PhyFF: Physical forward forward algorithm for
in-hardware training and inference

Ali Momeni* Babak Rahmani Matthieu Malléjac Philipp del Hougne
EPFL Microsoft Research EPFL University of Rennes, CNRS

Romain Fleury
EPFL

Abstract

Training of digital deep learning models primarily relies on backpropagation, which
poses challenges for physical implementation due to its dependency on precise
knowledge of computations performed in the forward pass of the neural network.
To address this issue, we propose a physical forward forward training algorithm
(phyFF) that is inspired by the original forward forward algorithm [1]]. This novel
approach facilitates direct training of deep physical neural networks comprising
layers of diverse physical nonlinear systems, without the need for the complete
knowledge of the underlying physics. We demonstrate the superiority of this
method over current hardware-aware training techniques. The proposed method
achieves faster training speeds, reduces digital computational requirements, and
lowers training’s power consumption in physical systems.

1 Introduction

To date, the training of physical neural networks (PNNs) has predominantly relied on backpropagation
(BP), a method that has proven highly effective for digital neural networks [2]. However, BP faces
several challenges when applied to PNNs, notably due to the complexity and lack of scalability in
hardware implementations [3 4]. Many proposals for PNNs resort to in-silico training, performing
BP calculations on an external computer using a digital twin of the physical system. However, this
approach often sacrifices speed and increases energy consumption during training. Additionally, the
model may not accurately represent the real physical system, leading to a simulation-reality gap and
inaccurate inference time prediction [5].

Recent efforts have made progress in addressing these issues. The physics-aware training method
based on BP (PA-BP) [3] is the current state-of-the-art framework that mitigates some problems
associated with in-silico methods. However, PA-BP still relies on a differentiable digital model for
the backward pass, which limits its applicability in terms of training speed and power consumption,
as well as requiring extra memory for the backward model. Moreover, PA-BP-trained PNNs may
struggle when the physical system experiences strong perturbations, necessitating retraining from
scratch. Another limitation of BP is the need for the complete knowledge of the forward pass
computations to compute derivatives accurately [[1} 16l [7, [8]]. When a black box is introduced in the
forward pass, BP becomes impractical. Consequently, researchers have been exploring alternative
training methods for PNNs. One such approach is the augmented Direct Feedback Alignment (DFA)
method [6]], designed to eliminate the need for a differentiable digital model. However, DFA is only
compatible with certain physical networks where it is possible to separate nonlinear and linear layers.
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Figure 1 — Deep physical neural networks. a, A physics-compatible deep neural network that
employs a sequence of nonlinear physical data transformers augmented by trainable matrix multipli-
cations, trained by the PhyFF algorithm. We consider three different physical systems in terms of
underlying wave phenomenon and type of non-linearity. b, In acoustics, input data is encoded into the
intensity of sound waves at different frequencies injected on the left side of the cavity. Sound waves
propagate through a chaotic cavity that comprises multiple rigid cylindrical diffusers and nonlinear
membranes. The transformed waveforms are received by multiple microphones. ¢, In the chaotic
microwave cavity, input data is encoded into the programmable metasurface configuration inside the
metallic disordered cavity. The outputs are obtained from the waves’ spectra (transfer function). d, In
optical setup, input data is encoded onto the spatial light modulator (SLM), and after passing through
the multimode fiber (MMF), the resulting optical intensity is measured on the CCD camera.
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In addition, determining the nonlinearity form for PNNs through optimization remains an ongoing
challenge.

In this context, we propose a simple and physics-compatible architecture for PNNs, enhanced
by a biologically plausible learning algorithm known as the physical forward forward (PhyFF)
training. Our proposed method facilitates both supervised and unsupervised training of arbitrary
PNNs locally, without any requirement on the knowledge of the nonlinear physical layers nor the
need to train a digital twin model. In the PhyFF method, we replace the conventional backward
pass, typically executed by a digital computer, with a single forward pass through the physical
system. This substitution offers substantial improvements in training speed compared to other
hardware-aware training frameworks, while also reducing digital computations, memory usage,
and power consumption during the training of wave-based PNNs. To illustrate the versatility of
our approach, we perform experimental vowel and image classification using three wave-based
systems, each characterized by distinct underlying wave phenomena and types of nonlinearities. The
first example features a chaotic acoustic cavity implemented with nonlinear scatterers. The second
example involves a chaotic microwave cavity with a transfer function extensively parameterized by a
programmable metasurface with structural non-linearity. Our third example showcases a modeled
optical multimodal fiber with readout non-linearity (data for these physical systems have been adapted
from earlier research, as documented in [9]]). We evaluate the performance of PhyFF across various
datasets under both supervised and contrastive learning schemes, employing an end-to-end model of
these systems for benchmarking purposes.



2 Method

Figure[lj depicts a physics-compatible deep PNN consisting of three nonlinear physical data trans-
formers augmented by trainable linear multiplications. Each nonlinear physical data transformer
executes a non-linear mapping between the input and output. This is subsequently followed by a
trainable linear multiplication for classifying distinct classes through the PhyFF training algorithm.
The output of each layer is subsequently passed to the next layer, which then performs the same
hierarchical process on the output of its predecessor.

The training algorithm is inspired by the recently proposed forward-forward algorithm [[1]] which has
been extended and adapted to the supervised and unsupervised model-free physical learning of neural
networks. As shown in Fig. [I] each nonlinear physical system performs a nonlinear transformation
on input data, which can be expressed as hD = flg )(Wl(,l)x(l)), where x(l), WI()Z), and flg) correspond to
the physical inputs (e.g., optical intensity, electric voltage, vibration), physical interconnections (e.g.,
optical, electrical, or mechanical coupling) in the physical system, and physical nonlinearity (e.g.,

nonlinear optical, magnetic, or mechanical effects) in layer /, respectively. Here, ngl) and fIEIl) denote
the mixing operation and non-linear kernel of the /-th physical systems, respectively. Afterward, the
output of layer / can be expressed as the multiplication of hD by the augmented trainable weight

matrix Wt(l), ie yb = Wt(l)h(l). Such trainable matrix multiplications can be performed either digitally
or via physical systems, for instance using Mach-Zehnder Interferometer (MZI) integrated photonics

[LO] or Spatial Light Modulators (SLMs) in optics[[L1} [12]. The goal here is to train W?) locally

without the need to know the nonlinear physical layers (1(1\11) and Wg)). Instead of a forward and
backward passes, we use here two physical forward passes through the physical system: a positive
and a negative forward path, each running on different physical inputs. The positive physical pass,

yg())s = Wt(l) flg)(Wg)xggs), uses positive inputs that include the input dataset and the correct labels,

while the negative physical pass, yggg = Wt(l)flg)(Wl(,l)xggg), uses negative inputs that include the input

dataset and the incorrect labels. Refer to [1] to see how labels are added to the inputs to generate
both positive and negative data. In unsupervised or contrastive learning, various techniques exist
for generating positive and negative pairs. The real data serves as positive data, while negative data
can be produced by either shuffling real data in batches or masking positive samples. In each layer,
we calculate the so-called "goodness" function, defined as the cosine similarity between the positive

and negative activities. Eventually, for each layer 1, ng) is trained by minimizing the following loss
function:

LD =1og (1 +exp (0( €O8im(Ypos» yneg)))> (1)

In supervised learning, the goodness function is defined as the cosine similarity between the activities
of the layer and a random vector drawn from normal distribution both for the positive and negative
physical passes. In this case, the loss function reads as:

LD =1og (1 +exp (—9( coSsim(Ypos» € My _ cOSsim (Ynegs § (l)))> ) 2

In the equations above, cosgj, is the cosine similarity defined as the cosine of the angle between
the two arguments, 6 is a scale factor and ¢! is the random vector for the layer 1 and of the same
dimension as the output of the layer. The original forward forward algorithm uses only the difference
of the positive and negative squared activities, hence necessitating layer normalization to be applied to
the data before proceeding to subsequent layers [1]]. Conversely, our algorithm avoids incorporating
layer normalization into the architecture; this is advantageous because, to this date, there is no
efficient hardware implementation for the layer normalization operation. Using cosine similarity
in the goodness function allows us to conveniently normalize the outputs without using any extra
normalization layers.

During the inference phase, we input a particular label into the PNNs and accumulate the goodness
values for all layers. This process is repeated for each label separately. The label with the highest
accumulated goodness value is then selected as the output. In unsupervised learning or contrastive
learning, a single linear layer is used to map representations from pre-trained hidden layers to labels,
eliminating the need to perform the aforementioned process repeatedly. The proposed method is also
capable of integrating non-differentiable physical systems or components between the layers.



Architectures Datasets Details Algorithms Test
Accuracy (%)
2 layers Proposed 97.70
D-MNIST (676 x 676) .
Original FF 93.90
(8]
Ideal BP 98.10
3 layers Proposed 56.16
DNNs | Fully-connected CIFAR 10 (2000 x 2000) ..
Original FF 50.68
(8]
Ideal BP 57.34
F-MNIST 6 layers Proposed 89.13
(1000 x 1000)
Ideal BP 90.21
Acoustics-PNN Vowel 2 layers Proposed 9731
(40 x 20) '
Ideal BP 97.31
Microwave- Vowel 3 layers Proposed 97.31
PNN
(40 x 20)
PNNs Ideal BP 98.46
Vowel 2 layers Proposed 97.14
(51 x 51)
Ideal BP 97.21
Optics-PNN
D-MNIST 2 layers Proposed 96.41
(676 x 676)
Ideal BP 97.95
F-MNIST 6 layers Proposed 87.80
676 x 676
(076670 | 1year BP 88.48

Table 1 — Supervised classification results. Comparison of test accuracy with ideal BP across
various datasets and architectures.

3 Results

In Figures 1b-d, we present three deep PNNs for various standard datasets including vowel, digit,
fashion Mnist, and CIFAR10, based on three distinct physical systems. The results for supervised and
contrastive learning versions are summarized in Tables 1 and 2 for three different physical systems
across various datasets. These results show the high competitiveness of the proposed training method
compared to the ideal BP baseline.

4 Discussion

Training of ANNs has become substantially costly due to the increasingly growing size of neural
networks. Specialized hardware such as PNNs have the potential to drastically decrease these costs
by implementing the underlying transformation of data, i.e. the vector matrix multiplication followed
by nonlinearities, in hardware. A few methods have been proposed for training PNNs that either
entirely (in-silico) or partly (PA-BP [5]) rely on surrogate models for training of the the physical
network and hence face issues such as a mismatch between the forward model and the physical
system or sensitivity to perturbations. This is because these methods perform the entire backward pass
through a digital computer during training, involving either a digital model in PA-BP or numerical



Architectures)] Datasets Details Algorithms Test
Accuracy
(%)
3 layers: 2 convolution Proposed 98.45
(16 channels and kernel
size 5 by 5) layers
appended with one
DNNs | Convolution D-MNIST linear layer (2704 x 784).
One decision linear layer Ideal BP 98.60
(784 x 10)
3 layers: 2 physical Proposed 96.51
PNNs | Optics-PNN D-MNIST layers (676 x 676) and
one decision
linear layer (676 x 10)
Ideal BP 95.12

Table 2 — Contrastive classification results. Comparison of test accuracy with ideal BP across
various datasets and architectures.

simulations in in-silico training, which can hinder their effectiveness in the training phase. PhyFF
enables forward passes through physical systems, resulting in a significant speed-up during both
inference and training phases while moving away with the simulation-reality gap that is prevalent in
hardware-aware training schemes.
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