDM achieves the lowest residual values, this is likely because the distribution it learns is highly
biased; all other methods have higher distributional fidelity.

pass. This results in at least twice the time in each network evaluation. Future work could focus on
using cheaper approximations for the constraint term of the denoiser, at the cost of lower constraint
compliance. Another limitation is that the framework we presented is that only sets an inductive bias
towards enforcing the constraint, instead of exactly enforcing it. Furthermore, while asymptotically
the method should converge to an optimal denoiser, a clear misspecification of the constraint could
make it difficult for the denoiser to fit accurately with the data in practice. Future work could focus on
quantifying these with error bounds to give better practical guarantees. The current study also does
not look into the potential data efficiency aspects of the method, or a comparison to other methods in
the presence of slightly incorrectly specified constraints, which are a likely issue in many applications.
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Appendices

A Qualitative samples of Darcy flow using different methods

In Fig. 3 we present some samples generated with each of the main methods presented in this work.

Permeability K Pressure p Rae(K,p)

= o

Figure 3: Residuals and samples produced by vanilla diffusion, DeDiCo and PIDM.

B Architectures and training details

The architectures and experiments on this work were implemented using PyTorch 2.4.1. All experi-
ments were ran on single GPUs, from either NVIDIA A100 or V100 GPUs.

B.1 Circles
For the toy example we use a 3 layer MLP with an embedding dimension of 128. To train the networks
we use the Adam optimizer with ; = 0.9, 32 = 0.999 and a fixed learning rate of o = 1 - 10~%.

The dataset consisted of 10000 points sampled from the unit circle, and the models were trained over
1000 epochs with a batch size of 128.



279 B.2 Darcy Flow

280 For Darcy Flow we used Karras et al.’s UNet [18]. The used hyperparameters on the network are
281 summarized on Table 1.

Table 1: Architecture hyperparameters for the Darcy Flow experiments

Hyperparameter | Value
Model channels 24
Number of residual blocks 8
Per-resolution multipliers | [1, 2, 3, 4]
Attention resolutions [16, 8]

282 The PIDM results were reproduced with a pre-trained model provided by Bastek et al. [2]. The
283 vanilla score-matching and DeDiCo networks were trained using Adam with an initial learning rate
284 of 1-1072 and weight decay as detailed by Karras et al. [18]. The vanilla model was trained on 300k
2g5 iterations and DeDiCo was trained on 200k iterations, both with a batch size of 64. For DeDiCo, we
286 use 16 Monte Carlo samples for the integral approximation. For all experiments we use Exponentially
287 Moving Averages for sample generation with a decay rate of 0.99.
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