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Abstract

The min-max vehicle routing problem (min-max
VRP) traverses all given customers by assigning
several routes and aims to minimize the length of
the longest route. Recently, reinforcement learn-
ing (RL)-based sequential planning methods have
exhibited advantages in solving efficiency and op-
timality. However, these methods fail to exploit
the problem-specific properties in learning rep-
resentations, resulting in less effective features
for decoding optimal routes. This paper considers
the sequential planning process of min-max VRPs
as two coupled optimization tasks: customer par-
tition for different routes and customer naviga-
tion in each route (i.e., partition and navigation).
To effectively process min-max VRP instances,
we present a novel attention-based Partition-and-
Navigation encoder (P&N Encoder) that learns
distinct embeddings for partition and navigation.
Furthermore, we utilize an inherent symmetry in
decoding routes and develop an effective agent-
permutation-symmetric (APS) loss function. Ex-
perimental results demonstrate that the proposed
Decoupling-Partition-Navigation (DPN) method
significantly surpasses existing learning-based
methods in both single-depot and multi-depot min-
max VRPs. Our code is available at 1.
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1. Introduction
The vehicle routing problem (VRP) aims to determine a set
of routes that satisfies the demand of all customers by min-
imizing a distance-based objective function (Toth & Vigo,
2002; 2014). As a variant of VRP, the min-max vehicle
routing problem (min-max VRP), instead of minimizing the
total length of all routes (i.e., min-sum), seeks to reduce
the length of the longest one among all the routes (i.e., min-
max). Many real-world applications, such as transportation
planning (Delgado Serna & Pacheco Bonrostro, 2001), dis-
aster management (Cheikhrouhou & Khoufi, 2021), and
robotics (Faigl et al., 2016; David & Rögnvaldsson, 2021)
are more consistent with the min-max VRP due to their
operational requirements. Although the min-max VRP is
of great significance and has attracted widespread attention,
solving it is still very challenging (Kumar & Panneerselvam,
2012). The min-max VRP emphasizes balancing the lengths
between different routes, thereby it considers not only the
order of customers within each route but also the partition
of customers (França et al., 1995). Efficient solvers should
simultaneously address both a customer partition task and
a navigation task for customers assigned to each route (i.e.,
partition and navigation tasks) (Arkin et al., 2006; Carlsson
et al., 2009; Narasimha et al., 2013; Vandermeulen et al.,
2019).

Recently, reinforcement learning (RL)-based neural solvers
have been successfully applied to classical min-sum VRPs
such as the traveling salesman problem (TSP) (Bello et al.,
2017) and the capacitated vehicle routing problem (CVRP)
(Nazari et al., 2018). These solvers show competitive per-
formances in efficiency and accuracy compared to tradi-
tional heuristic methods (?Gao et al., 2023a). Meanwhile,
some learning-based methods have emerged to handle some
min-max VRP variants. These methods include two-stage
methods (Kaempfer & Wolf, 2018; Hu et al., 2020; Liang
et al., 2023), learning improvement heuristics (Kim et al.,
2022a), parallel planning methods (Cao et al., 2021; Park
et al., 2021; Gao et al., 2023b), and sequential planning
methods (Son et al., 2024). Two-stage methods and learning
improvement heuristics highly rely on handcrafted heuristic
algorithms (Liang et al., 2023). Parallel planning methods
employ multiple decentralized models to construct the set
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Figure 1. (a) The instances and solutions of four involved min-max VRPs. (b) The sequential planning framework proposed in Son
et al. (2024). (c) The sequential planning framework of the proposed DPN. To decouple the partition and navigation features and
improve the representation ability, we conduct modifications to the existing framework by proposing a novel P&N Encoder, utilizing
agent-permutation-symmetries (APS) in loss calculation, and introducing a Roataion-based positional encoding (Rotation-based PE) for
agent representations.

of routes in parallel, which derives a complex joint action
space and causes difficulties in training (Son et al., 2024).
Sequential planning methods, on the other hand, sequen-
tially construct the set of routes with a single model. This
approach significantly reduces the decision space complex-
ity in training, facilitating the exploration of the optimal
solution.

As shown in Figure 1(b), existing sequential planning
methods process min-max VRP instances with an encoder-
decoder model structure and utilize multiple agent embed-
dings to construct the routes one by one. However, as spe-
cialized solvers of min-max VRPs, existing methods fail to
leverage problem-specific properties, potentially impairing
their representation ability. Firstly, directly processing the
merged feature through several self-attention-based encoder
layers leads to ambiguous representations for customers and
agents. This ambiguity blurs the distinction between the
partition and navigation tasks, potentially resulting in routes
with imbalanced lengths. Moreover, the decoding strategy
that employs agents to generate routes in a fixed order (i.e.,
from the first agent to the last one) could potentially trap
the solver in local minima. Lastly, the adopted sinusoidal
positional encoding (PE) is crucial for learning partition,
but excluding the depot coordinates in its formula might
weaken the model’s generalization ability across different
depot locations.

This paper aims to fully exploit the problem-specific prop-
erties of the min-max VRP, particularly the requirements

of partition and navigation. To preserve independent rep-
resentations for partition and navigation, we propose the
Decoupling-Partition-Navigation (DPN) method. As shown
in Figure 1(c), it adopts a novel attention-based Partition-
and-Navigation encoder (P&N Encoder) consisting of a nav-
igation part and a partition part in each layer. Moreover, we
propose an agent-permutation-symmetric (APS) loss func-
tion, leveraging the equivalence of optima to improve train-
ing efficiency. Beyond that, we use a depot-location-aware
Rotation-based PE to enhance partition-related representa-
tions. We conduct experiments on the four min-max VRPs
exhibited in Figure 1(a), i.e., min-max multi-agent traveling
salesman problem (min-max mTSP), min-max multi-agent
pickup and delivery problem (min-max mPDP), min-max
multi-depot VRP (min-max MDVRP), and min-max flexi-
ble multi-depot VRP (min-max FMDVRP). Experimental
results indicate that DPN can significantly outperform the
other neural solvers on all four min-max VRPs.

The contributions of this paper can be summarized as fol-
lows: 1): We propose an RL-based sequential planning
method for min-max VRPs that utilizes a novel attention-
based P&N Encoder to process decoupled representations
of the partition and navigation tasks. 2): The proposed
DPN leverages symmetries in the permutation of agents
and presents a novel loss function that speeds up the con-
vergence in the RL training. 3): Experiments demonstrate
that the proposed DPN can significantly outperform existing
neural solvers on four representative min-max VRPs.
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2. Preliminaries
2.1. Sequential Planning for Solving Min-max VRPs

A min-max VRP instance with M routes (generated by
M agents), D depots, and N customers is defined over a
graph G = {V, E}. Each vi ∈ V represents a depot or a
customer and eij ∈ E represents the edge between node vi
and vj . The solution (i.e., a set of routes) T is formed by
node indexes in V , and each customer in V can only get
visited once. Moreover, the number of routes in solution
T is restricted to M (i.e., T = {τ 1, . . . , τM}). Each route
τ i for i ∈ {1, . . . ,M} only starts and ends at a depot. The
objective function of the min-max VRP can be formulated
as

minimize
T ∈Ω

f(T ) = max
i∈{1,...,M}

L(τ i), (1)

where Ω is a set consisting of all feasible solutions, and
L(τ i) calculates the Euclidean length of route τ i.

Unlike the parallel planning method that simultaneously
constructs the M routes, the sequential planning methods
generate the M routes one by one. During the construc-
tion of each route, the sequential planning model gradu-
ally selects the next customer to extend the route and fi-
nally returns to the depot. The sequential planning process
can be formalized as a Markov Decision Process (MDP)
M = {S,A, r,P} (Son et al., 2024). At the t-th step, the
action at ∈ A represents the index of the selected node
from unvisited customers or the set of depots, and the state
st ∈ S records the partial solution currently constructed,
the instance G, and the number of agents M . The terminal
state sT contains a feasible solution T ∈ Ω with a min-max
reward rT = −f(T ) formulated in Eq. (1). Parameterized
by θ, the policy pθ for sampling the set of routes τ can be
calculated as

pθ(T |G,M) =

T−1∏
t=1

pθ(at|st) =
M∏
i=1

p(τ i|τ 1:i,G, θ), (2)

where τ 1:i represents all the routes generated before τ i.
More details of the MDP are presented in Appendix B.1 and
a comprehensive literature review about neural solvers is in
Appendix A.

2.2. Partition and Navigation in Min-max VRPs

The tasks of assigning customers to M routes (i.e., partition)
and optimizing the routing of customers assigned to each
route (i.e., navigation) are considered simultaneously in
min-max solvers (Carlsson et al., 2009; Narasimha et al.,
2013). These two tasks can be defined as follows:

Partition. Customers and depots assigned to the route
τ i for i ∈ {1, . . . ,M} forms a partition of G. Each sub-
graph is denoted as Gi. The partition function Pθ,M (G) =

{G1, . . . ,GM} with parameter θ generates sub-graph parti-
tions with⋂

i∈{1,...,M}

Gi ⊆ Depots,
⋃

i∈{1,...,M}

Gi = G. (3)

Navigation. The navigation task (generally being TSP)
optimizes routings in each sub-graph Gi for i ∈ {1, . . . ,M}.
For sequential planning methods, if the number of nodes
in Gi is ni, the navigation policy πθ of Gi can written as
follows:

πθ(τ
i|Gi) =

ni∏
t=1

p(τ i(t)|τ i(1 : t),Gi, θ), (4)

where τ i(t) is the t-th node index in τ i and τ i(1 : t) rep-
resents indexes of nodes selected before τ i(t). Integrating
the partition and navigation policy into Eq. (1), the optimal
parameter θ∗ can be obtained equivalently as follows:

θ∗ = argmin
θ

max
Gi∈Pθ,M (G)

Eπθ(τ
i|Gi)

[
L(τ i)

]
. (5)

2.3. Transformer Blocks

The Transformer block (Vaswani et al., 2017) is widely
adopted in sequential planning models. It contains a multi-
head-attention function and a feed-forward function.

Attention Mechanism. The attention mechanism is a fun-
damental component in deep learning models (Niu et al.,
2021). The classical attention function allows two embed-
dings to share information, and it can be expressed as

Y = Attn(X,C) = Softmax
(
XWQ(CWK)⊺√

d

)
CWV ,

(6)
where X ∈ Rn×d and C ∈ Rm×d are inputted embed-
dings. WQ,WK ∈ Rd×dk , and WV ∈ Rd×dv are trainable
query, key, and value parameters, respectively. The Softmax
function is applied independently across each row, and the
output of the attention function is a matrix Y ∈ Rn×d. As a
special case, the self-attention function calculates the atten-
tion function with two same inputs (i.e., Attn(X ′, X ′)). For
more efficiency, the multi-head attention function applies
the attention function in Eq. (6) on H different “heads” with
independent parameters, i.e.,

MHA(X,C) = Concat(Y1, . . . , YH)Wp,

where Yi = Attni(X,C),∀i ∈ {1, . . . ,H},
(7)

where dk = dv = d
H in each Attni. Wp ∈ Rd×d denotes a

trainable square projection matrix that combines different at-
tention heads. The transformer blocks (Vaswani et al., 2017;
Luo et al., 2024) also include the feed-forward function, i.e.,

FF(X) = (ReLU(XW1))W2, (8)
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Figure 2. Initial embeddings and the proposed P&N Encoder.

where FF and ReLU represent the feed-forward function
and the ReLU activation function (Nair & Hinton, 2010),
respectively. W1 ∈ Rd×dh , and W2 ∈ Rdh×d are trainable
projections and dh represents the hidden space dimension.

3. Methodology
As shown in Figure 1(c), DPN adopts the general frame-
work of the sequential planning method with a multi-layer
encoder and a single-layer decoder. The L-layer encoder
processes the initial embeddings of customer coordinates to
customer embeddings and encodes the initial embeddings of
depot coordinates and the M -route constraint (represented
by PEs) to agent embeddings. By handling these embed-
dings and a contextual representation of the MDP state
st, the decoder is repeatedly employed to generate actions.
The proposed DPN integrates problem-specific properties
in three key components of the original sequential planning
methods. Firstly, DPN presents a bi-part attention-based
P&N Encoder, which utilizes separate structures to capture
decoupled features for partition and navigation. Secondly,
we develop a novel agent-permutation-symmetric loss (APS-
Loss) function that leverages symmetries in decoding routes
for effective explorations in customer partition. Finally,
we adopt the Rotation-based PE to incorporate the coordi-
nates of depots into the PE calculation to achieve superior
representations for customer partition.

The proposed DPN can efficiently address both single-depot
and multi-depot min-max VRPs. For clarity, this Section
only illustrates the details of DPN in solving the single-
depot ones (e.g., the min-max mTSP). The P&N Encoder
for multi-depot min-max VRPs can be found in Section 5.1,
with additional implementation details, motivations, and
necessity statements provided in Appendix C.

3.1. P&N Encoder

Figure 2 depicts the input and architecture of the proposed
P&N Encoder. Linear projections and several PEs convert
an instance into initial embeddings, and each layer of the
P&N Encoder comprises two main components: a naviga-

tion part and a partition part.

Initial Embeddings. A single-depot instance with N cus-
tomers and M routes (i.e., number of agents) is mapped
to initial agent embeddings H(0)

a ∈ RM×d and initial cus-
tomer embeddings H(0)

c ∈ RN×d before being fed to the
P&N Encoder. In processing these embeddings, the co-
ordinate of the depot xd ∈ R1×2 and the coordinates of
customers x ∈ RN×2 are embedded into H

(0)
a and H

(0)
c

via linear projections. M various d-dimensional PEs are
also added in H

(0)
a to distinguish the multiple agents.

Motivation. As Figure 1(b), the previous sequential plan-
ning methods adopt multi-head self-attention to process
the merged features of agents and customers (i.e., compute
multi-head self-attention to Concat[H(0)

a , H
(0)
c ]). However,

as further discussed in Appendix C.1, these calculations can
be decomposed into four distinct kinds of relations, and the
Softmax function in self-attention functions directly normal-
izes the customer-customer relations and the agent-customer
relations, potentially confusing the heterogeneous represen-
tations for partition and navigation. To achieve decoupled
representations, the proposed P&N Encoder structurally sep-
arates the representation encoding process of these two tasks
into navigation and partition parts, respectively. In the nav-
igation part, customer embeddings conduct self-attention
for navigation features. In the partition part, two attention
blocks are calculated between agents and customers to en-
hance representations for the customer partition task.

Navigation Part. The partition part in the l-th layer P&N
Encoder calculates customer embeddings H(l−1)

c indepen-
dently by a multi-head self-attention block. This part fo-
cuses on customer routing based on H

(l−1)
c and excludes the

impact of learning partitions. It consists of an MHA func-
tion, a feed-forward function (FF), and two skip connections
with trainable parameters α1 and α2 (Rezero normalization
(Bachlechner et al., 2021)), i.e.,

X̂(l)
c = α1 ∗ MHA(H(l−1)

c , H(l−1)
c )) +H(l−1)

c ,

X(l)
c = α2 ∗ FF(X̂(l)

c ) + X̂(l)
c .

(9)
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Partition Part. The following partition part is designed
to process representations related to the customer partition
task. Agent features H

(l−1)
a and customer features from

the navigation part X(l)
c are fused through two cascaded

attention blocks. In this part, agents are supposed to inte-
grate features from their assigned customers (i.e., sub-graph
Gi for i-th agent), while customers can derive representa-
tions about their sub-graph assignments as well. Moreover,
according to Eq. (3), each customer can only be assigned
to one sub-graph, so each customer should only integrate
the embeddings of one among the M agents. To meet this
requirement, we remove the Softmax temperature in the
Attn function (Eq. (6)) for fast convergence and design a
multi-head sharp attention function (denoted as MHSA) as

MHSA(X,C) = Concat(S1, . . . , SH)WP ,

where Si = Softmax (XWQ(CWK)⊺)CWV .
(10)

The total function of the partition part employs four residual
links with parameters α3, . . . , α6, i.e.,

Ĥ(l)
a = α3 ∗ MHA(H(l−1)

a , X(l)
c ) +H(l−1)

a , (11)

H(l)
a = α4 ∗ FF(Ĥ(l)

a ) + Ĥ(l)
a , (12)

Ĥ(l)
c = α5 ∗ MHSA(X(l)

c , H(l)
a ) +X(l)

c , (13)

H(l)
c = α6 ∗ FF(Ĥ(l)

c ) + Ĥ(l)
c . (14)

3.2. APS-Loss

Leveraging symmetry can effectively promote the training
process of neural combination optimization solvers (Kwon
et al., 2020; 2021; Kim et al., 2022b). Correspondingly,
as another important contribution, DPN develops a novel
agent-permutation-symmetry (APS) in solving min-max
VRPs. For an instance G, and an index order of agents
o = (o1, o2, . . . , oM ) (i.e., permutation) for generating
the M routes in solution T , the APS maintains an equiv-
alence optimal objective functions for any permutations
o. The APS holds because, for all the o = (o1, . . . , oM ),
and {Gi|i ∈ {1, . . . ,M}} being optimal sub-graph par-
titions of G, the set of routes in the optimal solution
T ∗ = {τ∗i ∼ πθ(·|Goi) for i ∈ {1 . . . ,M}} keeps un-
ordered. Hence, the objective function (i.e., the longest
route length) is identical for any permutations. πθ(·|Goi)
represents the policy derived from Eq. (4).

As shown in Figure 1(c), DPN leverages the APS for a
better baseline with K sampled permutations o(1) to o(K).
The APS-equipped baseline b(G) is the average objective
function of the K generated solutions estimated as

b(G) = 1

K

K∑
k=1

max
i∈{1,...,M}

L(τ i ∼ pθ(·|Go
(k)
i )). (15)

APS loss function L(G) (i.e., APS-Loss) is processed by the

REINFORCE (Williams, 1992) algorithm as:

π′
θ(T |G,M,o(k)) =

M∏
i=1

πθ(τ
i|Go

(k)
i ), (16)

∇θL(G) =− 1

K

K∑
k=1

Eπ′
θ(T |G,M,o(k)) (17)[

(f(T )− b(G))∇θlog π′
θ(T |G,M,o(k))

]
,

where features of the sub-graph Go
(k)
i are supposed to be

represented in the o
(k)
i -th agent embedding in DPN. The

APS-Loss can promote explorations in learning representa-
tions and alleviate the bias in embeddings caused by prede-
termined decoding orders.

3.3. Rotation-based PE

In sequential planning methods (Son et al., 2024), different
agents starting from the same depot are distinguished by
positional encodings. Existing sequential planning methods
adopt the sinusoidal PE (Vaswani et al., 2017) for agent
distinction. The d-dimensional sinusoidal PE (denoted as
SPE ∈ RM×d) in the case is defined as

SPE(m, q) =

 sin(m/10, 000
⌊q/2⌋

d ), q ≡ 0(mod 2)

cos(m/10, 000
⌊q/2⌋

d ), q ≡ 1(mod 2)
.

(18)
In Appendix C.5, we illustrate how a PE conveys the angle-
based information when representing the sub-graphs in the
partition part of the P&N Encoder. The angle-based inter-
val between sub-graphs is highly correlated with the depot
location (França et al., 1995), so SPE excluding the depot
coordinates will harm the partition optimality. To introduce
the depot coordinates to PEs, we refer to the concept of
Rotary PE (Su et al., 2024) and design the Rotation-based
PE ∈ RM×d for a depot-aware agent distinction as

PE(m, q) = Re
[
(xdWa + ba) exp(im/1, 000

⌊q/2⌋
d )

]
,
(19)

where i is an imaginary unit (i.e., i2 = −1) and xdWa + ba
is a trainable linear projection of the depot coordinate xd ∈
R2. PE is calculated in the complex vector space, and Re
represents the real part of a complex number. Additionally,
Appendix C.6 provides an intuitive way of calculating PE.

4. Experiments: Single-depot Min-max VRPs
To evaluate the effectiveness of the proposed DPN method
on single-depot min-max VRPs, we implement it on min-
max mTSP and min-max mPDP. Detailed formulations of
the two problems are provided in Appendix B.

Training Settings. For both the min-max mTSP and min-
max mPDP, we conduct training from scratch on 50-scale
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Table 1. The average objective function values(i.e., Obj.), gaps to the best algorithm (i.e., Gap), and testing times (i.e., Time) obtained by
each algorithm on 12 datasets. Each set contains 100 randomly generated medium-scale instances. The overall best results are highlighted
in bold, and the algorithm that produces the best results among all five learning-based results is highlighted in a gray background.

Min-max mTSP50(N=49,D=1)
M= 3 5 7

Methods Obj. Gap Time Obj. Gap Time Obj. Gap Time
HGA 2.4184 - 7m 2.0154 - 6m 1.9386 - 4m
LKH3 2.4301 0.4816% 2m 2.0182 0.1351% 4m 1.9408 0.1157% 7m
OR-Tools(600s) 2.5878 7.0030% 98s 2.1584 7.0938% 3m 2.0992 8.2849% 3m
DAN 2.9899 23.629% 22s 2.3225 15.238% 23s 2.1492 10.864% 30s
Equity-Transformer 2.5643 6.0301% <1s 2.0798 3.1935% <1s 1.9618 1.1964% <1s
Equity-Transformer-×8aug 2.4901 2.9641% <1s 2.0399 1.2139% <1s 1.9465 0.4076% <1s
DPN 2.5149 3.9888% <1s 2.0545 1.9405% <1s 1.9549 0.8413% <1s
DPN-×8aug 2.4654 1.9433% <1s 2.0337 0.9087% <1s 1.9460 0.3804% <1s
DPN-×8aug-×16per 2.4637 1.8728% 1s 2.0324 0.8416% 1s 1.9454 0.3503% 1s

Min-max mTSP100(N=99,D=1)
M= 5 7 10

Methods Obj. Gap Time Obj. Gap Time Obj. Gap Time
HGA 2.1893 - 20m 1.9963 0.1240% 16m 1.9507 0.0273% 14m
LKH3 2.1924 0.1410% 16m 1.9939 - 17m 1.9502 - 17m
OR-Tools(600s) 2.3477 7.2346% 5m 2.1627 8.4671% 6m 2.1465 10.068% 7m
DAN 2.6995 23.305% 40s 2.3115 15.930% 42s 2.1556 10.534% 46s
Equity-Transformer 2.3042 5.2456% <1s 2.0487 2.7480% <1s 1.9583 0.4153% <1s
Equity-Transformer-×8aug 2.2563 3.0577% <1s 2.0225 1.4345% <1s 1.9534 0.1652% <1s
DPN 2.2704 3.7017% <1s 2.0335 1.9860% <1s 1.9587 0.4377% <1s
DPN-×8aug 2.2346 2.0703% <1s 2.0143 1.0223% <1s 1.9534 0.1671% <1s
DPN-×8aug-×16per 2.2314 1.9240% 1s 2.0126 0.9388% 1s 1.9532 0.1542% 1s

Min-max mPDP50(N=50,D=1)
M= 3 5 7

Methods Obj. Gap Time Obj. Gap Time Obj. Gap Time
OR-Tools(600s) 3.6796 6.1250% 20m 2.9924 7.8586% 23m 2.7867 10.663% 29m
Equity-Transformer 5.1494 48.515% <1s 3.7159 33.937% <1s 3.1586 25.431% <1s
Equity-Transformer-×8aug 4.5857 32.258% 1s 3.3566 20.986% 1s 2.8764 14.227% 1s
DPN 3.6247 4.5413% <1s 2.8946 4.3347% <1s 2.5889 2.8081% <1s
DPN-×8aug 3.4744 0.2082% 1s 2.7803 0.2141% 1s 2.5223 0.1651% 1s
DPN-×8aug-×16per 3.4672 - 1s 2.7744 - 1s 2.5182 - 1s

Min-max mPDP100(N=100,D=1)
M= 5 7 10

Methods Obj. Gap Time Obj. Gap Time Obj. Gap Time
OR-Tools(600s) 14.315 309.48% 4h 14.486 378.96% 5h 14.500 438.07% 5h
Equity-Transformer 5.5571 58.958% <1s 4.4831 48.234% <1s 3.7483 39.092% <1s
Equity-Transformer-×8aug 5.0735 45.123% 1s 4.1152 36.069% 1s 3.4411 27.690% 1s
DPN 3.6500 4.4054% <1s 3.1404 3.8364% <1s 2.7998 3.8933% <1s
DPN-×8aug 3.5123 0.4673% 1s 3.0430 0.6165% 1s 2.7101 0.5647% 1s
DPN-×8aug-×16per 3.4960 - 2s 3.0244 - 2s 2.6949 - 2s

Table 2. The average objective function values (i.e., Obj.) on 100 randomly generated larger-scale min-max mTSP or min-max mPDP
instances. The overall best results and the best learning-based results are highlighted in bold and gray backgrounds, respectively.

Min-max mTSP200 Min-max mTSP500 Min-max mTSP1,000
M= 10 15 20 30 40 50 50 75 100

Methods Obj. Obj. Obj. Obj. Obj. Obj. Obj. Obj. Obj.
HGA 1.9861 1.9628 1.9627 2.0061 2.0061 2.0061 2.0448 2.0448 2.0448
LKH3 1.9817 1.9628 1.9628 2.0061 2.0061 2.0061 2.0448 2.0448 2.0448
OR-Tools(600s) 2.3711 2.3687 2.3687 8.9338 8.9356 8.9308 16.436 16.436 16.436
NCE* 2.07 1.97 1.96 2.07 2.01 2.01 2.13 2.07 2.05
DAN 2.3586 2.1732 2.1151 2.2345 2.1610 2.1465 2.3390 2.2544 2.2394
ScheduleNet* 2.35 2.13 2.07 2.16 2.12 2.09 2.26 2.17 2.16
Equity-Transformer-F-×8aug 2.0500 1.9688 1.9631 2.0165 2.0084 2.0068 2.0634 2.0531 2.0488
DPN-F-×8aug 2.0030 1.9647 1.9628 2.0065 2.0061 2.0061 2.0452 2.0448 2.0448
DPN-F-×8aug-×16per 1.9993 1.9640 1.9628 2.0061 2.0061 2.0061 2.0450 2.0448 2.0448

Min-max mPDP200 Min-max mPDP500 Min-max mPDP1,000
M= 10 15 20 30 40 50 50 75 100

Methods Obj. Obj. Obj. Obj. Obj. Obj. Obj. Obj. Obj.
OR-Tools(600s) 45.299 45.387 45.131 140.85 140.92 140.79 280.22 280.19 280.14
Equity-Transformer-F-×8aug 4.9143 3.8186 3.3417 4.4619 3.7723 3.4455 4.9328 3.9198 3.5241
Equity-Transformer-F-sample* 4.68 3.65 3.18 4.11 3.52 3.23 4.73 3.77 3.38
DPN-F-×8aug 3.3227 2.8630 2.6735 3.1615 3.0264 2.9379 3.2802 3.0673 3.0000
DPN-F-×8aug-×16per 3.2959 2.8363 2.6519 3.0878 2.9510 2.8690 3.2263 2.9811 2.9114
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(i.e., min-max mTSP50 and min-max mPDP50) and 100-
scale problems respectively, and then conduct fine-tuning
for larger problem scales (200-, 500-, and 1,000-scale). For
all the scales involved, the DPN utilizes a 6-layer P&N
Encoder, a uniform sampling of the number of agents M
from 2 to 10, and a fixed number of permutations K to 60.
The MHA function comprises 8 heads H = 8, with the
embedding dimension d = 128 and the hidden dimension
dh = 512. The Adam optimizer (Kingma & Ba, 2014) is
employed with weight decay β = 1, and the learning rate
α = 1e−4 in training models from scratch and being α =
1e−5 for the fine-tuning. Moreover, the hyperparameters for
various problems and scales are provided in Appendix D.1.
With utilizing an NVIDIA Tesla V100S GPU, the training
duration for the DPN targeting min-max mTSP100 and min-
max mPDP100 span three and five days, respectively, and
the fine-tuning for larger scale is completed within a few
hours.

4.1. Performance Evaluation

Baselines. We select representative heuristic and learning-
based methods as baselines. For heuristic methods, the Lin-
Kernighan-Helsgaun3 algorithm (LKH3) (Lin & Kernighan,
1973) and the hybrid genetic algorithm (HGA) (Mahmoudi-
nazlou & Kwon, 2024) are adopted, and these algorithms
conduct 10 runs for each instance. As an outstanding op-
erations research (OR) solver, OR-Tools has demonstrated
excellent generalization ability. We report its search results
within 600 seconds. For learning-based methods, we adopt
a parallel planning method DAN (Cao et al., 2021) and a
sequential planning method Equity-Transformer (Son et al.,
2024). For efficient yet unavailable neural methods such
as ScheduleNet (Park et al., 2021) and NCE (Kim et al.,
2022a), we list the reported results as well. The min-max
mPDP has also been investigated, but heuristic methods
can hardly be implemented on Euclidean coordinates (Lau
& Sengupta, 2022). Therefore, our comparative algorithm
only considers OR-Tools and the learning-based method
Equity-Transformer.

Performance on Medium Scales. We first examine the
performance of DPN on medium-scale problems, including
min-max mTSP and min-max mPDP of 50- and 100-scale.
For each scale, we conduct tests on three datasets distinct
with various M values. Each dataset contains 100 randomly
generated instances, and the distribution of M follows the
settings in Kim et al. (2022a). All the involved learning-
based models are trained from scratch at the testing scale.
The ×8aug data augmentation method is available as a vari-
ant, which conducts equivalent transformations to augment
the original instance and reports the best results among eight
equivalent instances (Kwon et al., 2020). For DPN, we addi-
tionally provide a ×16per data augmentation method which
reports the best solution among 16 agent permutations (i.e.,
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Figure 3. Training curves for ablation study (M=5).

Table 3. Ablation study on proposed components in DPN.
Min-max mTSP100 mPDP100

M= 5 5
w/o P&N Encoder 2.2406 4.5119
w/o APS-Loss 2.2621 5.1915
w/o Rotation-based PE 2.2347 3.5158
DPN-×8aug-×16per 2.2314 3.4960

K = 16 in testing). Table 1 exhibits the comparison re-
sults on 12 datasets, and it presents the average objective
function values, the gap from the best algorithm, and the
testing time for each dataset. The best result of each dataset
is highlighted in bold, while the best learning-based result
is highlighted in a gray background. Results demonstrate
that the proposed DPN-×8aug-×16per version achieves the
best performance among the learning methods in all the 12
datasets and significantly stands out in min-max mPDPs.
Compared to heuristic methods such as HGA and LKH3,
the DPN variants can achieve competitive results in a much
shorter time. The proposed DPN method consistently out-
performs the Equity-Transformer under the same settings,
with an average reduction of 0.72% in the optimality gap of
min-max mTSP and 33.7% for min-max mPDP.

Performance on Larger Scales. Neural solvers of min-max
VRPs also demonstrate their ability to solve larger-scale
problems (Son et al., 2024). To evaluate the performance
of DPN on large-scale problems, we generate datasets with
100 instances with scales of 200, 500, and 1,000, and the
number of agents M follows the same setting in Son et al.
(2024). Both Equity-Transformer and DPN conduct fine-
tunings at scales of 200 and 500. These fine-tuned models
are denoted as F in Table 2, and the 1,000-scale results
are obtained using the 500-scale fine-tuned model. Results
marked with “*” indicate results reported from Son et al.
(2024) on the same test set. As exhibited in Table 2, the
proposed DPN-F-×8aug-×16per acquires the best objective
functions on four larger-scale min-max mTSP datasets and
all nine larger-scale min-max mPDP datasets. In a total of
18 datasets, variants of DPN consistently significantly beat
the Equity-Transformer and other learning-based solvers,
demonstrating DPN’s adaptability to large-scale scenarios.
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Table 4. The average objective function values (i.e., Obj.) and testing times (i.e., Time) on 12 multi-depot min-max VRP datasets.
MDVRP50(N=50),D=6 MDVRP100(N=100),D=8

M= 3 5 7 5 7 10
Methods Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time

CE* 2.25 40m 1.53 17m 1.28 11m 1.85 50m 1.43 1h 1.18 1h
OR-Tools* 2.64 4m 1.68 5m 1.36 5m 2.17 6h 1.60 3h 1.29 2h
NCE* 2.25 3m 1.53 4m 1.28 5m 1.86 19m 1.43 20m 1.18 26m
DPN-×8aug-×16per 2.1491 <1s 1.4431 <1s 1.2012 <1s 1.8056 1s 1.4099 1s 1.1527 1s
DPN-F-×8aug-×16per 2.1404 1s 1.4394 1s 1.1969 1s 1.7936 2s 1.4001 2s 1.1429 2s

FMDVRP50(N=50),D=6 FMDVRP100(N=100),D=8
M= 3 5 7 5 7 10

Methods Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time
CE* 2.07 35m 1.41 15m 1.19 9m 1.74 6h 1.34 4h 1.09 1h
OR-Tools* 2.39 4m 1.56 4m 1.27 4m 2.00 51m 1.51 54m 1.20 57m
NCE* 2.08 2m 1.40 3m 1.19 4m 1.75 11m 1.34 16m 1.09 22m
ScheduleNet* 2.61 9m 1.86 9m 1.57 10m 2.32 1h 1.86 1h 1.54 1h
DPN-×8aug-×16per 2.0471 <1s 1.3869 <1s 1.1619 <1s 1.7694 1s 1.3708 1s 1.1028 1s
DPN-F-×8aug-×16per 2.0429 1s 1.3856 1s 1.1649 1s 1.7638 2s 1.3642 2s 1.1012 2s

Experiments on both medium and large scales exhibit the
effectiveness of DPN in single-depot min-max VRPs while
also demonstrating the significant value of separately con-
sidering partition and navigation in sequential planning. Ex-
periments in Appendix E further demonstrate the good gen-
eralization performance of DPN.

4.2. Analyses

To validate the necessity of the components in DPN, we
conduct a series of ablation studies. As detailed in Table 3,
we remove the proposed components (i.e., P&N Encoder,
APS-Loss, and Rotation-based PE) and obtain the three ab-
lation models. The ’w/o’ (without) notation in Table 3 and
Figure 3 indicates degrading the component by using the
corresponding components proposed in Equity-Transformer.
Three ablation models are evaluated with both the ×8aug
and ×16per on min-max mTSP100 and min-max mPDP100
with M=5 agents. Results show that all three components
of DPN make substantial contributions, with the P&N En-
coder and APS-Loss playing more significant roles. The
full-version DPN demonstrates notable advantages in con-
vergence speed over the ablation models. Ablation studies
on M=10 are presented in Appendix 11 where Appendix
E.6 further suggests that the Rotation-based PE is less vul-
nerable to the depot locations.

5. Experiments: Multi-depot Min-max VRPs
This section further evaluates DPN on two representative
min-max multi-depot VRPs including min-max MDVRP
and min-max FMDVRP. Previous sequential planning neural
solvers for min-max VRP are all limited to single-depot
problems, and DPN is the first to solve multi-depot ones.

5.1. P&N Encoder for Multi-depot

In solving single-depot min-max VRP, P&N Encoder only
processes the agent embeddings and customer embeddings
and directly attaches the depot coordinates to agent em-
beddings. However, the D depots in multi-depot problems
necessitate additional structures to process the embeddings
of depots. To represent the depot assignment features in
each route, DPN for multi-depot min-max VRPs addition-
ally employs two additional structures in the partition part of
each layer to represent depot-related partitions. The specific
structure is described in detail in Appendix C.4.

5.2. Performance Evaluation

When training DPN for multi-depot min-max VRPs with
both 50- and 100-scales, the number of depots D is uni-
formly sampled from 2 to 10. In testing, the number of
depots is set to 6 for 50-scale datasets and 8 for 100-scale
ones. Training on the corresponding number of depots of
test sets can obtain better results, so we further provide
a fine-tuned version consistently denoted as F in Table 4.
We conduct experiments on 12 100-instance datasets of
min-max MDVRP and min-max FMDVRP. A heuristic al-
gorithm CROSS exchange (CE) (Taillard et al., 1997), the
OR-Tools, a neural solver ScheduleNet (Park et al., 2021),
and the most efficient among all existing learning-based neu-
ral solver of multi-depot min-max VRPs Neuro CE (NCE)
(Kim et al., 2022a) are employed as baselines. Since some
of these methods are unavailable, we provide the reported
results in Kim et al. (2022a). Based on the results in Table
4, we can conclude that DPN is well applied to multi-depot
min-max VRP. Especially, DPN-F-×8aug-×16per achieves
significant advantages on min-max MDVRP and 50-scale
min-max FMDVRP. CE and NCE outperform the proposed
DPN on 100-scale min-max FMDVRP.
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6. Conclusion
In this paper, we have introduced a novel Decoupling-
Partition-Navigation (DPN) method for solving min-max
VRPs. It is the first attempt to decouple the partition and nav-
igation in sequential-planning-based min-max VRP solvers.
DPN consists of a novel P&N Encoder, a novel APS-Loss,
and a Rotation-based PE. Experimental results on four min-
max VRPs have demonstrated that DPN significantly out-
performs existing learning-based methods. In addition, com-
prehensive ablation studies have been performed to verify
the effectiveness of each component of DPN.

Limitation and Future Work. Although DPN efficiently
processes constraints (e.g., route number M ) and represen-
tations in min-max VRP, it cannot be directly applied to
general VRPs (further discussed in C.7). In the future, we
plan to extend the idea of decoupled representation in DPN
to general VRPs, pursuing better representations of each
route.
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A. Related Work
A.1. Learning-based Methods for TSP and CVRP

Currently, plenty of learning-based methods have been applied to TSP and CVRP. Classified by the solution generation
process, these methods can be divided into two main categories (Bengio et al., 2021). Learning improvement heuristic
methods execute neural-parameter-assisted operators to modify solutions iteratively (Wu et al., 2022; Zheng et al., 2023),
while the learning constructive heuristic methods directly convert the input coordinates to near-optimal solutions in an
end-to-end manner (Drakulic et al., 2024). Although advanced learning improvement heuristic methods show advantages
in small-scale instances with adequate running time (Ma et al., 2021; Zheng et al., 2023), learning constructive heuristic
methods are considered to have better generalization ability and more application value (Liu et al., 2023; Jiang et al., 2022;
Wang et al., 2023). Generally, most RL-based constructive methods including the famous Attention Model (Kool et al.,
2018) employ a unified network structure including several multi-head attention encoder layers and a single-layer decoder.
Advanced RL-based construction methods typically propose modifications to the original network structure (Jin et al., 2023)
and decoding methods (Sun et al., 2024). LEHD (Luo et al., 2024) and ELG (Gao et al., 2023a) propose modified network
structures, while POMO (Kwon et al., 2020) and Sym-NCO (Kim et al., 2022b) utilize symmetry for better reinforcement
learning baselines.

Besides learning constructive heuristic methods, inspired by a similar idea of partition and navigation compared to DPN,
two-stage methods (Hou et al., 2023) are also compelling in solving TSP and CVRP. To divide and conquer large-scale
problems, some works such as TAM (Hou et al., 2023), RBG (Zong et al., 2022), H-TSP (Pan et al., 2023), and GLOP
(Ye et al., 2024) use two sets of independent neural networks (or heuristics) to generate a large-scale solution, which are
respectively responsible for problem decomposition and sub-problem solving. These two-stage solving methods have
achieved high-quality solutions for large-scale problems such as TSP with 10,000 nodes. Nevertheless, we want to clarify
that thought inspired by a similar idea, as a one-stage constructive decoding method, the proposed DPN is different from
these two-stage solving methods.

A.2. Learning-based Methods for Min-max VRPs

The learning-based methods for solving min-max VRP can be classified into four categories: two-stage methods, learning
improvement heuristics, parallel planning methods, and sequential planning methods (Son et al., 2024). The application
of learning-based neural solvers begins with Kaempfer & Wolf (2018) and Hu et al. (2020), which use imitation learning
and RL respectively to learn a two-stage solution generation process for min-max mTSP. SplitNet (Liang et al., 2023) also
adopted the two-stage planning process. Neural solvers in these two-stage methods are only used in one stage, dividing
the customers into sub-graphs, while the TSP solver is introduced in another stage for customer navigation. As a learning
improvement heuristic method, NCE (Kim et al., 2022a) learns a neural-parameter-assisted CROSS exchange (CE) (Taillard
et al., 1997) operator and demonstrates zero-shot generalization ability among different min-max VRPs. The following
two manners implement learning constructive heuristics for min-max VRPs. As discussed in Section 2.1, parallel planning
methods DAN (Cao et al., 2021) and SchedulingNet (Park et al., 2021) employ multiple networks to cooperatively process a
limited number of routes (M routes), while sequential planning methods like Equity-Transformer (Son et al., 2024) process
the features of both customer and agents by a unified encoder and distinguish these two parts of representations through PE
(Vaswani et al., 2017). In the decoding phase, sequential planning methods sequentially generate the M routes in a solution
one after another, while parallel planning methods extend the M routes simultaneously. Compared to parallel planning
methods, sequential planning methods substantially reduce the decision space complexity (Son et al., 2024).

In experiments, sequential planning methods demonstrate the inherent superiority among all the learning-based methods.
From our perspective, except for the sequential planning method, all the other three kinds of methods, can be explained as
employing different entities or procedures to represent features for learning partition and navigation, respectively. However,
the Softmax function (Vaswani et al., 2017) in the attention-based encoder for sequential planning methods (Son et al., 2024)
confuses the features for learning partition and navigation in its calculation. It appeals to an efficient sequential planning
method that focuses on problem-specific properties especially decoupling the representations of partition and navigation in
min-max VRPs.
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B. Additional Defination
B.1. Sequential Planning in Min-max VRPs

Regarding solution generations, we generally follow the sequential planning process proposed in Son et al. (2024). From the
multi-agent reinforcement learning (MARL) perspective, the min-max objective function is a cooperative task for multiple
routes (Gao et al., 2023b). Parallel planning methods use multiple networks to control the decoding of multiple routes
separately. This framework is intuitive but has a more complex optimization space than sequential planning methods.
Besides min-max VRPs, the sequential planning strategy is also proficient in general cooperative MARL tasks (Wen et al.,
2022; Ye et al., 2022).

The Section 2.1 briefly displays the policy of sequential planning, the MDP M = {S,A, r,P} of sequential planning is
defined in detail as follows:

• State. The state st ∈ S consists of three parts, including the current partial solution, the instance G, and the number
of agents M . The partial solution in the initial state s0 is an empty set and the terminal state sT contains a feasible
solution including a set of routes T = {τ 1, . . . , τM}.

• Action. An action at ∈ A represents a selected index from candidate nodes in V which is then used to extend the
current solution in st. Since all customers can only be accessed once, so at can only select from unvisited customers or
the set of depots in V . If at is a depot node, the following state st+1 will end the current route and start a new one.

• Reward. Sequential planning methods only assign rewards to the final state, rT = −f(T ).

• Policy. The policy of sequentially constructing the set of routes is provided in Eq. (2). With the sub-graphs constrained
in Eq. (3), the policy for generating nodes in routes one by one is formulated with Eq. (4) as follows:

pθ(T |G,M) =

T−1∏
t=1

pθ(at|st) =
M∏
i=1

p(τ i|τ 1:i,G, θ) =
M∏
i=1

ni∏
j=1

πθ(τ
i(j)|τ i(1 : j),Gi), (20)

where Gi ∈ Pθ,M (G). Figure 4 exhibits a sketch map of the parallel planning process, the basic sequential planning
method in Son et al. (2024), and the sequential planning method with agent permutation implemented in the proposed
DPN. The proposed agent permutation only makes changes at the transaction to st+1 when at is a depot node. When
the construction of each route concludes, the agent for the next route’s decoding is selected based on a sampled agent
permutation o. The detailed policy introducing a permutation o is provided in Eq. (16). The sequential planning process in
Equity-Transformer can be regarded as a special situation of the implemented sequential planning with agent permutation,
with o = (1, 2, . . . , n), and the sampling of agent permutations in DPN is implemented by randomly shuffling the special
permutation o = (1, 2, . . . , n) for 100 times.

min-max mTSP
(N=10,D=1,M=3)

min-max mTSP      
Solution

Basic Sequential Planning

Parallel Planning

t = 1 to M
Parallel assign M agents

t=M+1 to N
Parallel construct M routes

... �1

�2

�3

t = 1 to |�1|(�1)
Construct route 1

Next |�2|(�2) t steps
Construct route 2

Next |�3|(�3) t steps
Construct route 3

... ...

t = 1 to |�1|(�1)
Using embeddings of agent �1 

to construct route 1

Next |�2|(�2) t steps
Using embeddings of agent �2 

to construct route 2

Next |�3|(�3) t steps
Using embeddings of agent �3 

to construct route 3

... ...

Sequential Planning with agent permutation � = {�1, . . . , ��} (Ours)

�1

�2

�3

Figure 4. An min-max mTSP example of constructive-based planning methods for neural solvers of min-max VRP.
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B.2. Min-max Multi-agent Travel Salesman Problem

mTSP is a multi-agent extension of TSP with a single depot and a restricted number of routes. Min-max mTSP is a variant
of mTSP problem with optimizing a min-max objective function. Min-max mTSP comprises the set of nodes (customers
and depot) V , the number of routes M , and the set of Depot D (|D| = D = 1). We define dij as the length between node i
and j, and the decision variable xijm which denotes whether the edge between node i and j are taken by agent m. The other
decision variable uik is an integer representing the position (i.e., occur place) of node i in route m. For each customer node,
it is positive in only one route. The MILP formulation of mTSP is given as follows (Zha et al., 2020):

minimize L (21)

subject to.
∑
i∈V

∑
j∈V

dijxijm ≤ L, ∀m ∈ {1, . . . ,M}, i ̸= j, (22)

∑
j∈V,i̸=j

xijm = 1, ∀m ∈ {1, . . . ,M},∀i ∈ D, (23)

∑
i∈V,j ̸=i

∑
m∈{1,...,M}

xijm = 1, ∀j ∈ V \ D, (24)

∑
i∈V,i̸=j

xijm −
∑

h∈V,h̸=j

xjhm = 0, ∀m ∈ {1, . . . ,M},∀j ∈ V \ D, (25)

uim − ujm + |V|xijm ≤ |V| − 1, ∀m ∈ {1, . . . ,M}, i, j ∈ V \ D, i ̸= j, (26)
0 ≤ uim ≤ |V| − 1 ∀m ∈ {1, . . . ,M}, i ∈ V \ D, (27)
xijm ∈ {0, 1}, ∀m ∈ {1, . . . ,M}, i, j ∈ V, (28)
uim ∈ Z, ∀m ∈ {1, . . . ,M}, i ∈ V, (29)

where L denotes the distance of the longest route (i.e., makespan) among the set of M routes. These formulations are
generally adopted from Kim et al. (2022a), uim = 0 for node i not in route m ∈ {1, . . . ,M}.

The tasks of customer partition for different routes and customer navigation in each route of min-max mTSP are mentioned
frequently in the main text. The optimal partition of min-max mTSPs assumes that the navigation task obtains a route with
the optimal TSP length of any sub-graph Gi (Vandermeulen et al., 2019). Without affecting optimality, we ignore the impact
of agent permutation and assume that T = {τ i ∼ TSP(·|Gi)} for i ∈ {1 . . . ,M}, the objective function of the partition
task in min-max mTSP is as follows (Carlsson et al., 2009):

minimize
θ

λ

subject to. L(TSP(·|Gi)) ≤ λ,∀i ∈ {1, . . . ,M},⋂
i∈{1,...,M}

Gi = Depots,
⋃

i∈{1,...,M}

Gi = G,

{G1, . . . ,GM} = Pθ,M (G),

(30)

where TSP(·|Gi) represents the optimal TSP solution of the sub-graph Gi. The navigation task optimizes the routing
performance to approach the optimal TSP solution as follows:

minimize
θ

L(τ i) =

|τ i|∑
i=2

∥xi − xi−1∥2 + ∥x0 − x|τ i|∥2

subject to. τ i = πθ(·|Gi),

(31)

where i ∈ {1, . . . ,M}, and xi represents the 2-dimensional coordinate of the node with index i. |τ i| is adopted to indicate
the number of nodes in τ i
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B.3. Min-max Multi-agent Pickup and Delivery Problem

Min-max mPDP is another single-depot min-max VRP considered in DPN. The mPDP is a multi-agent extension of the
famous pickup and delivery problem (PDP). The difference between mPDP and mTSP is that the N customers involved in
mPDP are classified to N

2 (i.e., |V|−1
2 ) pairs of corresponding pickup customers and delivery customers. For 2 ≤ i ≤ N

2 +1,
vi and vi+N

2
are a pair of pickup and delivery customers. There are two additional constraints defined for mPDP, pickup

customers must get visited prior to their corresponding delivery customers (i.e., prior constraints), and each route must only
contain paired pickup and delivery customers (i.e., pairing constraint) (Lu & Dessouky, 2004). The MILP formulation of
mPDP is given as follows:

minimize L (32)

subject to.
∑
i∈V

∑
j∈V

dijxijm ≤ L, ∀m ∈ {1, . . . ,M}, i ̸= j, (33)

∑
j∈V,i̸=j

xijm = 1, ∀m ∈ {1, . . . ,M},∀i ∈ D, (34)

∑
i∈V,j ̸=i

∑
m∈{1,...,M}

xijm = 1, ∀j ∈ V \ D, (35)

∑
i∈V,i̸=j

xijm −
∑

h∈V,h̸=j

xjhm = 0, ∀m ∈ {1, . . . ,M},∀j ∈ V \ D, (36)

uim − ujm + |V|xijm ≤ |V| − 1, ∀m ∈ {1, . . . ,M}, i, j ∈ V \ D, i ̸= j, (37)
0 ≤ uim ≤ |V| − 1 ∀m ∈ {1, . . . ,M}, i ∈ V \ D, (38)
xijm ∈ {0, 1}, ∀m ∈ {1, . . . ,M}, i, j ∈ V, (39)

uvim ≤ uv
i+N

2
m, ∀m ∈ {1, . . . ,M}, 2 ≤ i ≤ N

2
+ 1, (40)

(uvim − 1)(uv
i+N

2
m − 1) > 0, ∀m ∈ {1, . . . ,M}, 2 ≤ i ≤ N

2
+ 1, (41)

where Eq. (40) is the prior constraint (Lu & Dessouky, 2004), which forces the pickup node to be visited before its delivery
node. Eq. (41) is the pairing constraint, which ensures paired pickups and deliveries cannot occur in different routes.

In min-max mPDPs, the navigation task considers the optimization of a PDP solution to sub-graphs, and the sub-graphs in
the partition task are additionally subject to a validity constraint as follows:

minimize
θ

λ

subject to. L(PDP(·|Gi)) ≤ λ,∀i ∈ {1, . . . ,M},⋂
i∈{1,...,M}

Gi = Depots,
⋃

i∈{1,...,M}

Gi = G,

{G1, . . . ,GM} = Pθ,M (G),
PDP(·|Gi) ̸= ∅ ∀i ∈ {1, . . . ,M},

(42)

where the last constraint means that sub-graphs must be feasible to be solved with at least one valid PDP route.
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B.4. Min-max Multi-depot Vehicle Routing Problem

Multi-depot VRP is a multi-depot extension of mTSP where the agent of each route starts from an arbitrary depot in D
and must finally end at the selected starting depot. In addition, the set Q is additionally defined and Qi indicates the set of
agent (i.e., route) indexes assigned to the depot i. The MILP formulation is provided based on the description in Kim et al.
(2022a), which is as follows:

minimize L (43)

subject to.
∑
i∈V

∑
j∈V

dijxijm ≤ L, ∀k ∈ {1, . . . ,M}, i ̸= j, (44)

∑
j∈Vj ̸=i

∑
m∈{1,...,M}

xijm = 1, ∀i ∈ V \ D, (45)

∑
i∈Vj ̸=i

∑
m∈{1,...,M}

xijm = 1, ∀j ∈ V \ D, (46)

∑
i∈V

xijm −
∑
h∈V

xjhm = 0, ∀m ∈ {1, . . . ,M},∀j ∈ V \ D, (47)

uim − ujm + (|V| − |D|+ 1)xijm ≤ |V| − |D|, ∀m ∈ {1, . . . ,M}, i, j ∈ V \ D, i ̸= j, (48)
0 ≤ uim ≤ |V| − |D|, ∀m ∈ {1, . . . ,M}, i ∈ V \ D, (49)
xijm ∈ {0, 1}, ∀m ∈ {1, . . . ,M}, i, j ∈ V, (50)
uim ∈ Z, ∀m ∈ {1, . . . ,M}, i ∈ V, (51)
Qi ⊆ {1, 2, . . . ,M}, ∀i ∈ D, (52)∑
j∈V\D

xijm ≤ 1, ∀m ∈ Qi,∀i ∈ D, (53)

∑
i∈V\D

xijm ≤ 1, ∀m ∈ Qj ,∀j ∈ D, (54)

where Eq. (53) and Eq. (54) indicate that each vehicle starts and returns its depot at most once.

As a multi-depot extension of min-max mTSP, min-max MDVRP maintains consistent partition and navigation requirements
compared to the formulations in min-max mTSP (Eq. (30) and Eq. (31)) (Carlsson et al., 2009).
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B.5. Min-max Flexible Multi-depot Vehicle Routing Problem

Flexible MDVRP is an extension of MDVRP, allowing the vehicle to return to any depot in D. Kim et al. (2022a) also
provides the FMDVRP formulation by extending the MDVRP formulation (B.4). To account for the flexibility of depot
returning, researchers introduce a dummy node for all depots and afterward, a depot is modeled with a start depot and an
end depot. Besides Q, min-max FMDVRP further uses Ds and De to represent the set of start depots and end depots and sm
represents the start node of the agent m ∈ {1, . . . ,M}.

minimize L (55)

subject to.
∑
i∈V

∑
j∈V

dijxijm ≤ L, ∀k ∈ {1, . . . ,M}, i ̸= j, (56)

∑
j∈Vj ̸=i

∑
m∈{1,...,M},

xijm = 1, ∀i ∈ V \ D, (57)

∑
i∈Vj ̸=i

∑
m∈{1,...,M},

xijm = 1, ∀j ∈ V \ D, (58)

∑
i∈V

xijm −
∑
h∈V

xjhm = 0, ∀m ∈ {1, . . . ,M},∀j ∈ V \ D, (59)

uim − ujm + (|V| − |D|+ 1)xijm ≤ |V| − |D|, ∀m ∈ {1, . . . ,M}, i, j ∈ V \ D, i ̸= j, (60)
0 ≤ uim ≤ |V| − |D|, ∀m ∈ {1, . . . ,M}, i ∈ V \ D, (61)
xijm ∈ {0, 1}, ∀m ∈ {1, . . . ,M}, i, j ∈ V, (62)
uim ∈ Z, ∀m ∈ {1, . . . ,M}, i ∈ V, (63)
Qi ⊆ {1, 2, . . . ,M}, ∀i ∈ Q, (64)∑
j∈V\D

xsmjm = 1, ∀m ∈ {1, . . . ,M}, (65)

∑
j∈V\D

xijm = 0, ∀i ∈ D \ sm,∀m ∈ {1, . . . ,M}, (66)

∑
j∈V\D

xijm ≤ 1, ∀m ∈ Qi,∀i ∈ Ds, (67)

∑
i∈V\D

xijm ≤ 1, ∀m ∈ Qj ,∀j ∈ De, (68)

∑
j∈V\D

xijm = 0, ∀m ∈ {1, . . . ,M},∀i ∈ De, (69)

∑
j∈V\D

xijm = 0, ∀m ∈ {1, . . . ,M},∀i ∈ Ds, (70)

∑
i∈Ds

∑
j∈V\D

xijm =
∑

i∈V\D

∑
j∈De

xijm, ∀m ∈ {1, . . . ,M}, (71)

where Eq. (65) and Eq. (66) indicate each vehicle starts at its depot. Eq. (67) to Eq. (70) indicate constraints about start and
end depots. Eq. (71) indicates the balance equation of the start depots and end depots.

Min-max FMDVRP inherits the partition function in Eq. (30) but changes the calculation of length function L(τ i) in Eq.
(31) as follows due to there is no edge from the start depots to the end depots in each route:

L′(τ i) =

|τ i|∑
i=2

∥xi − xi−1∥2. (72)
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C. DPN: Details
This section provides additional details of the DPN method, including the motivation of the P&N Encoder, the decoder
structure for various min-max VRPs, the P&N Encoder for multi-depot min-max VRPs, and a supplemental illustration of
the adopted Rotation-based PE.

C.1. Motivation of P&N Encoder

The encoder in Equity-Transformer calculate layers of multi-head self-attentions MHA(Concat[H(0)
a , H

(0)
c ],

Concat[H(0)
a , H

(0)
c ]) to the agent initial embedding H

(0)
a and the customer initial embedding H

(0)
c . Ignoring the formulas of

the multi-head mechanism, the attention score α in the l-th layer encoder of Equity-Transformer consists of the following
four parts of relations (i.e., agent-agent, agent-customer, customer-agent, and customer-customer from upper left to bottom
right):

α = Concat[H(l)
a , H(l)

c ]WQ

(
Concat[H(l)

a , H(l)
c ]WK

)⊺
=

[
H

(l)
a WQ(H

(l)
a WK)⊺ ∈ R(M+1)×(M+1) H

(l)
a WQ(H

(l)
c WK)⊺ ∈ R(M+1)×N

H
(l)
c WQ(H

(l)
a WK)⊺ ∈ RN×(M+1) H

(l)
c WQ(H

(l)
c WK)⊺ ∈ RN×N

]
.

(73)

In any single column of the attention score matrix, the embeddings of agents and customers are fused. Considering that
agent embeddings mainly carry the features for the customer partition task and customer embeddings stand for navigation
requirements. The normalization from the Softmax function may incline customers to focus on either the partition task or
the navigation task thus resulting in less effective features for partition and navigation. Moreover, M + 1 agent embeddings
are inherently similar in values (i.e., only differ in PEs), so the self-attention calculation H

(l)
a WQ(H

(l)
a WK)⊺ might become

inexplicable noise.
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Figure 5. Attention score of min-max mTSP50 (M=10), each data is the average score of 8 heads and 3 attention layers.

Figure 5 shows the attention score α in Equity-Transformer and the attention score normalized by the Softmax function
processing a min-max mTSP instance with M=10. Refer to Eq. (73), the H

(l)
a WQ(H

(l)
a WK)⊺ (upper left) part displays

irregular noise, which also affects the calculation of the upper right part by a Softmax normalization. Moreover, the Softmax
function amplifies the attention score of the H

(l)
c WQ(H

(l)
a WK)⊺ part (bottom left), which originally lies around 0, thereby

confusing the calculation of both the customer-customer relations (bottom right) and the customer-agent relations (bottom
left). To ensure the independence of the three necessary parts of relations (bottom left, bottom right, and upper right), our
P&N Encoder designs a bi-part structure that calculates Softmax and the three correlations separately.

Complexity. In addition, the attention mechanisms in P&N Encoder do not increase the time complexity of each layer,
slightly reducing from O

(
(N +M +1)2d

)
to O

(
(N2 +2NM)d

)
. The practical training and testing time generally remain

the same considering the impact of additional feed-forward layers. Furthermore, the time complexity of the encoder is not
the bottleneck of overall time complexity in sequential planning methods (Bello et al., 2017). The space complexity is also
reduced from O

(
(N +M + 1)2 + (N +M + 1)d

)
to O

(
N2 + 2NM + (N +M)d

)
, and together with the help of the

APS-Loss, our DPN can adopt larger batch sizes in training compared to existing sequential planning methods.

19



DPN: Decoupling Partition and Navigation for Neural Solvers of Min-max Vehicle Routing Problems

C.2. Model Structure for Min-max mTSP

The P&N Encoder for min-max mTSP has been described in detail in the main text. The L-layer P&N Encoder processes the
agent embeddings H(0)

a and the customer embeddings H(0)
c to H

(L)
a and H

(L)
c , respectively. Sequential planning methods

use contextual embedding to process the information from the instance G, the number of routes M , and the previously
generated routes. For H(L)

a = [h
(L)
a,1 ,h

(L)
a,2 , . . . ,h

(L)
a,M ] and H

(L)
c = [h

(L)
c,1 ,h

(L)
c,2 , . . . ,h

(L)
c,N ], in decoding the m-th route

(m ≤ M ) and with n customers left, if the is current agent index is oc and the current node index is nodec, the contextual
embedding hcontex ∈ Rd is calculated as follows:

hcontex =
Wemb

N +M

( M∑
i=1

h
(L)
a,i +

N∑
i=1

h
(L)
m,i

)
+ Concat

[
h(L)
a,oc ,h

(L)
c,nodec

,
M −m+ 1

M
,
n

N

]
Wstep

+ Concat
[
L′(τm+1), max

i∈{1,...,N}
∥xd − xi∥2,LD

]
Wlength,

(74)

where LD represents the maximal distance to the depot among all the n left customers. Wemb ∈ Rd×d, Wstep ∈ R2d+2×d,
Wlength ∈ R3×d are three projection matrices. When decoding the first action, nodec is set to the depot in min-max mTSP.
In training, DPN generates K permutations of agents and concat the K hcontex to Hcontex ∈ RK×d. Then the decoder of
DPN contains a single 8-head glimpse attention-layer (Bello et al., 2017) which calculates the mutual attention between
contextual embeddings, agent embeddings, and customer embeddings, the attention result qcontex for the following logit
calculation is

qcontex = MHA(Hcontex,Concat
[
h
(L)
a,1 , . . . ,h

(L)
a,M ,h

(L)
c,1 , . . . ,h

(L)
c,N

]
), (75)

where qcontex ∈ RK×d. Afterward, given the last selected node nodec, the final probability πθ(at|st, c) is computed as
follows (Wang et al., 2024):

dist(nodec, j) = αd ∗ exp
( ∥xnodec − xj∥2

max
i∈{1,...,N}

∥xi − xnodec∥2
)
, (76)

uj =

C · tanh
(qcontex(hjW

L)⊺√
dk

+ dist(nodec, j)
)
⊙Ma j ∈ V ∩ j /∈ st

−∞ otherwise
, (77)

where j /∈ st represents the unvisited condition. WL is a learnable square projection matrix and Ma is an agent feasibility
mask, it will be −∞ if the agent is not oc, and 1 for unmasked actions. It will also mask the agent oc when generating the
last route. αd is a trainable parameter, C is set to 50, and the above probability is calculated invariantly in all min-max VRPs.
For the single-depot min-max VRPs, selecting the first M indexes corresponds to selecting the depot.

C.3. Model Structure for Min-max mPDP

Due to the special constraints introduced by the partition and navigation tasks of PDP (Appendix B.3), in the navigation part
for min-max mPDP, we adopt the Heterogeneous Attention (Li et al., 2021) instead of self-attention between customers. For
the partition part of the P&N Encoder, we use different linear projections to process pickup and delivery customers in the
calculations of queries (i.e., Eq. (13)). In the decoder, the contextual embedding is calculated as follows:

hcontex =
Wemb

N +M

( M∑
i=1

h
(L)
a,i +

N∑
i=1

h
(L)
m,i

)
+ Concat

[
h(L)
a,oc ,h

(L)
c,nodec

,
M −m+ 1

M
,
2p

N

]
Wstep

+ Concat
[
L′(τm+1),Longest-PD,Longest-P,Longest-D,

Sum-PD
M −m

]
Wlength,

(78)

where p is the number of left pickups, Longest-PD is the longest distance of visited paired pickups and deliveries in the
current route, Longest-P is the maximal distance to the depot for unvisited pickups, Longest-D is the maximal distance to
the depot for unvisited deliveries, and Sum-PD represents the sum of the unvisited distance of paired pickups and deliveries.
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C.4. Model Structure for Multi-depot Min-max VRPs
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Figure 6. Model structure of the proposed P&N Encoder in min-max MDVRP and min-max FMDVRP.

Figure 6 shows that P&N Encoder designs additional partition parts to handle the D distinct depots. The input to M

Rotation-based PEs is a trainable embedding representing a dummy depot. For initial embeddings, depot embeddings H(0)
d ,

agent embeddings H(0)
a , and customer embeddings H(0)

c are generated by linear projection.

The navigation part in the P&N Encoder for multi-depot Min-max VRPs maintains the same as what for min-max mTSP as
follows:

X̂(l)
c = α1 ∗ MHA(H(l−1)

c , H(l−1)
c )) +H(l−1)

c , (79)

X(l)
c = α2 ∗ FF(X̂(l)

c ) + X̂(l)
c . (80)

The partition part consists of the depot-customer partition part, the agent-depot partition part, and the agent-customer
partition part, sequentially. The depot-customer partition part is as follows:

X̂
(l)
d = α3 ∗ MHA(H

(l−1)
d , X(l)

c ) +H
(l−1)
d , (81)

X
(l)
d = α4 ∗ FF(X̂(l)

d ) + X̂
(l)
d , (82)

Ô(l)
c = α5 ∗ MHSA(X(l)

c , X
(l)
d ) +X(l)

c , (83)

O(l)
c = α6 ∗ FF(Ô(l)

c ) + Ô(l)
c , (84)

where MHSA is leveraged to assign only one (maybe two depots in min-max FMDVRP) depot to each customer. The
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agent-depot partition part is as follows:

X̂(1)
a = α7 ∗ MHSA(H(l−1)

a , X
(l)
d ) +H(l−1)

a , (85)

X(l)
a = α8 ∗ FF(X̂(l)

a ) + X̂(l)
a , (86)

Ĥ
(l)
d = α9 ∗ MHA(X

(l)
d , X(l)

a ) +X
(l)
d , (87)

H
(l)
d = α10 ∗ FF(Ĥ(l)

d ) + Ĥ
(l)
d , (88)

where MHSA is utilized to assign only one (maybe two depots for min-max FMDVRP) depot to each agent. The agent-
customer partition part is as follows:

X̂
(l)
d = α11 ∗ MHA(X

(l)
d , O(l)

c ) +X
(l)
d , (89)

H(l)
a = α12 ∗ FF(Ĥ(l)

a ) + Ĥ(l)
a , (90)

Ĥ(l)
c = α13 ∗ MHSA(O(l)

c , H(l)
a ) +O(l)

c , (91)

H(l)
c = α14 ∗ FF(Ĥ(l)

c ) + Ĥ(l)
c , (92)

where MHSA is introduced to assign only one agent to each customer. The decoder for min-max MDVRP and min-max
FMDVRP only vary in the feasibility mask. If depot embeddings are H

(L)
d = [h

(L)
d,1 ,h

(L)
d,2 , . . . ,h

(L)
d,D] and xdj

represent the
coordinate of the j-th depot, the contextual embedding for both is as follows:

hcontex =
Wemb

N +M +D

( M∑
i=1

h
(L)
a,i +

N∑
i=1

h
(L)
m,i +

D∑
i=1

h
(L)
d,i

)
+ Concat

[
h(L)
a,oc ,h

(L)
c,nodec

,
M −m+ 1

M
,
n

N

]
Wstep

+ Concat
[
L′(τm+1), max

i∈{1,...,N}
min

j∈{1,...,D}
∥xdj

− xi∥2,LD
]
Wlength,

(93)

where LD represents the maximal distance to the nearest depot among all the n left customers. The nodec in decoding the
first action is set to a random depot. In decoder, the qcontex in multi-depot min-max VRPs is modified as follows:

qcontex = MHA(Hcontex,Concat
[
h
(L)
d,1 , . . . ,h

(L)
d,D,h

(L)
c,1 , . . . ,h

(L)
c,N

]
). (94)

C.5. Motivation About the Rotation-base PE

The sequential planning method uses positional encoding to distinguish different agents starting from the same depot. In
P&N Encoder, position encoding is first calculated in the partition part of the first layer of P&N Encoder, ignoring the
formulation of the multi-head mechanism, H(0)

a = Waxd + ba + PE, the PE is involved as follows (calculating Eq. (11)):

Attn(H(0)
a , X(1)

c ) =Softmax

(
H

(0)
a WQ(X

(1)
c WK)⊺√
d

)
X(1)

c WV ,

H(0)
a WQ(X

(1)
c WK)⊺ =(Waxd + ba + PE)WQ(X

(1)
c WK)⊺

=(Waxd + ba)WQ(X
(1)
c WK)⊺ + PEWQ(X

(1)
c WK)⊺

=position-based score + angle-based score.

(95)

In the first layer, the attention calculation can be divided into a position-based score and an angle-based score. For the M
agents, their position-based score remains the same, so the PE is used to highlight the nodes with right and predetermined
angles in calculating the angle-based score (i.e., being responsible for the angle-based customer assignments). In the
subsequent blocks, residual connections enable the PE to maintain the above functions.

Given the number of routes M , sinusoidal position encoding represents a fixed angle relationship so the angle-based partition
will remain the same for any instance. However, the angle-related distribution of the routes in optimal solution varies
with the depot location. As shown in visual cases Figure 11(a) and Figure 11(d), and Figure 7, if the location of the depot
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is in the bottom left corner (e.g. the right case in Figure 7 and the instance in Figure 11(d)), it only needs to consider
customer partition in an approximate 90-degree space. However, in other cases as Figure 11(a) and the left case in Figure 7,
all the directions are involved. Therefore, the sinusoidal PE meets challenges in generalizing to instances with different
depot locations so it is necessary to introduce the depot coordinates to the calculation of PE. Experiments in Appendix
E.6 demonstrate that SPE prefers instances with corner-location depot. The proposed Rotation-based positional encoding
achieves better partition optimalities.

Customer Partition of a
Min-max mTSP Instance

(N=10,D=1,M=3)

Partition ��

Partition Range: 360�

Middle-location Depot

Partition ��

Corner-location Depot

Difference
in Partition Angles

Potential PE0

 PE1

PE2

Potential PE0

PE2  PE1

Generalize

Sinusoidal PE:worse

Partition ��
Potential SPE0

SPE2

 SPE1

Rotation-based PE:better

Partition Range: 90�

Partition Range: 90�

Potential PE direction
Potential partition boundary

Figure 7. The PE required for the customer partition task varies to the depot locations. So the Rotation-based PE in DPN introduces the
location of depots into calculation.

C.6. Rotation-base PE implementation

The main text provides a calculation method based on complex numbers for the Rotation-based PE in DPN. In practice,
we adopt a real-number implementation provided in Su et al. (2023). Given emb = xdWa + ba, emb ∈ RM×d and

θi =
1

1,000

i−1
d for i ∈ {1, . . . , d/2}, θi ∈ Rd/2, the PE ∈ RM×d in position m PEm ∈ Rd is as follows:

PEm = (



embm,1

embm,2

embm,3

embm,4

...
embm,d−1

embm,d


⊗



cosmθ1
cosmθ1
cosmθ2
cosmθ2

...
cosmθd/2−1

cosmθd/2−1


+



−embm,2

embm,1

−embm,4

embm,3

...
−embm,d

embm,d−1


⊗



sinmθ1
sinmθ1
sinmθ2
sinmθ2

...
sinmθd/2
sinmθd/2


)WPE . (96)

The RoPE in natural language processing usually uses 10,000 as the base (Su et al., 2023; 2024). However the number of
agents in min-max VRPs usually does not exceed 100, so we adopt a smaller base of 1,000 for a shorter sequence. There is
only a slight difference in the training stability between the two bases.

C.7. Discussion: Application on General VRPs

Different from general VRPs (e.g., CVRP), min-max VRPs limit the total number of vehicles and minimize the longest route.
Solvers for min-max VRPs need to process these requirements with special procedures. DPN adopts the P&N Encoder and
the APS-Loss to specifically process this constraint so the proposed DPN is unnecessary for VRPs without this constraint.
Moreover, due to the existence of this constraint, together with min-max VRP emphasizing balancing the lengths between
different routes, powerful heuristic approaches for min-sum problems are not well-generalized to the min-max case (Bertazzi
et al., 2015), and existing constructive min-max VRP solving frameworks can not effectively generalize to general VRP
(Son et al., 2024).

We acknowledge the enormous value of a universal and effective framework for both VRPs and min-max VRPs. Therefore,
as future work, we are eager to adopt the idea of DPN to design a universal constructive solver to process decoupled
representations between routes and effectively handle both VRPs and min-max VRPs.
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D. Experiments Details
D.1. Hyperparameters

This paper trains 16 models on different scales and different settings. We will provide these models as pre-trained after
being open-source, and their hyperparameters are listed in Table 5.

Table 5. Training settings of the proposed DPN on different scales.
Single-depot Training Settings

Problem mPDP50 & mTSP50 mPDP100 & mTSP100
Fintune or not No No
number of agents(M ) [2,10] [2,10]
number of depots(D) 1 1
number of encoder layers (L) 6 6
learning rate 1.00E-04 1.00E-04
learning rate decay 1 1
batch size 256 256
epoches 500 500
epoch size 256000 256000
number of permutations (K) 60 60
Problem mPDP200 & mTSP200 mPDP500 & mTSP500
Fintune or not From 100 From 100
number of agents(M ) [10,20] [30,50]
number of depots(D) 1 1
number of encoder layers (L) 6 6
learning rate 1.00E-05 1.00E-05
learning rate decay 1 1
batch size 64 16
epoches 20 20
epoch size 64000 16000
number of permutations (K) 60 60

Multi-depot Training Settings
Problem MDVRP50 & FMDVRP50 MDVRP100 & FMDVRP100
Fintune or not No No
number of agents(M ) [2,10] [2,10]
number of depots(D) [2,10] [2,10]
number of encoder layers (L) 6 6
learning rate 1.00E-04 1.00E-04
learning rate decay 1 1
batch size 256 256
epoches 500 500
epoch size 256000 256000
number of permutations (K) 60 60
Problem MDVRP50-F & FMDVRP50-F MDVRP100-F & FMDVRP100-F
Fintune or not From 50 From 100
number of agents(M ) [3,7] [5,10]
number of depots(D) 8 8
number of encoder layers (L) 6 6
learning rate 1.00E-05 1.00E-05
learning rate decay 1 1
batch size 128 128
epoches 20 20
epoch size 128000 128000
number of permutations (K) 60 60

D.2. Datasets

There are a total of 10 100-instance datasets used in min-max mTSP and min-max mPDP in Table 1 and Table 2. We
used the provided 100-instance test set in Son et al. (2024) for these datasets. Son et al. (2024) also provides the results of
closed-source methods ScheduleNet and NCE with their provided datasets. So the Obj. of these two learning-based methods
provided in Table 2 is accurate. We also generate a 100-instance validation size for the validation curve in Figure 3 and
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Figure 8. The testing dataset for multi-depot min-max VRPs is also uniformly generated. In addition, Table 1 also shows
the number of customers N and depots D corresponding to each dataset. The use of N +D to represent scale in mTSP
problems comes from previous works (Cao et al., 2021; Son et al., 2024; Mahmoudinazlou & Kwon, 2024).

D.3. Training Time

The detailed training time of DPN on four involved min-max VRPs are listed in Table 6. All 100-node training tasks can be
done within 5 days.

Table 6. Training time of DPN on a single Nvidia Tesla V100S GPU.
Problem min-max mTSP100 min-max mPDP100 min-max MDVRP100 min-max FMDVRP100
Epoch Time 11.0min 11.2min 12.6min 12.6min
Total Time 91.7h 93.3h 105h 105h

E. More Experiments
E.1. Generalization on Benchmark: Min-max mTSP SetI

We use the benchmark mTSP SetI with less than 500 nodes (i.e., 50- to 500-scale) to validate the generalization ability
of DPN. The performances of heuristic algorithms and the best-known solution (BKS) are reported in LKH3 and HGA
(Mahmoudinazlou & Kwon, 2024), We use a special fine-tuned versions on min-max mTSP200 for both the Equity-
Transformer and DPN. They follow the same setting of the normal min-max mTSP200 fine-tuned model except for
setting the range of agent number M to [3, 20]. As shown in Table 7, as neural solvers, the proposed DPN-×8aug and
DPN-×8aug-×16per versions narrow the optimal gap compared to the Equity-Transformer-×8aug.

Table 7. Performances (objective function values and gaps to the BKS) of DPN on mTSP SetI datasets with less than 500 nodes.
BKS LKH-3 HGA Equity-Transformer-×8aug DPN-×8aug DPN-×8aug-×16per

Instances M= Obj. Obj. Obj. Obj. Obj. Obj. Gap
mtsp51 3 160 160 160 201 174 173 8.30%

5 118 118 118 125 120 120 1.91%
10 112 112 112 112 112 112 0.00%

mtsp100 3 8509 8509 8509 10411 9835 9759 14.69%
5 6766 6766 6771 7929 7318 7279 7.59%

10 6358 6358 6358 6454 6365 6359 0.00%
20 6358 6358 6358 6358 6358 6358 0.00%

rand100 3 3032 3032 3032 3638 3196 3196 5.43%
5 2410 2410 2410 2537 2477 2453 1.79%

10 2299 2299 2299 2299 2299 2299 0.00%
20 2299 2299 2299 2299 2299 2299 0.00%

mtsp150 3 13038 13038 13093 15678 14993 14929 14.50%
5 8450 8450 8487 9993 9746 9695 14.73%

10 5557 5557 5587 6404 6196 6196 11.50%
20 5246 5246 5246 5263 5285 5248 0.03%

gtsp150 3 2402 2402 2402 2740 2551 2508 4.44%
5 1741 1741 1741 1950 1823 1823 4.71%

10 1555 1555 1555 1562 1556 1555 0.00%
20 1555 1555 1555 1555 1555 1555 0.00%

kroA200 3 10691 10691 10700 13342 13004 12924 20.89%
5 7412 7412 7420 8971 8755 8754 18.10%

10 6223 6223 6223 6382 6243 6223 0.00%
20 6223 6223 6223 6223 6223 6223 0.00%

lin318 3 15701 15701 15714 19514 16879 16879 7.50%
5 11289 11289 11297 13763 12292 12265 8.65%

10 9731 9731 9731 10129 9765 9738 0.07%
20 9731 9731 9731 9731 9731 9731 0.00%

Gap to BKS - 0.00% 0.07% 10.26% 5.67% 5.36%
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E.2. Generalization on Benchmark: Min-max mTSP Lib

We also adopt the widely used (Kim et al., 2022a) mTSP Lib (Reinelt, 1991) dataset for testing DPN. mTSP Lib contains
four min-max mTSP instances (i.e., eil51, berlin52, eil76, and rat99). In testing both DPN and Equity-Transformer, We use
both the model trained on 50-node and 100-node instances for validation and report the better result. As shown in Table 8,
DPN variants also narrow the optimality gap on the mTSP Lib dataset.

Table 8. Performances (objective function values and gaps to the BKS) of DPN on mTSP Lib dataset.
BKS HGA Equity-Transformer-×8aug DPN-×8aug DPN-×8aug-×16per

Instance M= Obj. Obj. Obj. Obj. Obj. Gap
eil51 2 223 223 236 234 227 2.00%

3 160 160 164 167 165 3.09%
5 118 118 120 120 120 1.66%
7 112 112 112 112 112 0.00%

berlin52 2 4110 4110 4425 4421 4186 1.86%
3 3074 3074 3263 3328 3113 1.27%
5 2441 2441 2495 2663 2441 0.02%
7 2441 2441 2441 2441 2441 0.00%

eil76 2 281 282 295 291 291 3.65%
3 197 197 206 201 201 2.05%
5 143 144 146 144 144 0.71%
7 128 128 129 129 128 0.30%

rat99 2 666 668 795 754 754 13.16%
3 518 518 566 572 572 10.55%
5 450 450 474 467 467 3.71%
7 437 437 440 442 442 1.02%

Gap to BKS 0.00% 0.06% 4.60% 2.87% 2.81%

E.3. Generalization on Cross-distribution Datasets

The cross-distribution generalization ability of neural combinatorial optimization solvers is necessary (Jiang et al., 2022).
In Table 1 and Table 2, DPN has shown effectiveness in min-max mTSP instances with a uniform distribution. In this
subsection, we evaluate the DPN on min-max mTSP200 with the Gaussian distribution, the Rotation distribution, and the
Explosion distribution provided in (Zhou et al., 2023). We use the provided dataset in Zhou et al. (2023), and the result is
shown in Table 9. DPN demonstrates outstanding robustness on different distributions.

Table 9. The average objective function values(i.e., Obj.), gaps to the best algorithm (i.e., Gap) on 3 datasets with different distributions.
HGA makes one run for these results, and the best result is in bold.

Min-max mTSP200-Gaussian
M= 10 15 20

Methods Obj. Gap. Obj. Gap. Obj. Gap.
HGA 1.5063 - 1.5031 0.00% 1.5031 0.00%
Equity-Transformer-F-×8aug 1.6426 9.05% 1.5458 2.84% 1.5265 1.56%
DPN-F-×8aug 1.5204 0.93% 1.5032 0.00% 1.5031 0.00%
DPN-F-×8aug-×16per 1.5181 0.78% 1.5031 - 1.5031 -

Min-max mTSP200-Explosion
M= 10 15 20

Methods Obj. Gap. Obj. Gap. Obj. Gap.
HGA 1.7651 - 1.7488 - 1.7486 -
Equity-Transformer-F-×8aug 1.9269 9.17% 1.8277 4.51% 1.8062 3.30%
DPN-F-×8aug 1.7924 1.55% 1.7668 1.03% 1.7663 1.01%
DPN-F-×8aug-×16per 1.7894 1.37% 1.7667 1.02% 1.7663 1.01%

Min-max mTSP200-Rotation
M= 10 15 20

Methods Obj. Gap. Obj. Gap. Obj. Gap.
HGA 1.7492 2.79% 1.7393 4.23% 1.7391 4.28%
Equity-Transformer-F-×8aug 1.8871 10.90% 1.7524 5.01% 1.7151 2.84%
DPN-F-×8aug 1.7064 0.28% 1.6697 0.05% 1.6678 0.00%
DPN-F-×8aug-×16per 1.7017 - 1.6688 - 1.6677 -
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E.4. Extending to N=100,000

The capability of extending to very large-scale instances (Luo et al., 2024) is also necessary for neural min-max VRP solvers.
The original P&N Encoder of DPN cannot manage large-scale problems such as N = 100, 000. When generating a single
solution, the space complexity of DPN is O(N(N +M)), so the proposed DPN can only solve up to 10,000-scale problems
on a single Tesla V-100S GPU.

DPN-w/o Navigation Part for N=100,000. To handle large-scale data such as N=100,000, we further propose a variant
of DPN. We design a variant of DPN by removing the navigation part in each P&N Encoder layer (only preserving the
partition part, marked as DPN-w/o Navigation Part in Table 10) and train this variant from scratch on 100-node min-max
mTSP (i.e, N +D=100). The space complexity of the DPN-w/o Navigation Part reduces to O(NM) so this model can
derive feasible solutions on 100,000 scale problems. Results in Table below 10 show that this variant can effectively solve
very large min-max mTSP(N=100,000) on a single GPU with considerable time.

All the heuristic baselines (like HGA and LKH) with default settings cannot generate results within 5 days on 100,000-scale
problems. However, the performance of solutions can be partially reflected by the comparison to DPN and Equity-
Transformer on min-max mTSP10,000 shown in Table 10 where this variant of DPN demonstrates better scaling perfor-
mances.

Table 10. The average objective function values(i.e., Obj.) and the total time (i.e., Time) of DPN and DPN-w/o navigation part on min-max
mTSP 10,000 and very large-scale instances.

min-max mTSP10,000(N=9,999,D=1,10 instances)
M= 500 750 1,000

Method Cost Time Cost Time Cost Time
Equity-Transformer 4.5645 3m 2.9245 3m 2.8524 3m
DPN 2.4640 2.8m 2.4724 2.8m 2.3853 2.8m
DPN-w/o Navigation Part 2.3487 2.8m 2.3333 2.8m 2.2568 2.8m

min-max mTSP(10 instances)
N +D=50,000 N +D=70,000 N +D=100,000

M= 500 500 500
Method Cost Time Cost Time Cost Time

DPN-w/o Navigation Part 3.4183 34m 3.7832 72m 4.2078 2h

E.5. Ablation on M=10

The ablation studies in Section 4.2 focus on the setting of M = 5, and the ablation studies on M = 10 are provided in
this part. As shown in Table 11, the efficiency of the proposed components in DPN is even more significant in problems
with M = 10. Due to the decision space of navigation reducing together with the average length of routes, min-max VRPs
with M = 10 agents might focus more on partition tasks rather than navigation tasks, so the use of Rotation-based PE
demonstrates more significant superiority. The training curve in Figure 8 also confirms the conclusion. The data points in
both Figure 3 and Figure 8 are derived from evaluating the same validation set. These ablation models are equipped with
both the ×8aug and ×16per augmentations.

Table 11. Ablation study on proposed components of DPN.
min-max mTSP100 min-max mPDP100

M= 10 10
w/o P&N Encoder 1.9537 3.2706
w/o APS-Loss 1.9571 2.8078
w/o Rotation-based PE 1.9544 2.7123
DPN-×8aug-×16per 1.9532 2.6949
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Figure 8. Training curves for ablation study (M=10).

E.6. Ablation on PE

In Appendix C.5, we have shown that the Rotation-based PE implemented in DPN helps improve convergence and optimality
on both M=5 and M=10. To further underscore the advantages of using Rotation-based PE, this section presents additional
comparative experiments that substantiate the efficacy of Rotation-based PE in facilitating the learning of partition strategies,
especially when considering various depot locations (outlined in Section C.5). These strategies are crucial for adapting to
different spatial distributions of depots, thereby underlining the practical value of Rotation-based PE in adaptive partitioning
contexts.

In this subsection, we generate 10,000 mTSP100 instances, the depot coordinate of the i-th instance is as follows:

xd =
(
0.005 + 0.01(⌊ i− 1

100
⌋) , 0.005 + 0.01(i mod 100)

)
, (97)

where (i mod 100) represents the remainder.

We run the model of DPN-×8aug-×16per, DPN-w/o-Rotation-based-×8aug-×16per, and the heuristic method HGA on
these instances with M=10. HGA makes one run in these instances. Figure 9 consists of 100 blocks and each block
contains the average gap of the 100 instances whose depot is located in the block. The first two plots on the left in Figure 9
demonstrate that for both the DPN (left 1) and the ablation model of DPN with SPE (without Rotation-based PE) (left 2), the
gap to HGA relates to depot locations and the instances with middle-location depots perform relatively worse. Relatively,
Rotation-based PE enables DPN to handle instances at any depot location with an even gap level and demonstrates the
contribution of Rotation-based PE to learning a more robust customer partition strategy.

The right plot shows that compared to Rotation-based PE, the original sinusoidal PE performs well in the instances with
corner-location depots, but cannot generalize to the instances with middle-location depots. With the addition of the depot
coordinate information, the Rotation-based PE improves the performance of these instances with middle-location depots.
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Figure 9. Plot of relations between depot locations and performances. These plots divide the xy-plate into 100 uniform blocks, and
each block represents the average Gap of the instances whose depots are located in the block. The two green heatmaps on the left
represent the relation between depot locations and the gaps to HGA (Mahmoudinazlou & Kwon, 2024) when testing our DPN and the
w/o Rotation-based PE ablation model respectively. The red heatmap on the right is the ratio of the objective function between the two
versions of models (i.e., Gap of w/o Rotation-based PE to DPN).
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E.7. Ablation on the Fine-tuning Phase & Zero-shot Generalization

DPN uses a learning rate of 1e-5 in fine-tuning, and Figure 10 provides ablation studies to demonstrate the superiority of
this setting. The DPN-Finetune-lr=1e-5 version represents fine-tuning with the learning rate being 1e-5 (i.e., the model for
min-max mTSP in Table 2) and the DPN-Finetune-LP-lr=1e-5 is the fine-tuning setting adopted in Equity-Transformer (Son
et al., 2024) which adds a 2-layer MLP for the contextual embedding qcontex. Compared to models with other learning
rates, the DPN-Finetune-lr=1e-5 consistently shows the best convergence speed among all versions.
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Figure 10. Training curves on min-max mTSP200 with different learning rates and settings.

Table 12 tests the ablation fine-tuned models with different settings. It proves the above conclusions as well, and in addition,
columns of “DPN-100” with ×8aug or ×16per list the results of DPN trained on 100-scale min-max mTSP and tested on
200-scale min-max mTSP datasets which can demonstrate that our DPN exhibits advantages in zero-shot generalization
compared to Equity-Transformer.

Table 12. Ablation study on proposed components in DPN.
Min-max mTSP200

M= 10 15 20
Methods Obj. Obj. Obj.

HGA 1.9861 1.9628 1.9627
LKH3 1.9817 1.9628 1.9628
OR-Tools(600s) 2.3711 2.3687 2.3687
DAN 2.3586 2.1732 2.1151
ScheduleNet* 2.35 2.13 2.07
NCE* 2.07 1.97 1.96
Equity-Transformer-×8aug 2.0750 1.9947 1.9658
Equity-Transformer-F-×8aug 2.0500 1.9688 1.9631
DPN-100-×8aug 2.0381 1.9692 1.9660
DPN-100-×8aug-×16per 2.0227 1.9670 1.9648
DPN-F(lr=1e-4)-×8aug-×16per 2.0107 1.9643 1.9628
DPN-F(lr=5e-6)-×8aug-×16per 2.0004 1.9644 1.9628
DPN-F(lr=1e-5+LP)-×8aug-×16per 2.1064 1.9673 1.9645
DPN-F(lr=1e-5)-×8aug-×16per 1.9993 1.9640 1.9628
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F. Visualization
This section provides visualization of some random instances of min-max mTSP (Figure 11, Figure 12), min-max mPDP
(Figure 13, Figure 14), and min-max MDVRP (Figure 15, Figure 16, Figure 19), min-max FMDVRP (Figure 17, Figure 18,
Figure 20) to display the advantage of the proposed DPN.
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Figure 11. Min-max mTSP instances (M=5), solving by LKH3, Equity-Transformer, and ours DPN.
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Figure 12. Min-max mTSP instances (M=10), solving by LKH3, Equity-Transformer, and ours DPN.
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Figure 13. Min-max mPDP instances (M=5), solving by Equity-Transformer and ours DPN. Different colors and shapes (blue diamonds
for pickups and red stars for deliveries) distinguish customers.
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Figure 14. Min-max mPDP instances (M=10), solving by Equity-Transformer and ours DPN. Different colors and shapes (blue diamonds
for pickups and red stars for deliveries) distinguish customers.
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Figure 15. Min-max MDVRP instances (D=8,M=5) solving by ours DPN. Selected depots are highlighted by red.
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Figure 16. Min-max FMDVRP instances (D=8,M=10) solving by ours DPN. Selected depots are highlighted by red.
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Figure 17. Min-max FMDVRP instances (D=8,M=5) solving by ours DPN. Selected depots are highlighted by red.
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Figure 18. Min-max FMDVRP instances (D=8,M=10) solving by ours DPN. Selected depots are highlighted by red.
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Figure 19. Min-max MDVRP instances (M=5, D=5, N=50), solving by OR-Tools, NCE, and ours DPN. The solution of OR-Tools and
NCE is reported in Kim et al. (2022a).
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Figure 20. Min-max FMDVRP instances (M=5, D=5, N=50), solving by OR-Tools, NCE, and ours DPN. The solution of OR-Tools and
NCE is reported in Kim et al. (2022a).

The solutions of OR-Tools and NCE in Figure 19 and Figure 20 are reported in Kim et al. (2022a). Due to their code
being unavailable, we crawl the data and optimal solution through pixel coordinates. Therefore, the value of their objective
function may be inconsistent. In these instances, DPN still outperforms other neural solvers.
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G. Baseline & License
The implement HGA algorithm is given in https://github.com/Sasanm88/m-TSP. For all uniform datasets with
100 instances, we set HGA to run 10 times. For the dataset with uniform depot location (adopted in Appendix E.6) consisting
of 10,000 instances and cross-distribution experiments (in Appendix E.3), we only make HGA run once.

We implement the approximate min-max constraint and the pickup and delivery constraints for OR-Tools based on official
tutorials https://or-tools.github.io/docs/pdoc/ortools.html. In solving min-max mTSP and min-
max mPDP, we enable them to run 600s. For multi-depot min-max VRPs, due to various implementation alternations
available, we use the results reported in Kim et al. (2022a).

As to LKH3, We adopt the commonly used setting in the NCO methods (Kool et al., 2018) and implement the LKH3 in min-
max mTSP based on the code from https://github.com/wouterkool/attention-learn-to-route. We
do not set runtime limits, but instead, specify its maximal according to commonly used settings and set the MAX TRAILS
parameter to 10,000, MAX CANDIDATES to 6, and RUNS to 10. So, the solution optimality of LKH3 in this paper may be
different from the report results in Son et al. (2024).

As mentioned in Appendix D.2 in the supplementary File, in testing mTSP, we use the dataset provided by Son et al. (2024).
Due to the learning methods ScheduleNet and NCE in mTSP are provided in Son et al. (2024) with 2-digital results. So
although they are not available, the results are accurate. However, with testing on a different dataset, the baseline results of
min-max MDVRP and min-max FMDVRP in Table 4 are not accurate.

For Equity-Transformer, we use the provided pre-trained model for experiments on 50-scale min-max VRPs and 200-scale
min-max VRPs. We further train 100-scale models for the min-max mTSP100 and the min-max mPDP100 datasets for a
fair comparison. Moreover, we train a min-max mPDP500 fine-tuned model based on the min-max mPDP100 model. In
Table 2, we provide an “Equity-Transformer-F-sample*” version, which is the reported result in Son et al. (2024) without
illustrations about specific sample settings.

We use the provided pre-trained model for every run with a greedy decoding setting for another open-source neural solver
DAN (Cao et al., 2021).

Table 13. A summary of licenses.

Resources Type License
HGA Code Available online
OR-Tools Code Apache License, Version 2.0
LKH3 Code Available for academic research use
DAN Code MIT License
Equity-Transformer Code Available online
mTSP SetI Dataset Available for any non-commercial use
mTSP Lib Dataset Available for any non-commercial use

The licenses for codes and datasets used in this work are listed in Table 13.
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