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Abstract

Optimal Transport has sparked vivid interest in recent years, in particular thanks to the
Wasserstein distance, which provides a geometrically sensible and intuitive way of comparing
probability measures. For computational reasons, the Sliced Wasserstein (SW) distance was
introduced as an alternative to the Wasserstein distance, and has seen uses for training gen-
erative Neural Networks (NNs). While convergence of Stochastic Gradient Descent (SGD)
has been observed practically in such a setting, there is to our knowledge no theoretical
guarantee for this observation. Leveraging recent works on convergence of SGD on non-
smooth and non-convex functions by Bianchi et al. (2022), we aim to bridge that knowledge
gap, and provide a realistic context under which fixed-step SGD trajectories for the SW loss
on NN parameters converge. More precisely, we show that the trajectories approach the set
of (sub)-gradient flow equations as the step decreases. Under stricter assumptions, we show
a much stronger convergence result for noised and projected SGD schemes, namely that the
long-run limits of the trajectories approach a set of generalised critical points of the loss
function.

1 Introduction

1.1 Optimal Transport in Machine Learning

Optimal Transport (OT) allows the comparison of measures on a metric space by generalising the use of the
ground metric. Typical applications use the so-called 2-Wasserstein distance, defined as

∀x, y ∈ P2(Rd), W2
2(x, y) := inf

�∈Π(x,y)

∫
Rd×Rd

‖x− y‖22d�(x, y), (W2)

where P2(Rd) is the set of probability measures on Rd admitting a second-order moment and where Π(x, y)
is the set of measures of P2(Rd × Rd) of first marginal x and second marginal y. One may find a thorough
presentation of its properties in classical monographs such as Peyré & Cuturi (2019); Santambrogio (2015);
Villani (2009)

The ability to compare probability measures is useful in probability density fitting problems, which are
a sub-genre of generation tasks. In this formalism, one considers a probability measure parametrised by
a vector u which is designed to approach a target data distribution y (typically the real-world dataset).
In order to determine suitable parameters, one may choose any probability discrepancy (Kullback-Leibler,
Ciszar divergences, f-divergences or Maximum Mean Discrepancy (Gretton et al., 2006)), or in our case, the
Wasserstein distance. In the case of Generative Adversarial Networks, the optimisation problem which trains
the "Wasserstein GAN" (Arjovsky et al., 2017) stems from the Kantorovitch-Rubinstein dual expression of
the 1-Wasserstein distance.
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1.2 The Sliced Wasserstein Distance as an Alternative

The Wasserstein distance suffers from the curse of dimensionality, in the sense that the sample complexity for
n samples in dimension d is of the order O(n1/d) (Dudley, 1969). Due to this practical limitation and to the
computational cost of the Wasserstein distance, the study of cheaper alternatives has become a prominent
field of research. A prominent example is Entropic OT introduced by Cuturi (2013), which adds an entropic
regularisation term, advantageously making the problem strongly convex. Sample complexity bounds have
been derived by Genevay et al. (2019), showing a convergence in O(

√
n) with a constant depending on the

regularisation factor.

Another alternative is the Sliced Wasserstein (SW) Distance introduced by Rabin et al. (2012), which consists
in computing the 1D Wasserstein distances between projections of input measures, and averaging over the
projections. The aforementioned projection of a measure x on Rd is done by the push-forward operation
by the map Pθ : x 7−→ θ>x. Formally, Pθ#x is the measure on R such that for any Borel set B ⊂ R,
Pθ#x(B) = x(P−1

θ (B)). Once the measures are projected onto a line Rθ, the computation of the Wasserstein
distance becomes substantially simpler numerically. We illustrate this fact in the discrete case, which arises
in practical optimisation settings. Let two discrete measures on Rd: 
X := 1

n

∑
k �xk , 
Y := 1

n

∑
k �yk with

supports X = (x1, · · · , xn) and Y = (y1, · · · , yn) ∈ Rn×d. Their push-forwards by Pθ are simply computed
by the formula Pθ#
X = 1

n

∑
k �Pθ(xk), and the 2-Wasserstein distance between their projections can be

computed by sorting their supports: let σ a permutation sorting (θ>x1, · · · , θ>xn), and τ a permutation
sorting (θ>y1, · · · , θ>yn), one has the simple expression

W2
2(Pθ#
X , Pθ#
Y ) =

1
n

n∑
k=1

(θ>xσ(k) − θ>yτ(k))2. (1)

The SW distance is the expectation of this quantity with respect to θ ∼ �, i.e. uniform on the sphere:
SW2

2(
X , 
Y ) = Eθ∼�
[
W2

2(Pθ#
X , Pθ#
Y )
]
. The 2-SW distance is also defined more generally between two

measures x, y ∈ P2(Rd):
SW2

2(x, y) :=
∫
θ∈Sd−1

W2
2(Pθ#x, Pθ#y)d�(θ). (SW)

In addition to its computational accessibility, the SW distance enjoys a dimension-free sample com-
plexity (Nadjahi et al., 2020). Additional statistical, computational and robustness properties of SW
have been explored by Nietert et al. (2022). Moreover, central-limit results have been shown by Xu &
Huang (2022) for 1-SW and the 1-max-SW distance (a variant of SW introduced by Deshpande et al.
(2019)), and related work by Xi & Niles-Weed (2022) shows the convergence of the sliced error process
θ 7−→

√
n
(
Wp
p(Pθ#
X , Pθ#
Y )−Wp

p(Pθ#x, Pθ#y)
)
, where the samples X ∼ x⊗n and Y ∼ y⊗n are drawn

for each θ. Another salient field of research for SW is its metric properties, and while it has been shown
to be weaker than the Wasserstein distance in general by Bonnotte (2013), and metric comparisons with
Wasserstein and max-SW have been undergone by Bayraktar & Guo (2021) and Paty & Cuturi (2019).

1.3 Related Works

Our subject of interest is the theoretical properties of SW as a loss for implicit generative modelling, which
leads to minimising SW2

2(Tu#x, y) in the parameters u, where y is the target distribution, and Tu#x is the
image by the NN1 of x, a low-dimensional input distribution (often chosen as Gaussian or uniform noise).
In order to train a NN in this manner, at each iteration one draws n samples from x and y (denoted 
X and

Y as discrete measures with n points), as well as a projection θ (or a batch of projections) and performs an
SGD step on the sample loss

L(u) = SW2
2(Pθ#Tu#
X , Pθ#
Y ) =

1
n

n∑
k=1

(θ>Tu(xσ(k))− θ>yτ(k))2. (2)

Taking the expectation of this loss over the samples yields the minibatch Sliced-Wasserstein discrepancy, a
member of the minibatch variants of the OT distances, introduced formally by Fatras et al. Fatras et al.

1Similarly to the 1D case, Tu#x is the push-forward measure of x by Tu, i.e. the law of Tu(x) when x ∼ x.
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(2021). The framework (2) fits several Machine Learning applications, for instance, Deshpande et al. (2018)
trains GANs and auto-encoders with this method, and Wu et al. (2019) consider related dual formulations.
Other examples within this formalism include the synthesis of images by minimising the SW distance between
features of the optimised image and a target image, as done by Heitz et al. (2021) for textures with neural
features, and by Tartavel et al. (2016) with wavelet features (amongst other methods).

The general study of convergence of SGD in the context of non-smooth, non-convex functions (as is the
case of L from (2)) is an active field of research: Majewski et al. (2018) and Davis et al. (2020) show the
convergence of diminishing-step SGD under regularity constraints, while Bolte & Pauwels (2021) leverage
conservative field theory to show convergence results for training with back-propagation. Finally, the recent
work by Bianchi et al. (2022) shows the convergence of fixed-step SGD schemes on a general function F
under weaker regularity assumptions.

More specifically, the study of convergence for OT-based generative NNs has been tackled by Fatras et al.
(2021), who prove strong convergence results for minibatch variants of classical OT distances, namely the
Wasserstein distance, the Entropic OT and the Gromov Wasserstein distance (another OT variant introduced
by Mémoli (2011)). A related study on GANs by Huang et al. (2023) derive optimisation properties for one
layer and one dimensional Wasserstein-GANs and generalise to higher dimensions by turning to SW-GANs.
Another work by Bréchet et al. (2023) focuses on the theoretical properties of linear NNs trained with
the Bures-Wasserstein loss (introduced by Bures (1969); see also (Bhatia et al., 2017) for reference on this
metric). Finally, the regularity and optimisation properties of the simpler energy SW2

2(
X , 
Y ) have been
studied by Tanguy et al. (2023).

In practice, it has been observed that SGD in such settings always converges (in the loose numerical
sense, see (Deshpande et al., 2018), Section 5, or (Heitz et al., 2021), Figure 3), yet this property is not
known theoretically. The aim of this work is to bridge the gap between theory and practical observation
by proving convergence results for SGD on (minibatch) Sliced Wasserstein generative losses of the form
F (u) = EX∼x⊗n,Y∼y⊗nSW2

2(Tu#
X , 
Y ).

1.4 Contributions

Convergence of Interpolated SGD Under Practical Assumptions Under practically realistic as-
sumptions, we prove in Theorem 1 that piecewise affine interpolations (defined in Equation (10)) of constant-
step SGD schemes on u 7−→ F (u) (formalised in Equation (7)) converge towards the set of sub-gradient flow
solutions (see Equation (9)) as the gradient step decreases. This results signifies that with very small learning
rates, SGD trajectories will be close to sub-gradient flows, which themselves converge to critical points of F
(omitting serious technicalities).

The assumptions for this result are practically reasonable: the input measure x and the true data measure
y are assumed to be compactly supported. As for the network (u, x) 7−→ T (u, x), we assume that for a
fixed datum x, T (·, x) is piecewise C2-smooth and that it is Lipschitz jointly in both variables. We require
additional assumptions on T which are more costly, but are verified as long as T is a NN composed of typical
activations and linear units, with the constraint that the parameters u and data x stay both stay within
a fixed bounded domains. We discuss a class of neural networks that satisfy all of the assumptions of the
paper in the Appendix (Section D). Furthermore, this result can be extended to other orders p 6= 2 of SW:
we present the tools for this generalisation in Section E.

Stronger Convergence Under Stricter Assumptions In order to obtain a stronger convergence result,
we consider a variant of SGD where each iteration receives an additive noise (scaled by the learning rate)
which allows for better space exploration, and where each iteration is projected on a ball B(0, r) in order
to ensure boundedness. This alternative SGD scheme remains within the realm of practical applications,
and we show in Theorem 2 that long-run limits of such trajectories converge towards a set of generalised
critical points of F , as the gradient step approaches 0. This result is substantially stronger, and can serve as
an explanation of the convergence of practical SGD trajectories, specifically towards a set of critical points
which amounts to the stationary points of the energy (barring theoretical technicalities).
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Unfortunately, we require additional assumptions in order to obtain this stronger convergence result, the
most important of which is that the input data measure x and the dataset measure y are discrete. For
the latter, this is always the case in practice, however the former assumption is more problematic, since it
is common to envision generative NNs as taking an argument from a continuous space (the input is often
Gaussian of Uniform noise), thus a discrete setting is a substantial theoretical drawback. For practical
concerns, one may argue that the discrete x can have an arbitrary fixed amount of points, and leverage
strong sample complexity results to ascertain that the discretisation is not costly if the number of samples
is large enough.

2 Stochastic Gradient Descent with SW as Loss

Training Sliced-Wasserstein generative models consists in training a neural network

T :
{

Rdu × Rdx −→ Rdy
(u, x) 7−→ Tu(x) := T (u, x) (3)

by minimising the SW minibatch loss u 7−→ EX∼x⊗n,Y∼y⊗n
[
SW2

2(Tu#
X , 
Y )
]
through Stochastic Gradient

Descent (as described in Algorithm 1). The probability distribution x ∈ P2(Rdx) is the law of the input
of the generator T (u, ·). The distribution y ∈ P2(Rdy ) is the data distribution, which T aims to simulate.
Finally, � will denote the uniform measure on the unit sphere of Rdy , denoted by Sdy−1. Given a list of points
X = (x1, · · · , xn) ∈ Rn×dx , denote the associated discrete uniform measure 
X := 1

n

∑
i �xi . By abuse of

notation, we write Tu(X) := (Tu(x1), · · · , Tu(xn)) ∈ Rn×dy . The reader may find a summary of this paper’s
notations in Table 1.

Algorithm 1: Training a NN on the SW loss with Stochastic Gradient Descent
Data: Learning rate α > 0, probability distributions x ∈ P2(Rdx) and y ∈ P2(Rdy ).

1 Initialisation: Draw u(0) ∈ Rdu ;
2 for t ∈ J0, Tmax − 1K do
3 Draw θ(t+1) ∼ �, X(t+1) ∼ x⊗n Y (t+1) ∼ y⊗n. SGD update:

u(t+1) = u(t) − α

[
∂

∂u
W2

2(Pθ(t+1)#Tu#
X(t+1) , Pθ(t+1)#
Y (t+1))
]
u=u(t)

4 end

In the following, we will apply results from (Bianchi et al., 2022), and we pave the way to the application of
these results by presenting their theoretical framework. Consider a sample loss function f : Rdu × Z −→ R
that is locally Lipschitz in the first variable, and z a probability measure on Z ⊂ Rd which is the law of
the samples drawn at each SGD iteration. Consider ϕ : Rdu × Z −→ Rdu an almost-everywhere gradient of
f , which is to say that for almost every (u, z) ∈ Rdu × Z, ϕ(u, z) = ∂uf(u, z) (since each f(·, z) is locally
Lipschitz, it is differentiable almost-everywhere by Rademacher’s theorem). The complete loss function is
the expectation of the sample loss, F := u −→

∫
Z f(u, z)dz(z). An SGD trajectory of step α > 0 for F is a

sequence (u(t)) ∈ (Rdu)N of the form:

u(t+1) = u(t) − αϕ(u(t), z(t+1)),
(
u(0), (z(t))t∈N

)
∼ u0 ⊗ z⊗N,

where u0 is the distribution of the initial position u(0). Within this framework, we define an SGD scheme
described by Algorithm 1, with z := x⊗n ⊗ y⊗n ⊗ � and the minibatch SW sample loss

f :=
{

Rdu × Rn×dx × Rn×dy × Sdy−1 −→ Rdy
(u,X, Y, θ) 7−→ W2

2(Pθ#Tu#
X , Pθ#
Y ) . (4)

With this definition for f , we have

F (u) = E(X,Y,θ)∼z [f(u,X, Y, θ)] = E(X,Y )∼x⊗n⊗y⊗n
[
SW2

2(Tu#
X , 
Y )
]
, (5)
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thus the population loss compares the "true" data y with the model’s generation Tu#x using (minibatch)
SW. We now wish to define an almost-everywhere gradient of f . To this end, notice that one may write
f(u,X, Y, θ) = wθ(T (u,X), Y ), where for X,Y ∈ Rn×dy and θ ∈ Sdy−1, wθ(X,Y ) := W2

2(Pθ#
X , Pθ#
Y ).
The differentiability properties of wθ(·, Y ) are already known (Tanguy et al., 2023; Bonneel et al., 2015), in
particular one has the following almost-everywhere gradient of wθ(·, Y ) :

∂wθ

∂X
(X,Y ) =

(
2
n
θθ>(xk − yσX,Y

θ
(k))
)
k∈J1,nK

∈ Rn×dy ,

where the permutation σX,Yθ ∈ Sn is τθY ◦ (τθX)−1, with τθY ∈ Sn being a sorting permutation of the list
(θ>y1, · · · , θ>yn). The sorting permutations are chosen arbitrarily when there is ambiguity. To define an
almost-everywhere gradient, we must differentiate f(·, X, Y, θ) = u 7−→ wθ(T (u,X), Y ) for which we need
regularity assumptions on T : this is the goal of Assumption 1. In the following, A denotes the topological
closure of a set A, ∂A its boundary, and �Rdu denotes the Lebesgue measure of Rdu .
Assumption 1. For every x ∈ Rdx , there exists a family of disjoint connected open sets (Uj(x))j∈J(x) such

that ∀j ∈ J(x), T (·, x) ∈ C2(Uj(x),Rdy ),
⋃

j∈J(x)

Uj(x) = Rdu and �Rdu
( ⋃
j∈J(x)

∂Uj(x)
)

= 0.

Note that for measure-theoretic reasons, the sets J(x) are assumed countable. One may understand this
assumption broadly as the neural networks T being piecewise smooth with respect to the parameters u,
where the pieces depend on the input data x. In practice, Assumption 1 is an assumption on the activation
functions of the neural network. For instance, it is of course satisfied in the case of smooth activations, or in
the common case of piecewise polynomial activations. We detail suitable neural networks in the Appendix
(Section D).

Assumption 1 implies that given X,Y, θ fixed, f(·, X, Y, θ) is differentiable almost-everywhere, and that one
may define the following almost-everywhere gradient (6).

ϕ :


Rdu × Rn×dx × Rn×dy × Sdy−1 −→ Rdu

(u,X, Y, θ) 7−→
n∑
k=1

2
n

(
∂T

∂u
(u, xk)

)>
θθ>(T (u, xk)− y

σ
T (u,X),Y
θ

(k))
, (6)

where for x ∈ Rdx ,
∂T

∂u
(u, x) ∈ Rdy×du denotes the matrix of the differential of u 7−→ T (u, x), which is

defined for almost-every u. Given u ∈ ∂Uj(x) (a point of potential non-differentiability), take instead 0.
(Any choice at such points would still define an a.e. gradient, and will make no difference).

Given a step α > 0, and an initial position u(0) ∼ u0, we may now define formally the following fixed-step
SGD scheme for F :

u(t+1) = u(t) − αϕ(u(t), X(t+1), Y (t+1), θ(t+1)),(
u(0), (X(t))t∈N (Y (t))t∈N (θ(t))t∈N

)
∼ u0 ⊗ x⊗N ⊗ y⊗N ⊗ �⊗N.

(7)

An important technicality that we must verify in order to apply Bianchi et al. (2022)’s results is that
u 7−→ f(u,X, Y, θ) and F are locally Lipschitz. Before proving those claims, we reproduce a useful Property
from (Tanguy et al., 2023). In the following, ‖X‖∞,2 denotes max

k∈J1,nK
‖xk‖2 given X = (x1, · · · , xn) ∈ Rn×dx ,

and BN (x, r) for N a norm on Rdx , x ∈ Rdx and r > 0 shall denote the open ball of Rdx of centre x and
radius r for the norm N (if N is omitted, then B is an euclidean ball).
Proposition 1. The (wθ(·, Y ))θ∈Sdy−1 are uniformly locally Lipschitz (Tanguy et al., 2023) Prop. 2.2.1.

Let Kw(r,X, Y ) := 4n(r + ‖X‖∞,2 + ‖Y ‖∞,2), for X,Y ∈ Rn×dy and r > 0. Then wθ(·, Y ) is Kw(r,X, Y )-
Lipschitz in the neighbourhood B‖·‖∞,2(X, r):

∀Y ′, Y ′′ ∈ B‖·‖∞,2(X, r), ∀θ ∈ Sdy−1, |wθ(Y ′, Y )− wθ(Y ′′, Y )| ≤ Kw(r,X, Y )‖Y ′ − Y ′′‖∞,2.
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In order to deduce regularity results on f and F from Proposition 1, we will make the assumption that T is
globally Lipschitz in (u, x). In practice, this is the case when both parameters are enforced to stay within a
fixed bounded domain, for instance by multiplying a typical NN with the indicator of such a set. We present
this in detail in the Appendix (Section D).
Assumption 2. There exists L > 0 such that

∀(u1, u2, x1, x2) ∈ (Rdu)2 × (Rdx)2, ‖T (u1, x1)− T (u2, x2)‖2 ≤ L (‖u1 − u2‖2 + ‖x1 − x2‖2) .

Proposition 2. Under Assumption 2, for ε > 0, u0 ∈ Rdu , X ∈ Rn×dx , Y ∈ Rn×dy and θ ∈ Sdy−1, let
Kf (ε, u0, X, Y ) := 4Ln(εL + ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2). Then f(·, X, Y, θ) is Kf (ε, u0, X, Y )-Lipschitz in
B(u0, ε):

∀u, u′ ∈ B(u0, ε), |f(u,X, Y, θ)− f(u′, X, Y, θ)| ≤ Kf (ε, u0, X, Y )‖u− u′‖2.

Proof. Let ε > 0, u0 ∈ Rdu , X ∈ Rn×dx , Y ∈ Rn×dy and θ ∈ Sdy−1. Let u, u′ ∈ B(u0, ε). Using
Assumption 2, we have T (u,X), T (u′, X) ∈ B‖·‖∞,2(T (u0, X), r), with r := εL.

Denoting L := LB(u0,ε),B(0Rdx ,‖X‖∞,2), we apply successively Proposition 1 (first inequality), then Assump-
tion 2 (second inequality):

|f(u,X, Y, θ)− f(u′, X, Y, θ)| = |wθ(T (u,X), Y )− wθ(T (u′, X), Y )|
≤ Kw(r, T (u0, X), Y )‖T (u,X)− T (u′, X)‖∞,2
≤ 4n(εL+ ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2)L‖u− u′‖2.

Proposition 2 shows that f is locally Lipschitz in u. We now assume some conditions on the measures x and
y in order to prove that F is also locally Lipschitz. Specifically, we require that the data measures x and y
be supported on bounded domains, which imposes little restriction in practice.
Assumption 3. x and y are Radon probability measures on Rdx and Rdy respectively, supported by the
compacts X and Y respectively. Denote Rx := sup

x∈X
‖x‖2 and Ry := sup

y∈Y
‖y‖2.

Proposition 3. Assume Assumption 2 and Assumption 3. For ε > 0, u0 ∈ Rdu , let C1(u0) :=∫
Xn
‖T (u0, X)‖∞,2dx⊗n(X) and C2 :=

∫
Yn
‖Y ‖∞,2dy⊗n(Y ).

Let KF (ε, u0) := 4Ln(εL+ C1(u0) + C2). We have ∀u, u′ ∈ B(u0, ε), |F (u)− F (u′)| ≤ KF (ε, u0)‖u− u′‖2.

Proof. Let ε > 0, u0 ∈ Rdu and u, u′ ∈ B(u0, ε). We have

|F (u)− F (u′)| ≤
∫
Xn×Yn×Sdy−1

|f(u,X, Y, θ)− f(u′, X, Y, θ)|dx⊗n(X)dy⊗n(Y )d�(θ)

≤
∫
Xn×Yn

Kf (ε, u0, X, Y )‖u− u′‖2dx⊗n(X)dy⊗n(Y )

≤
∫
Xn×Yn

4Ln(εL+ ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2)‖u− u′‖2dx⊗n(X)dy⊗n(Y ).

Now by Assumption 2, X 7−→ ‖T (u0, X)‖∞,2 is continuous on the compact Xn, thus upper-bounded by a cer-
tainM(u0) > 0. We can define C1(u0) :=

∫
Xn
‖T (u0, X)‖∞,2dx⊗n(X), which verifies C1(u0) ≤M(u0)x(X )n.

Since X is compact and x is a Radon probability measure by Assumption 3, x(X ) is well-defined and finite,
thus C1(u0) is finite. Likewise, let C2 :=

∫
Yn
‖Y ‖∞,2dy⊗n(Y ) < +∞.

Finally, |F (u)− F (u′)| ≤ 4Ln(εL+ C1(u0) + C2)‖u− u′‖2.
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Having shown that our losses are locally Lipschitz, we can now turn to convergence results. These conclusions
are placed in the context of non-smooth and non-convex optimisation, thus will be tied to the Clarke sub-
differential of F , which we denote ∂CF . The set of Clarke sub-gradients at a point u is the convex hull of
the limits of gradients of F :

∂CF (u) := conv
{
v ∈ Rdu : ∃(u(t)) ∈ (DF )N : u(t) −−−−−→

t−→+∞
u and ∇F (u(t)) −−−−−→

t−→+∞
v

}
, (8)

where DF is the set of differentiability of F . At points u where F is differentiable, ∂CF (u) = {∇F (u)}, and
if F is convex in a neighbourhood of u, then the Clarke differential at u is the set of its convex sub-gradients.
The interested reader may turn to Section C for further context on non-smooth and non-convex optimisation.

3 Convergence of Interpolated SGD Trajectories on F

In general, the idea behind SGD is a discretisation of the gradient flow equation u̇(s) = −∇F (u(s)). In
our non-smooth setting, the underlying continuous-time problem is instead the Clarke differential inclusion
u̇(s) ∈ −∂CF (u(s)). Our objective is to show that in a certain sense, the SGD trajectories approach the set
of solutions of this inclusion problem, as the step size decreases. We consider solutions that are absolutely
continuous (we will write u(·) ∈ Cabs(R+,Rdu)) and start within K ⊂ Rdu , a fixed compact set. We can now
define the solution set formally as

S−∂CF (K) :=
{
u ∈ Cabs(R+,Rdu) | ∀s ∈ R+, u̇(s) ∈ −∂CF (u(s)); u(0) ∈ K

}
, (9)

where we write ∀ for "almost every". In order to compare the discrete SGD trajectories to this set of
continuous-time trajectories, we interpolate the discrete points in an affine manner: Equation (10) defines
the piecewise-affine interpolated SGD trajectory associated to a discrete SGD trajectory (u(t)

α )t∈N of learning
rate α.

uα(s) = u(t)
α +

( s
α
− t
)

(u(t+1)
α − u(t)

α ), ∀s ∈ [tα, (t+ 1)α[, ∀t ∈ N. (10)

In order to compare our interpolated trajectories with the solutions, we consider the metric of uniform
convergence on all segments

dc(u, u′) :=
∑
k∈N∗

1
2k min

(
1, max
s∈[0,k]

‖u(s)− u′(s)‖2
)
. (11)

In order to prove a convergence result on the interpolated trajectories, we will leverage the work of Bianchi
et al. (2022) which hinges on three conditions on the loss F that we reproduce and verify successively. Firstly,
Condition 1 assumes mild regularity on the sample loss function f .
Condition 1.

i) There exists κ : Rdu ×Z −→ R+ measurable such that each κ(u, ·) is z-integrable, and:

∃ε > 0, ∀u, u′ ∈ B(u0, ε), ∀z ∈ Z, |f(u, z)− f(u′, z)| ≤ κ(u0, z)‖u− u′‖2.

ii) There exists u ∈ Rdu such that f(u, ·) is z-integrable.

Our regularity result on f Proposition 2 allows us to verify Condition 1, by letting ε := 1 and κ(u0, z) :=
Kf (1, u0, X, Y ). Condition 1 ii) is immediate since for all u ∈ Rdu , (X,Y, θ) 7−→ wθ(T (u,X), Y ) is con-
tinuous in each variable separately, thanks to the regularity of T provided by Assumption 2, and to the
regularities of w. This continuity implies that all f(u, ·) are z-integrable, since z = x⊗n ⊗ y⊗n ⊗ � is a
compactly supported probability measure under Assumption 3. Secondly, Condition 2 concerns the local
Lipschitz constant κ introduced in Condition 1: it is assumed to increase slowly with respect to the network
parameters u.
Condition 2. The function κ of Condition 1 verifies:
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i) There exists c ≥ 0 such that ∀u ∈ Rdu ,
∫
Z
κ(u, z)dz(z) ≤ c(1 + ‖u‖2).

ii) For every compact K ⊂ Rdu , sup
u∈K

∫
Z
κ(u, z)2dz(z) < +∞.

Condition 2.ii) is verified by κ given its regularity. However, Condition 2.i) requires that T (u, x) increase
slowly as ‖u‖2 increases, which is more costly.
Assumption 4. There exists an x-integrable function g : Rdx −→ R+ such that ∀u ∈ Rdu , ∀x ∈
Rdx , ‖T (u, x)‖2 ≤ g(x)(1 + ‖u‖2).

Assumption 4 is satisfied in particular as soon as T (·, x) is bounded (which is the case for a neural network
with bounded activation functions), or if T is of the form T (u, x) = T̃ (u, x)1B(0,R)(u), i.e. limiting the
network parameters u to be bounded. This second case does not yield substantial restrictions in practice
(see Section D for a class of NNs that satisfy all of the assumptions), yet vastly simplifies theory. Under
Assumption 4, we have for any u ∈ Rdu , with κ(u, z) = Kf (1, u,X, Y ) from Proposition 2 and C2 from
Proposition 3,∫
Xn×Yn×Sdy−1

Kf (1, u,X, Y )dx⊗n(X)dy⊗n(Y )d�(θ) ≤ 4Ln
(
εL+ (1 + ‖u‖2)

∫
Xn

max
k∈J1,nK

g(xk)dx⊗n(X) + C2

)
≤ c(1 + ‖u‖2).

As a consequence, Condition 2 holds under our assumptions. We now consider the Markov kernel associated
to the SGD schemes:

Pα :

 Rdu × B(Rdu) −→ [0, 1]
u,B 7−→

∫
Z
1B(u− αϕ(u, z))dz(z) .

Given u ∈ Rdu , Pα(u, ·) is a probability measure on Rdu which dictates the law of the positions of the
next SGD iteration u(t+1), conditionally to u(t) = u. With �Rdu denoting the Lebesgue measure on Rdu ,
let Γ := {α ∈ ]0,+∞[ | ∀u� �Rdu , uPα � �Rdu}. Γ is the set of learning rates α for which the kernel Pα
maps any absolutely continuous probability measure u to another such measure. We will verify the following
condition, which can be interpreted as the SGD trajectories continuing to explore the entire space for a small
enough learning rate α:
Condition 3. The closure of Γ contains 0.

In order to satisfy Condition 3, we require an additional regularity condition on the neural network T which
we formulate in Assumption 5.
Assumption 5. There exists a constant M > 0, such that (with the notations of Assumption 1 and As-
sumption 3) ∀x ∈ X , ∀j ∈ J(x), ∀u ∈ Uj(x), ∀(i1, i2, i3, i4) ∈ J1, duK2 × J1, dyK2,∣∣∣∣∣ ∂2

∂ui1∂ui2

(
[T (u, x)]i3 [T (u, x)]i4

)∣∣∣∣∣ ≤M, and
∥∥∥∥∥ ∂2T

∂ui1∂ui2
(u, x)

∥∥∥∥∥
2

≤M.

The upper bounds in Assumption 5 bear strong consequences on the behaviour of T for ‖u‖2 � 1, and are
only practical for networks of the form T (u, x) = T̃ (u, x)1B(0,R)(u, x), similarly to Assumption 4. We detail
the technicalities of verifying this assumption along with the others in the Appendix (Section D).
Proposition 4. Under Assumption 1, Assumption 3 and Assumption 5, for the SGD trajectories (7), Γ
contains ]0, α0[, where α0 :=

(
(dy2 + 2Ry)duM

)−1.

We postpone the proof to Section B. Now that we have verified Condition 1, Condition 2 and Condition 3,
we can apply (Bianchi et al., 2022), Theorem 2 to F , showing a convergence result on interpolated SGD
trajectories.
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Theorem 1. Consider a neural network T and measures x, y satisfying Assumption 1, Assumption 2,
Assumption 3, Assumption 4 and Assumption 5. Let α1 < α0 (see Proposition 4).

Let (u(t)
α ), α ∈]0, α1], t ∈ N a collection of SGD trajectories associated to (7). Consider (uα) their associated

interpolations. For any compact K ⊂ Rdu and any η > 0, we have:

lim
α−→0

α∈ ]0,α1]

u0 ⊗ x⊗N ⊗ y⊗N ⊗ �⊗N (dc(uα, S−∂CF (K)) > η) = 0. (12)

The distance dc is defined in (11). As the learning rate decreases, the interpolated trajectories approach
the trajectory set S−∂CF , which is essentially a solution of the gradient flow equation u̇(s) = −∇F (u(s))
(ignoring the set of non-differentiability, which is �Rdu -null). To get a tangible idea of the concepts at play,
if F was C2 and had a finite amount of critical points, then one would have the convergence of a solution
u(s) to a critical point of F , as s −→ +∞. These results have implicit consequences on the value of the
parameters at the "end" of training for low learning rates, which is why we will consider a variant of SGD
for which we can say more precise results on the convergence of the parameters.

4 Convergence of Noised Projected SGD Schemes on F

In practice, it is seldom desirable for the parameters of a neural network to reach extremely large values during
training. Weight clipping is a common (although contentious) method of enforcing that T (u, ·) stay Lipschitz,
which is desirable for theoretical reasons. For instance the 1-Wasserstein duality in Wasserstein GANs
(Arjovsky et al., 2017) requires Lipschitz networks, and similarly, Sliced-Wasserstein GANs (Deshpande
et al., 2018) use weight clipping and enforce their networks to be Lipschitz.

Given a radius r > 0, we consider SGD schemes that are restricted to u ∈ B(0, r) =: Br, by performing
projected SGD. At each step t, we also add a noise aε(t+1), where ε(t+1) is an additive noise of law �� �Ru ,
which is often taken as standard Gaussian in practice. These additions yield the following SGD scheme:

u(t+1) = πr

(
u(t) − αϕ(u(t), X(t+1), Y (t+1), θ(t+1)) + αaε(t+1)

)
,(

u(0), (X(t))t∈N (Y (t))t∈N, (θ(t))t∈N, (ε(t))t∈N
)
∼ u0 ⊗ x⊗N ⊗ y⊗N ⊗ �⊗N ⊗ �⊗N,

(13)

where πr : Ru −→ Br denotes the orthogonal projection on the ball Br := B(0, r). Thanks to Condition 1,
Condition 2 and the additional noise, we can verify the assumptions for (Bianchi et al., 2022) Theorem
4, yielding the same result as Theorem 1 for the noised projected scheme (13). In fact, under additional
assumptions, we shall prove a stronger mode of convergence for the aforementioned trajectories. The natural
context in which to perform gradient descent is on functions that admit a chain rule, which is formalised in
the case of almost-everywhere differentiability by the notion of path differentiability, as studied thoroughly
in (Bolte & Pauwels, 2021). We also provide a brief presentation in the Appendix (Section C.1).
Condition 4. F is path differentiable, which is to say that for any u ∈ Cabs(R+,Rdu), for almost all
s > 0, ∀v ∈ ∂CF (u(s)), v>u̇(s) = (F ◦ u)′(s).
Remark 1. There are alternate equivalent formulations for Condition 4. Indeed, as presented in further
detail in Section C.1, F is path differentiable if and only if ∂CF is a conservative field for F if and only if
F has a chain rule for ∂C (the latter is the formulation chosen above in Condition 4).

In order to satisfy Condition 4, we need to make the assumption that the NN input measure x and the data
measure y are discrete measures, which is the case for y in the case of generative neural networks, but is less
realistic for x in practice. We define Σn the n-simplex: its elements are the a ∈ Rn s.t. ∀i ∈ J1, nK, ai ≥ 0
and

∑
i ai = 1.

Assumption 6. One may write x =
nx∑
k=1

ak�xk and y =
ny∑
k=1

bk�yk , with the coefficient vectors a ∈ Σnx , b ∈

Σny , X = {x1, · · · , xnx} ⊂ Rdx and Y = {y1, · · · , yny} ⊂ Rdy .
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There is little practical reason to consider non-uniform measures, however the generalisation to any discrete
measure makes no theoretical difference. Note that Assumption 3 is clearly implied by Assumption 6.

In order to show that F is path differentiable, we require the natural assumption that each T (·, x) be path
differentiable. Since T (·, x) is a vector-valued function, we need to extend the notion of path-differentiability.
Thankfully, Bolte & Pauwels (2021) define conservative mappings for vector-valued locally Lipschitz functions
(Definition 4), which allows us to define naturally path differentiability of a vector-valued function as the
path-differentiability of all of its coordinate functions. See Section C.2 for a detailed presentation.
Assumption 7. For any x ∈ Rdx , T (·, x) is path differentiable.

Assumption 7 holds as soon as each the neural network has the typical structure of compositions of linear
units and typical activations, as was proved by Davis et al. (2020), Corollary 5.11 and Bolte & Pauwels
(2021), Section 6.2. We provide a more specific class of NNs that are path differentiable and satisfy all our
other assumptions in Section D.
Proposition 5. Under Assumption 2, Assumption 6 and Assumption 7, F is path differentiable.

Proof. We shall use repeatedly the property that the composition of path differentiable functions remains
path differentiable, which is proved in (Bolte & Pauwels, 2021), Lemma 6.

Let E :
{

Rn×dy × Rn×dy −→ R+
Y, Y ′ 7−→ SW2

2(
Y , 
Y ′)
. By (Tanguy et al., 2023), Proposition 2.4.3, each E(·, Y )

is semi-concave and thus is path differentiable (by (Tanguy et al., 2023), Proposition 4.3.3).

Thanks to Assumption 6, x⊗n and y⊗n are discrete measures on Rn×dx and Rn×dy respectively, allowing
one to write x⊗n =

∑
k ak�Xk and y⊗n =

∑
l bl�Yl . Then F = u 7−→

∑
k,l akblE(T (u,Xk), Yl) is path

differentiable as a sum ((Bolte & Pauwels, 2021), Corollary 4) of compositions ((Bolte & Pauwels, 2021),
Lemma 6) of path differentiable functions.

We have now satisfied all the assumptions to apply (Bianchi et al., 2022), Theorem 6, showing that trajectories
of (13) converge towards to a set of generalised critical points2 Cr defined as

Cr :=
{
u ∈ Rdu | 0 ∈ −∂CF (u)−Nr(u)

}
, Nr(u) =

 {0} if ‖u‖2 < r
{su | s ≥ 0} if ‖u‖2 = r

∅ if ‖u‖2 > r
, (14)

whereNr(u) refers to the normal cone of the ball B(0, r) at x. The termNr(u) in (14) only makes a difference
in the pathological case ‖u‖2 = r, which never happens in practice since the idea behind projecting is to do
so on a very large ball, in order to avoid gradient explosion, to limit the Lipschitz constant and to satisfy
theoretical assumptions. Omitting the Nr(u) term, and denoting D the points where F is differentiable, (14)
simplifies to Cr ∩ D = {u ∈ D | ∇F (u) = 0}, i.e. the critical points of F for the usual differential. Like
in Theorem 1, we let α1 < α0, where α0 is defined in Proposition 4. We have met the conditions to apply
Bianchi et al. (2022), Theorem 6, showing a long-run convergence results on the SGD trajectories (13).
Theorem 2. Consider a neural network T and measures x, y satisfying Assumption 1, Assumption 2,
Assumption 4, Assumption 5, Assumption 6 and Assumption 7. Let (u(t)

α )t∈N be SGD trajectories defined by
(13) for r > 0 and α ∈]0, α1]. One has

∀η > 0, lim
t−→+∞

u0 ⊗ x⊗N ⊗ y⊗N ⊗ �⊗N ⊗ �⊗N
(
d(u(t)

α , Cr) > η
)
−−−−−→
α−→0
α∈]0,α1]

0.

The distance d above is the usual euclidean distance. Theorem 2 shows essentially that as the learning rate
approaches 0, the long-run limits of the SGD trajectories approach the set of Cr in probability. Omitting the
points of non-differentiability and the pathological case ‖u‖2 = r, the general idea is that u(∞)

α −−−−→
α−→0

{u :
∇F (u) = 0}, which is the convergence that would be achieved by the gradient flow of F , in the simpler case
of C2 smoothness.

2Typically referred to as the set of Karush-Kahn-Tucker points of the differential inclusion u̇(s) ∈ −∂CF (u(s))−Nr(u(s)).
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5 Conclusion and Outlook

Under reasonable assumptions, we have shown that SGD trajectories of parameters of generative NNs with
a minibatch SW loss converge towards the desired sub-gradient flow solutions, implying in a weak sense the
convergence of said trajectories. Under stronger assumptions, we have shown that trajectories of a mildly
modified SGD scheme converge towards a set of generalised critical points of the loss, which provides a
missing convergence result for such optimisation problems.

The core limitation of this theoretical work is the assumption that the input data measure x is discrete
(Assumption 6), which we required in order to prove that the loss F is path differentiable. In order to
generalise to a non-discrete measure, one would need to apply or show a result on the stability of path
differentiability through integration: in our case, we want to show that

∫
Xn E(T (u,X), Y )dx⊗n(X) is path

differentiable, knowing that u 7−→ E(T (u,X), Y ) is path differentiable by composition (see the proof of
Proposition 5 for the justification). Unfortunately, in general if each g(·, x) is path differentiable, it is not
always the case that

∫
g(·, x)dx is path differentiable (at the very least, there is no theorem stating this,

even in the simpler case of another sub-class of path differentiable functions, see (Bianchi et al., 2022),
Section 6.1). However, there is such a theorem (specifically (Clarke, 1990), Theorem 2.7.2 with Remark
2.3.5) for Clarke regular functions (see Section C.3 for a presentation of this regularity class), sadly the
composition of Clarke regular functions is not always Clarke regular, it is only known to be the case in
excessively restrictive cases (see (Clarke, 1990), Theorems 2.3.9 and 2.3.10). Similarly to the continuous
case, the simpler generalisation in which x has a countable support adds substantial difficulty, since all of
the typical tools (path differentiability itself, Clarke regularity or even definability (see (Bolte & Pauwels,
2021) Section 4.1 for a first introduction) do not have readily applicable results for infinite operations, to
our knowledge. As a result, we leave the generalisation to a non-discrete input measure x for future work.

Our studies focus on the 2-SW distance, but our results from Section 3 can be extended to p ∈ [1,+∞[,
as presented in the appendix (Section E). However, as also discussed in the Appendix, the generalisation
of Section 4 is still an open problem, since it has not yet be proven that X 7−→ SWp

p(
X , 
Y ) is path
differentiable for p 6= 2.

This paper studies the use of the average SW distance as a loss, and an extension to related distances would
be worth considering. The average SW distance aggregates the projected distances through an expectation,
while the closely-related max-Sliced Wasserstein distance introduced by Deshpande et al. (2019) aggregates
the projections via a maximisation on the axis θ ∈ Sd−1. The training paradigm presented in (Deshpande
et al., 2019) differs strongly from our formalism since it applies to GANs, however one could consider an
extension of our formalism in which the optimal projection θ becomes a learned parameter of the neural
network. A related extension is the Subspace-Robust Wasserstein distance (Paty & Cuturi, 2019), which
can take the following formulation

S2
k(x, y) = max

0�Ω�Id
trace(Ω)=k

W2
2(Ω1/2#x,Ω1/2#y),

for which one could consider a similar extension where the positive semi-definite Ω becomes a learned
parameter of T .

Another avenue for future study would be to tie the flow approximation result from Theorem 1 to Sliced
Wasserstein Flows (Liutkus et al., 2019; Bonet et al., 2022). The difficulty in seeing the differential inclusion
(9) as a flow of F lies in the non-differentiable nature of the functions at play, as well as the presence of the
composition between SW and the neural network T , which bodes poorly with Clarke sub-differentials.

Acknowledgements

We thank Julie Delon for proof-reading and general feedback, as well as Rémi Flamary and Alain Durmus
for fruitful discussions.

11



Published in Transactions on Machine Learning Research (11/2023)

References
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 214–223. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/arjovsky17a.html.

Erhan Bayraktar and Gaoyue Guo. Strong equivalence between metrics of Wasserstein type. 2021.

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures-Wasserstein distance between positive definite
matrices. arXiv, December 2017. doi: 10.48550/arXiv.1712.01504.

Pascal Bianchi, Walid Hachem, and Sholom Schechtman. Convergence of constant step stochastic gradient
descent for non-smooth non-convex functions. Set-Valued and Variational Analysis, 30(3):1117–1147, 2022.

Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation, stochastic
gradient methods and deep learning. Mathematical Programming, 188:19–51, 2021.

Clément Bonet, Nicolas Courty, François Septier, and Lucas Drumetz. Efficient gradient flows in sliced-
Wasserstein space. Transactions on Machine Learning Research, 2022.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and Radon Wasserstein barycen-
ters of measures. Journal of Mathematical Imaging and Vision, 51(1):22–45, 2015.

Nicolas Bonnotte. Unidimensional and evolution methods for optimal transportation. PhD Thesis, Paris
11, 2013.

Pierre Bréchet, Katerina Papagiannouli, Jing An, and Guido Montúfar. Critical points and conver-
gence analysis of generative deep linear networks trained with Bures-Wasserstein loss. arXiv preprint
arXiv:2303.03027, 2023.

Donald Bures. An extension of Kakutani’s theorem on infinite product measures to the tensor product of
semifinite w*-algebras. Transactions of the American Mathematical Society, 135:199–212, 1969.

Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

M Coste. An introduction to o-minimal geometry, inst. rech. RAAG Notes, Institut de Recherche Mathéma-
tique de Rennes, 1999.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient method
converges on tame functions. Foundations of computational mathematics, 20(1):119–154, 2020.

Ishan Deshpande, Ziyu Zhang, and Alexander G. Schwing. Generative modeling using the sliced Wasserstein
distance. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018, pp. 3483–3491. Computer Vision Foundation / IEEE Computer
Society, 2018. doi: 10.1109/CVPR.2018.00367. URL http://openaccess.thecvf.com/content_cvpr_
2018/html/Deshpande_Generative_Modeling_Using_CVPR_2018_paper.html.

Ishan Deshpande, Yuan-Ting Hu, Ruoyu Sun, Ayis Pyrros, Nasir Siddiqui, Sanmi Koyejo, Zhizhen Zhao,
David Forsyth, and Alexander G Schwing. Max-sliced Wasserstein distance and its use for gans. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10648–10656,
2019.

Richard Mansfield Dudley. The speed of mean Glivenko-Cantelli convergence. The Annals of Mathematical
Statistics, 40(1):40–50, 1969.

Kilian Fatras, Younes Zine, Szymon Majewski, Rémi Flamary, Rémi Gribonval, and Nicolas Courty. Mini-
batch optimal transport distances; analysis and applications. arXiv preprint arXiv:2101.01792, 2021.

12

https://proceedings.mlr.press/v70/arjovsky17a.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Deshpande_Generative_Modeling_Using_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Deshpande_Generative_Modeling_Using_CVPR_2018_paper.html


Published in Transactions on Machine Learning Research (11/2023)

Aude Genevay, Lénaic Chizat, Francis Bach, Marco Cuturi, and Gabriel Peyré. Sample complexity of
Sinkhorn divergences. In The 22nd international conference on artificial intelligence and statistics, pp.
1574–1583. PMLR, 2019.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A kernel method
for the two-sample-problem. Advances in neural information processing systems, 19, 2006.

Eric Heitz, Kenneth Vanhoey, Thomas Chambon, and Laurent Belcour. A sliced Wasserstein loss for neu-
ral texture synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9412–9420, 2021.

Yu-Jui Huang, Shih-Chun Lin, Yu-Chih Huang, Kuan-Hui Lyu, Hsin-Hua Shen, and Wan-Yi Lin. On
characterizing optimal Wasserstein GAN solutions for non-Gaussian data. 2023.

Antoine Liutkus, Umut Simsekli, Szymon Majewski, Alain Durmus, and Fabian-Robert Stöter. Sliced-
Wasserstein flows: Nonparametric generative modeling via optimal transport and diffusions. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 4104–4113. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/liutkus19a.html.

Szymon Majewski, Błażej Miasojedow, and Eric Moulines. Analysis of nonsmooth stochastic approximation:
the differential inclusion approach. arXiv preprint arXiv:1805.01916, 2018.

Facundo Mémoli. Gromov–Wasserstein distances and the metric approach to object matching. Foundations
of computational mathematics, 11:417–487, 2011.

Kimia Nadjahi, Alain Durmus, Lénaïc Chizat, Soheil Kolouri, Shahin Shahrampour, and Umut Simsekli.
Statistical and topological properties of sliced probability divergences. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 20802–20812. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/eefc9e10ebdc4a2333b42b2dbb8f27b6-Paper.pdf.

Sloan Nietert, Ziv Goldfeld, Ritwik Sadhu, and Kengo Kato. Statistical, robustness, and computational
guarantees for sliced Wasserstein distances. Advances in Neural Information Processing Systems, 35:
28179–28193, 2022.

François-Pierre Paty and Marco Cuturi. Subspace robust Wasserstein distances. In International conference
on machine learning, pp. 5072–5081. PMLR, 2019.

G. Peyré and M. Cuturi. Computational optimal transport. Foundations and Trends in Machine Learning,
51(1):1–44, 2019. doi: 10.1561/2200000073. URL https://arxiv.org/abs/1803.00567.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application
to texture mixing. In Scale Space and Variational Methods in Computer Vision: Third International
Conference, SSVM 2011, Ein-Gedi, Israel, May 29–June 2, 2011, Revised Selected Papers 3, pp. 435–446.
Springer, 2012.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94, 2015.

Eloi Tanguy, Rémi Flamary, and Julie Delon. Properties of discrete sliced Wasserstein losses. arXiv preprint
arXiv:2307.10352, 2023.

Guillaume Tartavel, Gabriel Peyré, and Yann Gousseau. Wasserstein loss for image synthesis and restoration.
SIAM Journal on Imaging Sciences, 9(4):1726–1755, 2016. doi: 10.1137/16M1067494. URL https:
//doi.org/10.1137/16M1067494.

Lou Van Den Dries and Chris Miller. Geometric categories and o-minimal structures. Duke Mathematical
Journal, 84(2):497–540, 1996.

13

https://proceedings.mlr.press/v97/liutkus19a.html
https://proceedings.neurips.cc/paper/2020/file/eefc9e10ebdc4a2333b42b2dbb8f27b6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/eefc9e10ebdc4a2333b42b2dbb8f27b6-Paper.pdf
https://arxiv.org/abs/1803.00567
https://doi.org/10.1137/16M1067494
https://doi.org/10.1137/16M1067494


Published in Transactions on Machine Learning Research (11/2023)

Cédric Villani. Optimal transport : old and new / Cédric Villani. Grundlehren der mathematischen Wis-
senschaften. Springer, Berlin, 2009. ISBN 978-3-540-71049-3.

Seiichiro Wakabayashi. Remarks on semi-algebraic functions, January 2008. Online Notes.

J. Wu, Z. Huang, D. Acharya, W. Li, J. Thoma, D. Paudel, and L. Van Gool. Sliced Wasserstein generative
models. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3708–
3717, Los Alamitos, CA, USA, jun 2019. IEEE Computer Society. doi: 10.1109/CVPR.2019.00383. URL
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00383.

Jiaqi Xi and Jonathan Niles-Weed. Distributional convergence of the sliced Wasserstein process. Advances
in Neural Information Processing Systems, 35:13961–13973, 2022.

Xianliang Xu and Zhongyi Huang. Central limit theorem for the sliced 1-Wasserstein distance and the
max-sliced 1-Wasserstein distance. arXiv preprint arXiv:2205.14624, 2022.

A Table of Notations

Table 1: List of Notations

Symbol Explanation

X Given X = (x1, · · · , xn) ∈ Rn×d, 
X = 1

n

∑
i �xi

X (x1, · · · , xn) ∈ Rn×dx an input data sample of law x⊗n

x input data probability measure on Rdx , supported on X
Y (y1, · · · , yn) ∈ Rn×dy a target data sample of law y⊗n

y target data probability measure on Rdy , supported on Y
θ direction in Sdy−1

� uniform measure on Sdy−1

z := (X,Y, θ) sample in X,Y and θ
z := x⊗n ⊗ y⊗n ⊗ � probability measure for the samples z, supported on Z := Xn × Yn × Sdy−1

u neural network parameters in Rdu
T (u,X) neural network function defined in (3)

f(u,X, Y, θ) sample loss function defined in (4)
F (u) population loss function defined in (5)

wθ(Y, Y ′) discrete and projected 2-Wasserstein distance W2
2(Pθ#
Y , Pθ#
Y ′)

ϕ(u,X, Y, θ) almost-everywhere gradient of f(·, X, Y, θ) defined in (6)
Kw,Kf ,KF local Lipschitz constants of w, f, F respectively (see Propositions 1, 2, 3)

α; a SGD learning rate; noise level
�Rd ; ρ� �Rd Lebesgue measure on Rd; a measure ρ absolutely continuous w.r.t. �Rd

∂C Clarke differential, defined in (8)
u0 probability measure of SGD initialisation u(0)

ε(t) additive noise in Rdu at SGD step t
� additive noise probability measure on Rdu

B‖·‖(x,R), B‖·‖(x,R) open (resp. closed) ball of centre x and radius R for the norm ‖ · ‖

B Postponed Proofs

Proof of Proposition 4
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Proof. Let u � � and B ∈ B(Rdu) such that �(B) = 0. We have, with α′ := 2α/n, z := (X,Y, θ), z :=
x⊗n ⊗ y⊗n ⊗ � and Z := Xn × Yn × Sdy−1,

uPα(B) =
∫
Rdu×Z

1B

u− α′ n∑
k=1

(
∂T

∂u
(u, xk)

)>
θθ>(T (u, xk)− y

σ
T (u,X),Y
θ

(k))

du(u)dz(z) ≤
∑
τ∈Sn

∫
Z
Iτ (z)dz(z),

where Iτ (z) :=
∫
Rdu

1B (φτ,z(u)) du(u), with φτ,z := u− α′
n∑
k=1

(
∂T

∂u
(u, xk)

)>
θθ>(T (u, xk)− yτ(k))︸ ︷︷ ︸

ψτ,z :=

.

Let τ ∈ Sn and (X,Y, θ) ∈ Z. Using Assumption 1, separate Iτ (z) =
∑
j∈J

∫
Uj(X)

1B (u− ψτ,z(u)) du(u),

where the differentiability structure (Uj(X))j∈J(X) is obtained using the respective differentiability struc-
tures: for each k ∈ J1, nK, Assumption 1 yields a structure (Ujk(xk))jk∈Jk(xk) of u 7−→ T (u, xk), which
depends on xk, hence the k indices.

To be precise, define for j = (j1, · · · , jn) ∈ J1(x1) × · · · × Jn(xn), Uj(X) :=
n⋂
k=1
Ujk(xk), and J(X) :=

{(j1, · · · , jn) ∈ J1(x1)× · · · × Jn(xn) | Uj(X) 6= ∅}. In particular, for any k ∈ J1, nK, T (·, xk) is C2 on
Uj(X). Notice that the derivatives are not necessarily defined on the border ∂Uj(X), which is of Lebesgue
measure 0 by Assumption 1, thus the values of the derivatives on the border do not change the value of the
integrals (the integrals may have the value +∞, depending on the behaviour of φτ,s, but we shall see that
they are all finite when α is small enough).

We drop the z, τ index in the notation, and focus on the properties of φ and ψ as functions of u. Our first
objective is to determine a constant K > 0, independent of u, z, τ , such that ψ is K-Lipschitz on Uj(X).

First, let χ :=


Uj(X) −→ Rdu

u 7−→

(
∂T

∂u
(u, xk)

)>
θθ>T (u, xk)

. The function χ is of class C1, therefore we

determine its Lipschitz constant by upper-bounding the ‖ · ‖2-induced operator norm of its differential,

denoted by
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∂χ∂u(u)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

. Notice that χ(u) =
1
2
∂

∂u

(
θ>T (u, xk)

)2.
Now

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∂2

∂u2

(
θ>T (u, xk)

)2∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ du max
(i1,i2)∈J1,duK2

∣∣∣∣∣ ∂2

∂ui1∂ui2

(
θ>T (u, xk)

)2∣∣∣∣∣, using Assumption 5 and |θi| ≤ 1,

∣∣∣∣∣ ∂2

∂ui1∂ui2

(
θ>T (u, xk)

)2∣∣∣∣∣ ≤ ∑
(i3,i4)∈J1,dyK2

∣∣∣∣∣θi3θi4 ∂2

∂ui1∂ui2

(
[T (u, xk)]i3 [T (u, xk)]i4

)∣∣∣∣∣ ≤ dy2M.

We obtain that χ is 1
2dudy

2M -Lipschitz.

Second, let ω : u ∈ Uj(X) 7−→
(
∂T

∂u
(u, xk)

)>
θθ>yτ(k), also of class C1. We re-write

[
∂ω

∂u
(u)
]
i1,i2

=

y>τ(k)θθ
> ∂2T

∂ui1∂ui2
(u, xk), and conclude similarly by Assumption 5 that ω is ‖yτ(k)‖2duM -Lipschitz.

Finally, ψ =
n∑
k=1

(χk − ωk), and is therefore K := ( 1
2dy

2 +Ry)dunM -Lipschitz, with Ry from Assumption 3.

We have proven that
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∂ψ∂u(u)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ K for any u ∈ Uj(X), and that K does not depend on X,Y, θ, j or u.
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We now suppose that α′ < 1
K , which is to say α < n

2K . Under this condition, φ : Uj(X) −→ Rdu is injective.
Indeed, if φ(u1) = φ(u2), then ‖u1−u2‖2 = α′‖ψ(u1)−ψ(u2)‖2 ≤ α′K‖u1−u2‖2, thus u1 = u2. Furthermore,

for any u ∈ Uj(X),
∂φ

∂u
(u) = IdRdu − α′

∂ψ

∂u
(u), with

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α′ ∂ψ∂u(u)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

< 1, thus the matrix
∂φ

∂u
(u) is invertible

(using the Neumann series method). By the global inverse function theorem, φ : Uj(X) −→ φ(Uj(X)) is a
C1-diffeomorphism.

Using the change-of-variables formula, we have
∫
Uj(X)

1B(φ(u))du(u) =
∫
Uj(X)

1B(u′)dφ#u(u′) = φ#u(B),

we have now shown that φ is a C1-diffeomorphism, thus since u � �, φ#u � �. (α � β denoting that α is
absolutely continuous with respect to β). Since �(B) = 0, it follows that the integral is 0, then by sum over
j, Iτ (z) = 0 and finally uPα(B) = 0 by integration over z and sum over τ .

C Background on Non-Smooth and Non-Convex Analysis

This work is placed within the context of non-smooth optimisation, a field of study in part introduced by
Clarke with the so-called Clarke differential, which we introduced in Equation (8) (see (Clarke, 1990) for a
general reference on this object). The purpose of this appendix is to present several adjacent objects that can
be useful to the application of our results, even though we do not need them in order to prove our theorems.

C.1 Conservative Fields

The Clarke differential ∂C of a locally Lipschitz function g : Rd −→ R (defined in Equation (8)) is an example
of a set-valued map. Such a map is a function D : Rp ⇒ Rq from the subsets of Rp to the subsets of Rq, for
instance in the case of the Clarke differential, we have the signature ∂Cg : Rd ⇒ Rd. A set-valued map D
is graph closed if its graph {(u, v) | u ∈ Rp, v ∈ D(u)} is a closed set of Rp+q. A set-valued map D is said
to be a conservative field, when it is graph closed, has non-empty compact values and for any absolutely
continuous loop � ∈ Cabs([0, 1],Rp) with γ(0) = γ(1), we have∫ 1

0
max

v∈D(γ(s))
〈γ̇(s), v〉ds = 0.

Similarly to primitive functions in calculus, one may define a function g : Rd −→ R using a conservative field
D : Rd ⇒ Rd up to an additive constant through following expression:

g(u) = g(0) +
∫ 1

0
max

v∈D(γ(s))
〈γ̇(s), v〉ds, ∀γ ∈ Cabs([0, 1],Rp) such that γ(0) = 1 and γ(1) = u. (15)

In this case, we say that g is a potential function for the field D. This notion allows us to define a new
regularity class: a function g : Rd −→ R is called path differentiable when there exists a conservative field of
which it is a potential. A standard result in non-smooth optimisation is the following equivalence between
different notions of regularity:
Proposition 6. Bolte & Pauwels (2021), Corollary 2. Let g : Rd −→ R locally Lipschitz. We have the
equivalence between the following statements:

• g is path differentiable

• ∂Cg is a conservative field

• g has a chain rule for the Clarke differential ∂C :

∀u ∈ Cabs(R+,Rd), ∀s > 0, ∀v ∈ ∂Cg(u(s)), v>u̇(s) = (g ◦ u)′(s). (16)

This equivalence justifies the terminology used in Condition 4. The reader seeking a complete presentation
of conservative field theory may refer to (Bolte & Pauwels, 2021).
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C.2 Conservative Mappings

The notion of conservative fields for real-valued locally Lipschitz functions g : Rd −→ R can be generalised
to conservative mappings for vector-valued locally Lipschitz functions g : Rp −→ Rq, which one may see as
a generalised Jacobian matrix (see (Bolte & Pauwels, 2021), Section 3.3 for further details). A set-valued
map J : Rp ⇒ Rq×p is a conservative mapping for such a g if

∀u ∈ Cabs(R+,Rp), ∀s > 0, (g ◦ u)′(s) = Mu̇(t), ∀M ∈ J(u(s)). (17)

In this case, we shall say that g is path differentiable. Note that if each coordinate function gi is the potential
of a conservative field Di, then the set-valued map

J(u) =


 v>1

...
v>q

 : ∀i ∈ J1, qK, vi ∈ Di(u)


is a conservative mapping for g (although not all conservative mappings for g can be written in this manner).
As a consequence, one could interpret (simplistically) vector-valued path differentiability as coordinate-wise
path differentiability.

C.3 Clarke Regularity

Another notion of regularity for locally Lipschitz functions is that of Clarke regularity. Let g : Rp −→ Rq
and u ∈ Rp, g is said to be Clarke regular at u if the two quantities

g◦(u; v) := limsup
u′→u
t↘0

g(u′ + tv)− g(u′)
t

and g′(u; v) := lim
t↘0

g(u+ tv)− g(u)
t

exist and are equal for all v ∈ Rp. Note that this notion implies path differentiability by (Bolte & Pauwels,
2021), Proposition 2. Clarke regularity is the central concept of Clarke’s monograph (Clarke, 1990).

C.4 Semi-Algebraic Functions

In non-smooth analysis, one of the simplest regularity cases is the class of semi-algebraic functions, which
are essentially piecewise polynomial functions defined on polynomial pieces. To be precise, a set A ⊂ Rd is
semi-algebraic if it can be written under the form

A =
n⋃
i=1

m⋂
j=1

{
u ∈ Rd | Pi,j(u) < 0, Qi,j(u) = 0

}
,

where the Pi,j and Qi,j are real multivariate polynomials. A function g : Rp −→ Rq is semi-algebraic if its
graph G := {(u, g(u)) | u ∈ Rp} is semi-algebraic.

A locally Lipschitz real-valued semi-algebraic function is path differentiable (see for instance (Bolte &
Pauwels, 2021), Proposition 2), and in the light of (Bolte & Pauwels, 2021), Lemma 3, this is also the
case in the vector-valued case. Another useful property of semi-algebraic functions is that their class is
stable by composition and product. The interested reader may consult (Wakabayashi, 2008) for additional
properties of semi-algebraic objects, or (Coste, 1999; Van Den Dries & Miller, 1996), for a presentation of
o-minimal structures, a generalisation of this concept.

D Suitable Neural Networks

In this section, we detail our claim that typical NN structures satisfy our conditions. To this end, we define
a class of practical neural networks whose properties are sufficient (not all NNs that satisfy our assumptions
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are within this framework). Consider T the set of NNs T of the form

T :
{

Rdu × Rdx −→ Rdy
(u, x) 7−→ T̃ (u, x)1εB(0,Ru)(u)1εB(0,Rx)(x) ,

with Ru, Rx > 0 and ε > 0. The function 1εB(0,R) is a smoothed version of the usual indicator function
1B(0,R): it is any function that has value 1 in B(0, R − ε), 0 outside B(0, R + ε) and is C2-smooth (see
Remark 2 for a possible construction). Given that one may take arbitrarily large radii, these indicators are
added for theoretical purposes and impose no realistic constraints in practice. Additionally, T̃ = hN , the
N -th layer of a recursive NN structure defined by

h0(u, x) = x, ∀n ∈ J1, NK, hn =


Rdu × Rdx −→ Rdn

(u, x) 7−→ an

(
n−1∑
i=0

An,i(u)hi(u, x) +Bnu

)
,

where:

• All functions an : R −→ R are C2-smooth, or all locally Lipschitz semi-algebraic activation functions
(applied entry-wise). The former condition is satisfied by the common sigmoid, hyperbolic tangent
or softplus activations. The latter condition applies to the non-differentiable ReLU activation, its
"Leaky ReLU" extension, and continuous piecewise polynomial activations. Note that other non-
linearities such as softmax can also be considered under the same regularity restrictions, but we
limit ourselves to entry-wise non-linearities for notational consistency.

• Each dimension dn is a positive integer, with obviously dN = dy, the output dimension.

• Each An,i is a linear map: Rdu −→ Rdn×di , which maps a parameter vector u to a dn × di matrix.
Since the entire parameter vector u is given at each layer, this allows the architecture to only use
certain parameters at each layer (as is more typical in practice). One may see this map as a 3-tensor
of shape (dn, di, du), as specified in the formulation

∀u ∈ Rdu , ∀h ∈ Rdi , An,i(u)h =

 di∑
j2=1

du∑
j3=1

A
(n,i)
j1,j2,j3

hj2uj3


j1∈J1,dnK

∈ Rdn . (18)

• The matrix Bn ∈ Rdn×du determines the intercept from the full parameter vector u.

In this model, each layer depends on all the previous layers, allowing for residual inputs for instance. Overall,
all typical networks fit this description, once bounded using the indicator functions, with only a technicality
on the regularities of the activations which need to be all C2-smooth, or all semi-algebraic. One could extend
this class of NNs to those with definable activations within the same o-minimal structure (similarly to Davis
et al. (2020) and Bolte & Pauwels (2021)).
Remark 2. We mention that we may construct a C∞-smooth 1εB(0,R) in Rd explicitly as follows:

f(s) :=
{
e−1/s if s > 0

else 0 , g(s) :=
f(s)

f(s) + f(1− s), 1εB(0,R) :=


Rd −→ [0, 1]

u 7−→ g

(
(R+ ε)2 − ‖u‖22

4Rε

)
.

Before proving the properties of NNs from the class T , we require a technical result on path differentiable
functions.
Proposition 7. Let f : Rd −→ R path differentiable, and g : Rd −→ R of class C1. Then their product fg
is path differentiable.
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Proof. Our objective is to apply (Bolte & Pauwels, 2021) Corollary 2 (stated in Proposition 6), which is to
say that h := fg admits a chain rule for ∂Ch). First, we apply the definition of the Clarke differential and
compute

∀u ∈ Rd, ∂Cf(u) = f(u)∇g(u) + g(u)∂Cf(u) := {f(u)∇g(u) + g(u)v | v ∈ ∂Cf(u)} .

Note that we used the smoothness of g. We now consider an absolutely continuous curve u ∈ Cabs(R+,Rd).
By Bolte & Pauwels (2021) Lemma 2, since f is path differentiable, f ◦u is differentiable almost everywhere.
Let D the associated set of differentiability, then let s ∈ D and v ∈ ∂Ch(u(s)), writing v = f(u(s))∇g(u(s))+
g(u(s))w with w ∈ ∂Cf(u(s)). We compute (h ◦ u)′(s) = (f ◦ u)′(s)g(u(s)) + f(u(s))(g ◦ u)′(s). Now since f
is path differentiable and w ∈ ∂Cf(u(s)), by Proposition 6 item 3, we have (f ◦ u)′(s) = 〈w, u̇(s)〉. On the
other hand, (g ◦ u)′(s) = 〈∇g(u(s)), u̇(s)〉 since g is C1. Finally by definition of v and bilinearity of 〈·, ·〉,

(h ◦ u)′(s) = 〈w, u̇(s)〉g(u(s)) + f(u(s))〈∇g(u(s)), u̇(s)〉 = 〈v, u̇(s)〉.

We now have all the tools to prove that the class of NNs T satisfies all of the assumptions of our paper.

Proposition 8. All networks of the class T verify Assumption 1, Assumption 2, Assumption 4, Assumption 5
and Assumption 7.

Proof. Let T ∈ T , and T̃ its associated underlying network. We begin with regularity considerations.

Verifying Assumptions 1 and 7 in the C2 Case In the case where the activations are C2-smooth,
then each T̃ (·, x) is also of class C2. Furthermore, the smooth indicator 1εB(0,Ru) is C∞-smooth, thus we can
conclude that T (·, x) is C2-smooth, and thus satisfies Assumption 1 trivially. In particular, T (·, x) is path
differentiable for any x ∈ Rdx , thus T also satisfies Assumption 7.

Verifying Assumptions 1 and 7 in the Semi-Algebraic Case In the case where the activations are
locally Lipschitz and semi-algebraic, it follows that each T̃ (·, x) is semi-algebraic, which yields naturally a
differentiability structure associated to the polynomial pieces, satisfying Assumption 1. Furthermore, this
regularity yields path differentiability by (Bolte & Pauwels, 2021), Proposition 2. By product with the
smooth indicator function, T is path differentiable by Proposition 7, therefore it satisfies Assumption 7 .

Verifying Assumption 2 in the C2 Case In the case where the activations are C2-smooth, it is clear
that by composition and product (u, x) 7−→ T̃ (u, x) is jointly C2-smooth. As a consequence, it is Lipschitz
jointly in (u, x) on any compact of Rdu ×Rdy , and by product with the smooth indicators, so is T . Since T
is zero outside B(0, Ru + ε)×B(0, Rx + ε), we conclude that it is globally Lipschitz in (u, x).

Verifying Assumption 2 in the Semi-Algebraic Case In the case of locally Lipschitz and semi-
algebraic activations, we prove that T̃ is jointly Lipschitz on any compactK by strong induction on n ∈ J1, NK.
Let K = K1 × K2 a product compact of Rdu × Rdy , and Pn : "∃Ln > 0 : hn is Ln-Lipschitz on K". The
initialisation P0 is trivial, since z(u, x) = x. Let n ∈ J1, NK and assume Pi to hold true for i ∈ J0, n− 1K. In
particular, the hi are jointly continuous in (u, x), allowing the definition of

M := max
(u,x)∈K

∣∣∣∣∣
n−1∑
i=0

An,i(u)hi(u, x) +Bnu

∣∣∣∣∣ .
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Since an is locally Lipschitz, a covering argument shows that there exists Lan > 0 such that an is Lan -
Lipschitz on [−M,M ]. Now let (u1, u2) ∈ K2

1 and (x1, x2) ∈ K2
2. We have

‖hn(u1, x1)− hn(u2, x2)‖2 ≤ Lan

∥∥∥∥∥
n−1∑
i=0

An,i(u1)hi(u1, x1) +Bnu1 −
n−1∑
i=0

An,i(u2)hi(u2, x2)−Bnu2

∥∥∥∥∥
2

≤ Lan

(
‖Bn‖op ‖u1 − u2‖2 +

n−1∑
i=0
‖An,i(u1)hi(u1, x1)−An,i(u2)hi(u2, x2)‖2

)
,

(19)

where ‖·‖op denotes the ‖ · ‖2-induced operator norm. Let i ∈ J0, n− 1K, we separate the norm:

‖An,i(u1)hi(u1, x1)−An,i(u2)hi(u2, x2)‖2 ≤ ‖An,i(u1)hi(u1, x1)−An,i(u2)hi(u1, x1)‖2 =: ∆1

+ ‖An,i(u2)hi(u1, x1)−An,i(u2)hi(u2, x2)‖2 =: ∆2. (20)

For ∆1, use the tensor form (18) and the inequality ‖x‖2 ≤
√
d‖x‖∞ for x ∈ Rd, then ‖u‖∞ ≤ ‖u‖2:

∆1 ≤
√
dn

∥∥∥∥∥∥∥
 di∑
j2=1

du∑
j3=1

A
(n,i)
j1,j2,j3

hi(u1, x1)j2(u(1)
j3
− u(2)

j3
)


j1∈J1,dnK

∥∥∥∥∥∥∥
∞

≤
√
dn max

j1,j2,j3
|A(n,i)
j1,j2,j3

| max
(u,x)∈K1×K2

‖hi(u, x)‖∞ ‖u1 − u2‖∞

≤ L∆1‖u1 − u2‖2. (21)

For ∆2, we leverage Pi and obtain

∆2 ≤ max
u∈K1

‖Ai(u)‖op ‖hi(u1, x1)− hi(u2, x2)‖2 ≤ max
u∈K1

‖Ai(u)‖op Li (‖u1 − u2‖2 + ‖x1 − x2‖2) . (22)

Combining (19) (20) (21) and (22) shows Pn and concludes the induction, which in turn shows that T̃ is
jointly Lipschitz on any compact. Like in the smooth case, we conclude that T is globally Lipschitz, and
thus that Assumption 2 holds.

Verifying Assumption 4 Under both cases of regularity for the activations,

g := x 7−→ max
u∈B(0,Ru+ε)

‖T̃ (u, x)‖21εB(0,Rx)(x)

is measurable and bounded. Furthermore, observe that for u, x ∈ Rdu × Rdx , ‖T (u, x)‖2 ≤ g(x). As a
consequence, Assumption 4 holds.

Verifying Assumption 5 in the C2 case If all activations are C2-smooth, both T̃ and its coordinate-
wise products Ti × Tj are C2-smooth jointly in (u, x). As a result, one may bound these terms on (u, x) ∈
B(0, Ru + ε)×B(0, Rx + ε) by a constant M , independent of u, x, and the assumption is verified.

Verifying Assumption 5 in the semi-algebraic case In the semi-algebraic case, there exists a structure
(Uj)j∈J of open sets of Rdu × Rdx whose closures cover the entire space, such that T̃ is polynomial in
(u, x) on each Uj , with J finite (this is possible since T̃ is jointly semi-algebraic). The NN can be written
T (u, x) = T̃ (u, x)1εB(0,Ru)(u)1εB(0,Rx)(x), and is therefore C2-smooth on each Uj . Furthermore, its restriction
to Uj is extendable C2-smoothly to Uj (we shall not introduce a different notation to these extensions, for
legibility). As a result, one may introduce the following bounds on the derivatives of the coordinate functions
on the intersection of the compact K := B(0, Ru + ε) × B(0, Rx + ε) and Uj : there exists an Mj > 0 such
that

∀(u, x) ∈ K ∩ Uj ,
∣∣∣∣∣ ∂2

∂ui1∂ui2

(
[T (u, x)]i3 [T (u, x)]i4

)∣∣∣∣∣ ≤Mj and
∥∥∥∥∥ ∂2T

∂ui1∂ui2
(u, x)

∥∥∥∥∥
2

≤Mj .
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Since J is finite and the (Uj)j∈J cover K, we deduce that this bound holds for (u, x) ∈ K for a common
constant M > 0. Moreover, since T is the zero function outside of K, this bounds also holds for any
(u, x) ∈ Rdu × Rdx . Finally, this shows that Assumption 5 holds.

E Generalisation to Other Sliced Wasserstein Orders

In this section, we shall discuss how some of our results can be extended by replacing the 2-SW term SW2
2

with SWp
p for p ∈ [1,+∞[.

Determining Lipschitz Constants The first difficulty lies in showing that the functions w
(p)
θ :=

(X,Y ) 7−→Wp
p(Pθ#
X , Pθ#
Y ) still have a locally Lipschitz regularity similar to Proposition 1 (this propo-

sition is only shown for p = 2 in (Tanguy et al., 2023)). We generalise their result in the following proposition.

Proposition 9. Let K(p)
w (r,X, Y ) := 2pn(r + ‖X‖∞,2 + ‖Y ‖∞,2)p−1, for X,Y ∈ Rn×dy and r > 0. Then

w
(p)
θ (·, Y ) is K(p)

w (r,X, Y )-Lipschitz in the neighbourhood B‖·‖∞,2(X, r):

∀Y ′, Y ′′ ∈ B‖·‖∞,2(X, r), ∀θ ∈ Sdy−1, |wθ(Y ′, Y )− wθ(Y ′′, Y )| ≤ K(p)
w (r,X, Y )‖Y ′ − Y ′′‖∞,2.

Proof. Let X,Y ∈ Rn×dy , r > 0 and Y ′, Y ′′ ∈ B‖·‖∞,2(X, r). By (Tanguy et al., 2023) Lemma 2.2.1, we have
|w(p)
θ (Y ′) − w(p)

θ (Y ′′)| ≤ 2‖C ′ − C ′′‖F , where ‖ · ‖F denotes the Frobenius norm, and C ′ is a n × n matrix
of entries C ′k,l = |θ>y′k − θ>yl|p, with similarly C ′′k,l = |θ>y′′k − θ>yl|p. Now consider the function

gyl :=
{

Rdy −→ R
y 7−→ |θ>y − θ>yl|p

,

which satisfies C ′k,l = gyl(y′k), and is differentiable almost-everywhere, with ∇gyl(y) = p|θ>y − θ>yl|p−1θ.
For almost every y ∈ B(xk, r), we have

‖∇gyl(y)‖2 ≤ p‖y−yl‖p−1
2 = p‖y−xk+xk−yl‖p−1

2 ≤ p (‖y − xk‖2 + ‖xk‖2 + ‖yl‖2)p−1 ≤ p(r+‖X‖∞,2+‖Y ‖∞,2)p−1.

As a result, gyl is p(r + ‖X‖∞,2 + ‖Y ‖∞,2)p−1-Lipschitz in B(xk, r). Now since Y ′, y′′ ∈ B‖·‖∞,2(X, r), we
have y′k, y′′k ∈ B(xk, r), thus

|[C ′]k,l − [C ′′]k,l| = |gyl(y′k)− gyl(y′′k )| ≤ p(r + ‖X‖∞,2 + ‖Y ‖∞,2)p−1‖y′k − y′′k‖2.

Then ‖C ′ − C ′′‖F =
√∑

k,l |[C ′]k,l − [C ′′]k,l|2 ≤ np(r + ‖X‖∞,2 + ‖Y ‖∞,2)p−1‖Y ′ − Y ′′‖∞,2.

Our results regarding the local Lipschitz property of f and F adapt immediately using the same method with
the different constant K(p)

w (r,X, Y ), we obtain the following constant for f (with L from Assumption 2):

K
(p)
f (ε, u0, X, Y ) = 2pnL (εL+ ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2)p−1

,

then the following constant for F :

K
(p)
F (ε, u0) = 2pnL

∫
Xn×Yn

(εL+ ‖T (u0, X)‖∞,2 + ‖Y ‖∞,2)p−1 dx⊗n(X)dy⊗n(Y ).

In order to satisfy Condition 2 item i) in the case p 6= 2, one needs to modify Assumption 4 to require
‖T (u, x)‖2 ≤ g(x)1/(p−1)(1 + ‖u‖2)1/(p−1), which in realistic cases is not much more expensive than asking
for T to be bounded, which is a property of the class of NNs that we present in Section D.
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Almost-Everywhere Gradient A second difficulty lies in defining an almost-everywhere gradient f ,
since in our main text we rely on the formulation of an almost-everywhere gradient of w(2)

θ (·, Y ) which was
derived only for p = 2 by Bonneel et al. (2015) and Tanguy et al. (2023). In fact, for θ, Y fixed w(p)

θ (X,Y )
is piecewise smooth, like w(2)

θ (·, Y ) is piecewise quadratic. As a result, one may show that the following is
an almost-everywhere gradient of w(p)

θ (·, Y ):

∂w
(p)
θ

∂X
(X,Y ) =

(
p

n
sign

(
θ>xk − θ>yσX,Y

θ
(k)

) ∣∣∣θ>xk − θ>yσX,Y
θ

(k)

∣∣∣p−1
θ

)
k∈J1,nK

∈ Rn×dy .

The chain rule now yields the following almost-everywhere gradient for f :

ϕ(u,X, Y, θ) =
n∑
k=1

p

n
sign

(
θ>T (u, xk)− θ>y

σ
T (u,X),Y
θ

(k)

) ∣∣∣θ>T (u, xk)− θ>y
σ
T (u,X),Y
θ

(k)

∣∣∣p−1 ∂T

∂u
(u, xk)θ.

Adapting Proposition 4 Moving on to adapting Proposition 4, the general case p 6= 2 makes things
substantially more technical, but one may still show that the ψ functions are Lipschitz using restrictions on
T its first and second-order derivatives (which can be formulated in a more technical version of Assumption 5).
In conclusion, Proposition 4 can be adapted to apply to p ∈ [1,+∞[, and it follows that Theorem 1 also
generalises to this case.

Path Differentiability Regarding the results from Section 4, the only substantial difference lies in showing
that T (·, x) is path differentiable. The only missing link in the composition chain is the path differentiability
of E(p) := X 7−→

∫
Sd−1 w

(p)
θ (X,Y )d�(θ). In the case p = 2, the difficulty of the integral can be circumvented

by noticing that E is semi-concave (Tanguy et al., 2023), Proposition 2.4.3, which implies path differentia-
bility. This argument does not generalise to p ∈ [1,+∞[ naturally, hence our Theorem 2 only generalises to
p ∈ [1,+∞[ under the conjecture that E(p) is indeed path differentiable.
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