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Abstract

It is a challenging problem to reproduce rich spatial details while maintaining
temporal consistency in real-world video super-resolution (Real-VSR), especially
when we leverage pre-trained generative models such as stable diffusion (SD) for
realistic details synthesis. Existing SD-based Real-VSR methods often compromise
spatial details for temporal coherence, resulting in suboptimal visual quality. We
argue that the key lies in how to effectively extract the degradation-robust temporal
consistency priors from the low-quality (LQ) input video and enhance the video
details while maintaining the extracted consistency priors. To achieve this, we
propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-
based one-step diffusion model, achieving realistic frame details and temporal
consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval
(CFR) module to aggregate complementary information across frames, and train
a Consistency-LoRA (C-LoRA) to learn robust temporal representations from
degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules
and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with
the temporal space defined by C-LoRA to keep temporal coherence. The two
phases alternate iteratively for optimization, collaboratively delivering consistent
and detail-rich outputs. During inference, the two LoRA branches are merged into
the SD model, allowing efficient and high-quality video restoration in a single
diffusion step. Experiments show that DLoRAL achieves strong performance in
both accuracy and speed. Code and models are available at https://github.
com/yjsunnn/DLoRAL.

1 Introduction

Video super-resolution (VSR) aims to reconstruct high-quality (HQ) videos from low-quality (LQ)
inputs. Traditional VSR methods typically rely on convolutional neural network (CNN)-based
[32, 7] and Transformer-based designs [5, 19], trained with pixel-wise L2 or L1 losses. While
effective in some metrics (e.g., PSNR), these methods often produce over-smoothed results without
fine details. To improve perceptual quality, generative adversarial network (GAN)-based VSR
methods incorporate the adversarial loss [15] during training to encourage sharper details restoration
[3, 21, 4, 41]. However, many VSR models [42, 11, 53] are trained under simplified degradation
assumptions (e.g., bicubic downsampling), limiting their performance on real-world LQ videos with
complex and unknown degradations. Additionally, GAN-based methods can produce unnatural
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Figure 1: Quality and efficiency comparison among SD-based Real-VSR methods. (a) Quality
comparison on the VideoLQ benchmark [8]. (b) Efficiency comparison tested on an A100 GPU
(512× 512 input with 50 frames for ×4 VSR). DLoRAL achieves the best perceptual quality with
only one diffusion step, about 10× faster than Upscale-A-Video [54], MGLD [44], and STAR [40].

artifacts and generalize poorly to diverse video content. Recently, pre-trained diffusion-based text-to-
image (T2I) models such as Stable Diffusion (SD) [25, 2] have shown impressive results in real-world
image super-resolution (Real-ISR) [31, 38, 48, 26, 37, 27, 34] with realistic textures. One line of
research treats the LQ image as a control signal and employs ControlNet-like structures [51] to guide
generation [31, 48, 38, 26], and another line of research directly fine-tunes the SD model with LoRA
[13] for efficient one-step restoration [37, 27].

The success of SD in Real-ISR inspired exploration of diffusion models for real-world video super-
resolution (Real-VSR). Although the powerful generative priors of SD can enhance details, they
can introduce inconsistencies among frames when the generated textures sometimes deviate from
the content of the LQ inputs [31, 27]. To alleviate this issue, existing SD-based Real-VSR methods
typically suppress such fluctuations at the cost of perceptual quality. These methods, such as Upscale-
A-Video [54] and MGLD-VSR [44], incorporate temporal modules into pre-trained SD models and
adopt frame-wise losses to balance spatial detail and temporal consistency. Despite the significant
progress achieved, these methods have two major limitations. First, these approaches optimize detail
and consistency jointly in a single model, resulting in suboptimal trade-offs. Improving one objective
usually harms the other due to their conflicting nature. Second, the temporal consistency existing in
real-world LQ videos is ignored, which can be effectively leveraged to help anchor detail generation
on a consistent temporal basis.

To address these issues, we propose a Dual LoRA Learning (DLoRAL) framework for Real-VSR.
Our method is built on a one-step residual diffusion model [37, 27], which significantly reduces
inference time while maintaining strong generative capability. Inspired by PiSA-SR [27], which
learns two LoRA modules to achieve adjustable Real-ISR results, we design two decoupled LoRA
branches within the shared diffusion UNet to resolve the conflict between spatial detail and temporal
coherence. Specifically, a Consistency-LoRA (C-LoRA) is designed to learn temporal consistency
representation, and a Detail-LoRA (D-LoRA) is designed to restore high-frequency spatial details.
To exploit the inherent temporal consistency in LQ videos, we introduce a Cross-Frame Retrieval
(CFR) module, which extracts structure-aligned temporal features from adjacent degraded frames,
helping the model learn degradation-robust representations. CFR not only provides a stable and
informative intermediate representation for C-LoRA to build upon, but also serves as the anchor for
the subsequent detail enhancement stage to maintain temporal alignment.

Instead of optimizing both objectives jointly, we adopt a dual-stage training strategy. The training
begins from the temporal consistency stage, in which we fine-tune C-LoRA and CFR modules using
consistency-related losses. In the detail enhancement stage, we freeze C-LoRA and CFR, and train
D-LoRA to refine high-frequency details with the additional classifier score distillation (CSD) [27]
loss. These two stages are alternatively trained to allow each branch to specialize in its objective.
During inference, the two LoRA modules can be integrated in one-step diffusion. As illustrated in
Fig. 1, our DLoRAL method achieves both high temporal consistency and superior visual quality,
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outperforming previous Real-VSR methods in overall quality, as well as inference speed (about 10×
speedup over current methods [54, 44, 40], as illustrated in Fig. 1(b)).

Our main contributions are summarized as follows. (1) We propose a Dual LoRA Learning (DLoRAL)
paradigm for Real-VSR, which decouples the learning of temporal consistency and spatial details
into two dedicated LoRA modules under a unified one-step diffusion framework. (2) We introduce a
Cross-Frame Retrieval (CFR) module to extract degradation-robust temporal priors for Consistency-
LoRA (C-LoRA) training, providing structure-aligned intermediate representations that guide the
subsequent training of Detail-LoRA (D-LoRA) for high-fidelity restoration. (3) Our DLoRAL model
achieves state-of-the-art performance on Real-VSR benchmarks, producing visually realistic frame
details and stable temporal consistency.

2 Related Work

Real-World VSR. Conventional VSR methods [32, 11, 16] typically rely on simply synthesized data
(e.g., bicubic downsampling), leading to a significant performance gap when applied to real-world
videos. Early works [45, 35] addressed this by collecting real-world LQ-HQ video pairs, such as the
iPhone-captured dataset [45]. However, these datasets are limited by device bias and scalability. The
following works [33, 8] simulated realistic degradations by combining blur, noise, and compression,
while others enhanced robustness through architectural design. For instance, RealVSR [45] introduces
a domain adaptation mechanism that aligns feature distributions between synthetic and real domains
through adversarial learning. RealBasicVSR [8] proposes a degradation modeling framework that
refines the restoration process through iterative correction modules. Despite these advances, existing
methods still struggle to recover fine details and generalize across diverse real-world scenarios, often
producing over-smoothed outputs.

Diffusion Based Real-VSR. Recent advances in diffusion models for image restoration [1, 10, 23, 49,
50] have inspired the extension to Real-VSR tasks [54, 44, 17, 40]. A common approach is to adapt
pre-trained T2I models by injecting temporal modules to ensure both perceptual quality and temporal
consistency. For example, Upscale-A-Video [54] integrates temporal layers into the pre-trained
diffusion model and proposes a flow-guided recurrent latent propagation module. MGLD-VSR
[44] guides the diffusion process with a motion-guided loss and inserts a temporal module into the
diffusion decoder. The other directions include decomposing the complex learning burden into staged
training phases [17] and reformulating attention mechanisms in diffusion transformers [30] to process
videos of arbitrary length. Rather than leveraging the pre-trained T2I model, STAR [40] leverages
compressed temporal representations from text-to-video (T2V) models [2].Despite these efforts,
balancing spatial detail and temporal consistency remains a key challenge. Most existing methods
enforce frame-level constraints to improve consistency by sacrificing visual fidelity. In this work, we
propose a decoupled learning strategy: first learning degradation-robust temporal priors from LQ
inputs then guiding HQ generation with these features. This design ensures both high-quality detail
restoration and stable temporal coherence.

Real-VSR Paradigms. Recent VSR methods follow two main paradigms: sliding-window-based
[32, 11, 42, 16] and recurrent-based [6, 7, 5, 20, 54, 44, 40]. Sliding-window-based methods
reconstruct each output frame using a set of neighboring frames, capturing fine-grained local details
and short-term temporal dependencies. In contrast, recurrent-based methods propagate features
across frames sequentially, offering higher efficiency, but are prone to error accumulation and detail
degradation. Most diffusion-based Real-VSR methods [54, 44, 40] adopt the recurrent design for its
inference efficiency. In this work, we build on a sliding-window framework to better preserve spatial
and temporal details. To mitigate the computational overhead, we adopt a one-step diffusion strategy
that eliminates redundancy while maintaining high reconstruction quality.

3 Methodology

3.1 Preliminary

Diffusion models [25] simulate a forward process where a clean latent code z0 is gradually noised into
zt using Gaussian noise: zt =

√
ᾱt ·z0+

√
1− ᾱt ·ϵ, with ϵ ∼ N (0, I) and ᾱt following a predefined

schedule. During training, a model ϵθ(t, zt) is trained to predict the added noise at each timestep t.
During inference, z0 is recovered from pure noise zT ∼ N (0, I) by iterative denoising. However,
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this multi-step process is slow and stochastic, limiting its efficiency and stability in super-resolution
(SR) tasks that demand fast and reliable reconstruction. To address this issue, recent works [37, 27]
propose one-step diffusion that skips iterative sampling by directly refining an LQ latent into its
HQ counterpart. To further improve controllability, PiSA-SR [27] introduces a residual learning
formulation that allows the model to focuses on high-frequency corrections:

zHQ = zLQ − ϵθ(z
LQ) (1)

where zLQ and zHQ represent the latent codes of LQ and HQ respectively.

Most existing VSR methods [54, 44, 40] rely on multi-step diffusion, resulting in high computational
cost. In this work, we make the first attempt to apply a one-step diffusion framework to VSR,
improving efficiency while preserving restoration quality by adapting the residual learning formulation
in Eq. (1) to accelerate convergence. To this end, we introduce VSR-specific modules and learning
strategies to produce detail-rich and temporally consistent results.

3.2 Dual LoRA Learning Network for Real-VSR

Motivation. There is a fundamental challenge in Real-VSR: how to balance the preservation of spatial
details and the enforcement of temporal consistency. To simultaneously achieve both objectives,
we begin by analyzing the characteristics of real-world LQ videos and the limitations of current
SD-based VSR methods, which motivate the design of our proposed framework.

• Temporal Consistency in Degraded Videos. Despite degradations, such as noise, blur, and compres-
sion, real-world LQ videos retain stable information across frames, preserving inherent structural
and semantic consistency. Leveraging these consistent representations provides a strong foundation
for reconstructing HQ videos with realistic details and temporal coherence. To exploit this, we
propose a Cross-Frame Retrieval (CFR) module to aggregate complementary information across
frames to enhance consistency. In addition, we design a Consistency-LoRA (C-LoRA) to further
improve reconstruction by reinforcing temporal alignment and structural integrity. This stage lays
the groundwork for more accurate guidance in the subsequent detail enhancement phase.

• Conflict in Optimizing Details and Consistency. To adapt pre-trained diffusion models for VSR
and balance spatial detail and temporal coherence, existing methods [25, 46] typically introduce
trainable layers optimized jointly with diffusion and temporal losses. However, detail generation
and consistency preservation are inherently conflicting objectives, and joint optimization often
results in suboptimal trade-offs. To address this, we propose two decoupled weight spaces: one
for temporal consistency modeling and another for detail enhancement. Rather than training two
networks, which is costly, we adopt a decoupled scheme inspired by PiSA-SR [27], embedding
two specialized LoRA branches into a shared SD UNet. This lightweight design enables alternative
refinement, allowing each branch to focus on its objective.

Framework Overview. Building on the above insights, we design a Dual LoRA Learning (DLoRAL)
framework to generate HQ video outputs from degraded inputs. Given an LQ sequence of N
frames, ILQ = {ILQ

n | n = 1, . . . , N}, our model Gθ generates a corresponding HQ sequence
IHQ = {IHQ

n | n = 1, . . . , N}. To utilize information from neighboring frames, we adopt a
sliding-window strategy [32, 11, 16], where each HQ frame IHQ

n is generated from two adjacent LQ
frames: the current n-th frame ILQ

n and its preceding frame ILQ
n−1. For the first frame ILQ

1 , which
lacks a previous frame, we adopt a self-replication approach to generate ILQ

1 .

As illustrated in Fig. 2, our generator Gθ leverages the pre-trained SD model, which consists of a
VAE encoder Eθ, an SD UNet ϵθ, and a VAE decoder Dθ. Our DLoRAL framework employs two
specialized training stages, i.e., temporal consistency stage and detail enhancement stage. In the
temporal consistency stage, the CFR module retrieves inter-frame relevant information from degraded
inputs, then the UNet is finetuned by C-LoRA for further reinforcement of temporal alignment. In
the detail enhancement stage, D-LoRA is optimized to improve spatial visual quality. These two
stages are trained alternately in an iterative manner to progressively refine both temporal consistency
and spatial quality, ultimately leading to coherent and detail-preserved video restoration. During
inference, the C-LoRA and D-LoRA are merged into the SD UNet to ensure efficient deployment.

Temporal Consistency Stage. This stage is to establish a temporally coherent and robust representa-
tion from the LQ video sequence ILQ before enhancing details. This stage involves two main steps:
temporal feature fusion using a CFR module and fine-tuning the SD UNet to improve consistency.
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Figure 2: The training pipeline of our proposed DLoRAL. The Cross-Frame Retrieval (CFR) and
Consistency-LoRA (C-LoRA) modules are optimized in the consistency stage, while the Detail-
LoRA (D-LoRA) is optimized in the enhancement stage. Both stages are alternately trained to ensure
temporal coherence and visual quality.

To unlock the inherent consistency among degraded inputs, CFR improves the current latent rep-
resentation zLQ

n by employing a specialized attention mechanism that integrates complementary
information from the previous latent feature zLQ

n−1. Specifically, with encoded features zLQ
n and zLQ

n−1,
CFR first warps them into the same coordinate space with SpyNet [24] following a common frame
alignment procedure [32, 44] (denoted as Fwp). The current latent features zLQ

n and aligned latent
features Fwp(z

LQ
n−1) are then projected into query (Qn), key (Kn−1), and value (Vn−1) embeddings

through 1× 1 convolutions (denoted as ◦) parameterized by WQ, WK , and WV , as shown below:

Qn = WQ ◦ zLQ
n , Kn−1 = WK ◦ Fwp(z

LQ
n−1), Vn−1 = WV ◦ Fwp(z

LQ
n−1). (2)

With obtained embeddings extracted from adjacent frames, CFR employs two mechanisms to en-
hance fusion quality. First, for each query position p, it selectively attends to only the top-k most
similar positions (denoted as Ftopk[p]) in the aligned previous frame, avoiding perturbations from
uncorrelated noises. Second, for each query position p, a learnable threshold τn[p] is predicted via
a lightweight MLP. It dynamically adapts to regional characteristics - enforcing stricter filtering in
detail-rich areas while being more permissive in flat regions, ensuring that only confident matches
could contribute to the final fusion. The fused feature z̄LQ

n [p] is computed as:

z̄LQ
n [p] = zLQ

n [p] +
∑

q∈Ftopk[p]

ϕ

(
⟨Qn[p],Kn−1[q]⟩√

d
− τn[p]

)
· Vn−1[q], (3)

where ϕ(·) is a non-negative gating function (e.g., ReLU [12]), and d is the channel dimension.

The latent feature z̄LQ
n is then processed by the UNet to generate the HQ latent zHQ

n . In this stage,
only the C-LoRA is trainable, while D-LoRA remains frozen. The final HQ frame is reconstructed
via the VAE decoder by IHQ

n = Dθ(z
HQ
n ). All trainable components in this stage, including the CFR

module and C-LoRA, are optimized using the consistency loss Lcons, which is designed to ensure
both the quality of individual frames and the temporal consistency across the sequence. It combines
the pixel-level loss (Lpix), LPIPS loss (Llpips), and optical flow loss (Lopt), as shown below:

Lcons = λpixLpix + λlpipsLlpips + λoptLopt,

Lopt =
∥∥OHQ

n −OGT
n

∥∥
1
=

∥∥∥F (IHQ
n , IHQ

n+1)− F (IGT
n , IGT

n+1)
∥∥∥
1
.

(4)

Here, the ℓ2 loss is adopted as the Lpix, and Lopt measures the L1 distance between optical flow maps
estimated from generated and ground-truth frame pairs, promoting motion alignment and smooth
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transitions. The loss weights λpix, λlpips, and λopt are empirically set to balance spatial accuracy,
perceptual quality, and temporal consistency.

Detail Enhancement Stage. Different from the temporal consistency stage, which yields aligned
and coherent latent representations, the detail enhancement stage focuses on restoring high-frequency
visual details. In this stage, adjacent latent features zLQ

n−1 and zLQ
n are processed by the frozen CFR

module to reapply the learned alignment and fusion, thus the temporal consistency learned in the
consistency stage is maintained without introducing new variations.

The resulting temporally enriched latent z̄LQ
n is then fed into the diffusion UNet ϵθ. We employ a

decoupled finetuning strategy: only the D-LoRA parameters, responsible for detail synthesis, are
trainable, while the C-LoRA parameters, associated with consistency, remain frozen. This setting
allows the D-LoRA to focus solely on detail synthesis without compromising the temporal structure
previously established. The output HQ latent zHQ

n is then decoded using the frozen decoder Dθ to
produce the final super-resolved frame IHQ

n .

To guide this detail enhancement while preserving the structure learned previously, the loss function
Lenh combines several components as follows:

Lenh = λpixLpix + λlpipsLlpips + λoptLopt + λcsdLcsd. (5)

We retain Lpix, Llpips, and Lopt used in the consistency stage (as Eq. (4)), serving as anchors to
maintain spatial fidelity and motion coherence. Furthermore, we introduce the Classifier Score
Distillation (CSD) loss [27], Lcsd, which encourages the generation of richer and finer details.

3.3 Training and Inference

Dynamic Dual-Stage Training. We adopt a dynamic dual-stage training scheme. The training begins
with the consistency stage, aiming at learning degradation-robust features and establishing strong
temporal coherence among frames. In this stage, only the CFR and C-LoRA modules are trainable,
while the D-LoRA is fixed. Once the model converges in the consistency stage, the training switches
to refine high-frequency spatial details, guided by Lenh with the additional CSD loss. In this stage,
only the D-LoRA parameters are trainable, while the CFR module and C-LoRA are fixed. Such an
alternative training is iterated, allowing the model to dynamically converge toward a solution that
balances temporal coherence and visual fidelity.

Smooth Transition Between Training Stages. Compared to the consistency stage, the enhancement
stage introduces an additional loss function Lcsd for enriching semantic details. Directly switching
between the full loss functions Lcons and Lenh can lead to instability due to the abrupt change in
learning targets. To prevent this, we employ a re-weighting strategy that progressively shifts the loss
objective, ensuring a smooth transition between stages. Taking the transition from the consistency
stage to the enhancement stage as an example, after the consistency stage, the two loss functions are
interpolated as the optimization objective for a warm-up phase of st steps, as shown below:

L(s) = (1− s

st
) · Lcons +

s

st
· Lenh, s ∈ [0, st], (6)

where s denotes the current step within the transition. Symmetric interpolation is applied when we
switch back from the enhancement stage to the consistency stage.

Inference Phase. At test time, both C-LoRA and D-LoRA are activated and merged into the frozen
diffusion UNet. A single diffusion step is used to enhance the LQ input to HQ video frames.

4 Experiment

4.1 Experimental Settings

Implementation Details. We adopt the pre-trained Stable Diffusion V2.1 as the backbone of
denoising U-Net. Training is carried out with a batch size of 16, a sequence length of 3, and a
video resolution of 512× 512. All models are trained using the PyTorch framework on 4 NVIDIA
A100 GPUs. We use Adam optimizer with an initial learning rate of 5× 10−5. For inference, both
C-LoRA and D-LoRA are activated simultaneously in a frozen UNet. Videos are processed in sliding
sequences to fit GPU memory limits.
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Training Datasets. To support the decoupled training design of our DLoRAL framework, we
construct two training datasets for the consistency and enhancement stages, respectively.

For the consistency stage, the training data needs to contain realistic motion while maintaining rea-
sonable image quality. To this end, we select 44,162 high-quality frames from the REDS dataset [22],
which offers professionally captured sequences with rich dynamics, and a curated set of videos [39]
from Pexels1, chosen based on aesthetic and temporal smoothness criteria. These sequences provide
necessary temporal priors for learning degradation-robust representations.

For the enhancement stage, the training data should prioritize visual quality. Thus, we select the
LSDIR [18] dataset, known for its rich textures and more fine-grained details than existing public
video datasets. To preserve the learned consistency modeling capability and enable the optical flow
regularization among frames, we generate simulated video sequences based on LSDIR. Specifically,
for each ground-truth image in LSDIR, we apply random pixel-level translations to it to generate
multiple shifted images. The resulting pseudo-video sequences inherently support consistency
constraints through synthetic motion, while surpassing real video datasets in visual quality.

The data in both stages are degraded using the RealESRGAN [33] degradation pipeline. We apply
identical degradation parameters across frames within the same video, while using random parameters
for different video sequences.

Testing Datasets. We evaluate our method on both synthetic and real-world datasets, including
UDM10 [47], SPMCS [28], RealVSR [45], and VideoLQ [8]. Among them, UDM10 contains 10
sequences, each having 32 frames. SPMCS contains 30 sequences, each having 31 frames. RealVSR
contains 50 real-world sequences, each having 50 frames. VideoLQ contains 50 real-world sequences
with complex degradations. For the synthetic dataset (UDM10 and SPMCS), we synthesize LQ-HQ
pairs following the same degradation pipeline in training. For real-world datasets (RealVSR and
VideoLQ), we directly adopt the given LQ-HQ pairs.

Evaluation Metrics. A set of full-reference and no-reference metrics are selected to evaluate different
real-world VSR methods. The full-reference metrics include PSNR and SSIM, and perceptual
quality with LPIPS [52] and DISTS [9]. No-reference quality assessment involves MUSIQ [14],
MANIQA [43], CLIPIQA [29], and the video quality assessment metric DOVER [36]. Compared to
Real-ISR, Real-VSR places greater emphasis on temporal consistency. Following prior works [44, 53],
we use the average warping error E∗

warp to quantitatively assess temporal consistency: E∗
warp =

1
N−1

∑N−1
i=1 ||IHQ

i+1 − Fwp(I
HQ
i )||1. For the test datasets with GT, optical flow in Fwp is estimated

from GT frames. For real-world datasets without GT (e.g., VideoLQ test set), we use the flow
estimated from predicted frames.

4.2 Experimental Results

To demonstrate the effectiveness of our DLoRAL algorithm, we compare it with seven represnetative
and state-of-the-art methods, including three Real-ISR models (RealESRGAN [33], StableSR [31],
and the one-step model OSEDiff [37]), a discriminative VSR model (RealBasicVSR [8]), and three
diffusion-based VSR models (Upscale-A-Video [54], MGLD-VSR [44] and STAR [40]).

Quantitative Comparison. We show the quantitative comparison on both synthetic and real-world
video benchmarks (where real-world testing videos were centrally cropped to 128× 128 resolution)
in Tab 1, from which several key observations can be made. First, non-diffusion-based methods (e.g.,
RealESRGAN and RealBasicVSR) perform worse than diffusion-based methods on no-reference
perceptual quality metrics, such as MUSIQ and CLIPIQA, mainly because they lack the strong
image priors provided by pre-trained SD models, leading to over-smoothed results. Second, SD-
based Real-ISR methods (StableSR and OSEDiff) can achieve comparable or even better perceptual
quality scores than existing Real-VSR methods. In particular, OSEDiff achieves the best DOVER
scores on both the UDM10 and SPMCS datasets. However, its warping error evaluated by E∗

warp is
worse. This is because the Real-ISR methods generate details for each frame without considering
the inter-frame consistency. Finally, compared to the existing Real-VSR methods, our DLoRAL
consistently ranks first or second across a range of perceptual quality metrics, including LPIPS,
DISTS, MUSIQ, CLIPIQA, MANIQA, and DOVER, demonstrating its strong alignment with human
perception. At the same time, DLoRAL does not compromise temporal consistency, as evidenced

1https://www.pexels.com/
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Datasets Metrics
Real-ISR Methods Real-VSR Methods

RealESRGSN StableSR OSEDiff RealBasicVSR Upscale-A-Video MGLD STAR DLoRAL

UDM10

PSNR ↑ 21.345 22.042 23.761 24.334 22.364 24.192 24.451 23.975
SSIM ↑ 0.565 0.568 0.696 0.723 0.584 0.685 0.714 0.710
LPIPS ↓ 0.451 0.455 0.367 0.363 0.410 0.335 0.417 0.327
DISTS ↓ 0.175 0.185 0.175 0.204 0.198 0.176 0.230 0.179

BRISQUE ↓ 29.843 26.310 20.718 14.129 17.607 22.701 36.910 16.250
MUSIQ ↑ 49.838 47.805 63.146 62.360 61.046 61.309 40.789 65.620

CLIPIQA ↑ 0.474 0.445 0.574 0.474 0.445 0.453 0.267 0.652
MANIQA ↑ 0.330 0.319 0.334 0.330 0.318 0.291 0.244 0.373
E∗

warp ↓ 7.580 8.440 5.220 4.670 5.790 4.610 3.510 4.720
DOVER ↑ 36.860 30.470 48.404 37.572 37.694 40.045 30.384 42.871

SPMCS

PSNR ↑ 21.660 19.260 20.650 21.580 19.030 21.260 20.730 21.240
SSIM ↑ 0.569 0.585 0.696 0.545 0.386 0.515 0.489 0.524
LPIPS ↓ 0.444 0.432 0.354 0.404 0.485 0.384 0.606 0.375
DISTS ↓ 0.246 0.235 0.229 0.237 0.274 0.234 0.342 0.222

BRISQUE ↓ 25.240 26.310 19.471 12.048 19.784 23.184 27.902 11.030
MUSIQ ↑ 53.221 47.805 64.619 66.683 66.912 65.079 33.247 67.390

CLIPIQA ↑ 0.515 0.445 0.526 0.515 0.517 0.437 0.240 0.581
MANIQA ↑ 0.308 0.319 0.308 0.308 0.443 0.312 0.237 0.340
E∗

warp ↓ 7.570 8.430 7.500 5.400 7.570 4.410 4.080 6.250
DOVER ↑ 32.151 30.470 40.160 30.953 32.151 31.118 17.220 34.895

RealVSR

PSNR ↑ 21.340 18.950 19.920 22.270 20.060 21.120 15.080 20.360
SSIM ↑ 0.565 0.583 0.588 0.720 0.591 0.646 0.433 0.606
LPIPS ↓ 0.451 0.225 0.282 0.193 0.263 0.219 0.409 0.242
DISTS ↓ 0.175 0.154 0.164 0.160 0.158 0.151 0.279 0.150

BRISQUE ↓ 29.843 28.250 31.794 30.362 25.476 39.082 62.750 27.893
MUSIQ ↑ 49.838 69.962 64.101 71.413 67.714 70.734 67.947 70.908

CLIPIQA ↑ 0.474 0.612 0.546 0.370 0.436 0.530 0.532 0.617
MANIQA ↑ 0.330 0.345 0.341 0.384 0.414 0.496 0.438 0.386
E∗

warp ↓ 17.580 25.010 18.300 18.720 18.200 19.210 24.600 17.300
DOVER ↑ 36.860 46.846 42.138 46.439 36.136 42.044 30.214 49.646

VideoLQ

BRISQUE ↓ 29.605 22.337 26.403 24.790 25.101 29.606 42.582 23.039
MUSIQ ↑ 53.138 52.975 58.959 59.475 57.489 53.092 49.305 63.846

CLIPIQA ↑ 0.334 0.478 0.499 0.393 0.377 0.315 0.333 0.567
MANIQA ↑ 0.232 0.278 0.254 0.312 0.328 0.254 0.268 0.344
E∗

warp ↓ 7.580 8.430 8.406 8.108 7.586 7.409 7.280 7.897
DOVER ↑ 28.400 30.470 37.580 34.772 36.860 31.899 29.400 38.505

Table 1: Comparison of various Real-ISR and Real-VSR methods across different datasets. The best
and second best results of each metric are highlighted in red and blue, respectively.

by its superior performance on the E∗
warp metric. For example, on the RealVSR dataset, DLoRAL

achieves state-of-the-art results in DISTS, CLIPIQA, and DOVER, while ranking among the top in
E∗

warp, highlighting its ability to produce visually pleasing and temporally coherent outputs.

It should be mentioned that although E∗
warp is widely used to assess temporal consistency, it does

not correlate well with human perception. For example, blurry Real-VSR outputs can achieve lower
warping errors but exhibit poorer visual quality. DLoRAL may report slightly larger E∗

warp values
than some methods (e.g., STAR), but this is because DLoRAL better preserves fine details that the
warping error metric tends to penalize.

Qualitative Comparison. To further demonstrate the effectiveness of DLoRAL, we visualize
the Real-VSR results in Fig. 3. One can see that DLoRAL can remove complex spatial-variant
degradations and generate realistic details, significantly outperforming other Real-VSR models.
Specifically, for the severely degraded facial region (first row), RealBasicVSR fails to reconstruct
the facial structural, and Upscale-A-Video and STAR lose facial details. MGLD produces sharper
outputs, but suffers from severe structural distortions, particularly around the eye regions. In contrast,
DLoRAL successfully recovers fine facial features while maintaining structural integrity. The second
row highlights the performance in texture reconstruction, where our method restores sharper and
more legible texture patterns compared to the blurry or distorted outputs from other algorithms.

To better compare the consistency, we plot the temporal profiles of the VSR results produced by
competing methods Fig. 4. Real-ISR approaches such as StableSR and OSEDiff restore sharper
details but suffer from severe temporal instability, as shown by the erratic fluctuations in their profiles,
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resulting in unpleasant flickering that harms the video quality. On the other hand, while existing
Real-VSR methods can offer better temporal consistency than Real-ISR methods, this comes at the
cost of blurred details (see the results of Upscale-A-Video, MGLD and STAR in the left case of
Fig. 4) or intra-frame artifacts (see the results of RealBasicVSR, Upscale-A-Video and STAR in the
right case of Fig. 4). In comparison, our DLoRAL produces smooth and stable transitions across
frames, as reflected by its consistent temporal profiles. This qualitative evidence aligns with our
quantitative results, demonstrating DLoRAL’s ability to preserve fine visual details while ensuring
natural temporal consistency. More visual comparisons can be found in the Appendix.

Figure 3: Qualitative comparison of VSR models on real-world VideoLQ dataset.

RealBasicVSR

Upscale-A-Video MGLD

STAR StableSR

OSEDiff DLoRAL

LR RealBasicVSR

Upscale-A-Video MGLD

STAR StableSR

OSEDiff DLoRAL

LR RealBasicVSR
tem

po
ral

tem
po
ral

Figure 4: Temporal profiles of competing Real-ISR and Real-VSR methods.

Real-ISR Methods Real-VSR Methods
StableSR OSEDiff Upscale-A-Video MGLD STAR DLoRAL

Inference Step 200 1 30 50 15 1
Inference Time (s/50 frames) 32800 340 3640 4146 2830 346

# Total Param (M) 1150 1294 14442 1430 2492 1300

Table 2: Complexity comparison among different methods. All methods are evaluated using 50
512× 512 frames for the ×4 VSR task. Inference time is measured on an A100 GPU and includes
the entire pipeline: data loading, processing, and result storage.

Complexity Comparison. We compare the inference steps, model size, and inference time of
competing diffusion-based models in Tab. 2. The inference time of the whole pipeline (including data
loading, data processing, and result storage) is reported, which is measured on the ×4 VSR task with
50 frames of 512× 512 LQ images on a single NVIDIA A100 80G GPU. Compared with Real-ISR
methods, DLoRAL (346s) achieves a strong balance between quality and complexity, delivering
superior visual quality and temporal consistency while maintaining a similar speed to OSEDiff (340s).
Among the Real-VSR methods, DLoRAL achieves the fastest inference time and the lowest parameter
count, benefiting from its efficient one-step design. Specifically, DLoRAL is more 10× faster than
Upscale-A-Video, MGLD, and 8× faster than STAR, while maintaining superior visual quality.

Ablation Study. To validate the effectiveness of the proposed components in our model, we conduct
ablation studies by selectively removing each of the three key modules: (i) CFR, (ii) C-LoRA, and
(iii) D-LoRA, while keeping all other settings identical. For this analysis, we adopt VideoLQ42, a
subset of four representative sequences with diverse scenes and motions from the VideoLQ dataset.
As summarized in Tab. 3, removing either CFR or C-LoRA leads to weaker temporal consistency
(i.e., higher warping error), indicating their complementary roles in maintaining temporal coherence.
In contrast, removing D-LoRA significantly impairs all perceptual metrics, confirming its core
contribution to fine-grained detail enhancement. Further ablations are provided in the Appendix.

2Specifically, VideoLQ4 contains the 013, 015, 020, and 041 clips, each consisting of 100 frames.
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MUSIQ ↑ CLIP-IQA ↑ MANIQA ↑ E∗
warp ↓

Ours (Full) 66.6174 0.5475 0.3791 1.51×10−3

W/o CFR 64.5732 0.5148 0.3386 1.58×10−3

W/o C-LoRA 64.2623 0.5492 0.3520 1.61×10−3

W/o D-LoRA 54.0769 0.3654 0.2471 1.48×10−3

Table 3: Ablation study on key modules on VideoLQ4 dataset.

User Study. We also conduct a user study to further examine the effectiveness of DLoRAL in
comparison with existing RealVSR methods. We invited ten volunteers to participate in a user
study. Our DLoRAL method was compared with the other three diffusion-based Real-VSR methods:
Upscale-A-Video [54], MGLD [44] and STAR [40]. We randomly selected 12 real-world LQ videos
with complex degradations and motions from the VideoLQ dataset [8], whose scenes are shown in
Fig. 5(a). Each LQ video and its corresponding HQ videos generated by the competing Real-VSR
methods were presented to the participants who were asked to select the best HQ result by considering
two equally weighted factors: the perceptual quality and temporal consistency of the video.

The results of the user study are shown in Fig. 5(b). DLoRAL received 93 votes, significantly
outperforming the other methods, with MGLD, STAR, and Upscale-A-Video receiving 14, 8, and
5 votes, respectively. This overwhelming preference for DLoRAL highlights its effectiveness in
addressing the challenges of real-world video restoration. Note that the selected videos include a
variety of motion scenarios. In scenarios with complex motion, DLoRAL is able to achieve superior
visual quality while maintaining temporal consistency comparable to other methods. In relatively
static scenes, DLoRAL demonstrates stable temporal consistency along with equally sharp and clear
visual quality.

(a) LQ videos used in user study (b) Voting results from 10 volunteers

DLoRAL: 77.5% (93)

Upscale-A-Video: 4.2% (5)

STAR: 6.7% (8)

MGLD: 11.6% (14)

Figure 5: LQ videos used in our user study and the voting results.

5 Conclusion

We proposed DLoRAL to achieve temporally consistent and detail-rich Real-VSR results. To
effectively extract degradation-robust temporal priors from low-quality input videos while enhancing
details without compromising these priors, we first developed a CFR module and a consistency-LoRA
to generate robust temporal representations, and then developed a detail-LoRA to enhance spatial
details. We optimized these two objectives alternatively and iteratively, where the results of the
previous stage served as an anchor to provide priors for the next stage. The resulting DLoRAL
model demonstrated significantly superior performance to previous Real-VSR methods, achieving
rich spatial details without compromising the temporal coherence.

Limitations. Despite its strong performance, DLoRAL still has certain limitations. First, since it
inherits the 8× downsampling VAE from SD, DLoRAL faces difficulties in restoring very fine-scale
details such as small texts. Second, this heavy compression of VAE may disrupt temporal coherence,
making it harder to extract robust consistency priors. A VAE specifically designed for Real-VSR
tasks could help to address these issues. We leave this challenge for future investigation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the final section (after the conclusion).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Yes, the paper provides a full set of assumptions and a proof for each theoretical
result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the paper fully discloses all necessary information to reproduce the main
experimental results, supporting the main claims and conclusions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All data are publicly available. We will release the codes and new data if the
paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, the paper provides all necessary details, including hyperparameters,
evaluation metrics and etc. to fully understand the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the type of compute resources in experimental settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research in the paper fully conforms to the NeurIPS Code of Ethics in
every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we analyze the potential social impact in appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we clearly indicate the baseline methods and testing data used in the
paper. Their licenses permit use with academic scope.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Code and dataset will be release if the paper is accepted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowd sourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowd sourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method focuses on video super-resolution and does not involve LLMs
as part.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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