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ABSTRACT

The composition of pretraining data is a key determinant of foundation models’
performance, but there is no standard guideline for allocating a limited computa-
tional budget across different data sources. Most current approaches either rely on
extensive experiments with smaller models or dynamic data adjustments that also
require proxy models, both of which significantly increase the workflow com-
plexity and computational overhead. In this paper, we introduce Adaptive Data
Optimization (ADO), an algorithm that optimizes data distributions in an online
fashion, concurrent with model training. Unlike existing techniques, ADO does
not require external knowledge, proxy models, or modifications to the model up-
date. Instead, ADO uses per-domain scaling laws to estimate the learning potential
of each domain during training and adjusts the data mixture accordingly, making
it more scalable and easier to integrate. Experiments demonstrate that ADO can
achieve comparable or better performance than prior methods while maintaining
computational efficiency across different computation scales, offering a practical
solution for dynamically adjusting data distribution without sacrificing flexibil-
ity or increasing costs. Beyond its practical benefits, ADO also provides a new
perspective on data collection strategies via scaling laws.

1 INTRODUCTION

Foundation models, large neural networks pre-trained on vast amounts of data, are the backbone
for a wide range of today’s machine learning workload (Bommasani et al., 2021). It is well es-
tablished that the composition of the pretraining data plays a crucial role in these models’ final
performance (Gadre et al., 2024); however, there are currently no standard guidelines for selecting
good pretraining data. Most existing datasets are filtered and curated snapshots of the web data (Gao
et al., 2020; Penedo et al., 2024), often categorized into distinct heterogeneous domains (e.g., Com-
monCrawl and Github). Even after filtering, a challenge remains: deciding how to allocate compu-
tational resources across these different domains. Given the ever increasing cost of pretraining large
foundation models (Sharir et al., 2020), optimizing the data composition is a potential avenue for
improving performance without increasing computational cost.

There are two popular approaches to adjusting the data distribution. A straightforward approach to
this problem is to experiment with smaller models, test different data policies, and then apply the
best-performing policy to the larger model (Ye et al., 2024; Ge et al., 2024). However, this strategy
has several drawbacks. First, as the number of domains increases, the cost of training on all possible
policies can grow linearly or even exponentially (if the level of discretization remains the same),
making even small-scale experiments costly. Second, the optimal data policy for a smaller model
does not necessarily generalize to larger models (Ye et al., 2024; Albalak et al., 2023). Another ap-
proach involves dynamically adjusting the data policy during training based on various statistics (Xie
et al., 2024; Chen et al., 2024; Qin et al., 2024; Fan et al., 2023). However, these methods often re-
quire training a smaller proxy model to guide the data policy, whose cost is still non-negligible.

A significant limitation of almost all existing methods (with the exception of Albalak et al. (2023)) is
their requirement for additional computational steps beyond standard training. This extra complex-
ity entails substantial modifications to the training pipeline, making it challenging to integrate these
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Figure 1: ADO is a cheap online technique for adjusting the data distribution while training large
models. In contrast to prior methods, ADO tailors its data distribution to the model as it is being
trained, and does not require training smaller proxy models in advance.

methods when other components are varied (e.g., the architecture, tokenizer, or optimizer). The con-
sequence of this usage barrier is that these methods have not been tested widely, making them less
popular for those training a new model. To enable broader adoption of data mixture optimization,
we argue that it must be implemented in an online fashion, concurrent with model training, without
disrupting the standard training process, which means that the data mixture must adapt itself based
on the feedback from the model. This is closely related to curriculum learning (Bengio et al., 2009),
a training strategy where models are progressively exposed to domains in a curated order.

At a fundamental level, this work develops and empirically investigates questions about the existence
of good pretraining curricula and the feasibility of cheaply identifying them. We first demonstrate in
controlled experiments that good curricula can generally be found with more computation and that
it is hard to accurately predict larger models’ performance with only a few small models. This leads
to our main contribution, Adaptive Data Optimization (ADO): an algorithm for adaptively adjusting
the data mixture online during training (Figure 1). In experiments on language models up to 1.3B
parameters trained on the Pile (Gao et al., 2020), we find that ADO improves performance across a
variety of common benchmarks and improves validation loss on SlimPajama (Soboleva et al., 2023)
and FineWeb (Penedo et al., 2023), both of which are considered to be higher-quality datasets. Most
importantly, ADO achieves these without requiring significant additional computation (less than
0.4% wallclock time for 1.3B), proxy models, or extensive modification to the training pipelines.
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Figure 2: Extrapolating larger models’ loss
using scaling laws up to a threshold model
size, indicated by color. Blue dots corre-
spond to different models. Extrapolations
become more accurate with more models.

The drawbacks of small proxy models. At first
glance, transferring data selection strategies from smaller
to larger models seems plausible, with positive results in
specific cases, such as in Mindermann et al. (2022) and
Xia et al. (2024b). However, as shown in Figure 2, using
a small number of models to predict the behavior of larger
models can exhibit high variance on the Pythia model
family (Biderman et al., 2023), indicating that they cannot
reliably forecast larger models’ performance. At a per-
domain level (Figure 7), the variation becomes even more
pronounced. While this does not fully rule out the pos-
sibility of transfer, it raises doubts about whether small
models can reliably select data mixtures for larger mod-
els. Another issue is that the efficacy of distributions gen-
erated by proxy models is highly sensitive to factors like
the tokenizer and other hyperparameters (Albalak et al.,
2023). Our findings also confirm this brittleness (Sec-
tion 4). This means that the optimized distributions from
one experiment might not transfer, and they need to be
retrained for a new model. This is undesirable because
proxy models add non-trivial overhead — Ge et al. (2024)
estimated that a single round of DoReMi proxy training requires 760 GPU hours on 8 Nvidia A100
GPUs, and several proxy training rounds are needed before training the full model.
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Figure 3: The average learning curves of SGD and the meta-optimized curricula for a logistic regression (Left)
and an MLP (Middle). The meta-optimized curricula consistently outperform SGD. Further, the meta loss for
curricula is still decreasing after 1000 steps (Right). The first two figures are averaged over 50 runs and the
shaded region corresponds to 1 standard deviation.

The existence of good curricula. Curriculum learning (Bengio et al., 2009) is a conceptually
appealing idea that has been regularly studied over the years, but these methods have not been widely
adopted in deep learning outside of a few relatively niche areas (Graves et al., 2017; Florensa et al.,
2017; Jesson et al., 2018; Tang et al., 2018). To the best of our knowledge, there is no consensus
on why curriculum learning has not had wide success in deep learning. Some hypothesize that
deep learning is different from human learning or that overparameterization makes curriculum less
effective (Wu et al., 2021; Mannelli et al., 2024). On the other hand, some experimental evidence
suggests that deep neural networks implicitly learn functions of increasing complexity from easy
to hard (Kalimeris et al., 2019; Baldock et al., 2021), loosely resembling some aspects of human
learning (Lawrence, 1952; Baker & Osgood, 1954; Skinner, 1958). For overparameterization, it is
not clear if modern foundation model pretraining is in the overparameterized regime since dataset
size generally scales with the number of model parameters (Hoffmann et al., 2022).

To motivate our later work, we propose an alternative hypothesis: good curricula exist but they are
computationally difficult to find. Let’s start with an instructive experiment of finding good curricula
with more computation. Suppose we have a fixed dataset of size N and want to train SGD at a mini-
batch size of 1 for 1 epoch (i.e., each data point is used once, which is common for language model
pretraining). We are interested in finding a data ordering that is better than a random shuffle when
training a model initialized at random. Brute force search is intractable even for a small dataset.
Unlike most existing curricula that rely on some prior notions of difficulty, we will find a good cur-
riculum with only training data by optimizing over the space of permutations with meta learning.
Due to space constraints, we defer the details of this meta learning procedure to Appendix B.

We apply this procedure to a logistic regression problem as well as a multi-layer perceptron where
the goal is to imitate a teacher. We randomly sample the initialization θ0, ground truth θ⋆ and the
dataZ = {(xi, f(xi; θ

⋆))}Ni=1. For a fixed set of data points, we run the meta optimization for some
steps (200 for logistic regression and 1000 for MLP) and evaluate the performance of learned order-
ing on a new initialization. We repeat this experiment 50 times and report the results in Figure 3.
As can be seen from the results, the performance of meta-optimized data ordering is significantly
better than that of random order even though during evaluation the models are initialized at random.
In a concurrent work, Gu et al. (2024) conducted a similar experiment but their meta objective uses
additional validation data and optimizes a distribution over all training data points rather than SGD.

This shows that given a dataset, it is possible to find an ordering that greatly outperforms random
ordering without committing to any prior notion of difficulty. This procedure does not leverage ad-
ditional data, but it requires significantly more computational resources than random ordering, so
it is neither practical nor scalable. Moreover, given our limited understanding of the landscape of
curriculum optimization, it is highly unlikely that we are identifying the globally optimal curricu-
lum. As shown in Figure 3 (right), even this meta-optimization has not fully converged after 1000
steps. Nonetheless, it demonstrates definitively the existence of a good curriculum, which raises the
question of how we can find a better curriculum in a computationally efficient manner1.

1Since a static mixture is nothing but a fixed stationary curriculum throughout the training, this computa-
tional difficulty applies to finding a static mixture too.
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3 ADAPTIVE DATA OPTIMIZATION

We demonstrated above a general, albeit costly, strategy for finding good curricula but it is too ex-
pensive to be practically useful. We believe that an ideal online data selection strategy for pretraining
foundation models should incur a minimal computational cost.

Furthermore, computational efficiency alone is not sufficient. Perhaps an equally important con-
sideration is that such methods should avoid explicit dependence on any particular specification
of downstream tasks. The fundamental premise of a foundation model is to serve as the basis for
all reasonable downstream tasks; explicitly relying on a fixed set of downstream tasks to pick pre-
training data distribution risks unintentionally overfitting to the downstream tasks (Goodhart, 1985).
Indeed, the evaluation of current language models has become increasingly difficult as performance
on existing benchmarks becomes saturated. While evaluating downstream tasks is undoubtedly im-
portant because they are representative of the models’ main use cases, we believe that it is valuable
to define an objective for online data selection that is agnostic to the downstream tasks.

Previous works like DoReMi (Xie et al., 2024), and DoGE (Fan et al., 2023) share this task-agnostic
philosophy of data selection. However, these methods require training proxy models which makes
them inconvenient and expensive to use. Lifting the requirement for a proxy model would make data
selection methods more accessible and practical.

The goal of this work is to advocate for data selection methods that satisfy the following desiderata2:

Adaptive Data Optimization

(i) Does not leverage extra information such as additional data or existing models.
(ii) Does not depend on multi-staged training with different proxy models.

(iii) Does not require significant computational resources and can be run online.

Based on these criteria, we introduce our method of online data selection, Adaptive Data Optimiza-
tion (ADO). In the following sections, we present the algorithmic components of ADO. First, we
discuss how we fit a scaling law for each domain, allowing the data mixture to account for variations
in the natural diversity across different domains. Next, we describe how the data mixture is dynam-
ically adjusted based on these scaling laws during model training. Each domain is characterized by
two key quantities: 1. the domain’s learning potential, indicating the potential improvement from
further optimization in that domain (Section 3.1), and 2. a credit assignment score that quantifies
the domain’s contribution to the reduction of training loss (Section 3.2). To address potential noise
from simultaneously updating the data mixture and the model, we employ several time-averaging
techniques to smooth these quantities (Section 3.3).

3.1 CONSTRUCTION NEURAL SCALING LAWS FOR EACH DOMAIN

To achieve our desiderata, it is crucial to be able to predict the evolution of our model’s training
online with cheap computational routines that do not scale with the size of the model. To accomplish
this, we use neural scaling laws (Kaplan et al., 2020) to extrapolate the loss as a function of the
amount of training data observed so far, which we denote n. It is important to highlight that this
scaling law is for predicting the future training loss within a single training run. In contrast, typical
neural scaling laws (Hoffmann et al., 2022) use the results of completed training runs to extrapolate
the loss of future training runs, typically with larger models or datasets.

For simplicity and interpretability, we use a standard power law: L̂(n;α, β, ε) = ε+ βn−α, where
α, β, ε are the parameters to be fitted, and L̂ is a surrogate loss used to model the behavior of the
true loss. The parameter ε can be seen as the irreducible loss or the “entropy” of the data. Data with
high diversity (e.g., CommonCrawl) would naturally have a higher irreducible loss and data that are
more predictable (e.g., code and math) would tend to have a lower irreducible loss. The parameter α
measures how quickly the loss decreases with more training data. Although such scaling laws may
be inaccurate at extrapolating training loss far into the future (e.g., due to the learning rate schedule),

2These criteria are not mutually exclusive with proxy models or other offline data selection methods and
can be used in tandem if needed (e.g., training a model that specializes in coding).
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we can cheaply refit the parameters on the fly (Appendix A.1). Since the parameters from each fit
are only used for a short period before being updated and the learning curves usually do not change
abruptly, our scaling law need only be locally accurate.

Instead of fitting a single scaling law for the overall loss (Kaplan et al., 2020; Hoffmann et al.,
2022), we will fit a separate scaling law for the loss on each domain, each of which will guide ADO
to adjust the weights of each domain.

Definition 1. A domain scaling law is a training sample scaling law, L̂k(n) = L̂(n;αk, βk, εk) =
εk + βkn

−αk , that predicts the kth domain’s training loss after training on n samples. εk, βk, αk

are functions of the architecture, training algorithms, and the overall data distribution.

The domain scaling law serves as a tractable middle ground between modeling the overall loss and
modeling how every domain interacts with each other. Modeling the full dependencies faithfully
may be challenging while training online because we cannot modify the data distribution drastically.
As the first step towards this goal, our method will only model how each domain interacts with itself
and leave more complex modeling to future works. Nonetheless, this scaling law reveals important
information about each domain. For example, εk corresponds to the estimated irreducible loss of a
domain, which could be useful for various applications (Xia et al., 2024a). More importantly, we
can interpret the derivative of the loss with respect to the number of samples as the following:

dL̂k(n)

dn
=
−αkβkn

−αk

n
= − 1

n
αk

Learning speed

(L̂k(n)− εk)

Reducible loss

. (1)

The quantity L̂k(n) − εk informs us about how far away a particular domain is from the estimated
minimum loss, which coincides with the notion of population-level reducible loss (Mindermann
et al., 2022), and αk indicates how fast the loss of a particular domain is changing with new data.
This derivative informs us about how much loss decrease we can expect per data point locally.
At a high level, the cross entropy loss has an information theoretic interpretation, so this quantity
can be understood as a form of information density, or, the amount of information gain per unit
of computation. Intuitively, prioritizing data with high information density is a likely better use
of computation and could lead to richer representation as it implies more information is “stored
in” the model weights. We leave the formalization of this statement to future works. It may be
useful to contrast this quantity with Albalak et al. (2023, ODM) which only prioritizes domains
with a high loss Lk(n) without considering the irreducible loss. This objective could lead to the
underrepresentation of domains with inherently lower entropy such as code or math3.

3.2 THE CONTRIBUTION OF THE DATA FROM EACH DOMAIN

In contrast to prior works that train multiple models to find optimal data policies offline (Ye et al.,
2024; Ge et al., 2024; Liu et al., 2024), our online approach adaptively prioritizes selecting data so
that the model learns quickly, as predicted by scaling laws that we fit on the fly. It consists of a data
policy π(t) ∈ ∆K that specifies a sampling distribution over the K domains. An intuitive approach
would be to prioritize sampling domains where the model will learn quickly: e.g., we could sample
from domain k in proportion to −dL̂k

dn (Equation 1).

However, independent domain scaling laws do not account for how samples from one domain help
learning on a different domain. Consider a thought experiment where the loss Lk is decreasing
rapidly, but we have sampled very little data from domain k. Intuitively, data from domain k should
not get much credit for this loss decrease, which can instead be attributed to transfer learning from
other domains. This calls for some form of credit assignment based on whether a domain has actually
been sampled recently.
Definition 2. A credit assignment score, λk(t), is a real positive-valued function that indicates how
much data from the kth domain contributed to recent changes in the loss Lk.

Ideally, we would like to understand how each domain affects every other domain. Unfortunately,
this interaction might be highly complex and not local (i.e., the best solution locally at a given time

3Albalak et al. (2023) showed that ODM achieves higher loss on Github than other methods. In our 124M
experiments, ODM achieves 1.54 validation loss on Github while ADO achieves 1.40 validation loss.
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Algorithm 1 Adaptive Data Optimization (ADO)

1: Input: prior µ ∈ ∆K , update interval tupdate, warmup duration twarmup, γ1, γ2, s, δmin
2: Initialize h← µ, π̄ ← µ, {loss k← []}k∈[K]

3: Train with µ for twarmup steps to initialize each loss k
4: Initialize domain k’s scaling law with loss k, for k ∈ [K]
5: for t = 0→ T do ▷ The training loop
6: ρ(t)← compute the preference distribution according to Equation 3
7: π(t)← clip (γ2 ρ(t) + (1− γ2)π̄(t− 1), δmin)
8: {ℓk}k∈[K] ← train the model according to π and add domain k loss to loss k
9: h(t)← γ1π(t) + (1− γ1)h(t− 1)

10: π̄(t)← 1
t+1ρ(t) +

(
1− 1

t+1

)
π̄(t− 1)

11: if t mod tupdate = 0 then
12: Update domain k scaling law with loss k, for k ∈ [K]

step may not be optimal in the long run). As mentioned earlier, we focus on modeling the domain’s
contribution to itself for now. A reasonable assumption is that the contribution a domain makes to
its own learning progress is positively correlated with what proportion of the recent data came from
this domain. In other words, we assume that if a domain was useful for itself in recent history, it will
likely continue to be useful. Based on this assumption, we keep a history, h(t), of the exponential
moving average (EMA) of the recent data policy (with a coefficient of γ1 < 1) and apply a power
transformation with a smoothing parameter s < 1 to smooth the distribution since the assignment
can be inaccurate:

hk(t) = γ1πk(t) + (1− γ1)hk(t− 1), λk(t) ∝ hk(t)
s. (2)

Here a smaller γ1 puts more weighting on policy history in the EMA, and decreasing s leads to
stronger smoothing of the credit assignment across tasks. We find that γ1 = 0.1 and s = 0.5 work
well consistently for all scales we tested. We emphasize that this design choice is a simple heuristic
that can be easily computed and other choices are possible.

3.3 CONSTRUCTING THE DATA POLICY UPDATE

To define our data policy, we combine the two principles we have seen thus far: prioritize sampling
from a domain k if the model is decreasing its loss Lk quickly, but only if that decrease can be
attributed to data from domain k. Additionally, it is common to have a natural prior distribution
µ ∈ ∆K over the domains (e.g., number of tokens in each domain), which we may also incorporate:

Definition 3. Given the learning speed forecast by a scaling law, ∂
∂n L̂k(n), credit assignment score

λk(t), and a prior domain weight µk, the preference distribution is

ρk(t) ∝ −µk
∂

∂n
L̂k(n)λk(t) =

1

n
µk λk(t)αk (L̂k(n)− εk). (3)

Note that the preference distribution is not a perfect indication of the best possible distribution to
learn from because we have no access to the true gradient of the data policy. As shown in the
definition of the credit assignment score, we have to resort to various approximations.

Temporal average. This local estimate of a data policy may not be optimal globally. Both
DoReMi (Xie et al., 2024) and DoGE (Fan et al., 2023) found superior performance by averag-
ing the proxy model’s training distribution over all time steps, to obtain a stationary distribution for
the actual training run. Since we need to select a data policy online, we instead take inspiration from
Defazio et al. (2024) and use an online analogy to post-hoc averaging:

π̄k(t) =
1

t+1ρk(t) +
(
1− 1

t+1

)
π̄k(t− 1), (4)

πk(t) = γ2 ρk(t) + (1− γ2)π̄k(t− 1). (5)

Here π̄k(t) is a temporal moving average of the preference policy at every step and πk(t) is a linear
combination of the moving average and the chosen policy according to which the data are sampled
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Table 1: Zero-shot performance of different methods across different downstream evaluations. High-
lighted cells indicate top-performing methods (deeper color indicates better performance).

HellaSwag WinoGrande PIQA ARC-E SciQ LogiQA2 LAMBADA Average
124M-Pile 0.279 0.515 0.615 0.435 0.747 0.228 0.357 0.454

124M-DoReMi 0.279 0.520 0.609 0.429 0.741 0.237 0.368 0.455
124M-ODM 0.285 0.514 0.603 0.453 0.764 0.230 0.374 0.461

124M-Balanced 0.280 0.511 0.610 0.447 0.762 0.227 0.362 0.457
124M-Natural 0.290 0.503 0.624 0.435 0.755 0.234 0.401 0.463

124M-ADO 0.290 0.520 0.635 0.456 0.771 0.244 0.371 0.470
1.3B-DoReMi 0.416 0.582 0.707 0.609 0.870 0.228 0.615 0.575

1.3B-Balanced 0.382 0.546 0.689 0.580 0.862 0.225 0.613 0.557
1.3B-Natural 0.424 0.584 0.718 0.627 0.886 0.232 0.624 0.585

1.3B-ADO 0.442 0.590 0.730 0.625 0.875 0.228 0.638 0.590

from, which combines both the current preference distribution and the time-averaged distribution.
Using the coefficient of 1

t ensures that all the preference distributions from all time steps contribute
equally to the final average, similar to the effect of post-hoc averaging. Intuitively, a larger value of
γ2 makes the algorithm more responsive to the current loss dynamics, while a smaller value makes
it smoother and less responsive. We find that γ2 = 0.1 works well consistently. Additionally, we
enforce the smallest domain probability to be no smaller than δmin = 0.01 to avoid domains being
unsampled (Appendix C). Algorithm 1 shows the pseudocode for the entire algorithm.

4 EXPERIMENTS

Evaluation. We conduct all our experiments on the Pile dataset (Gao et al., 2020) with decoder-
only transformer language models (Vaswani et al., 2017) of varying sizes. We consider two types of
metrics: 1. validation loss on the Pile, an unweighted version of the pile validation set where each
domain receives equal probability, SlimPajama (Soboleva et al., 2023), and a 1 billion token subset of
FineWeb (Penedo et al., 2024), 2. zero-shot downstream performance on 6 common-sense reasoning
domains from the language model evaluation harness (Gao et al., 2024): HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2019), PIQA (Bisk et al., 2019), ARC-E (Clark et al., 2018),
SciQ (Welbl et al., 2017), LogiQA2 (Liu et al., 2023) and LAMBADA (Paperno et al., 2016).

Methods. We conduct experiments at 2 computation scales: 124 million parameters (124M) and
1.3 billion parameters (1.3B). For 124Mmodels, we use a batch size of 256 with a context length of
1024 trained for 60,000 steps (approximately 15 billion tokens), and for 1.3B, we use a batch size
of 2048 with a context length of 1024 trained for 60000 steps (approximately 125 billion tokens).
Both scales use the natural distribution for µ and the same hyperparameters for ADO. Training
details can be found in Appendix A.

Comparisons. For comparison, we use the original Pile weights (Gao et al., 2020, Pile) and
DoReMi weights (Xie et al., 2024, DoReMi)4 as the baselines. We also consider ODM (Albalak
et al., 2023), another online method. In addition, we introduce a simple baseline that is surprisingly
missing from the literature: weighing each domain by the number of tokens in it. This mixture natu-
rally takes into account the tokenizer being used and training on this policy essentially corresponds
to training on the natural distribution of the dataset (i.e., corresponds to empirical risk minimiza-
tion where train, validation, and test sets all follow the same distribution defined by the tokenizer).
We estimate the tokens per domain by randomly sampling 1000 documents from each domain to
estimate each domain’s average tokens per document, and then multiply it by the total number of
documents (Appendix A). We will refer to this policy as Natural. We also use a second baseline,
Balanced, which considers the unweighted mixture of all the domains.

Observations. The results for downstream performance are shown in Table 3. We will highlight
some key observations here. Observation 1: at 124M scale, ADO achieves the highest average
accuracy; it also outperforms all the baselines on 6 out of 7 downstream tasks and is competitive on

4Since DoReMi is sensitive to the choice of tokenizer, we used the DoReMi weights from Albalak et al.
(2023) who use the same tokenizer as we do.
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Figure 4: Perplexity of 1.3B models on different domains, trained on the Pile using either DoReMi,
Natural, or ADO. On the left side of the red line, we have the validation perplexity on the Pile valida-
tion set, the unweighted Pile validation set, the SlimPajama validation set, and a random subset of FineWeb.
On the right side of the red line, we show the validation perplexity of each domain of the Pile.

LAMBADA. At 1.3B scale, ADO also achieves the highest average accuracy and outperforms the
baselines on 4 out of 7 downstream tasks. Observation 2: interestingly, Natural turns out to be
a very competitive baseline. It achieves the second-best average downstream performance at both
scales and performs well on individual domains, too. To the best of our knowledge, very few works
on data selection have benchmarked against using the empirical distribution of tokens given by the
dataset and tokenizer. As such, we recommend future works on data selection to compare against
this simple baseline. Balanced also turns out to be a quite competitive baseline at 124M scale
likely because smaller domains are not extensively repeated given the low total number of tokens
processed at this scale. This observation is in line with the findings of Goyal et al. (2024) which
suggest that good data policies are different for different compute scales.

Conventionally, validation loss is considered a good indicator of the models’ performance if they
are trained on the same data, but it is less clear whether it remains a good indicator when the data
policy is dynamically changing throughout the training. Empirically (Figure 4), we found that it
is difficult to outperform Natural on the Pile validation loss (at least within the same training
setup and without spending much more computation), even though we do outperform this mixture
on the downstream tasks as shown above. Observation 3: for validation loss, ADO slightly under-
performs Natural on the Pile validation set, but on the validation set of SlimPajama and a subset
of FineWeb, ADO outperforms Natural. Since SlimPajama and FineWeb are heavily filtered to be
“higher quality” data compared to the Pile, we speculate that ADO may be able to implicitly select
data aligned with some notion of high quality throughout the training process (e.g., by prioritizing
learnability). Nonetheless, since it can be challenging to quantify or precisely define “high quality”
data, we will leave this investigation to future work. We include more analysis in Appendix D.1.

4.1 ANALYSIS

Mixture over the training. A natural question about data selection methods is what does the
distribution look like. We now show that the curricula learned by ADO differ for models of different
scales in Figure 5. We observe that CommonCrawl (Pile-CC) receives the most probability mass
in both 124M and 1.3B. This observation is consistent with some previous works that put most of
the probability mass on CommonCrawl (Xie et al., 2024). OpenWebText2 also receives a higher
proportion compared to the empirical mixture. Github receives a higher probability in 124M
initially but eventually decays whereas in 1.3B it first decreases rapidly and gradually increases
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Figure 5: The sampling distribution produced by our data policy during training on The Pile. For ease of
visualization, we only highlight the top 6 largest domains. ADO produces qualitatively different strategies at
different model scales and adaptively changes its weightings over time.
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Figure 6: The forecasts from our scaling laws (fit online throughout training) versus the actual training loss
on different domains in the Pile. The forecasts shown were fit at 10,000, 30,000, and 50,000 steps (time of
fit is shown in dashed lines). We observe that the scaling laws: (1) become more accurate over the course of
training, and (2) can be surprisingly accurate at forecasting the final loss even very early into training on some
domains, such as Pile-CC. Forecasts from all domains are shown in the Appendix, Figure 8.

towards the end of the training. This is consistent with the intuition that code data naturally have
much lower entropy so it is “easier” to learn in some sense. ADO does not account for the fact
that code could be desirable for general capabilities such as reasoning (Ma et al., 2024) since it is
agnostic to the downstream tasks. This issue can be partially resolved by assigning a higher prior to
code but further research on data selection targeting reasoning is likely needed.

Accuracy of the scaling law throughout the training. Unlike most applications of scaling laws,
we refit the scaling laws on the fly as the models train and the data mixtures are dynamically chang-
ing. This introduces new challenges because the forecasts from scaling laws fit early on can be
inaccurate for steps far in the future. In Figure 6, we show the predictions of the scaling laws for
3 domains at various points during training (all domains are shown in the Appendix, Figure 8). It
can be seen that while the predictions of our scaling laws eventually deviate from the true learning
curves, they are accurate locally for much of the training and thus can act as a learning signal for
the data policy. More specifically, we can see that the scaling laws consistently overestimate the
final loss for all domains, likely due to the presence of learning rate schedules. Empirically, when
the learning rate decays towards the end of the training, the training loss tends to decrease more
rapidly, until a certain point when the learning rate is too small (Hägele et al., 2024). We believe
that incorporating recent techniques for incorporating the effect of learning rate schedules into the
scaling laws (Tissue et al., 2024) could further improve ADO.
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5 RELATED WORKS

Data curation and selection. For current large language models, compute often poses a greater
constraint than data availability, making data selection crucial (Albalak et al., 2024). A widely used
approach is data filtering (Soboleva et al., 2023; Penedo et al., 2023; 2024; Brandfonbrener et al.,
2024), where undesirable data points are removed based on heuristics like perplexity, repetition (Lee
et al., 2021), or semantic similarity (Abbas et al., 2023). This filtering process is foundational for
constructing most large-scale datasets today. After filtering, data is often categorized into subsets or
domains (e.g., code, books), and one must decide how much data to use from each domain.

Two primary strategies for data selection are prevalent: one focuses on deciding whether individual
data points should be included based on various criteria (Mindermann et al., 2022; Engstrom et al.,
2024), and the other uses all available data but samples from different domains with varying proba-
bilities (Xie et al., 2024; Fan et al., 2023; Albalak et al., 2023). While data selection aims to enhance
training efficiency, these methods may introduce considerable computational overhead (Xie et al.,
2024; Chen et al., 2024; Fan et al., 2023). Moreover, Kaddour et al. (2023) show that under the same
computational budget, these methods often fail to surpass standard training, and Wang et al. (2024)
proves that the data selection’s efficacy depends on the user’s utility function.

Another line of work focuses on selecting pre-training data that aligns more closely with downstream
tasks (Kang et al., 2024). Data selection has also been explored for computer vision. For example,
Evans et al. (2023) use a small reference model to select data for CLIP, while others propose pruning
batches based on diversity criteria (Qin et al., 2024; Hong et al., 2024) to improve training efficiency.

Neural scaling laws. Studies have found that various quantities of interest for large pretrained
models (e.g., validation loss) can be reliably predicted with simple statistics such as the model size,
dataset size, or the amount of computation (Kaplan et al., 2020; Hoffmann et al., 2022). These
findings have been central to the design of training protocols for large language models where trial
and error are expensive. More recent works have studied the relationship between data repetition
and the performance of the models (Hernandez et al., 2022; Muennighoff et al., 2024; Goyal et al.,
2024). Data curation, in particular pruning, has also been shown to have significant effects to achieve
better scaling laws (Sorscher et al., 2022). Studying the loss curve via scaling law (Hutter, 2021)
is relatively less well-explored because the loss curves do not follow a power law exactly due to
the learning rate schedule; however, we found that a power law is still a decent model for learning
curves with cosine decay for language models. Recently, Tissue et al. (2024) showed that learning
rate schedules can be incorporated into scaling laws to make even more accurate predictions, though
we do not explore this direction in this work.

6 CONCLUSION

Dynamic data selection has the potential to improve the pretraining efficiency of foundation models,
but most existing approaches incur additional computation costs. We introduce ADO, a cheap online
data selection method that dynamically adjusts data distribution over different domains based on
domain scaling laws. The scaling laws forecast the model’s loss on different data domains and
automatically adjust the training data distribution based on each domain’s learning potential. ADO
does not require a proxy model so it naturally takes into account the architecture, the optimizer, and
other hyperparameters of the training. In our experiments, with a single set of hyperparameters,
ADO performs comparably to or better than existing methods on scales from 124M to 1.3B, with
much less additional computation. Our implementation only added 20 minutes of additional wall-
clock time to a 3.5-day training run (∼ 0.4%), and can be optimized further. The relative cost would
decrease more at larger scales since ADO’s cost does not scale with the model size. Overall, we
believe ADO represents an important step towards accessible and automated online data selection.

Limitations and future directions. Given further computational resources, it would be interesting
to scale ADO up to larger models (such as 8B models in DoReMi (Xie et al., 2024)) and datasets and
study its behaviors more thoroughly. On the technical side, we believe there are several promising
directions: 1. how to create better and more fine-grained domains, 2. how to design more realistic
scaling laws that can model inter-domain interactions and learning rate schedules, 3. whether in-
sights of ADO can be applied to other training settings such as continued pretraining or fine-tuning,
and 4. why do these domain scaling laws arise from naturally occurring data distributions.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. In AAAI Conference on Artificial Intelligence, 2019.
URL https://api.semanticscholar.org/CorpusID:208290939.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autore-
gressive language model. arXiv preprint arXiv:2204.06745, 2022.

11

flaticon.com
https://github.com/yidingjiang/ado
https://api.semanticscholar.org/CorpusID:208290939


Published as a conference paper at ICLR 2025

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen
Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Dur-
mus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor
Gale, Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Ku-
ditipudi, and et al. On the opportunities and risks of foundation models. CoRR, abs/2108.07258,
2021. URL https://arxiv.org/abs/2108.07258.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

David Brandfonbrener, Hanlin Zhang, Andreas Kirsch, Jonathan Richard Schwarz, and Sham
Kakade. Color-filter: Conditional loss reduction filtering for targeted language model pre-
training. arXiv preprint arXiv:2406.10670, 2024.

Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic Sala, and Christopher
Ré. Skill-it! a data-driven skills framework for understanding and training language models.
Advances in Neural Information Processing Systems, 36, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/
CorpusID:3922816.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren
Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec, Luyu
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A TRAINING DETAILS

Architecture. All experiments use the same architecture, which follows the Llama 2 family (Tou-
vron et al., 2023): a Transformer-based language model with key components including SwiGLU
MLP layers (Shazeer, 2020), RMS normalization (Zhang & Sennrich, 2019), and rotary embed-
dings (Su et al., 2021). We use the GPT-NeoX-20B tokenizer (Black et al., 2022), and tie the
weights in the embedding and final layers. Our experiments contain models trained at two scales:
124M parameters and 1.3B parameters.

Training. All models were trained for 60,000 steps at batch size 2048 (1B) or 256 (124M), using
AdamW (Loshchilov, 2017). We use decoupled weight decay with λ = 10−4, set β2 = 0.05, and
otherwise use default hyperparameters as specified by Optax (DeepMind et al., 2020). For ADO, we
fit scaling laws for each domain every 1,000 training steps starting at step 5,000 (we run an empirical
sampling strategy for the first 5,000 steps).

Compute and time expenditure. We ran our experiments on TPUs using the open-source midGPT
library (Zhou et al., 2023), which is based on JAX (Bradbury et al., 2018) and Equinox (Kidger &
Garcia, 2021). All experiments were run on Google Cloud TPUs. On a TPU v3-128, a 1B model
can be trained for 60,000 steps in ∼ 3.5 days. Fitting scaling laws for all domains takes less than
20 seconds–over the course of a training run, this amounts to under 19 minutes in additional time
spent fitting scaling laws. This number can likely be further improved by using a smaller or smarter
/ non-uniform grid (we found the results to be not sensitive to the size of the grid search) or smarter
optimization custom-made for power law. Although not present in our particular implementation,
the fitting of the scaling laws could, in principle, take place asynchronously in parallel with model
training since it does not require any information from the model other than the loss, which can be
staggered as the scaling laws remain accurate for some duration into the future.

A.1 FITTING SCALING LAWS

We fit an individual loss curve scaling law to each domain where the input is the total number of
samples processed so far, and the prediction is the training loss of that particular domain. Namely,
suppose the dataset is broken down into K distinct heterogeneous domains, we would learn L̂k(n) =
εk + βkn

−αk . To estimate these parameters of the scaling law, we use the standard procedure for
fitting a power law (Hoffmann et al., 2022) which minimizes the Huber loss with δ = 0.001 between
the predicted log loss and observed log loss with L-BFGS:

min
εk,βk,αk

∑
n

Huberδ
(
log L̂k(n)− logLk(n)

)
. (6)

Since learning curves have a large number of points, we subset the learning curve at regular intervals
to obtain the data for fitting. Similar to prior works, we use grid search with different initialization,
although we found that usually a smaller grid search suffices since the individual scaling laws do
not need to be very accurate. The losses of the first 500 steps are not included as the weights have
not stabilized yet and we subsample the trajectory at 10-step intervals to speed up the training. This
does not significantly impact the algorithm since scaling laws do not change drastically. We also
apply a threshold to the parameters’ values to mitigate potential instability due to online fitting.

β and ε are both parameterized in their log forms. We use a grid search over the following parameters
initialization:

• α0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}
• log β0 ∈ {−2,−1, 0, 1, 2, 3, 4, 5}
• log ε0 ∈ {−2,−1.5,−1,−0.5, 1, 1.5}

Further, we enforce 0 < α < 0.8, log β < 6.5 and log ε > 0.5. These bounds are purely preventative
in cases of numerical instability and are almost never saturated.

The computation complexity of fitting scaling law depends on the rate of convergence of L-BFGS,
which can be problem-dependent but is generally efficient and stable. The complexity of fitting
per-domain scaling laws scales with the number of domains and the granularity of the initialization
search grid. Suppose G is the granularity of discretization for a parameter (e.g., 7 for α0), and K
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Table 2: Different mixtures used in this paper.

Dataset Natural DeReMi Pile
FreeLaw 0.0449 0.0380 0.0612
Enron Emails 0.0010 0.0040 0.0014
Github 0.1227 0.0325 0.0759
OpenSubtitles 0.0158 0.0032 0.0155
PubMed Central 0.1215 0.0608 0.1440
OpenWebText2 0.1096 0.1905 0.1001
StackExchange 0.0491 0.0746 0.0513
Pile-CC 0.1825 0.1379 0.1811
ArXiv 0.0886 0.0535 0.0896
USPTO Backgrounds 0.0262 0.0327 0.0365
Books3 0.1046 0.0757 0.1207
Wikipedia (en) 0.0402 0.1068 0.0153
PubMed Abstracts 0.0221 0.0970 0.0307
NIH ExPorter 0.0019 0.0084 0.0030
BookCorpus2 0.0063 0.0037 0.0075
EuroParl 0.0081 0.0120 0.0073
HackerNews 0.0047 0.0084 0.0062
DM Mathematics 0.0191 0.0019 0.0124
YoutubeSubtitles 0.0040 0.0117 0.0060
PhilPapers 0.0027 0.0093 0.0038
Ubuntu IRC 0.0049 0.0083 0.0088
Gutenberg (PG-19) 0.0195 0.0292 0.0217

is the number of tasks, the complexity of fitting would be O(G3K), which grows linearly with the
number of domains. However, we can easily parallelize multiple L-BFGS runs on TPUs (or GPUs),
which is why ADO does not add much time in practice. As we mentioned above, 0.04% training
time in a 3-day run which is less than 20 minutes, a number that can likely be optimized further.

A.2 ESTIMATED EMPIRICAL MIXTURE

In Figure 5, we show various data mixtures used in this paper. For the natural distribution, we
sampled 1000 documents from each domain, tokenized them with our chosen tokenizer, and then
computed the average number of tokens per document. Using the estimated average, we can estimate
the total number of tokens within a domain by multiplying it by the number of documents.

Note that the DoReMi differs from the number of Xie et al. (2024) due to the use of different
tokenizers. The numbers we use here are from Albalak et al. (2023) which uses GPT-NeoX-20B
tokenizer (Black et al., 2022) like us. Also, note that the estimated empirical distribution differs
from the default Pile weights. Notably, Github and Wikipedia are weighted significantly higher.

B META-LEARNING PERMUTATIONS

Suppose we have a dataset Z = {z1, z2, . . . ,zN} drawn from the distribution Pz and we wish to
train a model in the one-epoch setting, that is, the model gets to see each example only once5. In
this setting, the space of curricula is SN , all permutations of [N ]. Note that the size of this search
space |SN | = N ! is extremely large for even a small N , and would be even larger if we allowed
data repetition. Given a curriculum σ : [N ] → [N ] and the stochastic gradient descent update rule
U(θ,z) = θ−η∇θℓ(z; θ), we initialize the model parameters θ0 and iteratively update them: θt+1 =
U(θt, zσ(t)). We can denote the entire training process from θ0 to θN by θN = SGD(θ0, σ,N).

In standard SGD, the curriculum is a randomly sampled permutation, σrandom ∼ Unif (SN ).
Given the size of the search space, we can instead formulate the problem of finding curricula

5This is common for the training regime of the modern language model.
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as an optimization problem over SN . An optimization problem needs an objective, but what
should the objective be for finding a good curriculum? The ultimate goal of this problem is to
find a curriculum such that the final parameter θN achieves a low population loss, i.e., σ⋆ =
argminσ Ez∼Pz [ℓ(z; SGD(θ0, σ,N))]. However, we cannot in general assume access to the data
distribution so we need a surrogate objective. In this experiment, we use the following surrogate
meta objective that depends only on the training data:

σ⋆ = argmin
σ

1

N

N−1∑
t=0

N∑
i=1

ℓ(zi; θt) = argmin
σ

L(σ), (7)

where the dependence of θt on σ is implicit since θt+1 = U(θt, zσ(t)).

This objective encourages the curriculum to minimize the total training loss after each update (i.e.,
training as fast as possible). Since we are in the one-epoch setting, the parameters are updated with
the gradient of each example only once so there is less, if any, risk of overfitting.

One obstacle to directly learning a good curriculum here is that gradient-based optimizers are not
suitable for searching over permutations. We follow Mena et al. (2018) and parameterize the cur-
riculum with a matrix Z ∈ RN×N . We then use the Sinkhorn operator S(·) to project Z to a doubly
stochastic matrix X = S(Z) (Sinkhorn, 1964; Adams & Zemel, 2011), which we can think of as a
“soft” approximation to a permutation. Since X is doubly stochastic but not an actual permutation,
we use a weighted batch generalization of our update:

θt+1 = θt −
η

N

N∑
j=1

Xtj∇θℓ(zj ; θt). (8)

This is a generalization in the sense that, if X is not only doubly stochastic but also a permutation
σ, then it reduces to SGD with curriculum σ.

After optimizing Z against the meta objective, we can project Z to a true permutation which serves
as our final learned curriculum:

Zt+1 = Zt − η∇ZL(S(Zt)), σ = argmax
P∈PN

⟨Z∞, P ⟩. (9)

This procedure can be further generalized to selecting a minibatch. To do so, we relax the con-
straints on X from a doubly stochastic matrix to a matrix with differentiable top-K relaxation at
each row (Xie & Ermon, 2021). We apply this to the MLP experiments in Figure 3 with minibatch
size 10.

C CLIPPING FUNCTION

Below is the pseudocode we use for clipping the probability. It evenly distributes the excess proba-
bility amongst the other categories.

Algorithm 2 Clip Minimum Probability

1: Input: probs ∈ ∆K , min prob ∈ [0, 1]
2: Output: clipped probs
3: total deficit← max(min prob · n−

∑
k probs, 0) ▷ Compute total deficit

4: scale factor← (1− total deficit)/(
∑

k probs) ▷ Compute scale factor
5: scaled probs← probs · scale factor ▷ Scale the probabilities
6: clipped probs← max(scaled probs,min prob) ▷ Clip probabilities
7: clipped probs← (clipped probs)/(

∑
k clipped probs) ▷ Normalize

8: return clipped probs
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D ADDITIONAL EMPIRICAL RESULTS

D.1 ADDITIONAL ANALYSIS

In terms of individual tasks, we observe that ADO outperforms ARC-E, SciQ, and LogiQA at 124M
scale but not 1.3B scale. The deficit for ARC-E is 0.2% which is relatively small and the performance
is far above the other points of comparison. For LogiQA, the performance of DoReMi, Natural, and
ADO are all within 0.4% of each other, which is relatively marginal. For SciQ, the difference in
performance is more pronounced at 1.1%, but it still outperforms the other baselines. This may
suggest that ADO has put less focus on scientific knowledge during pretraining. We believe this
could be alleviated by either putting higher prior weights µ on scientific data such as wikipedia or
mixing in high-quality scientific corpus at the later stage of training.

On the other hand, for LAMBADA, ADO outperforms Natural at 1.3B scale by a large margin
(1.4%) but not at the 124M scale. This highlights the fact that, for comparing different data mixtures,
it is very hard to obtain uniform or monotonic improvement on all downstream tasks the models scale
up. Note that downstream tasks are the proxy to the model’s capabilities. If there is a particular
downstream task of interest, it would be advisable to collect data for the particular task and finetune
further. As an evaluation for generic pretraining, aggregated metrics such as average would be a
more reliable measurement of the model’s performance.

The performance metrics would naturally become more difficult to improve with larger scales
because the room to improve becomes smaller. The average error for “natural” at 124M is
1− 0.463 = 0.537 and ADO improved over “natural” by 0.07 so the relative improvement is 1.3%.
The average error for “natural” at 1.3B is 1 − 0.585 = 0.415 and ADO improved over “natural”
by 0.05 so the relative improvement is 1.2%. This shows that the relative improvement of ADO in
average performance at different scales is consistent.

D.2 ADDITIONAL PLOTS

Table 3: Ablation for the zero-shot performance of different smoothing parameter values, s. We
observe that 3 out 4 values between 0 and 1 outperform the natural baselines, but larger values of
s tend to perform better. This is expected since smaller s is less effective in assigning credit to
different domains (s = 0 would make λ(t) uniform). On the other hand, since the credit assignment
is imperfect, using an overly large s, could also be undesirable. In our experiments, a value smaller
than 1 but not too small achieves the best result.

HellaSwag WinoGrande PIQA ARC-E SciQ LogiQA2 LAMBADA Average
Natural 0.2897 0.5028 0.6235 0.4348 0.7550 0.2341 0.4007 0.4629
Balanced 0.2800 0.5114 0.6099 0.4470 0.7620 0.2271 0.3623 0.4571

s = 1.0 0.2951 0.5067 0.6295 0.4747 0.7460 0.2360 0.3635 0.4645
s = 0.5 0.2901 0.5201 0.6349 0.4562 0.7710 0.2436 0.3707 0.4695
s = 0.3 0.2854 0.5130 0.6311 0.4369 0.7630 0.2277 0.3742 0.4616
s = 0.1 0.2894 0.5328 0.6170 0.4457 0.7650 0.2290 0.3625 0.4631
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Figure 7: Exrapolating the loss of larger models on each domain of the Pile with the loss of models
with fewer than 1B parameters.
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Figure 8: ADO loss forecasts produced by our scaling laws on each domain in The Pile while
training a 1B model. Scaling laws are fit regularly throughout training, with the forecasts shown
being from fits at 10,000, 30,000, and 50,000 steps (dashed line shows when each scaling law was
fit).
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ing potential, which seem to be correlated with higher entropy.
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Figure 11: The slope of the scaling law, ∂
∂n L̂k(n), for each domain throughout 1.3B ADO training.
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