
Under review as a conference paper at ICLR 2024

TOWARDS BETTER EVALUATION OF GNN
EXPRESSIVENESS WITH BREC DATASET

Anonymous authors
Paper under double-blind review

ABSTRACT

Research on the theoretical expressiveness of Graph Neural Networks (GNNs) has
developed rapidly, and many methods have been proposed to enhance the expres-
siveness. However, unifying all kinds of models into one framework is untractable,
making it hard to measure and compare their expressiveness quantitatively. In
contrast to theoretical analysis, another way to measure expressiveness is by eval-
uating model performance on certain datasets containing 1-WL-indistinguishable
graphs. Previous datasets specifically designed for this purpose, however, face
problems with difficulty (any model surpassing 1-WL has nearly 100% accuracy),
granularity (models tend to be either 100% correct or near random guess), and
scale (only several essentially different graphs in each dataset). To address these
limitations, we propose a new expressiveness dataset, BREC, including 400 pairs
of non-isomorphic graphs carefully selected from four primary categories (Ba-
sic, Regular, Extension, and CFI). These graphs have higher difficulty (up to 4-
WL-indistinguishable), finer granularity (can compare models between 1-WL and
3-WL), and a larger scale (400 pairs or extend to 319600 pairs or even more). Fur-
ther, we synthetically test 23 models with higher-than-1-WL expressiveness on our
BREC dataset. Our experiment gives the first thorough measurement of the ex-
pressiveness of those state-of-the-art beyond-1-WL GNN models and reveals the
gap between theoretical and practical expressiveness. We expect this dataset to
serve as a benchmark for testing the expressiveness of future GNNs. Dataset and
evaluation codes are released at: https://github.com/brec-iclr2024/brec-iclr2024.

1 INTRODUCTION

GNNs have been extensively utilized in bioinformatics, recommender systems, social networks, and
others, yielding remarkable outcomes (Duvenaud et al., 2015; Barabási et al., 2011; Fan et al., 2019;
Wang et al., 2018b; Berg et al., 2017; Zhou et al., 2020). Despite impressive empirical achievements,
related investigations have revealed that GNNs exhibit limited abilities to distinguish some similar
but non-isomorphic graphs. In practical situations, the inability to recognize specific structures,
such as benzene rings (6-member rings), may cause misleading learning results. Xu et al. (2019);
Morris et al. (2019) established a connection between the expressiveness of message-passing neural
networks (MPNNs) and the WL test for graph isomorphism testing, demonstrating that MPNN’s
upper bound is 1-WL. Numerous subsequent studies have proposed GNN variants with enhanced
expressiveness (Bevilacqua et al., 2022; Cotta et al., 2021; You et al., 2021; Zhang & Li, 2021).

Given the multitude of models employing different approaches, such as feature injection, equiv-
ariance maintenance, and subgraph extraction, a unified framework that can theoretically compare
the expressive power among various variants is highly desirable. In this regard, several attempts
have been made under the k-WL architecture. Maron et al. (2019b) propose the concept of k-order
invariant/equivariant graph networks, which unify linear layers while preserving permutation invari-
ance/equivariance. Additionally, Frasca et al. (2022) unify recent subgraph GNNs and establish that
their expressiveness upper bound is 3-WL. Zhang et al. (2023a) further construct a comprehensive
expressiveness hierarchy for subgraph GNNs. Nonetheless, the magnitude of the gaps remains un-
known. Furthermore, there exist methods that are difficult to categorize within the k-WL hierarchy.
For instance, Papp & Wattenhofer (2022) propose four extensions of GNNs, each of which can-
not strictly compare with the other. Similarly, Feng et al. (2022) propose a GNN that is partially
stronger than 3-WL yet fails to distinguish many 3-WL-distinguishable graphs. In a different ap-

1

https://github.com/brec-iclr2024/brec-iclr2024

Under review as a conference paper at ICLR 2024

proach, Huang et al. (2023) propose evaluating expressiveness by enumerating specific significant
substructures, such as 6-cycles. Zhang et al. (2023b) introduces biconnectivity as a measurement.

Without a unified theoretical characterization of expressiveness, employing expressiveness datasets
for testing proves valuable. Notably, three expressiveness datasets, EXP, CSL, and SR25, have been
introduced by Abboud et al. (2021); Murphy et al. (2019); Balcilar et al. (2021) and have found
widespread usage in recent studies. However, these datasets exhibit notable limitations. Firstly,
they lack sufficient difficulty. The EXP and CSL datasets solely consist of examples where 1-WL
fails, and most recent GNN variants have achieved perfect accuracy on these datasets. Secondly,
the granularity of these datasets is too coarse, which means that graphs in these datasets are gener-
ated using a single method, resulting in a uniform level of discrimination difficulty. Consequently,
the performance of GNN variants often falls either at random guessing (completely indistinguish-
able) or 100% (completely distinguishable), thereby hindering the provision of a nuanced measure
of expressiveness. Lastly, these datasets suffer from small sizes, typically comprising only a few
substantially different graphs, raising concerns of incomplete measurement.

To overcome the limitations of previous datasets, we propose BREC, including 400 pairs of non-
isomorphic graphs in 4 major categories: Basic, Regular, Extension, and CFI graphs. Compared to
previous datasets, BREC has a greater difficulty (up to 4-WL-indistinguishable), finer granularity
(can compare models between 1-WL and 3-WL), and larger scale (800 non-isomorphic graphs orga-
nized as 400 pairs or extend to 319600 pairs or even more), addressing previous ones’ shortcomings.

Due to the increased size and diversity of the dataset, the traditional classification task may not be
suitable for training-based evaluation methods that rely on generalization ability. Thus, we propose a
novel evaluation procedure based on directly comparing the discrepancies between model outputs to
test pure practical expressiveness. Acknowledging the impact of numerical precision owning to tiny
differences between graph pairs, we propose reliable paired comparisons building upon a statistical
method (Fisher, 1992; Johnson & Wichern, 2007), which offers a precise error bound. Experiments
verify that the evaluation procedure aligns well with known theoretical results.

Finally, we comprehensively compared 23 representative beyond-1-WL models on BREC. Our ex-
periments first give a reliable empirical comparison of state-of-the-art GNNs’ expressiveness. The
currently most thorough investigation is a good start for gaining deeper insights into various schemes
to enhance GNNs’ expressiveness. On BREC, GNN accuracies range from 41.5% to 70.2%, with
I2-GNN (Huang et al., 2023) performing the best. The 70.2% highest accuracy also implies that
the dataset is far from saturation. We expect BREC can serve as a benchmark for testing future
GNNs’ expressiveness. Our dataset is included in https://github.com/brec-iclr2024/brec-iclr2024.

2 LIMITATIONS OF EXISTING DATASETS

Preliminary. We utilize the notation {} to represent sets and {{}} to represent multisets. The
cardinality of a (multi)set S is denoted as |S|. The index set is denoted as [n] = 1, . . . , n. A graph
is denoted as G = (V(G),E(G)), where V(G) represents the set of nodes or vertices and E(G)
represents the set of edges. Without loss of generality, we assume |V(G)| = n and V(G) = [n].

The permutation or reindexing of G is denoted as Gπ = (V(Gπ),E(Gπ)) with the permutation func-
tion π : [n] → [n], s.t. (u, v) ∈ E(G) ⇐⇒ (π(u), π(v)) ∈ E(Gπ). Here node and edge features
are excluded from definitions for briefness. Additional discussions can be found in Appendix B.

Graph Isomorphism (GI) Problem. Two graphs G and H are considered isomorphic (denoted as
G ≃ H) if ∃ ϕ(a bijection mapping) :V(G) → V(H) s.t. (u, v) ∈ E(G) iff. (ϕ(u), ϕ(v)) ∈ E(H). GI
is essential in expressiveness. Only if GNN successfully distinguishes two non-isomorphic graphs
can they be assigned different labels. Some researchers (Chen et al., 2019; Geerts & Reutter, 2022)
indicate the equivalence between GI and function approximation, underscoring the importance of
GI. However, we currently do not have polynomial-time algorithms for solving the GI problem. A
naive solution involves iterating all n! permutations to test whether such a bijection exists.

Weisfeiler-Lehman algorithm (WL). WL is a well-known isomorphism test relying on color re-
finement (Weisfeiler & Leman, 1968). In each iteration, WL assigns a state (or color) to each node
by aggregating information from its neighboring nodes’ states. This process continues until conver-
gence, resulting in a multiset of node states representing the final graph representation. While WL

2

https://github.com/brec-iclr2024/brec-iclr2024

Under review as a conference paper at ICLR 2024

(a) EXP dataset core pair sample (b) CSL graph(m = 10, r = 2/3) (c) SR25 dataset sample

Figure 1: Sample graphs in previous datasets
Table 1: Dataset statistics

Dataset # Graphs # Core graphsa # Nodes Distinguishing difficulty Evaluation metrics

EXP 1200 6 33-73 1-WL-indistinguishable 2-way classification
CSL 150 10 41 1-WL-indistinguishable 10-way classification
SR25 15 15 25 3-WL-indistinguishable 15-way classification
BREC 800 800 10-198 1-WL to 4-WL-indistinguishable Reliable Paired Comparisons
a Core graphs represent graphs that actually serve to measure expressiveness.

effectively identifies most non-isomorphic graphs, it may fail in certain simple graphs, leading to the
development of extended versions. One such extension is k-WL, which treats each k-tuple of nodes
as a unit for aggregating information. Another slightly different method (Cai et al., 1989) is also
referred to as k-WL. To avoid confusion, we follow Morris et al. (2019) to call the former k-WL and
the latter k-FWL. Further information can be found in Appendix C.

Given the significance of GI and WL, several expressiveness datasets have been introduced, with the
following three being the most frequently utilized. We selected a pair of graphs from each dataset,
illustrated in Figure 1. Detailed statistics for these datasets are presented in Table 1.

EXP Dataset. This dataset is generated pairwise. Each graph in a pair includes two discon-
nected components, the core component and planar component, where the former are two 1-WL-
indistinguishable counterexamples while the latter are identical and only for adding noise. The two
graphs are labeled 0/1 based on whether their core component satisfies the SAT condition for a binary
classification problem. Although it is formally consistent with general datasets, the insufficient dif-
ficulty and number of different core components (only three substantially different pairs) results
in most recent GNNs achieving nearly 100% accuracy, making detailed comparisons unavailable.

CSL Dataset. This dataset consists of Circulant Skip Links (CSL) graphs, which are 1-WL-
indistinguishable 4-degree regular graphs. Ten distinct CSL graphs with 41 nodes are generated
first. Each of the ten distinct CSL graphs is treated as a separate class, and the task is to train a
10-way classification model. Then, each graph is reindexed 14 times, resulting in the final dataset
with 150 graphs. Because of the relatively low difficulty and their fixed structure (only ten essen-
tially different graphs with the same number of nodes and degree), many recent expressive GNN
models achieve close to 100% accuracy. More details about CSL graphs are in Appendix D.

SR25 Dataset. This dataset consists of 15 3-WL-indistinguishable Strongly Regular Graphs (SR)
with parameter srg(25,12,5,6)1. In practice, SR25 is transformed into a 15-way classification prob-
lem for mapping each graph into a different class where the training and test graphs overlap. Most
methods obtain 6.67% (1/15) accuracy due to 3-WL’s high expressiveness. However, some methods
partially surpassing 3-WL achieve 100% accuracy easily since each graph has the same parameters.

These three datasets have limitations regarding difficulty, granularity, and scale. In terms of diffi-
culty, they are all bounded by 3-WL, failing to evaluate models (partly) beyond 3-WL (Feng et al.,
2022). In terms of granularity, the graphs are generated in one way with repetive parameters, which
easily leads to a 0/1 step function of model performance and cannot measure subtle differences be-
tween models. In terms of scale, the number of substantially different graphs in the datasets is small,
and the test results may be incomplete to reflect expressiveness measurement.

3 BREC: A NEW DATASET FOR EXPRESSIVENESS

We propose a new expressiveness dataset, BREC, to address the limitations regarding difficulty,
granularity, and scale. It consists of four major categories of graphs: Basic, Regular, Extension, and
CFI. Basic graphs include relatively simple 1-WL-indistinguishable graphs. Regular graphs include

1Strongly regular graphs can be described by four parameters. More details can be found in Appendix A

3

Under review as a conference paper at ICLR 2024

(a) Basic (b) Regular (c) Strongly regular (d) Extension (e) CFI

Figure 2: BREC dataset samples
four types of subcategorized regular graphs. Extension graphs include special graphs that arise when
comparing four kinds of GNN extensions (Papp & Wattenhofer, 2022). CFI graphs include graphs
generated by CFI methods2 (Cai et al., 1989) with high difficulty. Some samples are shown in Fig 2.

3.1 DATASET COMPOSITION

BREC includes 800 non-isomorphic graphs arranged in a pairwise manner to construct 400 pairs,
with detailed composition as follows: (For detailed generation process, please refer to Appendix L)

Basic Graphs. Basic graphs consist of 60 pairs of 10-node graphs. These graphs are collected
from an exhaustive search and intentionally designed to be non-regular. Although they are 1-
WL-indistinguishable, most can be distinguished by expressive GNN variants. Basic graphs can
also be regarded as an augmentation of the EXP dataset, as they both employ non-regular 1-WL-
indistinguishable graphs. Nevertheless, Basic graphs offer a greater abundance of instances and
more intricate graph patterns. The relatively small size also facilitates visualization and analysis.

Regular Graphs. Regular graphs consist of 140 pairs of regular graphs, including 50 pairs of
simple regular graphs, 50 pairs of strongly regular graphs, 20 pairs of 4-vertex condition graphs, and
20 pairs of distance regular graphs. A regular graph refers to a graph where all nodes possess the
same degree. Regular graphs are 1-WL-indistinguishable, and some studies delve into the analysis
of GNN expressiveness from this perspective (Li et al., 2020; Zhang & Li, 2021). We denote regular
graphs without any special properties as simple regular graphs. When exploring more intricate
regular graphs, the concept of strongly regular graphs (where 3-WL fails) is often introduced. They
further require that the number of neighboring nodes shared by any two nodes depends solely on
their connectivity. Notable examples of strongly regular graphs include the 4× 4-Rook’s graph and
the Shrikhande graph (Fig 2(c)). Additionally, the 4×4-Rook’s graph satisfies the 4-vertex condition
property, which signifies that the number of connected edges between the common neighbors of any
two nodes is solely determined by their connectivity (Brouwer et al., 2023). It is worth mentioning
that the diameter of a connected strongly regular graph is always 2 (Brouwer et al., 2012b). A more
challenging type of graph known as the distance regular graphs (Brouwer et al., 2012a) is proposed
aiming for extending the diameter. By expanding upon the existing subdivisions of regular graphs,
this section widens the range of difficulty and complexity. Moreover, unlike the previous datasets,
regular graphs are not limited to sharing identical parameters for all graphs within each category,
greatly enhancing diversity. More details about regular graphs can be found in Appendix A.

Extension Graphs. Extension graphs consist of 100 pairs of graphs inspired by Papp & Wattenhofer
(2022). They proposed 4 types of theoretical GNN extensions: k-WL hierarchy-based, substructure-
counting-based, k-hop-subgraph-based, and marking-based without strict comparison relationship.
Leveraging the insights from theoretical analysis and some empirically derived findings, we gener-
ated 100 pairs of graphs between 1-WL and 3-WL distinguishing difficulty to improve granularity.
Note that we are the first to realize the algorithms and generate counterexamples on a large scale.

CFI Graphs. CFI graphs consist of 100 pairs of graphs inspired by Cai et al. (1989). They developed
a method to generate graphs distinguishable by k-WL but not by (k − 1)-WL for any k. We are the

2CFI is short for Cai-Furer-Immerman algorithm, which can generate counterexample graphs for any k-WL.

4

Under review as a conference paper at ICLR 2024

𝑮𝑮 Siamese
Network 1

Siamese
Network 2𝑯𝑯

𝒇𝒇(𝑮𝑮)

𝒇𝒇(𝑯𝑯)

Same weights Contrastive loss

Comparison
results

(a) Training Framework

GNN can distinguish
𝑮𝑮 and 𝑯𝑯 only when
Isomorphic flag =

Reliability flag = True

Isomorphic flag
=𝑻𝑻𝒕𝒕𝑻𝑻𝑻𝑻𝒕𝒕𝟐𝟐 > 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

Setting
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 =
𝐦𝐦𝐦𝐦𝐦𝐦 𝑻𝑻𝟐𝟐

Reliability flag=
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑻𝑻𝒓𝒓𝒕𝒕𝒓𝒓𝟐𝟐 <
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

Generating 𝟏𝟏 group
of external paired

comparison results

Calculating
𝑻𝑻𝒕𝒕𝑻𝑻𝑻𝑻𝒕𝒕𝟐𝟐

Outputting results
by comparing

𝑻𝑻𝒕𝒕𝑻𝑻𝑻𝑻𝒕𝒕𝟐𝟐 and
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

Major
procedure

Generating 𝟏𝟏 group
of inner paired

comparison results

Calculating
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑻𝑻𝒓𝒓𝒕𝒕𝒓𝒓𝟐𝟐

Outputting results
by comparing
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑻𝑻𝒓𝒓𝒕𝒕𝒓𝒓𝟐𝟐 and
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

Reliability
check

(b) RPC Pipeline

Figure 3: Evaluation Method
first to implement it and create 100 pairs of graphs spanning up to 4-WL-indistinguishable, even
surpassing the current research’s upper bounds. Specifically, 60 pairs are solely distinguishable by
3-WL, 20 are solely distinguishable by 4-WL, and 20 are even 4-WL-indistinguishable. As the most
challenging part, it pushes the upper limit of difficulty even higher. Furthermore, the graph sizes in
this section are larger than other parts (up to 198 nodes). This aspect intensifies the challenge of the
dataset, demanding a model’s ability to process graphs with heterogeneous sizes effectively.

3.2 ADVANTAGES

Difficulty. The CFI graphs raise difficulty to 4-WL-indistinguishable. The newly involved 4-vertex
condition and distance regular graphs also pose greater challenges regarding higher regularity.

Granularity. The different classes of graphs in BREC exhibit varying difficulty levels, each con-
tributing to the dataset in distinct ways. Basic graphs contain fundamental 1-WL-indistinguishable
graphs, similar to the EXP dataset, as a starting point for comparison. Regular graphs extend the
CSL and SR25 datasets. The major components of regular graphs are simple regular graphs and
strongly regular graphs, where 1-WL and 3-WL fail, respectively. Including 4-vertex condition
graphs and distance regular graphs further elevates the complexity. Extension graphs bridge the gap
between 1-WL and 3-WL, offering a finer-grained comparison for evaluating models beyond 1-WL.
CFI graphs span the spectrum of difficulty from 1-WL to 4-WL-indistinguishable. By comprehen-
sive graph composition, BREC explores the boundaries of graph pattern distinguishability.

Scale. While previous datasets relied on only a few essentially different graphs, BREC utilizes a
collection of 800 different graphs organized as 400 pairs. This significant increase in the number of
graphs greatly enhances the diversity. The larger graph set in BREC also contributes to a more varied
distribution of graph statistics. In contrast, previous datasets such as CSL and SR25 only have the
same number of nodes and degrees across all graphs. For detailed statistics of BREC, please refer
to Appendix E. BREC can also be easily further scaled up to 319600 pairs by iterating over all
possible compare combinations, or even more by adding more graphs as it is a small sample of what
we have done in the generation process (Appendix L). However, we deliberately did not scale it to
facilitate a lower testing burden and balance the distribution of graphs with different difficulties. The
experiments also verify that the current size is enough to find subtle differences between models.

4 RPC: A NEW EVALUATION METHOD

This section introduces a novel training framework and evaluation method for BREC. Unlike pre-
vious datasets, BREC departs from the conventional classification setting, where each graph is as-
signed a label, a classification model is trained, and the accuracy on test graphs serves as the measure
of expressiveness. The labeling schemes used in previous datasets like semantic labels based on SAT
conditions in EXP, or distinct labels for essentially different graphs in CSL and SR25, do not ap-
ply to BREC. There are two primary reasons. First, BREC aims to enrich the diversity of graphs,
which precludes using a semantic label tied to SAT conditions, as it would significantly limit the
range of possible graphs. Second, assigning a distinct label to each graph in BREC would result in
an 800-class classification problem, where performance could be influenced by factors other than
expressiveness. Our core idea is to measure models’ practical ”separating power” directly. Thus
BREC is organized in pairs, where each pair is individually tested to determine whether a GNN
can distinguish them. By adopting a pairwise evaluation method, BREC provides a more focused
measure of models’ expressiveness, aligning to assess distinguishing ability.

5

Under review as a conference paper at ICLR 2024

Nevertheless, how can we say a pair of graphs is successfully distinguished? Previous researchers
tend to set a small threshold (like 1E-4) manually. If the embedding distance between them is larger
than the threshold, the GNN is considered can distinguish them. This setting may satisfy previ-
ous datasets’ requirements due to the relatively simple construction. However, it lacks reliability
on numerical precision with more complex graphs where tiny differences may even overlap with
numerical fluctuations. In order to yield dependable outcomes, we propose an evaluation method
measuring both external difference and internal fluctuations. Furthermore, we introduce a train-
ing framework for pairwise data, employing the siamese network design (Koch et al., 2015) and
contrastive loss (Hadsell et al., 2006; Wang et al., 2018a). The pipeline is depicted in Fig 3(a).

4.1 TRAINING FRAMEWORK

We adhere to the siamese network design (Koch et al., 2015) to train a model to distinguish each pair
of graphs. The central component consists of two identical models maintaining identical parameters.
For a pair of graphs inputted, it outputs a pair of embeddings. Subsequently, the difference between
them is assessed using cosine similarity. The loss function is formulated as follows:

L(f,G,H) = Max(0,
f(G) · f(H)

||f(G)|| ||f(H)||
− γ), (1)

where the GNN model f : {G} → Rd, G and H are two graphs, and γ is a margin hyperparameter
(set to 0 in our experiments). The loss function aims to promote the cosine similarity value lower
than γ, thereby encouraging a greater separation between the two graph embeddings.

The training process yields several benefits for the models. Firstly, it helps the GNN to achieve
its theoretical expressiveness. The GNN expressiveness analysis focuses primarily on the network’s
structure without imposing any constraints on its parameters, which means it is exploring the ex-
pressiveness of a group of functions. If a model with particular parameters can distinguish a pair of
graphs, the model’s design and structure are considered possessing sufficient expressiveness. How-
ever, it is impractical to iterate all possible parameter combinations to test the real upper bound.
Hence, training can realize searching in the function space, enabling models to achieve better prac-
tical expressiveness. Furthermore, training aids components to possess specific properties, such
as injectivity and universal approximation, which are vital for attaining theoretical expressiveness.
These properties require specific parameter configurations, but randomly initialized parameters may
not satisfy. Moreover, through training, model-distinguishable pairs are more easily discriminated
from model-indistinguishable pairs, which helps reducing the false negative rate caused by numeri-
cal precision. The difference between model-distinguishable pairs’ embeddings is further magnified
in the pairwise contrastive training process. However, the difference for model-indistinguishable
pairs caused by numerical precision remains unaffected mainly. The framework is shown in Fig 3(a).

4.2 EVALUATION METHOD

We evaluate models by comparing the outputs of two non-isomorphic graphs. If we notice a signif-
icant difference between the outputs, we conclude that the GNN can distinguish the pair of graphs.
However, setting a suitable threshold can be challenging. A large threshold may yield false nega-
tives, which means the model can distinguish the pair, but the observed difference falls short of the
threshold. Conversely, a small threshold may yield false positives, which means the model cannot
distinguish the pair, but fluctuating errors cause the difference to exceed the threshold.

To address the issue of fluctuating errors, we draw inspiration from Paired Comparisons (Fisher,
1992). It involves comparing two groups of results instead of a single pair. The influence of random
errors is mitigated by repeatedly generating results and comparing the two groups of results. Build-
ing upon it, we introduce a method called Reliable Paired Comparison (RPC) to verify whether a
GNN genuinely produces distinct outputs for a pair of graphs. The pipeline is depicted in Fig 3(b).

RPC consists of two main components: Major procedure and Reliability check. The Major proce-
dure is conducted on a pair of non-isomorphic graphs to measure their dissimilarity. In contrast, the
Reliability check is conducted on graph automorphisms to capture internal fluctuations.

Major procedure. Given two non-isomorphic graphs G,H, we create q copies of each by random
permutation (still isomorphic to original graph) to generate two groups of graphs, denoted as:

Gi, Hi, i ∈ [q]. (2)

6

Under review as a conference paper at ICLR 2024

Supposing the GNN f : {G} → Rd, we first calculate q differences utilizing Paired Comparisons.
di = f(Gi)− f(Hi), i ∈ [q]. (3)

Assumption 4.1 di are independent N (µ,Σ) random vectors.

The above assumption is based on a more basic assumption that f(Gi), f(Hi) follow Gaussian
distributions, which presumes that random permutation only introduces Gaussian noise to the result.

If the GNN cannot distinguish G and H, the mean difference should satisfy µ = 0. To check whether
the equation holds, we can conduct an α-level Hotelling’s T-square test, comparing the hypotheses
H0 : µ = 0 against H1 : µ ̸= 0. The T 2-statistic for µ is calculated as follows:

T 2 = q(d− µ)TS−1(d− µ), (4)
where

d =
1

q

q∑
i=1

di, S =
1

q − 1

q∑
i=1

(di − d)(di − d)T . (5)

Hotelling’s T-square test proves that T 2 is distributed as an (q−1)d
q−d Fd,q−d random variable, where

Fd,q−d represents F -distribution with degree of freedom d, q − d (Hotelling, 1992). The theorem
establishes a connection between the unknown parameter µ and a definite distribution Fd,q−d, al-
lowing us to confirm the confidence interval of µ by testing the distribution fit. To test the hypothesis
H0 : µ = 0, we substitute µ = 0 into Equation (4), obtaining T 2

test = qd
T
S−1d. Then an α-level

test of H0 : µ = 0 versus H1 : µ ̸= 0 accepts H0 (the GNN cannot distinguish the pair) if:

T 2
test = qd

T
S−1d <

(q − 1)d

(q − d)
Fd,q−d(α), (6)

where Fd,q−d(α) is the upper (100α)th percentile of the F -distribution Fd,q−d (Fisher, 1950) with
d and q − d degrees of freedom. Similarly, we reject H0 (the GNN can distinguish the pair) if

T 2
test = qd

T
S−1d >

(q − 1)d

(q − d)
Fd,q−d(α). (7)

Reliability check. With an appropriate choice of α, the Major procedure provides a dependable
confidence interval for assessing the distinguishability. However, manually selected α based on
heuristics may not be optimal. Furthermore, computational precisions can introduce distribution
shifts in assumed Gaussian fluctuations. To address this issue, we introduce the Reliability check. It
bridges external differences between two graphs and internal fluctuations within a single graph.

WLOG, we replace H by permutation of G, i.e., Gπ . We can then obtain the internal fluctuations
within G by comparing it with Gπ , and the external difference between G and H by comparing G
and H. We utilize the same step as Major procedure on G and Gπ , calculating the T 2-statistics as:

T 2
reliability = qd

T
S−1d, (8)

where d =
1

q

q∑
i=1

di, di = f(Gi)− f(Gπ
i), i ∈ [q], S =

1

q − 1

q∑
i=1

(di − d)(di − d)T . (9)

Recalling that G and Gπ are isomorphic, the GNN should not distinguish between them, implying
that µ = 0. Therefore, the test is considered reliable only if T 2

reliability < (q−1)d
(q−d) Fd,q−d(α). Combin-

ing the reliability and distinguishability results, we get the complete RPC (Fig 3(b)) as follows:

For each pair of graphs G and H, we first calculate the threshold value, denoted as Threshold =
(q−1)d
(q−d) Fd,q−d(α). Next, we conduct the Major procedure on G and H for distinguishability and

perform the Reliability check on G and Gπ for Reliability. Only when the T 2-statistic from the Major
procedure, denoted as T 2

test, and the T 2-statistic from the Reliability check, denoted as T 2
reliability,

satisfying T 2
reliability < Threshold < T 2

test, do we conclude that the GNN can distinguishing G and H.

We further propose Reliable Adaptive Paired Comparisons (RAPC), aiming to adaptively adjust the
threshold and provide an upper bound for false positive rates. In practice, we use RPC due to its
less computational time and satisfactory performance. For more details, please refer to Appendix F.

7

Under review as a conference paper at ICLR 2024

Table 2: Pair distinguishing accuracies on BREC

Basic Graphs (60) Regular Graphs (140) Extension Graphs (100) CFI Graphs (100) Total (400)

Type Model Number Accuracy Number Accuracy Number Accuracy Number Accuracy Number Accuracy

Non-GNNs

3-WL 60 100% 50 35.7% 100 100% 60 60.0% 270 67.5%
SPD-WL 16 26.7% 14 11.7% 41 41% 12 12% 83 20.8%

S3 52 86.7% 48 34.3% 5 5% 0 0% 105 26.2%
S4 60 100% 99 70.7% 84 84% 0 0% 243 60.8%
N1 60 100% 99 85% 93 93% 0 0% 252 63%
N2 60 100% 138 98.6% 100 100% 0 0% 298 74.5%
M1 60 100% 50 35.7% 100 100% 41 41% 251 62.8%

Subgraph GNNs

NGNN 59 98.3% 48 34.3% 59 59% 0 0% 166 41.5%
DE+NGNN 60 100% 50 35.7% 100 100% 21 21% 231 57.8%

DS-GNN 58 96.7% 48 34.3% 100 100% 16 16% 222 55.5%
DSS-GNN 58 96.7% 48 34.3% 100 100% 15 15% 221 55.2%

SUN 60 100% 50 35.7% 100 100% 13 13% 223 55.8%
SSWL P 60 100% 50 35.7% 100 100% 38 38% 248 62%
GNN-AK 60 100% 50 35.7% 97 97% 15 15% 222 55.5%
KP-GNN 60 100% 106 75.7% 98 98% 11 11% 275 68.8%
I2-GNN 60 100% 100 71.4% 100 100% 21 21% 281 70.2%

k-WL GNNs
PPGN 60 100% 50 35.7% 100 100% 23 23% 233 58.2%

δ-k-LGNN 60 100% 50 35.7% 100 100% 6 6% 216 54%
KC-SetGNN 60 100% 50 35.7% 100 100% 1 1% 211 52.8%

Substructure GNNs GSN 60 100% 99 70.7% 95 95% 0 0% 254 63.5%

Random GNNs DropGNN 52 86.7% 41 29.3% 82 82% 2 2% 177 44.2%
OSAN 56 93.3% 8 5.7% 79 79% 5 5% 148 37%

Transformer GNNs Graphormer 16 26.7% 12 8.6% 41 41% 10 10% 79 19.8%

5 EXPERIMENT

In this section, we evaluate the expressiveness of 23 representative models using our BREC dataset.

Model selection. We evaluate six categories of methods: non-GNN methods, subgraph-based
GNNs, k-WL-hierarchy-based GNNs, substructure-based GNNs, transformer-based GNNs, and
random GNNs. Our primary focus will be on the first three categories. We implement four types
of non-GNN baselines based on Papp & Wattenhofer (2022); Ying et al. (2021), including WL test
(3-WL and SPD-WL), counting substructures (S3 and S4), neighborhood up to a certain radius (N1

and N2), and marking (M1). We implemented them by adding additional features during the WL
test update or using heterogeneous message passing. It is important to note that they are more
theoretically significant than practical since they may require exhaustive enumeration or exact iso-
morphism encoding of various substructures. We additionally included 16 state-of-the-art GNNs,
including NGNN (Zhang & Li, 2021), DE+NGNN (Li et al., 2020), DS/DSS-GNN (Bevilacqua
et al., 2022), SUN (Frasca et al., 2022), SSWL P (Zhang et al., 2023a), GNN-AK (Zhao et al.,
2022a), KP-GNN (Feng et al., 2022), I2-GNN (Huang et al., 2023), PPGN (Maron et al., 2019a),
δ-k-LGNN (Morris et al., 2020), KC-SetGNN (Zhao et al., 2022b), GSN (Bouritsas et al., 2022),
DropGNN (Papp et al., 2021), OSAN (Qian et al., 2022), and Graphormer (Ying et al., 2021).

Table 2 presents the primary results. N2 achieves the highest accuracy among non-GNNs, and I2-
GNN achieves the highest among GNNs. We provide a detailed analysis of each method’s accuracy
across various graphs. The findings generally indicate that practical expressiveness aligns closely
with theoretical expectations. Nevertheless, there are still some situations where a gap between
theory and practice persists. Detailed experiment settings are included in Appendix K.

Non-GNN baselines. 3-WL successfully distinguishes all Basic graphs, Extension graphs, simple
regular graphs and 60 CFI graphs as expected. S3, S4, N1, and N2 demonstrate excellent perfor-
mance on small-radius graphs such as Basic, Regular, and Extension graphs. However, due to their
limited receptive fields, they struggle to distinguish large-radius graphs like CFI graphs. Noting that
the expressiveness of S3 and S4 is bounded by N1 and N2, respectively, as analyzed by Papp & Wat-
tenhofer (2022). Conversely, M1 is implemented by heterogeneous message passing, which makes it
unaffected by large graph diameters, thus maintaining its performance across different graphs. SPD-
WL is another 1-WL extension operated on a complete graph with shortest path distances as edge
features. It may degrade to 1-WL on low-radius graphs, causing its relatively poor performance.

Subgraph-based GNNs. Regarding subgraph-based models, they can generally distinguish almost
all Basic graphs, simple regular graphs and Extension graphs. However, an exception lies with
NGNN, which performs poorly in Extension graphs due to its simplicial node selection policy and
lack of node labeling. Two other exceptions are KP-GNN and I2-GNN, both exhibiting exceptional
performance in Regular graphs. KP-GNN can differentiate a substantial number of strongly regular

8

Under review as a conference paper at ICLR 2024

graphs and 4-vertex condition graphs, surpassing the 3-WL partially. And I2-GNN surpasses the
limitations of 3-WL partially through its enhanced cycle-counting power. An influential aspect that
impacts the performance is the subgraph radius. Approaches incorporating appropriate encoding
functions are expected to yield superior performance as the subgraph radius increases. However,
in practice, enlarging the radius may result in the smoothness of information, wherein the receptive
field expands, encompassing some irrelevant or noisy information. Hence, we treat the subgraph
radius as a hyperparameter, fine-tuning it for each model, and present the best results in Table 2.
Please refer to Appendix G for further details regarding the radius selection.

When comparing various subgraph GNNs, KP-GNN can discriminate part of the strongly regular
graphs by peripheral subgraphs. Additionally, distance encoding in DE+NGNN and I2-GNN enables
better discrimination among different hops within a given subgraph radius, particularly in larger
subgraph radii. As for DS-GNN, DSS-GNN, GNN-AK, SUN and SSWL P, they employ similar
aggregation schemes with slight variations in their operations. These models exhibit comparable
performance, with SSWL P outperforming others, which aligns with expectations that SSWL P
achieves the most expressiveness with least components (Zhang et al., 2023a).

k-WL hierarchy-based GNNs. For the k-WL-hierarchy-based models, we adopt two implemented
approaches: high-order simulation and local-WL simulation. PPGN serves as the representative
work for the former, while δ-k-LGNN and KCSet-GNN as the latter. PPGN aligns its performance
with 3-WL across all graphs except for CFI graphs. For CFI graphs with large radii, more WL itera-
tions (layers of GNNs) are required. However, employing many layers may lead to over-smoothing,
resulting in a gap between theoretical expectations and actual performance. Nonetheless, PPGN still
surpasses most GNNs in CFI graphs due to global k-WL’s global receptive field. For δ-k-LGNN,
we set k = 2, while for KCSet-GNN, we set k = 3, c = 2 to simulate local 3-WL, adhering to
the original configuration. By comparing the output results with relatively small diameters, we ob-
served that local WL matches the performance of general k-WL. However, local WL exhibits lower
performance for CFI graphs with larger radii due to insufficient receptive fields.

Substructure-based GNNs For substructure-based GNNs, we select GSN, which incorporates sub-
structure isomorphism counting as features. The best result obtained for GSN-e is reported when
setting k = 4. For further exploration of policy and size, please refer to Appendix I.

Random GNNs Random GNNs are unsuitable for GI problems since even identical graphs can yield
different outcomes due to inherent randomness. However, the RPC can quantify fluctuations in the
randomization process, thereby enabling testing for random GNNs. We test DropGNN and OSAN.
For more details regarding the crucial factor of random samples, please refer to Appendix J.

Transformer-based GNNs For transformer-based GNNs, we select Graphormer, which is antici-
pated to possess a level of expressiveness with SPD-WL. The experimental results verify that.

6 CONCLUSION AND FUTURE WORK

This paper proposes a new dataset, BREC, for GNN expressiveness measurement. BREC addresses
the limitations of previous datasets, including difficulty, granularity, and scale, by incorporating
400 pairs of diverse graphs in four categories. A new evaluation method is proposed for principled
expressiveness evaluation. Finally, a thorough comparison of 23 baselines on BREC is conducted.
The experiment highlights a gap between theoretical and practical expressiveness. Additionally, the
algorithms implemented in practice for the first time offer valuable tools for future research.

Apart from the expressiveness comparison based on GI, there are various other metrics for GNN
expressiveness evaluation, such as substructure counting, diameter counting, and biconnectivity
checking. However, it’s worth noting that these tests are often conducted on datasets not specifi-
cally designed for expressiveness (Huang et al., 2023; Zhao et al., 2022a; Chen et al., 2020), which
can lead to biased results caused by spurious correlations. In other words, certain methods may
struggle to identify a particular substructure, but they can capture another property that correlates
with substructures, resulting in false high performance. This problem can be alleviated in BREC
because of the difficulty. We reveal the data generation process of BREC in Appendix L, hoping
that researchers can utilize them in more tasks. We also hope the test of practical expressiveness will
aid researchers in exploring its effects on performance in real datasets and other domains.

9

Under review as a conference paper at ICLR 2024

7 REPRODUCIBILITY

The datasets and evaluation codes are released at https://github.com/brec-iclr2024/brec-iclr2024.
The GitHub repository provides the complete dataset and test methods, as well as the first imple-
mentation of the traditional algorithm for further use by researchers. In addition to complete and
customizable testing via the GitHub repository, users can install the Pypi package for easier and
faster testing. We commit to maintaining this dataset for the long term.

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In Zhi-Hua Zhou (ed.), Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event /
Montreal, Canada, 19-27 August 2021, pp. 2112–2118. ijcai.org, 2021. doi: 10.24963/ijcai.2021/
291. URL https://doi.org/10.24963/ijcai.2021/291.

László Babai and Ludik Kucera. Canonical labelling of graphs in linear average time. In 20th
Annual Symposium on Foundations of Computer Science (sfcs 1979), pp. 39–46. IEEE, 1979.

Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In International
Conference on Machine Learning, pp. 599–608. PMLR, 2021.

Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. Network medicine: a network-based
approach to human disease. Nature reviews genetics, 12(1):56–68, 2011.

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263, 2017.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.
net/forum?id=dFbKQaRk15w.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022.

A. E. Brouwer, F. Ihringer, and W. M. Kantor. Strongly regular graphs satisfying the 4-vertex
condition. Combinatorica, 43(2):257–276, apr 2023. doi: 10.1007/s00493-023-00005-y. URL
https://doi.org/10.1007%2Fs00493-023-00005-y.

Andries E Brouwer, Willem H Haemers, Andries E Brouwer, and Willem H Haemers.
Distance-regular graphs. Springer, 2012a.

Andries E Brouwer, Willem H Haemers, Andries E Brouwer, and Willem H Haemers. Strongly
regular graphs. Spectra of graphs, pp. 115–149, 2012b.

J.-Y. Cai, M. Furer, and N. Immerman. An optimal lower bound on the number of variables for graph
identification. In 30th Annual Symposium on Foundations of Computer Science, pp. 612–617,
1989. doi: 10.1109/SFCS.1989.63543.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in neural information
processing systems, 32, 2019.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021.

10

https://github.com/brec-iclr2024/brec-iclr2024
https://doi.org/10.24963/ijcai.2021/291
https://openreview.net/forum?id=dFbKQaRk15w
https://openreview.net/forum?id=dFbKQaRk15w
https://doi.org/10.1007%2Fs00493-023-00005-y

Under review as a conference paper at ICLR 2024

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems, 28, 2015.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=nN3aVRQsxGd.

Ronald Aylmer Fisher. Contributions to mathematical statistics. 1950.

Ronald Aylmer Fisher. Statistical methods for research workers. Springer, 1992.

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and
extending subgraph gnns by rethinking their symmetries. Advances in Neural Information
Processing Systems, 35:31376–31390, 2022.

Floris Geerts and Juan L. Reutter. Expressiveness and approximation properties of graph neural
networks. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.
net/forum?id=wIzUeM3TAU.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invari-
ant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Harold Hotelling. The generalization of student’s ratio. In Breakthroughs in statistics: Foundations
and basic theory, pp. 54–65. Springer, 1992.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its
variants. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8533–8537. IEEE, 2021.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power
of graph neural networks with i$ˆ2$-gnns. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=kDSmxOspsXQ.

Richard A. Johnson and Dean W. Wichern. Applied multivariate statistical analysis. Pearson Pren-
tice Hall, Upper Saddle River, N.J, 6th ed edition, 2007. ISBN 978-0-13-187715-3. OCLC:
ocm70867129.

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design prov-
ably more powerful neural networks for graph representation learning. Advances in Neural
Information Processing Systems, 33:4465–4478, 2020.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019b. URL https://openreview.
net/forum?id=Syx72jC9tm.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609,
2019.

11

https://openreview.net/forum?id=nN3aVRQsxGd
https://openreview.net/forum?id=wIzUeM3TAU
https://openreview.net/forum?id=wIzUeM3TAU
https://openreview.net/pdf?id=kDSmxOspsXQ
https://openreview.net/forum?id=Syx72jC9tm
https://openreview.net/forum?id=Syx72jC9tm

Under review as a conference paper at ICLR 2024

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Processing Systems,
33:21824–21840, 2020.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In International Conference on Machine Learning, pp. 4663–4673.
PMLR, 2019.

Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network exten-
sions. In International Conference on Machine Learning, pp. 17323–17345. PMLR, 2022.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. Advances in Neural Information
Processing Systems, 34:21997–22009, 2021.

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered
subgraph aggregation networks. Advances in Neural Information Processing Systems, 35:21030–
21045, 2022.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5265–5274, 2018a.

Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi
Guo. Ripplenet: Propagating user preferences on the knowledge graph for recommender sys-
tems. In Proceedings of the 27th ACM international conference on information and knowledge
management, pp. 417–426, 2018b.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. nti, Series, 2(9):12–16, 1968.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, Conference Track Proceedings. OpenReview.net, 2019. URL
https://openreview.net/forum?id=ryGs6iA5Km.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
10737–10745, 2021.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressive-
ness hierarchy for subgraph GNNs via subgraph weisfeiler-lehman tests. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 41019–41077. PMLR, 23–29 Jul 2023a. URL
https://proceedings.mlr.press/v202/zhang23k.html.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns
via graph biconnectivity. In The Eleventh International Conference on Learning Representations,
2023b.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information
Processing Systems, 34:15734–15747, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
GNN with local structure awareness. In International Conference on Learning Representations,
2022a. URL https://openreview.net/forum?id=Mspk_WYKoEH.

12

https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.mlr.press/v202/zhang23k.html
https://openreview.net/forum?id=Mspk_WYKoEH

Under review as a conference paper at ICLR 2024

Lingxiao Zhao, Neil Shah, and Leman Akoglu. A practical, progressively-expressive gnn. Advances
in Neural Information Processing Systems, 35:34106–34120, 2022b.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

A DETAILS ON REGULAR GRAPHS

In this section, we introduce the relationship between four types of regular graphs. The inclusion
relations of them are shown in Figure 4, but their difficulty relations and inclusion relations are not
consistent.

Regular Graph

Distance Regular Graph

Strongly Regular Graph

4-Vertex Condition Graph

Figure 4: Regular graphs relationship

A graph is deemed a regular graph when all of its vertices possess an identical degree. If a regular
graph, with v vertices and degree k, satisfies the additional conditions wherein any two adjacent
vertices share λ common neighbors, and any two non-adjacent vertices share µ common neighbors,
it is categorized as a strongly regular graph. Hence, it can be represented as srg(v, k, λ, µ), denoting
its four associated parameters.

Regular graphs and strongly regular graphs find wide application in expressiveness analysis. The
difficulty of strongly regular graphs surpasses that of general regular graphs due to the imposition
of additional requirements. Notably, the simplest strongly regular graphs with identical parameters
(srg(16, 6, 2, 2)) are exemplified by the Shrikhande graph and the 4 × 4-Rook’s graph, as depicted
in Figure 2(c).

Both 4-vertex condition graphs and distance regular graphs introduce heightened complexities, albeit
in opposing directions. A 4-vertex condition graph is a strongly regular graph with an additional
property that mandates the determination of the number of edges between the common neighbors
of two vertices based on their connectivity. Conversely, distance regular graphs expand upon the
definition of strongly regular graphs by specifying that for any two vertices v and w, the count of
vertices at a distance j from v and at a distance k from w relies solely on j, k, and the distance
between v and w. Notably, a distance regular graph with a radius of 2 is equivalent to a strongly
regular graph.

The 4-vertex condition graph has yet to be explored in previous research endeavors. Similarly, in-
stances of distance regular graphs are relatively scarce and analyzing them through examples proves
to be challenging. To encourage further research in these domains, we have incorporated them into
BREC.

B NODE FEATURES

In this section, we present the concept of node features and edge features in graphs.

We commence by providing the definition of graphs using an adjacency matrix representation. Con-
sider a graph where the node features are represented by a dn-dimensional vector, and the edge fea-
tures are represented by a de-dimensional vector. This graph can be denoted as G = (V(G),E(G)),
where V(G) ∈ Rn×dn represents the node features, and E(G) ∈ Rn×n×(de+1) represents the edge

13

Under review as a conference paper at ICLR 2024

features, with n being the number of nodes in the graph. The adjacency matrix of the graph is de-
noted as A(G) ∈ Rn×n = E(G):,:,(de+1), where A(G)i,j = 1 if (i, j) ∈ E(G) (i.e., if nodes i and j
are connected by an edge), otherwise A(G)i,j = 0. The feature of node i is represented by V (G)i,:,
and the feature of edge (i, j) is represented by E(G)i,j,1:de . The permutation (or reindexing) of G is
denoted as Gπ = (V(G),E(G)) with permutation π : [n] → [n], such that V (G)i,: = V (G)π(i),: and
E(G)i,j,: = E(G)π(i),π(j),:.
Next, we explore the utilization of features. It is evident that incorporating node features during
initialization and edge features during message passing can enhance the performance of GNNs,
given appropriate hyperparameters and training. However, we should consider whether features can
truly represent graph structures or provide additional expressiveness. Let us categorize features into
two types.

The first type involves fully utilizing the original features, such as distances to other nodes or spec-
tral embeddings. While using these features can aid GNNs in solving Graph Isomorphism (GI)
problems, this type of feature requires a dedicated design to effectively utilize them. For instance,
if we aim to recognize a 6-cycle in a graph, we can manually identify the cycle and assign distinct
features to each node within the cycle. In this way, the GNN can recognize the cycle by aggregating
the six distinctive features. However, the injecting strategy influences expressiveness and requires
further analysis. Utilizing distance can also enhance expressiveness but also need a suitable design
(like subgraph distance encoding and SPD-WL).

The second type entails incorporating additional features, such as manually selected node identifiers.
it is important to note that this improvement stems from reduced difficulty rather than increased
expressiveness. For instance, given a pair of non-isomorphic graphs with high similarity, we can
manually find the components causing the distinguishing difficulty and assign identifiers to help
models overcome them. However, this process is generally unavailable in practice.

In summary, we can conclude that features have the potential to introduce expressiveness, but this
should be accomplished through model design rather than relying solely on the dataset. In the case
of BREC, a dataset created specifically for testing expressiveness, we do not include additional
meaningful features. Instead, we employ the same vector for all node features and edge features and
adhere to specific model settings to incorporate graph-specific features, such as the distance between
nodes in distance encoding based models.

C WL ALGORITHM

This section briefly introduces the WL algorithm and two high-order variants.

The 1-WL algorithm, short for ”1-Weisfeiler-Lehman,” is an initial version of the WL algorithm.
It serves as a graph isomorphism algorithm and can be employed to generate a distinctive label for
each graph.

In the 1-WL algorithm, every node in the graph maintains a state or color, which undergoes refine-
ment during each iteration by incorporating information from the states of its neighboring nodes. As
the algorithm progresses, the graph representation evolves into a multiset of node states, ultimately
converging to a final representation.

To circumvent these examples, researchers have devised a technique to augment each node in the
1-WL test, resulting in the development of the k-WL test (Babai & Kucera, 1979; ?). The k-
dimensional Weisfeiler-Lehman test expands the scope of the test to consider colorings of k-tuples
of nodes instead of individual nodes. This extension allows for a more comprehensive analysis of
graph structures and assists in overcoming the limitations posed by certain examples.

In addition to the k-WL test, Cai et al. (1989) proposed an alternative WL test algorithm that also
extends to k-tuples. This variant is commonly referred to as the k-FWL (k-folklore-WL) test. The
k-FWL test differs from the k-WL test in terms of how neighbors are defined and the order in which
aggregation is performed on tuples and multisets.

There are three notable results associated with these tests:

1 1-WL = 2-WL

14

Under review as a conference paper at ICLR 2024

2 4 6 8 10 12 14 16 18
#Diameter

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

(a) #Nodes Distribution

0 200 400 600 800 1000
#Edges

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

(b) #Edges Distribution

2 4 6 8 10 12 14 16 18
#Diameter

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

(c) Diameter Distribution

Figure 5: BREC Statistics

GNN can distinguish
𝑮𝑮 and 𝑯𝑯 only when
Isomorphic flag =

Reliability flag = True

Manually setting
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

Isomorphic flag
=𝑻𝑻𝒕𝒕𝑻𝑻𝑻𝑻𝒕𝒕𝟐𝟐 > 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻Generating 𝟏𝟏 group

of external paired
comparison results

Calculating
𝑻𝑻𝟐𝟐-statistics

Outputting results
by comparing

𝑻𝑻𝒕𝒕𝑻𝑻𝑻𝑻𝒕𝒕𝟐𝟐 and
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

Generating 𝟏𝟏 group
of inner paired

comparison results

Calculating
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑻𝑻𝒓𝒓𝒕𝒕𝒓𝒓𝟐𝟐

Outputting results
by comparing
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑻𝑻𝒓𝒓𝒕𝒕𝒓𝒓𝟐𝟐 and
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

Setting
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 =
𝐦𝐦𝐦𝐦𝐦𝐦 𝑻𝑻𝒓𝒓,𝒋𝒋𝟐𝟐

Generating 𝟐𝟐𝑷𝑷 groups
of inner paired

comparison results

Reliability flag=
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑻𝑻𝒓𝒓𝒕𝒕𝒓𝒓𝟐𝟐 <
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

Major
procedure

Adaptive
confidence

interval

Reliability
check

Calculating
𝟐𝟐𝑷𝑷 groups of

𝑻𝑻𝒓𝒓,𝒋𝒋𝟐𝟐

Figure 6: RAPC pipeline.

2 k-WL ¿ (k − 1)-WL, (k > 2)

3 (k − 1)-FWL = k-WL

More details can be found in Sato (2020); Huang & Villar (2021).

D CIRCULANT SKIP LINKS (CSL) GRAPHS

A CSL graph is defined as follows: Let r and m be co-prime natural numbers with r < m − 1.
G(m, r) = (V,E) is an undirected 4-regular graph with V = [m], where the edges form a cycle
and include skip links. Specifically, for the cycle, (j, j + 1) ∈ E for j ∈ [m − 1], and (m, 1) ∈ E.
For the skip links, the sequence is recursively defined as s1 = 1, si+1 = (si + r) mod m + 1, and
(si, si+1) ∈ E for any i ∈ N. Two Sample graphs with m = 10, r = 2 or 3 are shown in Fig 1(b).

In the CSL dataset, 10 CSL graphs with m = 41 and r = 2, 3, 4, 5, 6, 9, 11, 12, 13, 16 are generated.
Thus resulting in 10 non-isomorphic but 1-WL-indistinguishable graphs.

E BREC STATISTICS

Here we give some statistics of the BREC dataset, shown in Figure 5.

F RAPC: A RELIABLE AND ADAPTIVE EVALUATION METHOD

In this section, we propose RAPC with an additional stage called adaptive confidence interval based
on RPC. Though RPC performs excellently in experiments with a general theoretical guarantee
in reliability, with manually setting α. We still want to make the procedure more automated. In
addition, we found that the inner fluctuations of each pair, i.e. T 2

reliability, vary from pairs. This
means some graph outputs are more stable than others, and their threshold can be larger than others.
However, it is impossible to manually set the confidence interval (α) for all pairs, thus, we propose

15

Under review as a conference paper at ICLR 2024

an adaptive confidence interval method to solve this problem. The key idea is to set the threshold
according to minimum internal fluctuations.

Given a pair of non-isomorphic graphs G and H to be tested. For simplicity, we rename G as G1, H
as G2. For each graph (G1 and G2), we generate p groups of graphs, with each group containing 2q
graphs, represented by:

Gi,j,k, i ∈ [2], j ∈ [p], k ∈ [2q]. (10)
Similarly, we can calculate T 2-statistics for each group (2p groups in total):

T 2
i,j = qd

T

i,jSi,jdi,j , i ∈ [2], j ∈ [p]. (11)
where

di,j =
1

q

q∑
k=1

di,j,k, di,j,k = f(Gi,j,k)− f(Gi,j,k+q), i ∈ [2], j ∈ [p], k ∈ [q],

Si,j =
1

q − 1

q∑
j=1

(di,j,k − di,j)(di,j,k − di,j)
T .

(12)

Similar to major procedure, we can conduct an α-level test of H0 : δ = 0 versus H1 : δ ̸= 0, it
should always accept H0(the GNN cannot distinguish them) since the 2q graphs in each group are
essentially the same. And T 2-statistics should satisfy the:

T 2
i,j = qd

T

i,jSi,jdi,j <
(q − 1)n

(q − n)
Fn,q−n(α). (13)

If the GNN can distinguish the pair, T 2
test in major procedure and T 2

i,j in adaptive confidence interval
should satisfy the:

T 2
test >

(q − 1)n

(q − n)
Fn,q−n(α) > T 2

i,j ,∀i ∈ [2], j ∈ [p]. (14)

Thus we set the adaptive confidence interval as Threshold = Maxi∈{1,2}, p∈{1,...,P}{T 2
i,p}. Then we

conduct Major Procedure and Reliability Check based on Threshold similar to RPC. The pipeline is
shown in Fig 6.

In our analysis of the current evaluation method, we take into account the probabilities of false
positives and false negatives. Typically, achieving extremely low levels of both probabilities simul-
taneously is challenging, and there is often a trade-off between them. However, since false positives
can undermine the reliability of the methods, we prioritize establishing stringent bounds for this type
of error. On the other hand, false negatives are explained in a more intuitive manner, acknowledging
their presence but placing greater emphasis on minimizing false positives.

Regarding false positives, we give the following theorem.

Theorem F.1 The false positive rate with adaptive confidence interval is 1
22P

.

Proof F.1 We first define false positives more formally. False positives mean the GNN f cannot
distinguish G and H, but we reject H0 and accept H1. f cannot distinguish G and H means f(G) =
f(H) = f(Gπ) ∼ N (µG ,ΣG). Since di in major procedure and di,j,k in adaptive confidence
interval are derived from paired comparison by same function outputs, i.e., from f(G) and f(H), and
from f(G) and f(Gπ), respectively. di and di,j,k should follow the same distribution, leading that
T 2

test and T 2
i,j are independently random variables following the same distribution. Thus P (T 2

test >

T 2
i,j) =

1
2 . Then we can calculate the probability of false positives as

P (Rejecting H0) = P (T 2
test > Threshold = Maxi∈[2], j∈[p]{T 2

i,j}) =
1

22p
. (15)

Thus we proof theorem F.1.

Regarding false negatives, we propose the following explanation. A small threshold can decrease
the false negative rate. Thus without compromising the rest of the theoretical analysis, we give the
minimum value of the threshold. Equation 13 introduces a minimum threshold restriction. We obtain
the threshold strictly based on it by taking the maximum value, which is the theoretical minimum
threshold that minimizes the false negative rate.

16

Under review as a conference paper at ICLR 2024

Table 3: A general theoretical expressiveness upper bound of subgraph with radius k

Radius 1 2 3 4 5 6 7 8 9 10

#Accurate on BREC 252 298 300 327 326 385 398 398 399 400

Table 4: The performance of 3-WL with different iteration times

Iterations 1 2 3 4 5

#Accurate on BREC 193 209 217 264 270

G SUBGRAPH GNNS

In this section, we discuss settings for subgraph GNN models. The most important setting is the
subgraph radius. As discussed before, a larger radius can capture more structural information, in-
creasing the model’s expressiveness. However, it will include more invalid information, making
reaching the theoretical upper bound harder. Thus we need to find a balance between the two.

To achieve this, we first explore the maximum structural information that can be obtained under
a given radius. Following Papp & Wattenhofer (2022), we implement Nk method, which embeds
the isomorphic type of k-hop subgraph when initializing. This method is only available in the
theoretical analysis as one can not solve the GI problem by manually giving graph isomorphic type.
We mainly use it as a general expressiveness upper bound of subgraph GNNs. The performance of
Nk on BREC is shown in Table 3. Actually, N3 already successfully distinguishes all graphs except
for CFI graphs. k = 6 is an important threshold as Nk outperforms 3-WL (expressiveness upper
bound for most subgraph GNNs (Frasca et al., 2022; Zhang et al., 2023a)) in all types of graphs. An
interesting discovery is that increasing the radius does not always lead to expressiveness increasing
as expected. This is caused by the fact that we only encode the exact k-hop subgraph instead of 1 to
k-hop subgraphs. This phenomenon is similar to subgraph GNNs, revealing the advantages of using
distance encoding.

We then test the subgraph GNNs’ radii by increasing them until reaching the best performance,
which is expected to be a perfect balance. For some methods, radius= 6 is the best selection,
which is consistent with the theory. The exceptions are NGNN, NGNN+DE, KPGNN, I2-GNN
and SSWL P. NGNN directly uses an inner GNN to calculate subgraph representation, whose ex-
pressiveness is restricted by the inner GNN. As the subgraph radius increases, though the subgraph
contains information, the simple inner GNN can hardly give a correct representation. That’s why
radius= 1 is the best setting for NGNN. NGNN+DE and I2-GNN add distance encodings, making
the subgraph with a large radius can always clearly extract a subgraph with a small radius. There-
fore, a large radius= 8 is available. KPGNN utilizes a similar setting by incorporating distance to
subgraph representation, and radius= 8 is also the best setting. KPGNN can also use graph dif-
fusion to replace the shortest path distance. Though graph diffusion outperforms some graphs, the
shortest path distance is generally a better solution. Previous findings reveal the advantages of us-
ing distance, which we hope can be more widely used in further research. SSWL P achieves better
expressiveness with theoretical minimum components, making more information available.

H k-WL HIERARCHY GNNS

In this section, we discuss settings for k-WL hierarchy GNN models. k-WL algorithm requires
a converged tuple embedding distribution for GI. However, k-WL hierarchy GNNs do not have
the definition of converging. It will output the final embeddings after a specific number of layers,
i.e., the iteration times of k-WL. Thus we need to give a suitable number of layers where the k-WL
converged after the number of iteration times. In theory, increasing the number of layers always leads
to a non-decreasing expressiveness, since the converged distribution will not change furthermore.
However, more layers may cause over-smoothing, leading to worse performance in practice.

17

Under review as a conference paper at ICLR 2024

Table 5: Substructure-based model performance on BREC

Basic Graphs (60) Regular Graphs (140) Extension Graphs (100) CFI Graphs (100) Total (400)

Model Number Accuracy Number Accuracy Number Accuracy Number Accuracy Number Accuracy

S3 52 86.7% 48 34.3% 5 5% 0 0% 105 26.2%
S4 60 100% 99 70.7% 84 84% 0 0% 243 60.8%

GSN-v(k=3) 52 86.7% 48 34.3% 5 5% 0 0% 105 26.2%
GSN-v(k=4) 60 100% 99 70.7% 84 84% 0 0% 243 60.8%
GSN-e(k=3) 59 98.3% 48 34.3% 52 52% 0 0% 159 39.8%
GSN 60 100% 99 70.7% 95 95% 0 0% 254 63.5%

Table 6: The performance of DropGNN with different sample numbers

#Samples 100 200 400 800 1200 1600

#Accurate on BREC 177 222 242 253 260 OOM

To keep a balance, we utilize similar methods for subgraph GNNs. We first analyze the iteration
times of 3-WL, shown in Table 4. One can see 6 iteration times are enough for all types of graphs.
Then we increase the layers of k-WL GNNs until reaching the best performance. We finally set 5
layers for PPGN, 4 layers for KCSet-GNN and 6 layers for δ-k-LGNN.

I SUBSTRUCTURE-BASED GNNS

In this section, we discuss the performance of substructure-based GNN models. Specifically, we
focus on the GSN (Graph Substructure Network) model proposed by Bouritsas et al. (2022), which
offers a straightforward neural network implementation, denoted as GSN-v, of the Sk substructure.
Additionally, we introduce GSN-e, a slightly stronger version of GSN-v that incorporates features
on edges instead of just nodes.

Experimental results presented in Table 5 demonstrate that GSN-v achieves a perfect match with
the performance of Sk. Furthermore, GSN-e outperforms GSN-v, indicating superior performance
when edge features are included.

J RANDOM GNNS

In this section, we delve into the settings for random GNNs. Random GNNs leverage samples from
graphs using specific strategies, and both the number of samples and the sampling strategies have an
impact on performance.

For DropGNN, the sampling strategy revolves around a relatively straightforward approach of delet-
ing nodes. As for the number of samples, it is recommended to set it to the average number of nodes
in the dataset. In our reported results, we set the number of samples to 100, which aligns with the
average number of nodes. The ablation study results on the number of samples can be found in
Table 6.

Another approach, OSAN, proposes a data-driven method that achieves similar performance with
fewer samples. This is achieved by training the model to select diverse samples. However, it requires
an additional training framework and may not necessarily lead to improved performance. In our
case, we select the edge-deleting strategy and set the number of samples to 20.

K EXPERIMENT SETTINGS

All experiments were performed on a machine equipped with an Intel Core i9-10980XE CPU, an
NVIDIA RTX4090 graphics card, and 256GB of RAM.

18

Under review as a conference paper at ICLR 2024

Table 7: Model Hyperparameters

Model Radius Layers Inner dim Learning rate Weight decay Batch size Epoch Early stop threshold

NGNN 1 6 16 1e− 4 1e− 5 32 20 0.01
DE+NGNN 8 6 128 1e− 4 1e− 5 32 30 0.01
DS-GNN 6 10 32 1e− 4 1e− 5 32 30 0
DSS-GNN 6 9 32 1e− 4 1e− 4 32 20 0.01
SUN 6 9 32 1e− 4 1e− 4 32 20 0.01
SSWL P 8 8 64 1e− 5 1e− 5 8 20 0.1
GNN-AK 6 4 32 1e− 4 1e− 4 32 10 0.1
KP-GNN 8 8 32 1e− 4 1e− 4 32 20 0.3
I2GNN 8 5 32 1e− 5 1e− 4 16 20 0.2
PPGN / 5 32 1e− 4 1e− 4 32 20 0.2
δ-k-LGNN / 6 16 1e− 4 1e− 4 16 20 0.2
KC-SetGNN / 4 64 1e− 4 1e− 4 16 15 0.3
GSN / 4 64 1e− 4 1e− 5 16 20 0.1
DropGNN / 10 16 1e− 3 1e− 5 16 100 0
OSAN / 8 64 1e− 3 1e− 5 16 40 0
Graphormer / 12 80 2e− 5 0 16 100 0

RPC settings. For non-GNN methods, the output results are uniquely determined, and as such, this
part of the experiment does not require RPC. It is worth noting that most non-GNN baselines involve
running graph isomorphism testing software on subgraphs, and they mainly serve as theoretical
references in our evaluation.

Regarding GNNs, we employ RPC with q = 32 and d = 16 to evaluate their performance. Consid-
ering a confidence level of α = 0.95, which is a typical setting in statistics, the threshold should be
set to (q−1)d

(q−d) Fd,q−d(α) = 31F16,16(0.95) = 72.34.

To ensure robustness, we repeat all evaluation methods ten times using different seeds selected
from the set {100, 200, . . . , 1000}. We consider the final results reliable only if the model passes
the Reliability check for all graphs with any seed, meaning that the quantification of the output
embedding distance between isomorphic pairs is always smaller than the threshold. The reported
results are selected as the best results rather than the average, as we aim to explore the upper bound
of expressiveness.

Training settings. We employ a Siamese network design and utilize the cosine similarity loss
function. Another commonly used loss function is contrastive loss (Hadsell et al., 2006), which
directly calculates the difference between two outputs. However, we opt for cosine similarity loss
due to its advantage of measuring output difference under the same scale through normalization.
This approach prevents model outputs from being excessively amplified, which could otherwise
magnify minor precision errors and treat them as differentiated results of the model.

We use the Adam optimizer with a learning rate searched from {1e − 3, 1e − 4, 1e − 5}, weight
decay selected from {1e− 3, 1e− 4, 1e− 5}, and batch size chosen from {8, 16, 32}. Graphormer,
on the other hand, follows the original training settings on ZINC.

We incorporate an early stopping strategy, which halts training when the loss reaches a small value.
While for random GNNs, we do not utilize early stopping. The maximum number of epochs is
typically set to around 20 since the model can often distinguish a pair relatively quickly.

Model hyperparameters. The most crucial hyperparameters related to expressiveness, such as
the subgraph radius for subgraph GNNs and the number of layers for k-WL hierarchy GNNs, are
determined through theoretical analysis, as outlined in Appendix G and H. These hyperparameters
have a direct impact on the expressiveness of the models.

Other hyperparameters also implicitly influence expressiveness. We generally adopt the same set-
tings as previous expressiveness datasets, with two exceptions: inner embedding dimension and
batch normalization.

The inner embedding dimension reflects the model’s capacity. For smaller and simpler expressive-
ness datasets used in the past, a small embedding dimension has been sufficient. However, the

19

Under review as a conference paper at ICLR 2024

appropriate embedding dimension for BREC is unknown, so we generally conduct a search within
the range of 16, 32, 64, 128.

Additionally, we utilize batch normalization for all models, even though it may not have been used
in all previous models. Batch normalization helps control the outputs within a suitable range, which
can be beneficial for distinguishing graph pairs.

The detailed hyperparameter settings for each method are provided in Table 7.

L GRAPH GENERATION

In this section, we provide an overview of how the graphs in the BREC dataset were generated.

Basic graphs. This category consists of 60 pairs of graphs, each containing 10 nodes. To generate
these graphs, the 1-WL algorithm was applied to all 11.7 million graphs with 10 nodes, resulting in
a hash value for each graph. Among these graphs, 83,074 happened to have identical hash values as
others. From this set, 60 pairs of graphs were randomly selected.

Regular graphs. This category includes 140 pairs of regular graphs. For the 50 sim-
ple regular graphs, the search was conducted for regular graphs with 6 to 10 nodes,
and 50 pairs of regular graphs with the same parameters were randomly selected. For
the 50 strongly regular graphs, the number of nodes ranged from 16 to 35. The
graphs were obtained from sources such as http://www.maths.gla.ac.uk/ es/srgraphs.php and
http://users.cecs.anu.edu.au/ bdm/data/graphs.html. For the 20 4-vertex condition graphs, a search
was conducted on http://math.ihringer.org/srgs.php, and the simplest 20 pairs of 4-vertex condition
graphs with the same parameters were selected. For the 20 distance regular graphs, a search was
performed on https://www.distanceregular.org/, and the simplest 20 pairs of distance regular graphs
with the same parameters were chosen.

Extension graphs. This category consists of 100 pairs of graphs based on comparing results be-
tween GNN extensions. The S3, S4, and N1 algorithms were applied to all 1-WL-indistinguishable
graphs with 10 nodes. This yielded 4,612 S3-indistinguishable graphs, 1,132 N1-indistinguishable
graphs, and 136 S4-indistinguishable graphs. From these sets, 60 pairs of S3-indistinguishable
graphs, 20 pairs of N1-indistinguishable graphs, and 10 pairs of S4-indistinguishable graphs were
randomly selected. Care was taken to ensure that no graphs were repeated. Additionally, 10 pairs of
graphs were added using a virtual node strategy, including 5 pairs obtained by adding a virtual node
to a 10-node regular graph and 5 pairs based on C2l and Cl,l as described in Papp & Wattenhofer
(2022).

CFI graphs. This category consists of 100 pairs of graphs generated based on the CFI methods
proposed by Cai et al. (1989). All CFI graphs with backbones ranging from 3 to 7-node graphs
were generated. From this set, 60 pairs of 1-WL-indistinguishable graphs, 20 pairs of 3-WL-
indistinguishable graphs, and 20 pairs of 4-WL-indistinguishable graphs were randomly selected.

These different categories of graphs provide a diverse range of graph structures and properties for
evaluating the expressiveness of GNN models.

20

http://www.maths.gla.ac.uk/~es/srgraphs.php
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://math.ihringer.org/srgs.php
https://www.distanceregular.org/

	Introduction
	Limitations of Existing Datasets
	BREC: A New Dataset for Expressiveness
	Dataset Composition
	Advantages

	RPC: A New Evaluation Method
	Training Framework
	Evaluation Method

	Experiment
	Conclusion and Future Work
	Reproducibility
	Details on Regular Graphs
	Node Features
	WL Algorithm
	Circulant Skip Links (CSL) Graphs
	BREC Statistics
	RAPC: a Reliable and Adaptive Evaluation Method
	Subgraph GNNs
	k-WL Hierarchy GNNs
	Substructure-based GNNs
	Random GNNs
	Experiment Settings
	Graph Generation

