

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 REVISITING STANDARD-DEFINITION MAP BASED MOTION PREDICTION IN THE ERA OF END-TO-END AUTONOMOUS DRIVING

Anonymous authors

Paper under double-blind review

ABSTRACT

Most motion prediction models use maps as environmental context. For a long time, high-definition (HD) maps are preferred as they provide detailed lane-level information and often lead to significantly better performance compared with standard-definition (SD) maps. However, offline HD maps require extensive manual annotation, making them costly and unscalable. Online mapping-based methods still require HD map annotation to train the online mapping module, which is costly as well and may suffer from the issue of out-of-distribution map elements. In this paper, we look back to SD maps in the era of end-to-end autonomous driving and focus on narrowing the performance gap between HD and SD maps. We initially extend anchor-based and anchor-free motion prediction models in an end-to-end manner and find the performance gap narrowed with the introduction of raw image features. Furthermore, we discover the unique challenges that the coarse and misaligned SD maps bring to feature fusion of the anchor-free model and on anchor generation of the anchor-based model. Thus, we design two novel modules named Enhanced Road Observation and Pseudo Lane Expansion to address these issues. With these insights, we reduce the performance gap between HD and SD maps by 84%, making SD map based motion prediction achieve comparable performance as HD map based one.

1 INTRODUCTION

As a crucial component in autonomous driving, most motion prediction models forecast the future states of agents based on their historical data and environmental context. Generally, there are two types of maps to provide environmental information: high-definition (HD) maps and standard-definition (SD) maps.

HD maps offer detailed and precise lane-level road geometry information, such as lane dividers, centerlines, pedestrian crossings, and stop lines, and are widely employed in motion prediction models (Gu et al., 2021; Shi et al., 2022; Zhou et al., 2022), as shown in Fig. 1(a). However, the high resolution of HD maps comes at a significant cost. Their creation requires a fleet of vehicles equipped with high-precision sensors, such as LiDAR, along with extensive manual annotation, costing approximately 4,000–5,000 \$/km (Zhu et al., 2024). Since major cities often have thousands of kilometers of roads, constructing HD maps for a single city can incur costs in the millions of dollars. Even worse, HD maps developed by different autonomous driving companies are often proprietary and difficult to share, further increasing the challenges of obtaining HD maps. To reduce the construction cost of HD maps, online mapping models (Liao et al., 2023; Li et al., 2024b; Yuan et al., 2024) are developed. These models predict HD map elements around the vehicle using sensor data in real-time, providing map input for downstream modules. Nevertheless, training these supervised models still depends on ground-truth annotations, facing the challenge of annotation and generalization.

Before HD maps are widely adopted for autonomous driving, SD maps are already used in human driving for a long time. These maps can be generated using vehicles equipped with low-cost IMU and GPS systems, combined with minimal manual processing, resulting in significantly lower acquisition costs (Mooney et al., 2017). Provided by OpenStreetMap or Google, these maps cover thousands of

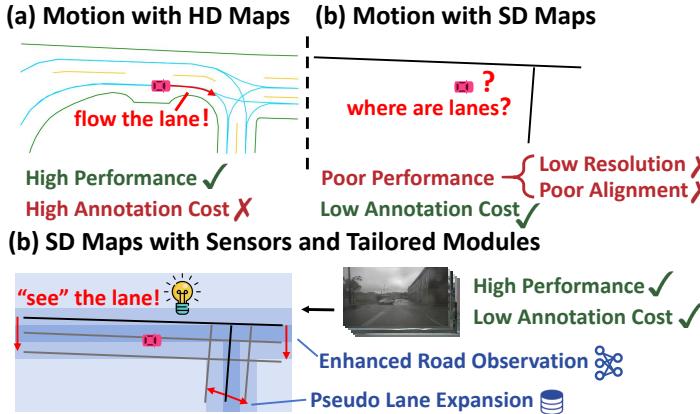


Figure 1: **Revisiting SD Maps in Motion Prediction.** (a) Lane-level HD maps provide detailed information but are expensive to build. (b) Road-level SD maps are available at low cost but lead to poor performance in previous motion prediction models due to their low resolution and poor alignment. (c) We introduce raw sensor data and design tailored modules for SD maps to reach comparable performance with HD map inputs in the same model.

cities and regions, providing information on road direction and intersection structures, and assisting in route planning and driving maneuvers like turning.

However, compared with HD maps, SD maps have two major weaknesses: (1) **Low Resolution**. SD maps only indicate the general direction of roads without providing lane-level details. A road may be represented by just one or two polylines in SD maps. (2) **Poor Alignment**. Due to localization errors, the polylines in SD maps may not align with the center of the roads and could even be outside the roads. The former issue makes SD maps provide less information and the latter makes them provide even incorrect information. Previous study (Liao et al., 2024) and our initial experiments show that substituting SD maps for HD maps in traditional non-end-to-end motion prediction models results in a significant drop in performance. This is why previous motion prediction models rarely use SD maps, as shown in Fig. 1(b).

In the era of end-to-end autonomous driving (Hu et al., 2023; Jiang et al., 2023), the performance gap between SD maps and HD maps (SD-HD gap) may narrow. End-to-end learning presents an attractive way to capture task-specific information directly from raw sensor data. These features encompass environmental information around the agent, playing a similar role as maps, thereby reducing reliance on map precision. During the process, SD maps could serve as a rough guide for feature aggregation, providing an understanding of the road’s general layout, which could potentially achieve performance comparable to using HD maps with detailed road information.

Based on the motivation, we revisit SD map based motion prediction. To begin with, we formulate the problem and leverage sensor data with SD map guidance on anchor-based and anchor-free models. We extract BEV features from raw data with an encoder and incorporate several modules to efficiently fuse BEV features with agent features and SD map features. Experiments demonstrate that the SD-HD gap diminishes in the end-to-end framework.

Next, we conduct a deeper analysis of problems caused by the weaknesses of SD maps in the models on anchor-based and anchor-free models and design new modules to address them, as shown in Fig. 1(c). Anchor-based models like DenseTNT (Gu et al., 2021) select candidate goal points (anchors) from maps. The low resolution and poor alignment of SD maps result in poor distributions of goal points, for example, there may be no goal point around agents. We solve this issue by introducing an anchor generation method called **Pseudo Lane Expansion**, which generates extra pseudo anchors by groups based on original SD map instances to improve anchor distributions. For anchor-free models such as HiVT (Zhou et al., 2022) and MTR (Shi et al., 2022), due to sparse and misaligned SD maps, limited or helpless BEV features could be fused with SD map features in our original module which uses standard deformable attention. Thus, we modify the multi-head deformable attention by adding reference points and introducing a head weighting mechanism. Named **Enhanced Road Observation**, the module can sample a wider range of BEV features around SD instances.

With these insights, the proposed model narrows the SD-HD gap by 93% (minADE) and 82% (minFDE) on the anchor-based model. For the anchor-free model, the reductions are 84% and 77%.

108 The model also outperforms state-of-the-art end-to-end prediction model (Gu et al., 2024b) under the
 109 same protocol by 11.0% and 8.1% on minADE for anchor-based and anchor-free models.
 110

111 Our contributions are threefold:

112 • We revisit SD map based motion prediction and improve its performance with raw sensor data,
 113 achieving results comparable to those based on HD maps and outperforming the online HD map
 114 based motion prediction models.
 115 • We propose a BEV-SDmap interactor called Enhanced Road Observation and a goal point genera-
 116 tion method named Pseudo Lane Expansion to improve the performance of SD map based motion
 117 prediction.
 118 • We analyze the factors affecting the performance gap between SD and HD maps, including the
 119 type of base model and the introduction of sensor data.

120

121 2 RELATED WORK

122

123 2.1 HD MAPS AND SD MAPS

124

125 **HD Maps.** High-definition(HD) maps contain detailed road information, but their creation requires
 126 extensive manual annotation, making them expensive and unscalable (Li et al., 2022a). This leads
 127 to the development of various online map estimation methods, which estimate HD maps from
 128 camera or LiDAR data. Recent approaches such as MapTR(Liao et al., 2023; Li et al., 2024b)
 129 are mostly based on an encoder-decoder architecture, where BEV (bird’s-eye view) features are
 130 extracted from sensor data, and a transformer decoder is used to predict various map elements. Online
 131 map estimation enables autonomous vehicles to operate in areas without Offline HD map coverage,
 132 reducing dependency on HD maps. However, these methods still require HD map ground truth for
 133 supervised training, making it challenging to obtain sufficient HD map data for large-scale training.
 134 Additionally, online HD map estimation consumes computational resources and time.

135

136 **SD Maps.** At present, conducting the motion prediction task with SD maps remains an underexplored
 137 research topic. A previous study (Liao et al., 2024) attempts to extract SD maps from Open Street
 138 Maps (OSM) (Haklay & Weber, 2008) and feed them to a traditional non-end-to-end motion prediction
 139 model. However, it merely substituted the map representation without adapting the motion prediction
 140 model to the characteristics of SD maps, resulting in a significant SD-HD gap. Most recent works
 141 related to SD maps treat them as priors for generating HD maps (Li et al., 2024a). For example,
 142 PriorDrive (Zeng et al., 2024) uses a unified vector encoder to effectively encode diverse vector prior
 143 maps including SD maps to enhance the robustness and accuracy of online HD map construction.
 144 Previous studies (Jiang et al., 2024; Zhang et al., 2024; Liao et al., 2024) merge SD maps from Open
 145 Street Maps (OSM) (Haklay & Weber, 2008) into widely used datasets like nuScenes (Caesar et al.,
 146 2019) and OpenLane-V2 (Wang et al., 2023) to make them more available.

147

148 2.2 MOTION PREDICTION

149

150 **Traditional Motion Prediction Models.** Most Traditional motion prediction models take historical
 151 data of agents and offline HD maps as inputs. Early models typically use rasterized HD maps and en-
 152 code them with Convolutional Neural Networks (CNNs) (Marchetti et al., 2020; Biktairov et al., 2020;
 153 Casas et al., 2020; Gilles et al., 2021). However, high-resolution rasterized maps incur significant stor-
 154 age and computational costs. Recent approaches shift towards vectorized representations of HD maps.
 155 In terms of map utilization, some methods such as LaneGCN (Liang et al., 2020), GOHOME (Gilles
 156 et al., 2022) and HiVT (Zhou et al., 2022), employ Graph Neural Networks (GNNs) to encode
 157 the influence of map elements on vehicle interactions. Other methods like MTR (Shi et al., 2022)
 158 and QCNet (Zhou et al., 2023) directly use Transformer architectures, leveraging cross-attention
 159 mechanisms to fuse map and vehicle features. Some target-based approaches (Zhao et al., 2021; Gu
 160 et al., 2021) generate candidate target points based on the map, leading to a stronger dependency on
 161 the map.

162

163 **Motion Prediction with Sensors.** With the advancement of end-to-end learning, many methods
 164 incorporate sensor information into the motion prediction task. Most of them focus on collabora-
 165 tion among various tasks in autonomous driving and adopt various input settings depending on specific
 166 problems. ViP3D (Gu et al., 2023) combines detection, tracking, and prediction in an end-to-end

162 **Table 1: Protocols and Focus of Works in Motion Prediction with Sensor Data.**

163 Methods	164 Map information	165 Agents' Information	166 Focus
164 ViP3D (Gu et al., 2023)	165 GT HD maps	166 Detection results	The cooperative relations of detection and motion prediction
165 PiP (Jiang et al., 2022)	166 Mapping results	167 Detection results	The interaction between detection and online mapping
166 BEVPred (Gu et al., 2024b)	167 Mapping results	168 GT	Acceleration on online mapping and motion prediction
Ours	GT SD maps	GT	Replacing HD maps with low-cost SD maps for motion prediction

167 structure, and gets agent information directly from sensor data. Its motion prediction module utilizes
 168 agent information from the detection and tracking module and GT HD maps as inputs. PiP (Jiang et al.,
 169 2022) is the first end-to-end Transformer-based framework that jointly and interactively performs
 170 online mapping, object detection, and motion prediction. Its motion prediction module obtains both
 171 types of information from the up-streaming modules, which is suitable for exploring the interaction
 172 between detection and online mapping, and its influence on the downstream motion prediction task.
 173 BEVPred (Gu et al., 2024b) takes BEV features from a pre-trained online mapping model as map
 174 information for acceleration on online mapping and motion prediction. It uses ground-truth as agents'
 175 information. However, there is a lack of end-to-end motion prediction methods specifically designed
 176 for or adapted to SD maps.

177 **Motion Prediction with Online HD Maps.** Directly inputting online HD maps into motion prediction
 178 models is a basic method of online mapping based motion prediction. However, the error between
 179 estimated HD maps and GT HD maps leads to errant behaviors in motion prediction. To address this
 180 issue, a highly rated work (Gu et al., 2024a) extends online map estimation methods to additionally
 181 estimate uncertainty, to provide information about potential errors of maps for downstream models.
 182 BEVPred (Gu et al., 2024b) mentioned above is also an online mapping based motion prediction
 183 model. This line of research has the same goal as SD map based motion prediction, which is to
 184 reduce the cost of maps for motion prediction, but they have different paradigms and protocols. SD
 185 map based motion prediction takes low-cost SD maps as input, while online mapping based motion
 186 prediction uses high-cost HD map annotation for training and needs extra computation for online
 187 map generation.

188 3 METHOD

190 3.1 PROBLEM FORMULATION

192 As discussed in Sec. 2.2 and Table 1, current end-to-end motion prediction models adopt different
 193 protocols based on their focus. Unlike studies that focus on multitask cooperation, we introduce
 194 sensor data to improve performance with SD maps. To eliminate interference from inaccurate
 195 detection, we use GT agent information and GT SD maps along with raw camera data as inputs.

197 3.2 LEVERAGING SENSOR DATA WITH SD MAP GUIDANCE

199 **Encoding Raw Sensor Data.** We adopt BEVFormer (Li et al., 2022b) as an encoder to extract BEV
 200 features. The encoder processes multi-view images with an image backbone (e.g., ResNet50) and
 201 then uses BEV2PV look-up to construct BEV features $B \in \mathbb{R}^{H \times W \times C}$ with the intrinsic and extrinsic
 202 of each camera. Note that other BEV encoders could work as well, for example, LSS (Phlion &
 203 Fidler, 2020).

204 **SD Map Guided Road Observation.** The BEV feature represents the visual context of the surrounding
 205 environment spatially, while the SD map provides the coarse location of the road. We use the
 206 SD map as a guide to “observe” its vicinity, aggregating nearby BEV features along the SD map to
 207 obtain more detailed road information. Specifically, we use deformable attention (Zhu et al., 2020)
 208 for this process. We denote the vectorized SD map as $m \in \mathbb{R}^{N_m \times 2}$, with the encoded map features
 209 represented by $F_{map} \in \mathbb{R}^{N_m \times D}$, where N_m is the total number of points constituting the polylines.
 210 T_{ref} is the translation from the ego vehicle coordinate system to BEV grids. The BEV-SDmap feature
 211 is obtained via

$$F_{BEV-SDmap} = \text{DeformAtt}(F_{map}, T_{ref}(m), B) \quad (1)$$

212 The fused BEV-SDmap features are then used for the generation of local embeddings in HiVT and
 213 for anchor selection in DenseTNT, as shown in Fig. 2 (upper) and Fig. 4 (left). The agent features are
 214 fused with BEV features through similar progress.

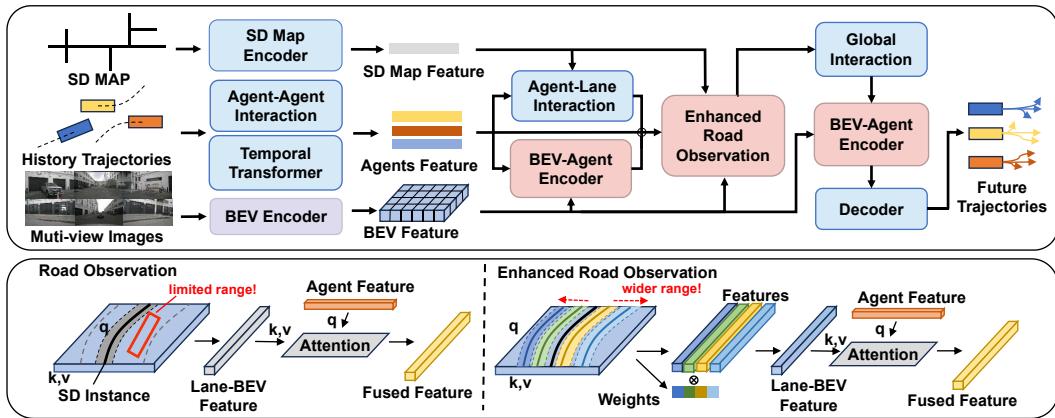


Figure 2: **Anchor-Free Model**. Upper: Overall structure. We integrate Enhanced Road Observation (improved from SD map guided road observation) and BEV-Agent encoder in the HiVT model. Lower: Enhanced Road Observation. Due to the low resolution of SD maps, the coverage of the original SD map guided road observation using standard deformable attention is limited. Enhanced Road Observation, by extending reference points along parallel lines, allows sampling of BEV features over larger area.

3.3 ENHANCING FEATURE FUSION WITH SD MAPS IN ANCHOR-FREE MODEL

Challenges in Feature Fusion with SD Maps. We further analyze the performance of SD map guided road observation in the anchor-free model HiVT. When the road is narrow and the SD lane is at the center of the road, the sample points around the reference points (generated from SD lanes) in deformable attention can almost cover the entire road. However, when the road is wide and there are only one or two SD lanes, these points are in a limited region and can not cover some key locations such as the road edge, as shown in Fig. 2 (lower left). Even worse, the sample points from misaligned SD lanes may capture useless BEV features around them, such as those far away from the road.

Enhanced Road Observation. We observe that SD maps accurately indicate road direction despite alignment errors. Thus, we aim to expand reference points by creating parallel lines. In this way, a single line gets a wide sample area. Even if the original line from the SD map is out of the road, some of its parallel lines may still be within the road and sample useful BEV features. Based on this insight, we propose **Enhanced Road Observation**. We denote the SD map $S \in \mathbb{R}^{N_s \times N_d \times 2}$ with N_s SD map instances and each instance consist of N_d points. For S_i , we generate the extended reference points $\hat{S} \in \mathbb{R}^{N_s \times N_l \times N_d \times 2}$ through:

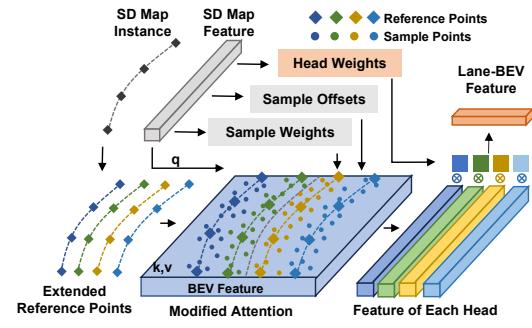
$$\hat{S}_{ij} = \text{Parallel}(S_i, l_j) \quad (2)$$

For a single SD map instance S_i , a set of parallel lines $\{\hat{S}_{i1}, \hat{S}_{i2}, \dots, \hat{S}_{iN_l}\}$ are generated. Where N_l is the number of parallel lines and l_j represents the distance between the original polyline and each parallel line. To simplify processing, the number of parallel lines N_l is set equal to the number of heads N_h in deformable attention.

Next, we modify deformable attention to accommodate multiple sets of reference points. In standard deformable attention, multiple heads share a single set of reference points, while we **assign each head with its own set of reference points corresponding to a parallel line**. Since not all heads extract meaningful features (e.g., some parallel lines may lie outside the road), we apply a learnable weight parameter h_j to the features obtained by each head:

$$F_{\text{BEV-SDmap}} = \sum_{j=1}^{N_h} h_j W_j \left[\sum_{k=1}^K A_{i,j,k} \cdot W'_j B (\hat{S}_{i,j} + \Delta \hat{S}_{i,j,k}) \right] \quad (3)$$

Figure 3: **Enhanced Road Observation**. We extend several sets of reference points for deformable attention and predict the weight for each set to cover lanes missed in SD maps.



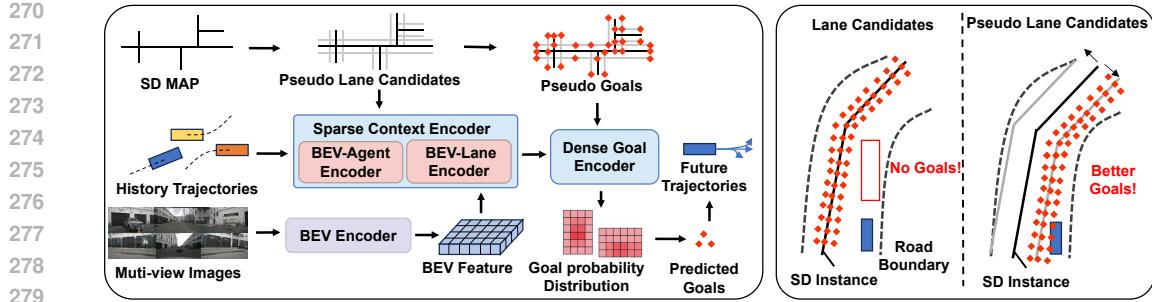


Figure 4: **Anchor-Based Model.** Left: Overall structure. We integrate Pseudo Lane Expansion and feature fusion modules in the DenseTNT model. Right: Original SD map vs. Pseudo Lane Expansion. Target points generated directly from the SD map may not be near the agent, while Pseudo Lane Expansion generates pseudo target points along the road direction near the agent.

Where K denotes the number of sample points. W and $W' \in \mathbb{R}^{D \times D}$ are linear projections applied to the BEV features B . The sample points $A \in \mathbb{R}^{N_d \times N_h \times K}$, sampling offsets $\Delta \hat{s} \in \mathbb{R}^{N_d \times N_h \times K}$, and head weights h are all obtained through different linear projections from the SD map features Q_s , which serve as the query. As in standard deformable attention, the weights A are normalized using softmax along the last dimension, shown in Fig. 3.

For the head weights h , multiple parallel lines from an SD instance may capture environmental information in different lanes, and softmax would overly prioritize a single head. DQNV4 (Xiong et al., 2024) discusses the need for softmax normalization in attention and claims that normalization becomes unnecessary when the degradation issue does not exist. Thus, we do not use functions such as Sigmoid or Softmax to normalize head weights.

3.4 IMPROVING ANCHOR DISTRIBUTION FROM SD MAPS IN ANCHOR-BASED MODEL

Challenges in Anchor Generation with SD Maps. In the anchor-based model DenseTNT, the challenges of using SD maps lie in anchor generation. The model densely samples points around candidate target points from a vectorized map, then predicts the probability for each, selecting the final target point based on these probabilities. As a result, the map has a direct impact on the distribution of candidate target points. Unfortunately, due to the low resolution and alignment accuracy of SD maps, there may be no candidate points near the agent or its future trajectory, which significantly reduces prediction accuracy. Fig. 4 shows the matter.

Pseudo Lane Expansion. To address this issue, adding extra pseudo anchors is a straightforward way. Since DenseTNT is designed around lane and goal features, we directly input the expanded SD lines into the model. We denote a single polyline in the SD map containing N_d 2D points $p \in \mathbb{R}^{N_d \times 2}$, the unit normal vector of the vector from the i -th point to the $(i+1)$ -th point \mathbf{n}_i . The i -th point \hat{p}_{ji} of the j -th expanded line is calculated as:

$$\hat{p}_{ji} = p_i + d_j \mathbf{n}_i \quad (4)$$

where d_j is the distance between the j -th expanded line and the original line. Because DenseTNT's original lane/goal scoring module predicts weights for each target point, we no longer predict weights for each parallel line as Enhanced road observation. This simple but effective anchor generation method greatly improves prediction performance with SD maps. We demonstrate the process as in Fig. 4 (right).

Adaptive Pseudo Lane Expansion. Because of the variability in road structures and the distribution of SD maps, using fixed parameters, including the number and distances of the extended parallel lines in Pseudo Lane Expansion, often fails to achieve optimal performance across diverse scenarios. Thus, we adapt the parameters based on the distance of the SD map lane relative to the vehicle to predict, and the density of SD map lanes. **(1) Distance.** If the closest distance between the SD map and the target vehicle is large, it likely indicates poor alignment of the SD map. In such case, we generate more pseudo lanes on the side closer to the vehicle while reducing the number on the opposite side to decrease the creation of irrelevant lines, as in Fig. 5 (left). **(2) Density.** For sparsely distributed SD lanes (only one or two SD lanes in the range), we increase the number of pseudo lanes to ensure better coverage of the road. Conversely, in dense areas (e.g., intersections), we decrease the number and spacing of pseudo lanes to avoid overlap and interference as in Fig. 5 (right).

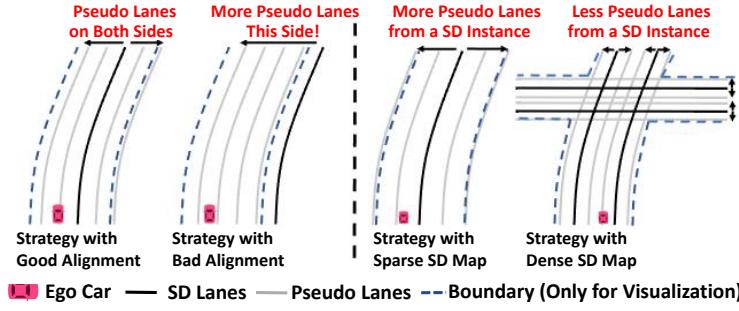


Figure 5: The Strategy of Adaptive Pseudo Lane Expansion.

4 EXPERIMENTS

4.1 DATASETS, METRICS AND BASELINES

Datasets. We conduct experiments on the nuScenes dataset (Caesar et al., 2019), which contains 1,000 driving scenes of approximately 20 seconds each. The dataset includes various sensor data such as camera inputs, annotations, and HD maps. While the dataset does not provide SD maps, we follow (Jiang et al., 2024) to extract SD maps from OpenStreetMap (Haklay & Weber, 2008) and align them with the coordinate system of nuScenes. We use trajdata (Ivanovic et al., 2024) interface to access the past and future trajectories of agents. We upsample the trajectories to 10Hz and predict 3 seconds of future trajectories from 2 seconds of past trajectories. Only samples with complete past and future trajectories are used for training and evaluation.

Metrics. We follow the metrics in (Gu et al., 2024a;b) as well, with three widely used metrics: minimum Average Displacement Error (minADE), minimum Final Displacement Error (minFDE), and Miss Rate (MR). We predict multiple future trajectories and calculate the ADE and FDE for the trajectory closest to the ground truth, referred to as minADE and minFDE. ADE measures the average L_2 distance between predicted and ground-truth trajectories, while FDE measures the L_2 distance between the final points of the predicted and ground-truth trajectories. Miss Rate is the proportion of samples where FDE exceeds preset threshold.

Baselines. We modified BEVPred (Gu et al., 2024b) as a baseline for comparison under the same protocol. The method inputs BEV features from a pre-trained online mapping model and GT agent history to DenseTNT and HiVT. We additionally provide the model with GT HD maps or SD maps to ensure its input configuration aligns with ours, which is called BEVPred+. We also make a comparison with online mapping based motion prediction methods, which are another approach to reducing the cost of HD map construction. We use original BEVPred and UncertaintyPred (Gu et al., 2024a) as baselines. These methods use HiVT and DenseTNT as base motion prediction model. We implement the them with MTR Shi et al. (2022) ourselves.

4.2 RESULTS

Quantitative Results. As shown in Table 2, our method achieves significant improvement in performance with both SD map and HD map input. Compared with BEVPred+ which also utilizes raw sensor data, our method further lowers the SD-HD gap, especially on the DenseTNT-based model, which states the effectiveness of our SD map oriented modules.

SD-HD Gap with Different Base Models. For base motion prediction models, the anchor-based model DenseTNT is affected more greatly by the precision of the maps than the anchor-free model HiVT. This is due to the different ways these models utilize and depend on maps. Anchor-free model HiVT is designed around agent features, with map features serving as auxiliary information, integrated through cross-attention. This makes the model less dependent on the map, allowing it to work even without any map input. Additionally, the robust map encoder and cross-attention mechanism can still generate useful map features from lower-precision SD maps. In contrast, the anchor-based model DenseTNT directly uses vectorized maps in anchor generation and selection, so the accuracy of the map directly affects the plausibility of goal point distribution and the accuracy of the predicted target. This makes the model highly dependent on map precision, widening the performance gap between HD and SD maps.

378 **Table 2: Quantitative Results.** BEVpred+ is a baseline that has the same input setting as ours,
 379 introduced in Sec. 4.1.

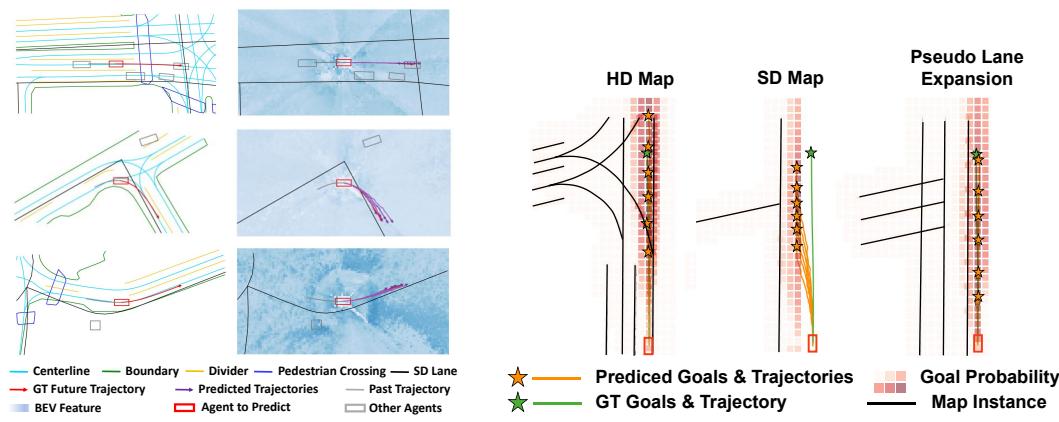
Method	SD Map Input			HD Map Input			SD-HD Gap		
	minADE ↓	minFDE ↓	MR ↓	minADE ↓	minFDE ↓	MR ↓	△ minADE ↓	△ minFDE ↓	△ MR ↓
HiVT	0.3998	0.8207	0.0918	0.3868	0.8063	0.0870	0.0130	0.0144	0.0048
HiVT + BEVPred+	0.3584	0.7261	0.0702	0.3365	0.6997	0.0683	0.0219	0.0267	0.0019
HiVT + Ours	0.3128	0.6637	0.0643	0.3092	0.6575	0.0633	0.0036	0.0062	0.0010
DenseTNT	1.2117	1.9849	0.2776	0.8809	1.4890	0.1903	0.3308	0.4959	0.0873
DenseTNT + BEVPred+	1.1940	2.0029	0.3285	0.7427	1.3419	0.1552	0.4513	0.6610	0.1733
DenseTNT + Ours	0.6854	1.2716	0.1540	0.6612	1.1807	0.1476	0.0242	0.0909	0.0064
MTR	0.3732	0.7732	0.0841	0.3464	0.7396	0.0803	0.0268	0.0336	0.0038
MTR + BEVPred+	0.3376	0.7132	0.0783	0.3128	0.6892	0.0730	0.0248	0.024	0.0053
MTR + Ours	0.2883	0.6359	0.0672	0.2871	0.6340	0.0670	0.0012	0.0019	0.0002

390 **Table 3: Comparison with Online HD Mapping Based Methods**

Base Model	HiVT (Zhou et al., 2022)	DenseTNT (Gu et al., 2021)	MTR (Shi et al., 2022)
Method	minADE ↓ minFDE ↓ MR ↓	minADE ↓ minFDE ↓ MR ↓	minADE ↓ minFDE ↓ MR ↓
Base	0.3657	0.7473	0.0710
Unc (Gu et al., 2024a)	0.3588	0.7232	0.0660
BEVPred (Gu et al., 2024b)	0.3652	0.7323	0.0710
Ours	0.3128	0.6637	0.0643
	0.6854	1.2716	0.1540
	0.2883	0.2871	0.6340
	0.6359	0.0670	0.0012
			0.6359
			0.0672

397 **Comparison with Online Mapping Based Motion Prediction.** As shown in Tab. 3, our method
 398 outperforms the state-of-the-art online mapping based motion prediction approach. Notably, online
 399 mapping based methods have the same target as ours so we make the comparison. However, the two
 400 approaches use different settings with extra information individually, which is discussed in Sec. 2.2.
 401

402 **Qualitative Analysis.** We visualize the motion prediction results of our method on anchor-free model
 403 in Fig. 6 in three scenarios: driving straight through an intersection, making a right turn at a T-junction,
 404 and following a left-curving road. Even when the SD map is not aligned with the road center, our
 405 method still accurately predicts future trajectories. Fig. 7 shows the results of the anchor-based model.
 406 In the scenario, the vehicle is on the right side of the road and will drive straight. The provided SD
 407 instance correctly indicates the road direction but is located far to the left, resulting in candidate
 408 target points that are also positioned on the left side, leading to substantial errors. By applying the
 409 Pseudo Lane Expansion method, the SD instance is extended laterally, with the parallel line on the
 410 right generating candidate target points ahead of the vehicle, allowing the model to accurately select
 411 the target point and predict a trajectory closely aligned with the ground truth.



422 **Figure 6: Qualitative Results of the**
 423 **Anchor-Free Model.** The purple lines with
 424 arrows show six predicted future trajec-
 425 tories, and the red lines represent GT future
 426 trajectories. The BEV Feature is colored
 427 by the max value of the hidden feature at
 428 each grid. Our method provides an accurate
 429 prediction for future motion.

430 **Figure 7: Qualitative Results of the Anchor-Based**
 431 **Model.** Left: the detailed HD map generates appropri-
 432 ate anchors in front of the agent. Middle: the sparser
 433 and misaligned SD map results in biased anchors.
 434 Right: Pseudo Lane Expansion in the model gener-
 435 ates extra anchors near the agent and helps predict the
 436 right goal and trajectory.

432
433
434
Table 4: **Ablation Study on Pseudo Lane
Expansion.**

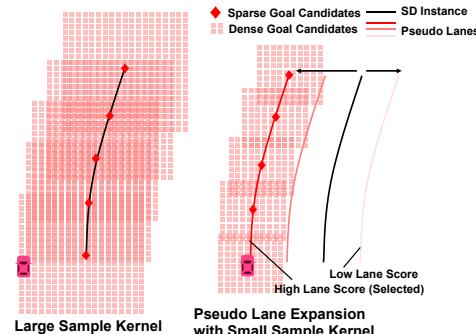
Map	Distances	minADE ↓	minFDE ↓	MR ↓
HDMAP	-	0.6612	1.1807	0.1476
SDMap	-	1.9735	3.8357	0.5892
SDMap	[0,3]	0.9627	1.5110	0.2451
SDMap	[0,3,6]	0.7941	1.3863	0.1627
SDMap	[0,2,4]	0.8472	1.3979	0.1722
SDMap	[0,3,6,9]	0.8132	1.3855	0.1630
SDMap	Adaptive	0.6854	1.2716	0.1540

442
443
444
445
446
Table 6: **Performance of Two Dense Goals Gen-
eration Strategy.** PLE refers to Pseudo Lane Ex-
pansion and APLE refers to Adaptive Pseudo Lane
Expansion.

Strategy	Kernel Size	minADE ↓	minFDE ↓	MR ↓
Original	2	1.9735	3.8357	0.5892
Original	6	1.2833	2.5889	0.3451
Original	10	1.3739	2.6381	0.3890
PLE	2	0.7941	1.3863	0.1627
APLE	2	0.6854	1.2716	0.1540

447
448
449
450
451
452
453
454
4.3 ABLATION STUDIES455
456
457
458
Enhanced Road Observation. As Table 5 shows, our Enhanced Road Observation improves the motion prediction performance with effective feature fusion. We test different normalization methods of head weights. Normalizing weights using either Softmax or Sigmoid functions results in poorer performance, while directly using unrestricted weights yields the best performance.459
460
461
462
463
464
Hyper-Parameters of Pseudo Lane Expansion. Table 4 presents the ablation study results for Pseudo Lane Expansion on the DenseTNT-based model. Insufficient or too close expanded lines can limit coverage, potentially missing areas near the vehicle to be predicted, especially when the bias of the SD instance is large. Conversely, an excessive number of lines can lead to interference and increased computational load. Our dynamic strategy adjusts the parameters based on the distribution of SD lanes and achieving the best performance.465
466
467
468
469
470
471
472
473
474
475
476
477
Ablation of Anchor Generation Strategy on DenseTNT. Our Pseudo Lane Expansion widens the coverage of dense goal points. There is another way to achieve this: using a larger sample kernel to simply generate more dense goal points without modifying sparse ones. However, Pseudo Lane Expansion achieves this in a more efficient and interpretable way because goal point selection is a hierarchical process in DenseTNT. Simply increasing the sampling kernel size to achieve a coverage similar to pseudo-lane expansion would require a kernel size of nearly 10. This would lead to an excessively large number (more than 2000 for a lane) of densely sampled points, significantly reducing model efficiency, which is shown in Fig. 8 (left). In contrast, Pseudo Lane Expansion uses a smaller sample kernel and generates pseudo lanes that hypothesize the approximate locations of potential drivable paths, as shown in Fig. 8 (right). Through lane scoring, the model identifies the pseudo lanes most likely to represent road structures. Dense sampling is then applied only around these selected pseudo-lanes. This approach reduces the number of densely sampled points and is specifically designed to adapt to the coarser and less aligned SD maps. Table 6 shows that our Pseudo Lane Expansion achieves better performance than trivially increasing the size of the sample kernel.478
479
480
5 CONCLUSION481
482
483
484
485
In this paper, we revisit SD map based motion prediction with end-to-end learning. To address the low resolution and alignment accuracy issues of SD maps, we design two modules called Enhanced Road Observation and Pseudo Lane Expansion. Experiments demonstrate that our method effectively improves the performance of motion prediction and narrows the performance gap between HD and SD maps, which shows the potential of the low-cost SD map based motion prediction paradigm.432
433
434
Table 5: **Ablation Study on Enhanced Road Ob-
servation.** F_{norm} denotes the normalization of head weights. “-” under “Module” means removing the module.

Module	F_{norm}	minADE ↓	minFDE ↓	MR ↓
-	-	0.3244	0.6879	0.0832
Enhanced Road Obs.	Softmax	0.3239	0.6918	0.0863
Enhanced Road Obs.	Sigmoid	0.3211	0.6879	0.0801
Enhanced Road Obs.	None	0.3128	0.6637	0.0643

455
456
457
458
Figure 8: **Large Sample Kernel VS. Pseudo Lane Expansion.**

486 **6 ETHICS STATEMENT**
487488 The research conducted in the paper conforms with the ICLR Code of Ethics.
489490 **7 REPRODUCIBILITY STATEMENT**
491492 We describe the proposed module in Sec. 3 and implementation details in Appendix A. The datasets
493 are public accessible. The code and checkpoints will be open-sourced for reproduction.
494495 **REFERENCES**
496497 *Yuriy Biktairov, Maxim Stebelev, Irina Rudenko, Oleh Shliazhko, and Boris Yangel. Prank: motion
498 prediction based on ranking. Advances in neural information processing systems, 33:2553–2563,
499 2020.*500 *Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liang, Qiang Xu, Anush
501 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
502 autonomous driving. arXiv preprint arXiv:1903.11027, 2019.*503 *Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urtasun. Spagnn: Spatially-aware graph
504 neural networks for relational behavior forecasting from sensor data. In 2020 IEEE International
505 Conference on Robotics and Automation (ICRA), pp. 9491–9497. IEEE, 2020.*506 *Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulessu, and Fabien Moutarde.
507 Home: Heatmap output for future motion estimation. In 2021 IEEE International Intelligent
508 Transportation Systems Conference (ITSC), pp. 500–507. IEEE, 2021.*509 *Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulessu, and Fabien Moutarde.
510 Gohome: Graph-oriented heatmap output for future motion estimation. In 2022 international
511 conference on robotics and automation (ICRA), pp. 9107–9114. IEEE, 2022.*512 *Junru Gu, Chen Sun, and Hang Zhao. Densentnt: End-to-end trajectory prediction from dense goal sets.
513 In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15303–15312,
514 2021.*515 *Junru Gu, Chenxu Hu, Tianyuan Zhang, Xuanyao Chen, Yilun Wang, Yue Wang, and Hang Zhao.
516 Vip3d: End-to-end visual trajectory prediction via 3d agent queries. In Proceedings of the
517 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5496–5506, 2023.*518 *Xunjiang Gu, Guanyu Song, Igor Gilitschenski, Marco Pavone, and Boris Ivanovic. Producing
519 and leveraging online map uncertainty in trajectory prediction. In Proceedings of the IEEE/CVF
520 Conference on Computer Vision and Pattern Recognition (CVPR), 2024a.*521 *Xunjiang Gu, Guanyu Song, Igor Gilitschenski, Marco Pavone, and Boris Ivanovic. Accelerating
522 online mapping and behavior prediction via direct bev feature attention. In European Conference
523 on Computer Vision (ECCV), 2024b.*524 *Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps. IEEE Pervasive
525 computing, 7(4):12–18, 2008.*526 *Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
527 Tianwei Lin, Wenhui Wang, Lewei Lu, Xiaosong Jia, Qiang Liu, Jifeng Dai, Yu Qiao, and
528 Hongyang Li. Planning-oriented autonomous driving. In Proceedings of the IEEE/CVF Conference
529 on Computer Vision and Pattern Recognition, 2023.*530 *Boris Ivanovic, Guanyu Song, Igor Gilitschenski, and Marco Pavone. trajdata: A unified interface to
531 multiple human trajectory datasets. Advances in Neural Information Processing Systems, 36, 2024.*532 *Bo Jiang, Shaoyu Chen, Xinggang Wang, Bencheng Liao, Tianheng Cheng, Jiajie Chen, Helong
533 Zhou, Qian Zhang, Wenyu Liu, and Chang Huang. Perceive, interact, predict: Learning dynamic
534 and static clues for end-to-end motion prediction. arXiv preprint arXiv:2212.02181, 2022.*

540 Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang, Wenyu Liu,
 541 Chang Huang, and Xinggang Wang. Vad: Vectorized scene representation for efficient autonomous
 542 driving. *ICCV*, 2023.

543

544 Zhou Jiang, Zhenxin Zhu, Pengfei Li, Huan ang Gao, Tianyuan Yuan, Yongliang Shi, Hang Zhao, and
 545 Hao Zhao. P-mapnet: Far-seeing map generator enhanced by both sdmap and hdmap priors, 2024.

546

547 Jiaqi Li, Pingfan Jia, Jiaxing Chen, Jiaxi Liu, and Lei He. Local map construction methods with sd
 548 map: A novel survey. *arXiv preprint arXiv:2409.02415*, 2024a.

549

550 Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: An online hd map construction and
 551 evaluation framework. In *2022 International Conference on Robotics and Automation (ICRA)*, pp.
 552 4628–4634. IEEE, 2022a.

553

554 Tianyu Li, Peijin Jia, Bangjun Wang, Li Chen, Kun Jiang, Junchi Yan, and Hongyang Li. Lanesegnet:
 555 Map learning with lane segment perception for autonomous driving. In *ICLR*, 2024b.

556

557 Zhiqi Li, Wenhui Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and Jifeng Dai.
 558 Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal
 559 transformers. *arXiv preprint arXiv:2203.17270*, 2022b.

560

561 Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel Urtasun. Learning
 562 lane graph representations for motion forecasting. In *Computer Vision–ECCV 2020: 16th European
 563 Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16*, pp. 541–556. Springer,
 564 2020.

565

566 Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng Cheng, Qian Zhang, Wenyu Liu, and
 567 Chang Huang. Maptr: Structured modeling and learning for online vectorized hd map construction.
 568 In *International Conference on Learning Representations*, 2023.

569

570 Jing-Yan Liao, Parth Doshi, Zihan Zhang, David Paz, and Henrik Christensen. Osm vs hd maps:
 571 Map representations for trajectory prediction. In *2024 IEEE/RSJ International Conference on
 572 Intelligent Robots and Systems (IROS)*, pp. 9990–9996. IEEE, 2024.

573

574 Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, and Alberto Del Bimbo. Mantra:
 575 Memory augmented networks for multiple trajectory prediction. In *Proceedings of the IEEE/CVF
 576 conference on computer vision and pattern recognition*, pp. 7143–7152, 2020.

577

578 Peter Mooney, Marco Minghini, et al. A review of openstreetmap data. *Mapping and the citizen
 579 sensor*, pp. 37–59, 2017.

580

581 Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs
 582 by implicitly unprojecting to 3d. In *Computer Vision–ECCV 2020: 16th European Conference,
 583 Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16*, pp. 194–210. Springer, 2020.

584

585 Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Motion transformer with global intention
 586 localization and local movement refinement. *Advances in Neural Information Processing Systems*,
 587 2022.

588

589 Huijie Wang, Tianyu Li, Yang Li, Li Chen, Chonghao Sima, Zhenbo Liu, Bangjun Wang, Peijin
 590 Jia, Yuting Wang, Shengyin Jiang, Feng Wen, Hang Xu, Ping Luo, Junchi Yan, Wei Zhang, and
 591 Hongyang Li. Openlane-v2: A topology reasoning benchmark for unified 3d hd mapping. In
 592 *NeurIPS*, 2023.

593

594 Yuwen Xiong, Zhiqi Li, Yuntao Chen, Feng Wang, Xizhou Zhu, Jiapeng Luo, Wenhui Wang, Tong
 595 Lu, Hongsheng Li, Yu Qiao, Lewei Lu, Jie Zhou, and Jifeng Dai. Efficient deformable convnets:
 596 Rethinking dynamic and sparse operator for vision applications. *arXiv preprint arXiv:2401.06197*,
 597 2024.

598

599 Tianyuan Yuan, Yicheng Liu, Yue Wang, Yilun Wang, and Hang Zhao. Streammapnet: Streaming
 600 mapping network for vectorized online hd map construction. In *Proceedings of the IEEE/CVF
 601 Winter Conference on Applications of Computer Vision (WACV)*, pp. 7356–7365, January 2024.

594 Shuang Zeng, Xinyuan Chang, Xinran Liu, Zheng Pan, and Xing Wei. Driving with prior maps:
 595 Unified vector prior encoding for autonomous vehicle mapping. *arXiv preprint arXiv:2409.05352*,
 596 2024.

597 Hengyuan Zhang, David Paz, Yuliang Guo, Arun Das, Xinyu Huang, Karsten Haug, Henrik I
 598 Christensen, and Liu Ren. Enhancing online road network perception and reasoning with standard
 599 definition maps. *arXiv preprint arXiv:2408.01471*, 2024.

600 Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Ben Sapp, Balakrishnan Varadarajan, Yue Shen,
 601 Yi Shen, Yuning Chai, Cordelia Schmid, et al. Tnt: Target-driven trajectory prediction. In
 602 *Conference on Robot Learning*, pp. 895–904. PMLR, 2021.

603 Zikang Zhou, Luyao Ye, Jianping Wang, Kui Wu, and Kejie Lu. Hvlt: Hierarchical vector transformer
 604 for multi-agent motion prediction. In *Proceedings of the IEEE/CVF Conference on Computer
 605 Vision and Pattern Recognition (CVPR)*, 2022.

606 Zikang Zhou, Jianping Wang, Yung-Hui Li, and Yu-Kai Huang. Query-centric trajectory prediction.
 607 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 608 17863–17873, 2023.

609 Guangyu Zhu, Fuquan Zhao, Haokun Song, and Zongwei Liu. Cost analysis of vehicle-road
 610 cooperative intelligence solutions for high-level autonomous driving: A beijing case study. *Journal
 611 of Advanced Transportation*, 2024(1):6170743, 2024.

612 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
 613 Deformable transformers for end-to-end object detection. *arXiv preprint arXiv:2010.04159*, 2020.

614

618 A IMPLEMENTATION DETAILS

619 We train our model on 8 RTX 4090 GPUs with a batch size of 1 on each GPU. We set the learning
 620 rate to 2×10^{-4} and the number of epochs to 48, with no dropout for faster convergence.

621 For the BEV encoder, we adopt the official configuration of BEVFormer-base (Li et al., 2022b). The
 622 encoder takes a temporal queue of 4 samples as input and obtains BEV features with 6 encoder layers.
 623 The BEV feature has a size of 200x200x256 and is in the Lidar coordinate system.

624 For the motion prediction models, we strictly align the setting of original modules in HiVT and
 625 DenseTNT with previous works (Gu et al., 2024a;b) for fair comparison. Specifically, we use a
 626 4-layer temporal transformer, a 1-layer local interaction module, and a 3-layer global interaction
 627 module of HiVT. We only add new modules to these two base models without removing existing
 628 modules.

629 For MTR (Shi et al., 2022) model, we integrate BEV-Agent Encoder in Query-Centric Scene-Encoder
 630 module and Enhanced Road Observation in each decoder layer. The number of layers and the training
 631 hyper-parameters are aligned with default setting.

635 B LLM USAGE

636 LLMs are used in writing for improving grammar and correcting typos.

637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647