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Abstract

Deep Neural Networks (DNNs) are known to be brittle to even minor distribution
shifts compared to the training distribution. While one line of work has demon-
strated that Simplicity Bias (SB) of DNNs – bias towards learning only the simplest
features – is a key reason for this brittleness, another recent line of work has sur-
prisingly found that diverse/ complex features are indeed learned by the backbone,
and their brittleness is due to the linear classification head relying primarily on the
simplest features. To bridge the gap between these two lines of work, we first hy-
pothesize and verify that while SB may not altogether preclude learning complex
features, it amplifies simpler features over complex ones. Namely, simple features
are replicated several times in the learned representations while complex features
might not be replicated. This phenomenon, we term Feature Replication Hypothe-
sis, coupled with the Implicit Bias of SGD to converge to maximum margin solu-
tions in the feature space, leads the models to rely mostly on the simple features for
classification. To mitigate this bias, we propose Feature Reconstruction Regular-
izer (FRR) to ensure that the learned features can be reconstructed back from the
logits. The use of FRR in linear layer training (FRR-L) encourages the use of more
diverse features for classification. We further propose to finetune the full network
by freezing the weights of the linear layer trained using FRR-L, to refine the learned
features, making them more suitable for classification. Using the proposed ap-
proach, we demonstrate noteworthy gains on synthetic/ semi-synthetic datasets, and
outperform existing SOTA on the standard OOD benchmark DomainBed as well.

1 Introduction

DNNs are brittle against even minor shifts in the data distribution during inference, which are not
uncommon in a real world setting [1, 2]. In this work, we aim to tackle the problem of Out-Of-
Distribution (OOD) generalization of Neural Networks in a covariate-shift [3] based classification
setting, by addressing the fundamental cause of their brittleness, rather than by explicitly enforcing
invariances in the network using domain labels or data augmentations. More specifically, we aim to
mitigate the issue of Simplicity Bias, which is the tendency of Stochastic Gradient Descent (SGD)
based solutions to overly rely on simple features alone, rather than on a diverse set of features [4, 5].
While this behavior was earlier used to explain the remarkable generalization of Deep Networks,
recent works suggest that this is indeed a key reason behind their brittleness to domain shifts [6].

The extent of Simplicity Bias seen in models is a result of two important factors - diversity of features
learned by the feature extractor, and the extent to which these diverse features are used for the task at
hand, such as classification. Recent works suggest that generalization to distribution shifts can be
improved by retraining the last layer alone, indicating that the features learned may already be good
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enough for the same [7, 8]. Does this imply that brittleness of models can be attributed to the learning
of the classification head alone? If this is the case, why does SGD fail to utilize these diverse features
despite its Implicit Bias to converge to a maximum margin solution in a linearly separable case [9]?
To answer these questions, we firstly hypothesize and empirically verify that Simplicity Bias leads to
the learning of simple features over and over again, as compared to other, more complex features.
For example, among the 512 penultimate layer features of a ResNet, 462 of them might capture a
simple feature such as color, while the remaining 50 might capture a more complex feature such as
shape – we refer to this as (Simple) Feature Replication Hypothesis. Assuming feature replication
hypothesis, we further show theoretically and empirically that a maximum margin classifier in the
replicated feature space would give much higher importance to the replicated feature when compared
to others, highlighting why the linear layer relies more on simpler features for classification.

To mitigate this, we propose a novel regularizer termed Feature Reconstruction Regularizer (FRR),
to enforce that the features learned by the network can be reconstructed back from the logit or pre-
softmax layer used for the classification task. As shown in Fig.1, we firstly propose to train the
linear classifier alone by freezing the weights of the feature extractor. This formulation enables the
learning of an Invertible Mapping in the output layer, specifically for the domain of features seen
during training. This further allows the logit layer to act as an information bottleneck, encouraging
all the factors of variation in the features to be utilized for the classification task, thereby improving
the diversity of features used. We theoretically show that adding this constraint while finetuning
the linear layer can learn a max-margin classifier in the original input space, disregarding feature
replication. Consequently, the learnt linear classifier also gives more importance to non replicated
complex features while making predictions. We further explore the possibility of improving the
quality of features learned by the feature extractor, by using FRR for finetuning the backbone as well.
In order to do this, we freeze the linear classification head, and further finetune the backbone with
FRR. We find that this encourages the network to indeed learn better quality features that are more
relevant for classification. We list the key contributions of this work below -

• Key Observation: We provide a crisp hypothesis of “feature replication” to explain the brittleness
of ERM trained neural networks to OOD data (Sec 2). Using this, we provide theoretical and
empirical evidence to justify the existence of Simplicity Bias in max margin classifiers (Sec 2.2).

• Novel Algorithm based on the Observation: Based on this, we introduce a novel FRR regularizer
to safeguard against the feature replication phenomenon. Furthermore, we introduce a simple FRR-
L method to only regularize the linear head with FRR, and then introduce FRR-FLFT training
regimen to train the feature extractor for improved OOD robustness (Sec 2.1). We also provide
theoretical support for FRR in an intuitive data distribution setting (Sec 2.2).

• Empirical validation of the hypothesis and the proposed algorithm: We demonstrate the effec-
tiveness of FRR-FLFT and FRR-L by conducting extensive experiments on semi-real datasets
(Table 3) constructed to study OOD brittleness, as well as on standard OOD generalization bench-
marks, where FRR-FLFT can provide up to 3% gains over SOTA methods (Table 1).

2 Feature Replication Hypothesis and Feature Reconstruction Regularizer

Prior works have shown that neural networks trained with SGD exhibit simplicity bias (SB), even
when initialized with pre-trained models that can capture complex features. Our Feature Replication
Hypothesis – FRH– states that: SB is observed because the simpler features of the input are replicated
multiple times in the feature space of neural networks. When trained using SGD, the final linear layer
then learns the max margin classifier on these replicated features, which leads to over-reliance on
simpler features in the input. Hence, the outputs of the network are brittle to distribution shifts that
change such replicated features. In this section, we propose a new regularizer – FRR– to mitigate
this effect, and further provide empirical and theoretical evidence for FRH and FRR.

2.1 Method: Feature Reconstruction Regularizer (FRR)

To alleviate the simple feature replication issue, we propose Feature Reconstruction Regularizer
(FRR) to enforce that the learned features can be reconstructed from the output logits. We retrain
the final linear layer using this regularizer so that the model can utilize diverse features to compute
the final output. To implement this, we introduce another neural network with the objective of
reconstructing the features from the output logits, i.e. features fθ(x) should be recoverable from the
predictions of the network through a transform Tφ(.) parameterized by φ as shown below:

LFRR(x, θ,W, φ) = ||fθ(x)− Tφ(WT fθ(x))||p (1)
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Figure 1: Our training procedure: Dotted
fill indicates that the parameters are trainable.
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Figure 2: (a) SVM vs. (b) FRR on a toy dataset
with 2 features. Y-axis feature is replicated 5 times.

where ||.||p denotes the `p norm. We set this norm to be `∞ or `1 in our experiments. Note that in
order to find the appropriate φ, we jointly optimize W the weight matrix of the linear classifier, and
φ using gradient descent based optimizers.

Our training pipeline consists of three stages, as summarized in Fig 1 and Alg 1. We pretrain our
model using the standard cross entropy loss Lstd, which is followed by retraining only the final linear
(and reconstruction) layer using our proposed regularizer LFRR. Finally, we fix the linear layer and
finetune the backbone using LFRR [10], to learn features which are more useful for classification.

2.2 FRH & FRR: Empirical and Theoretical Analysis

Empirical Justification: In order to empirically demonstrate feature replication, we consider a
binarized version of the coloured MNIST dataset [11] in Appendix B.2. We observe that ERM learns
more colour (simple) features than shape (complex) features, and the prediction is less correlated
with the shape features. We further empirically validate FRR on Coloured MNIST, where using FRR
with the linear layer leads to lower correlation with Colour and higher correlation with shape when
compared to standard ERM (Table 2). Consequently, OOD accuracy improves by 5% over ERM.

Theoretical Analysis: We now present a simple data distribution with feature replication that
highlights the OOD brittleness of standard ERM, and also demonstrates the effectiveness of FRR.

Data Distribution: Consider a linearly separable distribution consisting of two factors of variation
as shown in Figure 2. That is, consider the following distribution (x, y) ∼ D, where,

y = ±1 with probability 0.5, x = [y, y] + [n1, n2] ∈ R2, ni ∼ Unif[−0.5, 0.5], i ∈ [2]. (2)
Also consider a feature extractor fθ(.) which captures feature replication in the first feature, i.e. for
every data point (x, y), the new, feature replicated data point will be (x̃, y), where,

fθ(x) = x̃ = [x1, · · · , x1, x2] ∈ Rd+1, (3)

i.e., x1 is repeated d times. The joint distribution of features and labels is denoted by D̃. Finally,
we define the l2 max margin classifier over a distribution D as wMM := argminw

1
2 ‖w‖

2
2 subject to

y · 〈w, x〉 ≥ 1 ∀ (x, y) ∈ Supp (D). Then we have the following results:
Claim 2.1 (Brittleness due to Feature Replication). Consider the data distribution given in Equa-
tion 2, 3. Then, the following holds: (1.) The max-margin classifier wMM over D is given by wMM =
[1, 1], and (2.) The max-margin classifier w̃MM over D̃ is given by w̃MM =

[
2
d+1 , · · · ,

2
d+1

]
∈ Rd+1.

The above claim implies that when there are replicated features to the input of the linear layer, the
max-margin classifier would give much more importance to the feature that is replicated. Hence,
even a minor change in this replicated feature in the input space would be amplified in the output of
the classifier. This is especially concerning in light of the observations in Table 2, which validate the
Feature Replication Hypothesis in Coloured MNIST.

Proposition 2.2 (Robustness of FRR). Denote the average feature reconstruction loss LFRR(w̃, φ̃) :=

max
1≤i≤d+1

E(x̃,y)∼D̃

[
(〈w̃, x̃〉φ̃i − x̃i)2

]
and consider any (w̃∗, φ̃∗) satisfying:

(w̃∗, φ̃∗) ∈ argmin
(w̃,φ̃)

LFRR(w̃, φ̃) subject to y · 〈w̃, x̃〉 ≥ 0 ∀ (x̃, y) ∈ Supp
(
D̃
)
.

We have that: w̃∗1 + · · ·+ w̃∗d = w̃∗d+1. Consequently, we have 〈w̃∗, x̃〉 ∝ 〈wMM, x〉 for all x ∈ R2.
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Table 1: Results on DomainBed: The bottom partition shows results of methods that perform model
weight averaging. In both cases, with (top) and without (bottom) model weight averaging, the
proposed approach outperforms existing methods.

Algorithm PACS VLCS OfficeHome TerraIncognita DomainNet Average
ERM 85.5 ± 0.1 77.5 ± 0.4 66.5 ± 0.2 46.1 ± 0.6 40.9 ± 0.1 63.3
IRM 83.5 ± 0.8 78.5 ± 0.5 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6
CORAL 86.2± 0.3 78.8± 0.6 68.7± 0.3 47.6± 1.0 41.5 ± 0.1 64.5
MIRO 85.4 ± 0.4 79.0 ± 0.0 70.5 ± 0.4 50.4 ± 1.1 44.3 ± 0.2 65.9
ERM+FRR-L 85.7 ± 0.1 76.6 ± 0.2 68.4 ± 0.2 53.7 ± 0.6 44.2 ± 0.1 65.7
ERM+FRR 87.5 ± 0.1 77.6 ± 0.3 69.4 ± 0.1 54.1 ± 0.6 45.1 ± 0.1 66.8
SMA 87.5 ± 0.2 78.2 ± 0.2 70.6 ± 0.1 50.3 ± 0.5 46.0 ± 0.1 66.5
SWAD 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
SWAD+FRR 89.2 ± 0.4 80.0 ± 0.2 70.3 ± 0.1 53.2 ± 0.3 46.2 ± 0.0 67.9

The above result shows that the feature reconstruction regularizer will produce a linear classifier that
gives equal weights to the replicated and non-replicated features. This is equivalent to a maximum
margin classifier in the non-replicated feature space, thereby resulting in enhanced robustness to
distribution shifts. Same is reflected in Figure 2 (b) which shows the impact of FRR on the trained
boundary in the non-replicated feature space (See Appendix B.1). We defer the proofs to Appendix A.

3 Experimental Results

We demonstrate the effectiveness of the proposed Feature Reconstruction Regularizer towards
mitigating Simplicity Bias by evaluating the same on a 10-class variant of the semi-synthetic MNIST-
CIFAR dataset [6] in Appendix D. We further show the efficacy of FRR towards improving OOD
generalization on the DomainBed [11] benchmark. We use the performance of the model on in-
domain validation data (i.e. the in-domain strategy by [11]) to select the best hyper-parameters, and
report the average performance and standard deviation across 5 random seeds. We compare our
method against standard ERM training, which has proven to be a frustratingly difficult baseline [11],
and also against several state of the art methods on this benchmark - SWAD [12], MIRO [13] and
SMA [14] (See Appendix F). Finally, we show that our approach can be effectively integrated with
stochastic weight averaging to obtain further gains. See Appendix G for further experimental details.

Main Results: The main results of our algorithm are reported in Table 1. We find that our pipeline of
training and finetuning with FRR, when combined with ERM achieves improved performance with
respect to the state of the art methods that do not use model weight-averaging, and in fact achieves
comparable performance to methods that use model weight averaging as well. Further, our method
obtains substantial gains of more than 3% over ERM across datasets. This empirically validates our
finetuning paradigm which we denote as ERM+FRR. Finally, using our method in tandem with SWAD
helps us achieve a new state-of-the-art on the DomainBed benchmark , better than existing SOTA by
close to 1% on average. We report detailed results and further ablations in Appendices H and I.

4 Conclusion and Discussion

In this work, we consider the problem of OOD generalization through the lens of mitigating Simplicity
Bias in Neural Network training. To unravel the paradox pertaining to the existence of Simplicity
Bias in learning only the simplest features, and the observation that the features learned by large
practical models may already be sufficiently diverse, we put forth the Feature Replication Hypothesis
that conjectures the learning of replicated simple features and sparse complex ones. Combining this
with the Implicit Bias of SGD to converge to maximum margin solutions, we provide a theoretical
justification to the high OOD sensitivity of Neural Networks. To specifically overcome the effect of
simple feature replication in linear layer training, we propose the Feature Reconstruction Regularizer,
that penalizes the `p norm distance between the features and their reconstruction from the output
logits, thus improving the diversity of features used for classification. We further propose to freeze the
weights of the linear layer thus trained, and use the FRR regularizer for finetuning the full network,
to refine the features to be more useful for the downstream task. We justify the proposed regularizer
both theoretically and empirically on synthetic and semi-synthetic datasets, and demonstrate its
effectiveness in a real world OOD generalization setting. We believe and hope that this work can
pave the way towards obtaining a better understanding on the underlying causes for OOD brittleness
of neural networks, and inspire the development of better algorithms for addressing the same.
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A Proofs of theoretical results

Proof of claim 2.1 :

Proof. First, observe that w = [1, 1] satisfies the constraint y · 〈w, x〉 ≥ 1 ∀ (x, y) ∈ Supp (D). Now,
consider any w satisfying this constraint. By considering (y · (0.5, 0.5), y) ∈ Supp (D), we have that
w1+w2

2 ≥ 1. We now conclude by observing that amongw which satisfy w1+w2

2 ≥ 1, [1, 1] minimizes
1
2 ‖w‖

2
2. The proof of the second part of the claim is identical to that of the first part. First, observe

that w̃ =
[

2
d+1 , · · · ,

2
d+1

]
satisfies the constraint y · 〈w̃, x̃〉 ≥ 1 ∀ (x̃, y) ∈ Supp

(
D̃
)

. Now, consider

any w̃ satisfying this constraint. By considering (y · (0.5, 0.5, · · · , 0.5), y) ∈ Supp
(
D̃
)

, we have

that w̃1+···+w̃d+1

2 ≥ 1. We now conclude by observing that among w̃ which satisfy w̃1+···+w̃d+1

2 ≥ 1,[
2
d+1 , · · · ,

2
d+1

]
minimizes 1

2 ‖w̃‖
2
2.

The classifier w̃MM ∈ Rd+1 on x̃ ∈ Rd+1 is equivalent to the classifier wproj =
[

2d
d+1 ,

2
d+1

]
∈ R2 on

x ∈ R2:

〈wproj , x〉 = 〈w̃MM, x̃〉 ∀ x ∈ R2.

Proof of Proposition 2.2

Proof. Given any w̃, we first compute LFRR(w̃) := minφ̃ LFRR(w̃, φ̃). To do so, we note that the
minimizing φ̃ for a given w̃, denoted by φ̃∗(w̃) is given by:

φ̃∗i (w̃) = argmin
u

E(x̃,y)∼D̃[(〈w̃, x̃〉u− x̃i)
2
].

So, φ̃∗i (w̃) =
E[〈w̃,x̃〉x̃i]
E[〈w̃,x̃〉2] . So, we have that:

min
u

E(x̃,y)∼D̃[(〈w̃, x̃〉u− x̃i)
2
] = E[x̃2i ]−

E[〈w̃, x̃〉x̃i]2

E[〈w̃, x̃〉2]
.

Since 〈w̃, x̃〉 = w̃1→d · (y + n1) + w̃d+1 · (y + n2), where w̃1→d :=
∑d
i=1 w̃i, we have:

E[〈w̃, x̃〉x̃i] =
13

12
·
{
w̃1→d if 1 ≤ i ≤ d
w̃d+1 if i = d+ 1

,

where we used the fact that E[n21] = E[n22] = 1/12. Consequently, we have that LFRR(w̃) =
13
12

(
1− min(w̃1→d,w̃d+1)

2

(w̃1→d+w̃d+1)2+w̃2
1→d/12+w̃

2
d+1/12

)
. Consequently, any minimizer w̃∗ of LFRR(w̃) satisfies∑d

i=1 w̃i = w̃1→d = w̃d+1.

B Synthetic datasets

B.1 Toy dataset

In line with the theoretical formulation described in Section-2.2, we further empirically validate the
brittleness of SVM models and the highlight the effectiveness of the proposed Feature Reconstruction
Regularizer in the presence of replicated features. We consider a linearly separable toy distribution
consisting of two factors of variation as shown in Figure 2. We define the means of the two classes
at (1,1) and (-1,-1) and construct 500 data points in each class by adding noise sampled from
Unif[-0.5,0.5] independently along each dimension to the respective means. We sample an Out-
of-Distribution (OOD) test set from a Uniform distribution with means centered at (1,0) and (-1,0)
respectively, and similar noise along each dimension as the train set. Therefore, while the train
distribution can be classified by considering either the features aligned with the X-coordinate or the
Y-coordinate, the test set performance crucially depends on the variation along X-coordinate alone.
We consider feature replication along the y-axis, and hence construct this OOD dataset to verify the
extent to which the other feature is considered for classification. To select the best hyperparameter
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Table 2: Features replication in Coloured MNIST: We observe that ERM learns more colour
features than shape features, and the prediction is less correlated with the shape features. Adding FRR
makes the network depend more on shape and less on colour, leading to better OOD performance.

Number Correlation with output
Algorithm Colour Shape Colour Shape ID Accuracy OOD Accuracy

ERM 26 4 0.81 0.61 99.9% 59.1%
ERM+FRR-L 26 4 0.71 0.65 99.6% 64.9%

for both SVM and FRR, we consider the presence of a validation set whose distribution is similar
to the test distribution. As shown in Figure 2, we observe that the SVM model starts relying more
on the replicated features alone in case of feature replication, compromising its performance on the
OOD data. The proposed regularizer on the other hand, gives equal importance to both features even
in the presence of feature replication, resulting in improved OOD generalization.

B.2 Empirical validation of Feature Replication Hypothesis (FRH) in ERM

Coloured MNIST dataset. In order to empirically demonstrate feature replication, we use a
binarized version of the coloured MNIST dataset [11]. To construct this dataset, we firstly assign two
digits of the MNIST dataset, namely “1” and “5”, to classes 0 and 1 respectively. For the in-domain
training distribution, we associate colours in the range R0 = [(115, 0, 0)− (256, 141, 0))] (i.e. red)
to label 0 (i.e. the digit “1”) and the range R1 = [(0, 115, 0)− (141, 256, 0)] (i.e. green) to the label 1
(i.e. the digit “5”), where colors are represented in the RGB space. To summarize, while training the
network, we super-impose images of “1” onto colours of range R0, and images of “5” onto colours of
range R1. It is to be noted that the choice of colour ranges as defined above introduces an overlapping
range between [(115, 115, 0)− (141, 141, 0))] where images are associated with labels 0 and 1 with
equal probability. This overlap reduces the correlation of colour features with labels, while shape
features have a correlation of 1 with the labels. In Figure 3, we show examples of images from the
train and test distributions of this dataset. In Figure 4, we pictorially depict the correlations between

Figure 3: Random images from the coloured MNIST dataset: The top row shows examples from
the train distribution, while the bottom row has images from the test distribution. Here, colour red
corresponds to the digit 1 and green corresponds to the digit 5 in the train data, while this correlation
is destroyed in the test data.

the 32 features learnt by the network. We can see a block structure emerging, indicating that there is
a high amount of feature replication.

Training setup: We train a model on this dataset, and test it on images which do not have any
correlation between the label and the colour, i.e. images where the digits “1” and “5” are superimposed
on randomly coloured backgrounds. We construct this test distribution to see how well different
algorithms learn simple (i.e. colour) and complex (i.e. shape) features, since an algorithm which
depends only on the spurious colour features would not have good performance on the test domain.
We train a four layered CNN on this data. If a feature in the penultimate layer fθ(x) has more than
90% correlation with the color or shape of the input, then we call it as a color feature or a shape
feature, respectively. We also compute the correlation of these features with the output of the network
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Figure 4: Correlation of the features learnt on coloured MNIST

(WT fθ(x)) over inputs from the test domain. This gives us information of the learnt features, and
their contributions to the final prediction of the network. Note that the feature dimension is m = 32,
and the output dimension is k = 1.

Observations: In Table 2, we report the number of colour features, shape features, and the average
correlation of each of these with the final prediction. We observe that the ERM trained model learns
both shape and colour features, but the number of learnt colour features (26) is much higher than the
number of shape features (4), despite their weaker correlation with labels, thus validating our Feature
Replication Hypothesis. We also visualize the inter-feature correlation of the learnt features in Fig 4,
which shows blocks of highly correlated features, further validating our hypothesis. Furthermore, we
note that correlation of the output with the shape features is lower, leading to OOD accuracy of 59%
only.

C Algorithm

Algorithm 1: Our training algorithm
Data: Training data DS = {(xi, yi) : i ∈ [n]}, model (θ,W ), feature reconstruction model φ,

λFRR, λFT
1 θstd, Wstd ← Adam (minθ,W

∑
i Lstd(θ,W, (xi, yi))).

/* Standard training of model parameters θ and W. */
2 Freeze θ to be θstd

/* Initializing model for training with FRR. */
3 WFRR, φFRR ← Adam (minW,φ

∑
i Lstd(θstd,W, (xi, yi)) + λLLFRR(xi, θstd,W, φ)).

/* FRR-L: Training W,φ with FRR defined in eqn. 1 */
4 θFLFT ← Adam (minθ

∑
i Lstd(θ,WFRR, (xi, yi)) + λFLFTLFRR(xi, θ,WFRR, φFRR)).

/* FRR-FLFT: Finetuning θ with FRR according to eqn. 1 */
Result: Trained model (θFLFT,WFRR).
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D Understanding how FRR mitigates Simplicity Bias

To empirically illustrate the extent of Simplicity Bias in Neural Networks, Shah et al. [6] introduced
several synthetic and semi-synthetic datasets, where some features are explicitly simple, requiring a
simpler decision boundary for prediction; while others are complex. In this section, we demonstrate
the effectiveness of the proposed Feature Reconstruction Regularizer towards mitigating Simplicity
Bias, by evaluating the same on a 10-class variant of the proposed semi-synthetic MNIST-CIFAR
dataset, as discussed in the following section.

D.1 MNIST-CIFAR-10 dataset

We extend the simple binary MNIST-CIFAR dataset proposed by Shah et al. [6] to a 10-class dataset,
in order to evaluate the impact of the proposed Feature Reconstruction Regularizer in a more complex
scenario when compared to the binary Colored-MNIST dataset presented in Appendix B.2. We
refer to this dataset as MNIST-CIFAR-10. The higher complexity of this dataset allows for a more
reliable evaluation of various settings such as linear probing, full network finetuning and fixed-linear
finetuning, with better granularity of results.

To construct this dataset, we first define correspondences between the classes of CIFAR-10 and
MNIST. Each image from class k of MNIST is mapped with an image from class k of CIFAR-10,
with the label being set to k. Thus, every training data sample (x1, x2, y) consists of x1 and x2, which
are images from CIFAR-10 and MNIST respectively, along with their ground truth class y. It is to be
noted that for both CIFAR-10 and MNIST, labels are always correlated with the respective images.
In such a scenario, although a classifier can achieve very good performance by relying solely on
the simple (MNIST) features, the goal of Out-Of-Distribution (OOD) robustness requires it to rely
on the complex (CIFAR-10) features as well. This dataset represents the toughest setting of OOD
generalization, where there is no differentiation between important features and spurious correlations.
A real-world example of such a case is the classification of swans versus bears, with the training
dataset consisting of only white swans and black bears. Here the model could either rely on shape or
color for classification. A classification network that relies solely on the simplest feature color, fails
to generalize to the test set consisting of black swans and polar bears.

D.2 Training and Evaluation Settings

We consider two separate ResNet-18 [15] feature extractors for CIFAR-10 and MNIST respectively.
The outputs of the Global Average Pooling (GAP) layers in each of the feature extractors are
concatenated to form a 1024 dimensional vector, which is given as input to the linear classifier. This
architecture allows the computation of accuracy based on either a combination of both CIFAR-10
and MNIST features, or based on features of only one of the datasets. For example, to evaluate the
performance of the classifier based on CIFAR-10 features alone, we replace the 512 dimensional
MNIST feature vector of each data sample with an average feature vector computed from all images
in the MNIST dataset. We refer to this as the CIFAR-AvgMNIST dataset, while the corresponding
one for MNIST is refered to as the MNIST-AvgCIFAR dataset. Similar to the work by [6], we
define two additional datasets, CIFAR-RandMNIST and MNIST-RandCIFAR, where images from
one of the datasets (MNIST and CIFAR-10 respectively) are randomly shuffled with respect to their
corresponding labels. The base training (E1, E2, E3) is done for 500 epochs, and the linear layer
training / finetuning (E4 - E18) is done for 20 epochs, without any augmentations.

D.3 Experimental Results in various Training Regimes

We present the results of training on the MNIST-CIFAR-10 dataset using different algorithms in
Table 3. The mean and standard deviation across five runs have been reported for each case.

ERM Training: By training a randomly initialized model on the MNIST-CIFAR-10 dataset using
the cross-entropy loss (E1), we obtain an accuracy of 99.84% on its corresponding test split. While
the accuracy of this model on the MNIST-avgCIFAR dataset is high (97.44%), its performance on
the CIFAR-avgMNIST dataset is poor (51.92%), indicating that the model chooses to rely more on
the simpler MNIST features, rather than a combination of both CIFAR and MNIST features.
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Table 3: ID and OOD accuracy (%) by training on MNIST-CIFAR-10 in various training regimes.

Initialization Layers trained Exp ID Training Loss Training Dataset In-Distribution (ID) Out-Of-Distribution (OOD)
MNIST-CIFAR-10 MNIST-AvgCIFAR CIFAR-AvgMNIST

Random All layers
E1 M1: ERM (CE) MNIST-CIFAR-10 99.84 ± 0.01 97.44 ± 0.89 51.92 ± 1.52

E2 Cross-Entropy CIFAR-RandMNIST 88.53 ± 0.15 9.77 ± 0.11 88.52 ± 0.14

E3 Cross-Entropy MNIST-RandCIFAR 99.68 ± 0.02 94.84 ± 1.18 10.02 ± 0.13

M1:ERM Linear layer

E4 M2: ERM-L (CE) MNIST-CIFAR-10 99.86 ± 0.01 97.06 ± 0.05 52.73 ± 0.08

E5 Cross-Entropy CIFAR-RandMNIST 65.14 ± 0.05 10.15 ± 0.01 65.10 ± 0.03

E6 Cross-Entropy MNIST-RandCIFAR 99.71 ± 0.00 94.84 ± 0.04 10.33 ± 0.17

E7 CE + Full-Rank Reg MNIST-CIFAR-10 99.86 ± 0.01 97.04 ± 0.15 52.87 ± 1.09

E8 M3: FRR-L (Ours) MNIST-CIFAR-10 99.88 ± 0.00 96.81 ± 0.38 59.13 ± 0.37

M2:ERM-L

All layers E9 Cross-Entropy

MNIST-CIFAR-10

99.84 ± 0.02 97.67 ± 0.19 53.33 ± 0.28

Feature extractors E10 Cross-Entropy 99.84 ± 0.01 97.67 ± 0.18 53.67 ± 0.40

All layers E11 FRR-FT 99.84 ± 0.02 97.32 ± 0.45 54.12 ± 0.44

Feature extractors E12 FRR-FLFT 99.81 ± 0.04 98.44 ± 0.64 60.02 ± 0.69

M3:FRR-L

All layers E13 Cross-Entropy

MNIST-CIFAR-10

99.87 ± 0.01 97.03 ± 0.35 61.75 ± 0.33

Feature extractors E14 Cross-Entropy 99.88 ± 0.02 97.35 ± 0.34 63.73 ± 0.62

All layers E15 FRR-FT 99.85 ± 0.01 99.30 ± 0.05 62.13 ± 0.42

Feature extractors E16 M4: FRR-FLFT (Ours) 99.84 ± 0.03 99.45 ± 0.03 68.12 ± 0.96

M4:FRR-FLFT Linear layer E17 Cross-Entropy CIFAR-RandMNIST 79.92 ± 0.33 11.93 ± 0.09 77.35 ± 0.10

E18 Cross-Entropy MNIST-RandCIFAR 99.71 ± 0.00 99.46 ± 0.00 10.27 ± 0.12

While the performance on the CIFAR-avgMNIST and MNIST-avgCIFAR datasets is sufficient to
understand the extent of CIFAR/ MNIST features used by the classification head, it does not give a
clear picture on the features learned by the two feature extractors. To understand this, we reinitialize
the linear classification head randomly, and train the same using CIFAR-RandMNIST (E5) and
MNIST-RandCIFAR datasets (E6) respectively. We obtain an accuracy of 65.2% on the CIFAR-
avgMNIST dataset in the former case, indicating that although the CIFAR features learned can
possibly achieve 13% higher accuracy (w.r.t. E1), the bias in the classification head prevents them
from participating in the classification task. The MNIST-avgCIFAR accuracy of the latter case is
high as expected. An upper bound on CIFAR-10 and MNIST accuracy that can be achieved with
the selected architecture and training strategy (without using any augmentations) can be seen in E2
(88.53%) and E3 (99.68%) respectively.

Training the Linear Classification Head: As discussed, while ERM training (E1) learns features
that can be used for better OOD performance (E5), it does not effectively leverage these features
for the classification task. We firstly explore the possibility of bridging the difference in the CIFAR-
avgMNIST accuracy between E1 and E5 by merely retraining the linear layer. By reinitializing
and naively retraining the linear layer with Cross-entropy loss, the accuracy on CIFAR-avgMNIST
improves by less than 1% (E4). Using the proposed Feature Reconstruction Regularizer (FRR) for
training the linear layer alone, the CIFAR-avgMNIST accuracy improves by 7.21% as shown in E8,
demonstrating the effectiveness of the proposed regularizer in mitigating Simplicity Bias. We penalize
the `∞ norm of difference in original features and their reconstruction in addition to the minimization
of cross-entropy loss. The reconstruction based regularizer enforces the network to utilize both
CIFAR and MNIST features for classification. Since this regularizer resembles an orthonormality
constraint on the linear classification head, we additionally check the effectiveness of explicitly
enforcing a full-rank constraint on the linear layer by minimizing the following: ||WWT − I||F
(E7). We find that this is not effective in improving the overall accuracy, possibly because it enforces
a very stringent constraint on the final classification layer. Contrary to this, the proposed Feature
Reconstruction Regularizer allows more flexibility by imposing this constraint only on the domain of
features seen during training. This accounts for the simple feature replication as well, enabling to
view the logit layer as an information bottleneck in the reconstruction.

Finetuning (FT) and Fixed Linear Finetuning (FLFT): We explore the finetuning of a given base
model in two settings - firstly by finetuning all layers in the network (denoted as FT or FineTuning),
and secondly, by freezing the parameters of the linear classification head and finetuning only the
feature extractors, which we refer to as FLFT or Fixed Linear FineTuning. By finetuning an ERM
trained base model using either of the two strategies (E9 and E10), we observe gains of less than
1%. We observe similar gains even by finetuning the full network with FRR (E11). Contrary to this,
by using FRR-FLFT even on the ERM trained network (E12), we obtain 7.29% improvement over
the base model. This shows that, by allowing the full network to change while imposing the FRR
constraint, the network can continue to rely on simple features, possibly by reducing the number of
complex features learned by the feature extractor. However, by freezing the weights of the linear
layer and further imposing this constraint, the network is forced to refine the CIFAR features that are
already being used for prediction.
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Combining FRR-L and FRR-FLFT: While we obtain similar order of gains ( ∼ 7%) using both
FRR-L and FRR-FLFT individually, the former improves the diversity of features being considered by
the classification head, while the latter improves the quality of the features themselves. We therefore
propose a training strategy that combines both FRR-L and FRR-FLFT. Using this, we obtain gains
of 16.2% over the ERM baseline as shown in E16, indicating that the combination of FRR-L and
FRR-FLFT has a compounding effect by firstly selecting diverse features, and further refining these
features to be more useful for classification. Although FRR-L followed by FRR-FT (E15) is also
effective, it has about 6% lesser gains when compared to the proposed approach of FRR-L + FRR-
FLFT. We note that following up FRR-L with ERM-FT (E13) or ERM-FLFT (E14) also refines the
learned features, making them more suitable for the classification task, yielding 2.6% and 4.6% gains
respectively over FRR-L.

We verify the quality of features learned by the feature extractors after the proposed training strategy
FRR-L + FRR-FLFT by reinitializing and retraining the linear classifier on CIFAR-RandMNIST
(E17) and MNIST-RandCIFAR (E18) datasets respectively. We observe considerable gains of around
15% on MNIST-CIFAR-10 accuracy using CIFAR-RandMNIST training when compared to ERM
(E5), demonstrating that the proposed approach not only results in more CIFAR features being used
for classification, but also leads to the learning of better CIFAR features.

E Details on the OOD Generalization setting considered

The problem of improving robustness to distribution shifts has been studied in several settings, where,
in addition to labeled source domain data, varying levels of access to the target domain data is assumed.
Some of the well-researched settings include - Unsupervised Domain Adaptation, with access to only
unlabeled target domain data [16, 17], and Domain Generalization, where typically data from several
source distributions is assumed to be available, and the target domain in unseen during training
[18, 19, 11]). In the latter case, it is assumed that all training data samples are annotated with domain
labels as well, so that training algorithms can explicitly impose invariance to attributes that cause a
distribution shift in input data without change in their label distribution [20, 17, 21, 22, 23].

A more challenging case is when the training data belongs to several distributions that may not even
be sufficiently discernable to have explicit domain annotations, or may contain multidimensional
distribution shifts, such as weather, time of the day and geographical location, that cannot be easily
annotated or clustered. We investigate this crucial setting which has been relatively less researched,
and refer to it as Aggregated Domain Generalization, as introduced by [24]. We note that this setting
is different from the case of training on data from a single domain such as ImageNet, and evaluating
on distribution shifts [25], due to the availability of an aggregate of source domains during training,
which can enable the effective use of in-domain validation set for hyperparameter selection.

While there have been several approaches to improve the performance of models in the setting
of Domain Generalization, Gulrajani et al. [11] show that when evaluated fairly, that is, without
assuming access to the test domain data even for selecting the best set of hyperparameters, none of
the approaches perform consistently better than standard training using Empirical Risk Minimization
(ERM). Furthermore, we consider the setting of Aggregated Domain Generalization, which is more
challenging due to the absence of domain labels during both training and validation.

F Related Works

Learning diverse classifiers to counter simplicity bias: Recent works have shown that ERM
trained models learn diverse features, however, the linear layer fails at capturing and utilizing these
diverse features properly. There have been several attempts at training classifiers which can make use
of such diverse features. [26] train a number of linear classifiers on top of a pre-trained network with
a diversity regularizer, which encourages the classifiers to rely on different features. [27] extend this
idea further to train a classifier which is “orthogonal" to the original network, i.e. its predictions do
not depend on the same features that the original network’s predictions depend on. However, this
assumes access to an unbiased network, whose predictions already take both sets of features into
account. [28] show that reweighting train set examples and retraining the last layer of a pre-trained
deep network can alleviate spurious correlations, provided one can access a balanced dataset. In
contrast to these methods, our method can work simply on the training set data, and produce a single
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classifier which is debiased. [29] propose to mute the features with highest gradients, and use only
the other features to make a prediction. While this method suppresses the maximally used features,
it does not encourage the learning of hard-to-learn features, which is directly realized using our
loss formulation. [10] suggest that finetuning the final linear layer first before finetuning the entire
network can make it more robust to OOD shifts, and we utilize this insight in the FRR-FLFT phase
of our method. A complementary approach to this problem is to learn features that are more diverse
[30]. We note that applying our proposed method on top of such techniques would encourage the
classifier to use the diverse features effectively, and this can further benefit the performance.

Domain Generalization and OOD robustness: The performance of neural networks is known to
drop when there is a mismatch in the train and test distributions [25], and methods to mitigate this
have been gaining a lot of attention in recent years. The problem has been studied under various
assumptions on distribution shift. The commonly studied setting of domain generalization [11, 19]
assumes that the train distribution consists of a mixture of distinct distributions (called domains),
with each train sample having a domain label associated with it. The stronger setting of aggregate
domain generalization [24, 31] assumes training data to be drawn from a mixture of distributions,
but does not assume the availability of domain labels. Finally, OOD robustness [25, 32] drops all
of these assumptions. Most works tackling the domain generalization problem attempt to train a
model whose predictions are invariant to the domain label [19, 22], or try to align the features of the
model for examples from different domains [23, 33]. However, since we aim to tackle the stronger
setting of OOD generalization, we do not use domain labels. Tackling the OOD robustness problem,
[24] and [31] first cluster training examples into “pseudo-domains", after which standard domain
generalization techniques are used. Another recent line of works propose using model averaging
[12, 34] and/or ensembling [14] for better OOD generalization. These techniques are complementary
to our contribution, and we demonstrate how they can benefit each other in our empirical evaluation.

G Experimental Details on DomainBed

We test our approach on the DomainBed benchmark [11] comprising of five different datasets, each
of which have k domains. For each dataset, we train a model on k − 1 domains, and test it on the left
out domain. The average out-of-domain performance across the k held-out domains is then reported.
In this section we describe the hyper-parameter selection strategy and the ranges considered for our
approach. In line with the DomainBed testbench, we use ImageNet pretrained ResNet-50 models
for all algorithms. We use random search to select hyperparameters for our algorithm, and use the
suggested hyperparameters for the other baselines. We train for 3000 (5000 for DomainNet) steps
in the FRR-L phase, and 5000 (10000 for DomainNet) steps in the FRR-FLFT phase. The batch
size is fixed to 32, and SWAD hyper-parameters are the same as those used by [12]. We use the in-
domain accuracy protocol from [11] to select hyper-parameters for each domain of each dataset, and
search over 8 random combinations of hyper-parameters for each. The range of the hyperparameters
is shown in Table 4. Note that we experiment with two implementations of `∞ norm: `1,∞, where
we first compute the `∞ of feature reconstruction for each example in a batch and then average it
across the batch, and `∞,1 where we compute the average `1 reconstruction norm of each feature
across the batch, and then apply `∞ norm on this m dimensional vector. All our experiments were
done on single V100 GPUs.

Table 4: Ranges of hyperparameters considered for DomainBed

Hparam Range

Learning Rate loguniform(10−5, 10−1)
λFRR loguniform(10−6, 100)
λFT loguniform(10−6, 100)
Norm {`1, `1,∞, `∞,1}
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H Ablations on DomainBed

Comparing the choices for φ : In Table 5, we experiment with various architectures for the
decoder φ when computing FRR according to equation 1. We consider using a two layer neural
network as the decoder φ (FRR-LDeeper), and also consider setting φ = WT (FRR-LShared), i.e.
explicitly tying the weights of the decoder and the classifier layer. Overall, both these variants are
worse than the default single layer, free parameterization of φ. We believe that this happens because
the latter approach enforces a much stricter constraint on W , leading to poorer in-domain accuracy,
while the former approach enforces a weaker constraint, potentially enabling reconstruction of more
complex features from a smaller amount of information about them in the logits. Both these have a
detrimental effect on the overall performance of the model.

Table 5: Effect of different design choices on OOD accuracy:the rows shows different architecture
choices for φ

Algorithm PACS OfficeHome TerraIncognita Avg.
ERM 85.5 ± 0.1 66.5 ± 0.2 46.1 ± 0.6 65.3

ERM+FRR-LShared 85.2 ± 0.5 68.2 ± 0.1 49.4 ± 0.5 67.6
ERM+FRR-LDeeper 84.6 ± 0.7 65.6 ± 0.2 52.5 ± 0.5 67.6

I Domain wise accuracies

In this section, we show detailed results of Table 1 in the main text.

Table 6: Out-of-domain accuracies (%) on PACS.

Algorithm A C P S Avg

CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MASF 82.9 80.5 95.0 72.3 82.7
DMG 82.6 78.1 94.5 78.3 83.4
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
MetaReg 87.2 79.2 97.6 70.3 83.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.7
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
I-Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.7
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
Mixstyle 86.8 ± 0.5 79.0 ± 1.4 96.6 ± 0.1 78.5 ± 2.3 85.2
ER 87.5 79.3 98.3 76.3 85.3
pAdaIN 85.8 81.1 97.2 77.4 85.4
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
EISNet 86.6 81.5 97.1 78.1 85.8
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
DSON 87.0 80.6 96.0 82.9 86.6

SMA 89.1 ± 0.1 82.6 ± 0.2 97.6 ± 0.0 80.5 ± 0.9 87.5
MIRO 87.5 79.0 98.3 76.2 85.3
SWAD 89.3 ± 0.2 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.5 88.1
SWAD+FRR 89.9 ± 0.2 83.9 ± 0.7 98.2 ± 0.3 84.8 ± 0.4 89.2
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Table 7: Out-of-domain accuracies (%) on VLCS.

Algorithm C L S V Avg

GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
I-Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
Mixstyle 98.6 ± 0.3 64.5 ± 1.1 72.6 ± 0.5 75.7 ± 1.7 77.9
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.6
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8

SMA 99.0 ± 0.2 63.0 ± 0.2 74.5 ± 0.3 76.4 ± 1.1 78.2
MIRO 99.3 65.2 74.9 76.0 78.9
SWAD 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1
SWAD+FRR 98.9 ± 0.4 66.3 ± 0.2 75.9 ± 0.6 79.0 ± 0.2 80.0

Table 8: Out-of-domain accuracies (%) on OfficeHome.

Algorithm A C P R Avg

Mixstyle 51.1 ± 0.3 53.2 ± 0.4 68.2 ± 0.7 69.2 ± 0.6 60.4
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.7
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.4
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
I-Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7

SMA 66.7 ± 0.5 57.1 ± 0.1 78.6 ± 0.1 80.0 ± 0 70.6
MIRO 66.0 54.5 78.9 81.7 70.3
SWAD 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6
SWAD+FRR 65.2 ± 0.2 57.7 ± 0.5 78.2 ± 0.2 80.2 ± 0.1 70.3
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Table 9: Out-of-domain accuracies (%) on TerraIncognita.

Algorithm L100 L38 L43 L46 Avg

MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
Mixstyle 54.3 ± 1.1 34.1 ± 1.1 55.9 ± 1.1 31.7 ± 2.1 44.0
ARM 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
RSC 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.7
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.8
I-Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6

SMA 54.9 ± 0.4 45.5 ± 0.6 60.1 ± 1.5 40.5 ± 0.4 50.3
MIRO 59.6 41.1 60.2 40.4 50.3
SWAD 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0
SWAD+FRR 60.13 ± 1.05 47.89 ± 1.71 60.76 ± 0.42 42.34 ± 1.35 53.2

Table 10: Out-of-domain accuracies (%) on DomainNet.

Algorithm clip info paint quick real sketch Avg

MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
Mixstyle 51.9 ± 0.4 13.3 ± 0.2 37.0 ± 0.5 12.3 ± 0.1 46.1 ± 0.3 43.4 ± 0.4 34.0
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
I-Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MetaReg 59.8 25.6 50.2 11.5 64.6 50.1 43.6
DMG 65.2 22.2 50.0 15.7 59.6 49.0 43.6

SMA 64.4 ± 0.3 22.4 ± 0.2 53.4 ± 0.3 15.4 ± 0.1 64.7 ± 0.2 55.5 ± 0.1 46.0
MIRO 61.9 20.9 50.3 13.0 65.2 52.7 44.2
SWAD 66.0 ± 0.1 22.4 0.3 53.5 ± 0.1 16.1 ± 0.2 65.8 ± 0.4 55.5 ± 0.3 46.5
SWAD+FRR 65.9 ± 0.1 22.3 ± 0.0 52.8 ± 0.1 14.8 ± 0.3 66.2 ± 0.1 55.0 ± 0.1 46.2
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