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ABSTRACT

In recent years, contrastive learning techniques have achieved significant success
and have been widely applied in both general and medical domains. In the gen-
eral domain, image captions typically describe only objects present in the image.
However, in the medical field, radiology reports contain both sentences confirm-
ing the presence of diseases or abnormalities (positive mentions) and sentences
explicitly ruling them out (negative mentions). Current vision-language pretrain-
ing models in the medical domain often overlook this critical distinction in both
model evaluation (e.g., zero-shot classification) and training processes. In this pa-
per, we suggest adding a zero-shot classification evaluation method. Unlike previ-
ous approaches that only assess the semantic similarity between medical images
and positive mentions of different disease categories, this method evaluates the
model’s ability to distinguish between medical images and both positive and neg-
ative mentions of given disease category. Furthermore, to better capture the com-
plex semantic relationships between medical images and the corresponding radiol-
ogy reports, we introduce a visual entailment based contrastive learning method,
explicitly modeling the entailment, contradiction, and neutral relationships be-
tween medical images and report sentences. Experimental results demonstrate
that integrating this new evaluation method provides a more comprehensive eval-
uation of vision-language pretraining models in the medical domain. Additionally,
our model achieves state-of-the-art performance across various downstream tasks,
highlighting the effectiveness of our approach.

1 INTRODUCTION

Attributed to the rapid development of deep learning, an increasing number of medical tasks can
be accomplished by deep learning models, such as classification |[Liskowski & Krawiec| (2016)); [Fu
et al.|(2016), segmentation |Yang et al.|(2018);[Zhang et al.| (2018)), and report generation Zeng et al.
(2020); Wu et al.| (2023b)). However, achieving acceptable performance often requires task-specific
annotated data, which depends on laborious and expensive labeling by clinical experts, posing a
challenge and being time-consuming. To reduce reliance on annotated data, researchers have in-
troduced self-supervised training methods, with contrastive learning [Chen et al| (2020); Radford
et al.| (2021) being the most typical. When training with contrastive learning methods, the model
first undergoes self-supervised training on a large amount of unannotated data, and then fine-tunes
with a small amount of annotated data on downstream tasks, achieving the same satisfactory level of
performance. The application of contrastive learning in medical tasks has effectively alleviated the
model’s dependence on expensive annotated data.

However, there is a critical distinction between general and medical domains image-text pairs, as
illustrated in Figure[l] In general domain, image-text pairs almost only contain positive mentions.
The content described in the text usually appears in the images|Radford et al.|(2021). But in medical
domain, except positive mentions, image-report pairs also contain a large amount of negative men-
tions, where sentences in report explicitly ruling out the category not appearing in image. Current
vision-language pretraining models in the medical domain often overlook this critical distinction in
both model evaluation and training processes. This leads to limitations in evaluating model perfor-
mance and can result in defects in downstream tasks.
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Based on this issue we find, we suggest adding an additional evaluation method, which we call
Positive-Negative Contrastive (PNC) evaluation method. As a contrast, we refer to the previous
evaluation mode as the Positive-Only Similarity (POS) evaluation method. In the POS evaluation
method, metrics reflect the model’s ability to distinguish only the semantic similarity between med-
ical images and positive mentions of different disease categories. However, in PNC evaluation
method, metrics reflect the performance of models in distinguishing semantic similarity between
medical images and both positive and negative mentions of given disease category. Through experi-
ments we find, most models experience varying degrees of decline in their metrics in PNC evaluation
method, indicating that these models have varying degrees of defects in learning the distribution of
image and text features.

General Domain Medical Domain

S

Left-sided rib fractures are
demonstrated. No cardio
pulmonary abnormality.

@ (b)

Figure 1: In general domain, image-text pairs almost only contain positive mentions. But in medical
domain, image-report pairs usually contain both positive mentions and negative mentions. In our
method, model can not only better distinguish semantic similarity between medical images and pos-
itive mentions of different disease categories (“inter-class similarity”) but also better distinguish se-
mantic similarity between medical images and both positive and negative mentions of given disease
category (“intra-class similarity”). (a) Distinction between general and medical domains image-text
pairs. (b) The change in the distribution of the model feature space in our method.
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To address this issue, we introduce an innovative training method. By drawing on the ideas of the
Visual Entailment task [ Xie et al.| (2019),we consider both the positive and negative mentions dur-
ing the contrastive learning process, introducing the Visual Entailment based Contrastive Learning
(VECL) method, which explicitly modeling the entailment, contradiction, and neutral relationships
between medical images and report sentences. Additionally, to adapt model training, we modified
the classic contrastive learning loss function InfoNCE |Oord et al.| (2018), expanding it from two
dimensions to three. To construct visual entailment relationships, we need additional supervisory
signals. Fortunately, large language models (LLMs) have shown strong text understanding and in-
ductive reasoning capabilities (OpenAl| (2023), allowing us to use LLM to extract disease category
labels of report sentences. Then based on a specific generation rule, we use these labels to consturct
visual entailment relationships among all samples within a batch and construct the similarity matrix
label. Code and models are available at[[]

In summary, our contributions can be summarized as follows:

* Suggestion of the Positive-Negative Contrastive (PNC) Evaluation Method. Experi-
mental results demonstrate that integrating PNC evaluation method provides a more com-
prehensive evaluation of vision-language pretraining models in the medical domain.

¢ Introduction of the Visual Entailment Based Contrastive Learning (VECL) Method.
We integrate the Visual Entailment task into contrastive learning process to model the en-
tailment, contradiction, and neutral relationships between medical images and report sen-
tences.

* Achieving SOTA Performance Across Various Downstream Tasks. We compared dif-
ferent baseline models on various downstream tasks, and the experimental results demon-
strate that we surpassed all baseline models on all metrics for all tasks.

'https://anonymous.4open.science/r/ICLR2025-92A0/readme
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2 METHOD

In this section, we first illustrate the Positive-Negative Contrastive (PNC) evaluation method, and
then describe the framework of the Visual Entailment Based Contrastive Learning (VECL) method.
The framework of VECL method is shown in Figure 4]

2.1 POSITIVE-NEGATIVE CONTRASTIVE EVALUATION METHOD
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Figure 2: The difference between previous POS evaluatlon method and our PNC evaluation method.
In PNC evaluation method, both positive and negative mentions of different disease categories are
used as text inputs to compute similarities. Finally, after passing through the softmax, the similarities

are sent to calculate the metrics with labels.

As shown in Figure [2] the difference between previous POS and our PNC evaluation method is
in model inference phase. In POS evaluation method, only positive mentions of different dis-
ease categories are used as text inputs, designated as “There is {disease}”, which is subsequently
used to calculate similarities with images and directly with labels to compute classification met-
rics. But in PNC evaluation method, both positive and negative mentions of different disease cat-
egories are used as text inputs, designated as “There is {disease}” and “There is no {disease}”.
After calculating the similarity between all texts and images, the similarities of positive and neg-
ative mentions within the same category are normalized by softmax, and then the normalized
scores of all categories’ positive mentions are used to calculate classification metrics with labels.
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2.2 AUTOMATIC LABEL EXTRACTION MODULE

In the automatic label extraction module, the report is first segmented into sentences by an LLM,
and any sentence unrelated to radiological diagnosis is filtered out. The filtered sentences are then
sent back into the LLM to extract the corresponding labels. Before label extraction, we selected 24
lung disease categories from common chest X-ray datasets, along with a 25th category representing
other diseases or no abnormality, to form the label categories set C'.

C={1",17,2%,27 ..., 247,247 25} (1)

With the label categories set, we can extract the labels of report sentences by LLM. Assuming the
sentence i,, in report ¢ is related to disease category r, the label output by the LLM is denoted as C}".
If the sentence i,, in report 7 is positive mention of disease category r, then C* = r; If the sentence
i, in report ¢ is negative mention of disease category r, then C}* = r~; If the disease category is
other diseases or no abnormality founding, then CI* = 25. We refer to r* and 7~ as each other’s
opposite label, and the opposite label of 25 is itself. If a report sentence contains multiple diseases,
a list of labels will be generated. In all subsequent processing, the list of labels containing multiple
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diseases will be split into individual labels for handling. According to these rules, labels can be
extracted from the report sentences in the entire training set.
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Figure 4: The framework of VECL method. The image enters the image encoder, while the text
first goes through the automatic label extraction module to obtain the segmented report sentences
and their corresponding sets of image labels. The segmented report sentences are then sampled and
fed into the text encoder. After encoding, the image features and text features are processed through
a fusion module to calculate similarities, resulting in S727 and S72?!. Meanwhile, the similarity
matrix label construction module builds a similarity label matrix M based on the image label set
and the label of the sampled report sentence. Finally, S727 and S7?! are used with M to calculate
the loss using the 3D InfoNCE loss function.

2.3 ENCODER AND FUSION MODULE

For encoders, only one sentence from complete report is random sampled as the input of text en-
coder, while the complete image after data augmentation is the input of image encoder. Assume that
x,; represents the ¢-th image in training set and y; represents the j-th report in training set, ®7, &7
and @ represent the image encoder, the text encoder and the fusion module, respectively. So the
intermediate results and the image-text similarity produced by the model’s forward process are as
follows:

wf = ®p(w), yj = Sr(yy) )

x! and y]T represent the image features output by the image encoder and the text features output by
the text encoder, respectively.

SinzT = @F(xf,y;‘-r) = MLP(CrossAtt(Q = z!, K = y;‘-F, V= y;‘r)) 3)

S};Ql = (I)F(ij,ZEI) = MLP(CrossAtt(Q = ij7 K=zl V =2zl 4)

?
SiIfT and 577;21 represent the image-text similarity output by the fusion module, with each serv-
ing as the query in the cross attention process, respectively. Here S;** and S7;*/ both are a one-
dimensional vector, where SinzT, Sﬁﬂ € R3. For any image z; and any report y; within a batch,

the image-text similarities between them ultimately form two similarity matrices S27 and S7?/,
where S727 §T2I ¢ RNXNX3 Here N is the batch size.

2.4  SIMILARITY MATRIX LABEL CONSTRUCTION MODULE

Similar to model’s forward process, only one label of the sampled report sentence as text label and
all labels of a complete report as the image label set are sent into similarity matrix label construction
module. In this module, we integrate the visual entailment task into contrastive learning process to
model the entailment, contradiction, and neutral relationships between medical images and report
sentences. Specifically, we assess the relationship between the text label, opposite label of the
text label, and the image label set. If the image label set includes the text label, we consider the
relationship between the image and the report sentence to be entailment. If the image label set
includes the opposite label of the text label, we consider the relationship between the image and
the report sentence to be contradiction. If the image label set neither includes the text label nor its
opposite label, we consider the relationship between the image and the report sentence to be neutral.
For report sentences that contain multiple labels, the entire sentence is only considered to satisfy the
entailment relationship if all the sub-labels satisfy the entailment relationship. If any sub-labels are
in a contradiction relationship, the entire sentence is considered to be in a contradiction relationship.
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We use three basis vectors:[1, 0, 0], [0, 1, 0], and [0, 0, 1] to represent these relationships, respectively.
Specifically, when the text label is 25, we consider the relationship between the report sentence and
any image to be neutral.

C; C; C; C;

1: Input: . . ! : N W
2: The batch data B, len(B) = N Cit =t [1,0,01 [0.1,0] - [0,0,1] [0,1,0]
3:  For any report (image) 4, its labels set C; and . .

row in the batch R; ¢z =c;z [0,1,0] [1,0,0] - [1,0,0] [L0,0]
4:  For any sentence jj, in report j, its label Cf, : : ; :

opposite label ﬁC’J’?’ and column in the batch CZ’Q’: —|Cj?)’v"_‘11 [0,1,0] [0,0,1] - [1,0,0] [0,0,1]
5: Output: c ey 10,001 [10.0] - [0.10] [10.0]
6: The similarity matrix label M, shape(M) = o ,

[ N.N 3] l Similarity Matrix Label M
7: for i in B do
8: if C} in C; then —
9: M(R;,L;) =[1,0,0]

10: else if ~C in C; then

11: M(R;,L;) =10,0,1]
12: else

13: M(R“LJ) = [0,1,0}
14: end if

15: end for

Figure 5: The algorithm for constructing similarity Figure 6: The schematic diagram of con-
matrix labels M. Based on the assessment of the structing the similarity matrix labels. Within
relationship between the image label set and the la- a batch, each image and report sentence is
bel of the report sentence as well as its opposite la- matched pairwise to form a relationships
bel, the relationships are represented using [1,0,0], vector, and these vectors, which are number
[0,1,0], and [0,0, 1] for entailment, contradiction, of batch size x batch size, are concatenated
and neutral relationships, respectively. to construct the similarity matrix label M.

With the vectors representing relationships between image and report sentence, we can construct
the similarity matrix label M, where M € RNXNX3  The detiled rules to assess the relationship
between image and report sentence and construct the similarity matrix label M are shown in Figure[3]
and Figure[6] Thought these rules, we obtain the similarity matrix label M that considers entailment,
contradiction, and neutral relationships.

2.5 3D INFONCE Loss

Let d represent the position along the third dimension, where d € {1,2,3}, M(d), S'*T(d) and
ST21(d) represent the slices along the third dimension of M, S27 and ST2! at positions d, re-
spectively. For the given d, M (d), ST27(d) and ST2!(d) are each a two-dimensional matrix so can
be incorporated in previous 2D InfoNCE loss £(d), which contains image-to-text alignment item
L12T(d) and text-to-image alignment item £72/(d). And for both £/27'(d) and £T%!(d), each in-
cludes a cross-entropy loss calculated along the row-wise direction and the column-wise direction
as follows:

N N
1
£ (d) =~ Norm(M;;(d)) - log(Softmax(c*" () 5)
i=1 j=1
1 N N 12T
L7 (d) = — Norm (M;;(d)) - log(Softmax (¢* ™ (4))) 6)
j=11i=1

Here, Norm() and Softmax() refers to the normalization function, dim = 0 and dim = 1 under
them refer to normalization on row-wise and column-wise, respectively.

Mi;(d) . N -
{NJMa(d) if 372, Mij(d) # 0,
0 0

Norm(M;;(d)) = =t if E].V M;j(d) =

dim=0

(7
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Similarly, we can compute £22!(d), £I2!(d) and obtain £L72T(d), LT (d), L(d).

LP(d) = £ (d) + L1 (d) ®)
£7(d) = £5%(d) + LT (d) ©)
L£(d) = £ (d) + £T%(d) (10)

Finally, the 3D InfoNCE loss is the summation of all 2D InfoNCE loss.

L= L(d) (11)

d=1

3 RESULTS

3.1 DATA

We used the MIMIC-CXR training set as the training set, and used Open-I, CheXpert, ChestXray14,
and ChestXDet10 as the test sets for zero-shot classification. At the same time, we used the MIMIC-
CXR test set as the test set for retrieval-style report generation. Details of the datasets can be found
in the appendix.

3.2 EVALUATION METRIC

In our experiment, for both zero-shot and fine-tuning classification evaluation metrics, we adapt
Area under the ROC Curve (AUC), F1 score (F1), Matthews Correlation Coefficient (MCC), and
mean Average Precision (mAP). For F1 score, we followed the evaluation method in CheXzero
Tiu et al.| (2022) and MedKLIP Wu et al.| (2023a), calculating F1 score at the optimal threshold.
Therefore, for MCC, we also calculate the scores at the optimal threshold. And for retrieval based
report generation evaluation metrics, we adapt common NLG metrics, Recall-Oriented Understudy
for Gisting Evaluation (ROUGE) [Lin| (2004), Bilingual Evaluation Understudy (BLUE) [Papineni
et al.| (2002), and Consensus-based Image Description Evaluation (CIDEr) [Vedantam et al.| (2015).

3.3 IMPLEMENTATION DETAILS

In our experiments, we choose ViT-B/16 Dosovitskiy| (2020) as the image encoder which utilizes
M3AE |Chen et al.| (2022)) for pretraining on the MIMIC-CXR, and choose BioBERT |Lee et al.
(2020) as the text encoder which is fine-tuned on MIMIC-CXR, too. Other implementation details
can be found in the appendix.

3.4 COMPARISON WITH STATE-OF-THE-ART METHODS

Zero-Shot Classification We compare the performance of existing SOTA methods in zero-shot
classification on four officially released test sets. To ensure a fair comparison, the baseline model’s
training data excludes any LLM-generated reports. For CARZero |Lai et al.| (2024), which origi-
nally incorporated LLM-generated reports during training, we removed these reports and retrained
the model without LLM prompt templates. All other models use their respective officially released
parameters for inference. As shown in Table [I] in both the POS and PNC evaluation methods,
our model achieves the best performance across all classification metrics on all test datasets. This
demonstrates the significant potential of our approach for diagnosing rare diseases and highlights
the strong generalization performance of our model in zero-shot classification tasks. It is also worth
noting that most models experience varying degrees of performance decline under the PNC eval-
uation method. This indicates that previous SOTA models can effectively distinguish the semantic
similarity between medical images and positive mentions of different disease categories (“inter-class
similarity”), but struggle to differentiate the semantic similarity between medical images and both
positive and negative mentions within a given disease category (“‘intra-class similarity’”). Our model,
however, performs strongly in both evaluation methods, demonstrating its ability to effectively dif-
ferentiate both “inter-class similarities” and “intra-class similarities”, which corresponding to the
schematic diagram in Figure

Fine-Tuning Classification We compare the performance of existing SOTA methods in fine-tuning
classification on 1% Open-I data. As shown in Table 2] our model continues to achieve the best per-
formance on all classification metrics, and even our zero-shot classification performance surpasses
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Method ‘ Evaluation ‘ Open-I ‘ CheXpert ‘ ChestXray14 ‘ ChestXDet10
Method
| | AUCT FIT  MCCtmAPt AUCT F1t  MCCTmAPT AUCT FIt  MCCt mAPT AUCT FIT  MCCT mAPt
MedCLIP POS 0.500 0.134 0.106 0.096 0.528 0.389 0.224 0.312 0.510 0.146 0.089 0.090 0.517 0.322 0.120 0.198
PNC 0.756 0.184 0.190 0.118 0.819 0.531 0.455 0452 0.704 0.180 0.158 0.110 0.647 0.347 0.222 0.260
KAD POS 0.818 0.283 0.279 0.228 0.849 0.549 0471 0.532 0.796 0.289 0.259 0.221 0.749 0.449 0.470 0.392
PNC 0.695 0.169 0.147 0.095 0.786 0.514 0.405 0.443 0.695 0.168 0.135 0.110 0.675 0.383 0.404 0.304
CARZero* POS 0.802 0.192 0.273 0212 0.857 0227 0487 0545 0.761 0.146 0.213 0.164 0.732 0.203 0.343 0.381
PNC 0.336 0.074 0.068 0.037 0.099 0.264 0.021 0.105 0.303 0.089 0.025 0.038 0.329 0.289 0.095 0.157
VECL(Ours) POS 0.829 0.345 0.341 0.277 0.900 0.649 0.579 0.655 0.815 0.305 0.275 0.277 0.800 0.493 0.421 0.470
PNC 0.823 0.336 0.334 0.275 0.909 0.660 0.597 0.668 0.814 0.303 0.273 0.224 0.788 0.485 0.400 0.460

Table 1: Comparison of different methods on Open-I, CheXpert, ChestXray14, ChestXDet10 for
zero-shot classification. To ensure a fair comparison, for CARZero, we removed the LLM-generated
data and retrained the model for inference.

the performance of other methods fine-tuned on 1% of the data, proving the strong advantages of
our approach.

Retrieval Based Report Generation We compare the performance of existing SOTA methods in re-
trieval based report generation on MIMIC-CXR test set. Also shown in Table[2} our model achieves
the best performance on all NLG metrics once again. Interestingly, CARZero, as the last SOTA
method, shows the worst performance among several methods in the retrieval based report genera-
tion task, while the much earlier method MedCLIP|Wang et al.[(2022) has demonstrated quite good
performance. This may be because, in the retrieval-based report generation task, the model needs
not only to distinguish between “inter-class similarities” of different diseases but also to distinguish
“intra-class similarities” given a specific disease. The model must clearly determine whether the
target disease category exists in order to match the most similar report. By comparing the zero-shot
classification metrics of MedCLIP and CARZero in the PNC evaluation method, we can also find
that MedCLIP significantly outperforms CARZero, which to some extent supports our explanation.
This also reflects that PNC evaluation method can provide a more comprehensive evaluation.

Open-I | MIMIC-CXR

Method ‘

| Auct  F1t  MCCt mAPt RG-1t  BL-1t  BL-2t  CIDErt

MedCLIP 0.754 0.077 0.188 0.136 0.184 0.183 0.086 0.015
KAD 0.771 0.156 0.239 0.196 0.176 0.198 0.084 0.017
CARZero* 0.815 0.183 0.285 0.219 0.150 0.180 0.079 0.014
VECL (Ours) 0.830 0.366 0.353 0.294 0.188 0.214 0.089 0.017

Table 2: Comparison of different methods on 1% Open-I data for fine-tuning classification and
on MIMIC-CXR test set for retrieval based report generation. To ensure a fair comparison, for
CARZero, we removed the LLM-generated data and retrained the model for fine-tuning and report
generation.

3.5 ABLATION STUDY

Ablation Study of Visual Entailment To validate the effectiveness of the visual entailment method
in construction of the similarity matrix label, we design control experiment constructing the simi-
larity matrix label without visual entailment method as the baseline. In baseline model, the sample
matching relationship represented by three basis vectors degenerates into numbers 0 and 1. And the
medical images supporting the report sentences degenerate into positive samples, while the images
contradicting or being neutral to the report sentences degenerate into negative samples. As shown
in Table [3] We compared the zero-shot classification performance between control experimental
group on CheXpert. The baseline model’s F1 scores shows significant declines under in evalua-
tion methods, and all metrics in the PNC evaluation method also significantly drop. The degraded
baseline model can still model the support and neutral relationships between positive and negative
samples, but it fails to model the contradictory relationships of negative mentions. This indicates
that modeling the contradictory relationships of negative mentions in contrastive learning is cru-
cial for enhancing the model’s ability to distinguish between “inter-class similarities”, especially
“intra-class similarities”.
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Ablation Study of Loss Function To validate the effectiveness of the 3D InfoNCE loss, we design
control experiment replacing the 3D InfoNCE loss with BCE loss and Cross Entropy loss respec-
tively. For BCE loss, we slice the third dimension of the three-dimensional similarity matrix and
labels, and then optimize three two-dimensional matrices simultaneously, shape of which is batch
size x batch size ; For Cross Entropy loss, we slice the first two dimensions of the three-dimensional
similarity matrix and labels, and then optimize one two-dimensional matrix, shape of which is (batch
size-batch size) x 3. Also shown in Table 3] We compared the zero-shot classification performance
between control experimental group on CheXpert. In all control groups, the model using the 3D
InfoNCE loss achieved the best performance, demonstrating the effectiveness of the contrastive
learning task. Compared to BCE loss and cross-entropy loss, the 3D InfoNCE loss not only consid-
ers whether the modeling of the sample itself regarding the relationships of entailment, neutrality,
and contradiction is correct, but also requires comparing the entailment, neutrality, and contradic-
tion relationships between samples, increasing the difficulty of the task and thereby enhancing the
model’s learning ability.

Visual Entailment ‘ Loss Function ‘ Evaluation ‘ CheXpert
False True | BCE  CrossEntropy 3D InfoNCE | Method | Auct  F1t  MCCT  mAPt
v y POS 0.899 0331 0.574 0.639
PNC 0463 0219 0208 0.255
P P POS 0896  0.638 0.568 0.639
PNC 0906  0.652  0.86 0.660
S, S, POS 0.882 0614 0544 0.614
PNC 0893 0623 0552 0.639
S, P POS 0900  0.649  0.579 0.655
PNC 0909  0.660  0.597 0.668

Table 3: Ablation study of visual entailment and loss function

Ablation Study of Label Categories To explore the influence of the label categories set C' on the
model performance, we designed control experiments with different label categories sets C. We
gradually reduce the number of label categories by intervals of three, and construct new similarity
matrices for models training. We compared the zero-shot classification performance among control
experimental groups on Open-I. As shown in Figure[7] in both evaluation methods, as the number of
label categories gradually decreases, the four classification metrics overall show a downward trend,
indicating that the number of label categories can affect the model’s performance, and belong to
negative correlation. The richer the label categories, the more the model can use visual entailment
method to model samples relationships, providing richer supervisory signals, which helps the model
capture more complex semantic relationships among samples. Looking at the absolute values of the
metrics, although the classification metric scores overall decrease as the number of label categories
gradually decreases, the decline is not significant and are still higher than almost all other methods.
This suggests that our method has a low dependency on the number of label categories and possesses
a higher degree of robustness.
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Figure 7: The ablation study of label categories. We gradually reduce the number of label categories
by intervals of three, and comparing the zero-shot classification performance in different evaluation
method. As the number of label categories gradually decreases, the decline of metric scores is not
significant, suggesting that our method has a low dependency on the number of label categories and
possesses a higher degree of robustness
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3.6 VISUALIZATION

In order to further verify our analysis in Figure 3] we selected CARZero as the baseline for compari-
son with our method. We performed t-SNE visualization on the similarities output from the model’s
fusion module. We set up two control experiments, one comparing the distributions of positive im-
ages + positive text fusion features with positive images + negative text fusion features under the
given disease category, and the other comparing the distributions of negative images + positive text
fusion features with negative images + negative text fusion features the given disease category. As
shown in Figure 8] In each specified disease category, our method can effectively distinguish be-
tween the distributions of the two types of features, while CARZero is much poorer. Specifically,
the results above the horizontal line represent the comparison of the distributions between positive
images + positive text fusion features and positive images + negative text fusion features under a
given disease category. The results below the horizontal line represent the comparison of the dis-
tributions between negative images + positive text fusion features and negative images + negative
text fusion features under a given disease category. This indicates that our model can bring positive
images closer to positive text and farther from negative text, while simultaneously bringing negative
images closer to negative text and farther from positive text in the feature space, which correspond-
ing to the schematic diagram in Figure 8] CARZero fails to do so, leading to a significant decline in
all metrics in PNC evaluation method on the zero-shot classification task.
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Figure 8: t-SNE visualization on the similarities output from the model’s fusion module between
CARZero and our VECL. We compared the distributions of positive images + positive text fusion
features with positive images + negative text fusion features under the given disease category, as well
as the distributions of negative images + positive text fusion features with negative images + negative
text fusion features the given disease category. Visualization results indicate that VECL can better
distinguish between positive and negative mentions, which corresponding to the schematic diagram
in Figure[3|

4 RELATED WORK

4.1 CONTRASTIVE LEARNING IN VISION-LANGUAGE PRETRAINING

Our approach builds upon contrastive learning-based vision-language pretraining methods, which
have achieved notable success in both general and medical domains. In the general domain, CLIP
Radford et al.| (2021) has set a benchmark for joint visual-textual representation learning using large-
scale image-text pairs.

In the medical domain, several methods have adapted this paradigm for radiology data. ConVIRT
Zhang et al.| (2022) pioneered the use of contrastive learning to align medical scans with their cor-
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responding reports. GLoRIA |Huang et al.[(2021)) extends this with fine-grained alignment between
global and local features of medical images and text descriptions. MedKLIP |Wu et al.| (2023a) in-
corporates prior knowledge through disease descriptions to enhance representation learning. KAD
Zhang et al. (2023) utilizes entity extraction from image-associated reports, combined with their
semantic types, to perform contrastive learning via a knowledge encoder. These methods align
modalities primarily through cosine similarity.

CARZero|Lai et al.|(2024)) introduces cross-attention alignment to capture the nuanced relationships
between medical images and reports. However, it overlooks detailed report information, resulting in
suboptimal feature representations and difficulties in distinguishing between positive and negative
mentions. MedCLIP Wang et al| (2022) addresses this issue by using entity extraction tools to
convert report sentences into multi-hot vectors, applying a soft semantic matching loss, while still
relying on cosine similarity.

In contrast, our approach utilizes a large language model (LLM) to extract both positive and negative
mentions of diseases from reports. Through a cross-attention mechanism within a visual entailment
framework, we optimize the model to learn more robust and fine-grained representations, improving
its ability to distinguish between nuanced medical conditions.

4.2 VISUAL ENTAILMENT

Visual entailment aims to determine the relationship between a premise and a hypothesis, classifying
it as entailment, neutral, or contradiction. Unlike NLI tasks|/MacCartney| (2009)), where the premise
is textual, visual entailment uses images as premises. The SNLI-VE dataset [Xie et al.| (2019)), the
most commonly used dataset for this task, is adapted from SNLIBowman et al.| (2015}, replacing
textual premises with images from Flickr30k |Young et al.[(2014)).

Traditional visual entailment models use classification-based frameworks to directly predict one of
the three relationships between an image and a hypothesis. In contrast, we incorporate these rela-
tionships into a contrastive learning framework by introducing an extended version of the InfoNCE
loss|Oord et al.| (2018)).

5 CONCLUSION

In this paper, we suggest adding a evaluation method for medical vision-language models, Positive-
Negative Contrastive (PNC) evaluation method, and a Visual Entailment-based Contrastive Learn-
ing (VECL) approach, emphasizing the importance of considering positive and negative mentions
in medical image-text pairs. Experiments demonstrate that integrating PNC evaluation method pro-
vides a more comprehensive assessment of model performance, while VECL achieves state-of-the-
art results across various downstream tasks. Ablation studies validate the effectiveness of the visual
entailment method in constructing similarity matrix labels and explore the impact of label category
sets on model performance. Finally, t-SNE visualization reveals the reasons why VECL achieves
the best performance in PNC evaluation method. We hope this paper provides new perspectives for
vision-language models in the medical domain, potentially benefiting future research and clinical
practice.
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A APPENDIX

A.1 DATASET

MIMIC-CXR Johnson et al.| (2019) The MIMIC Chest X-ray (MIMIC-CXR) Database is a large
publicly available dataset of chest radiographs in DICOM format with free-text radiology reports.
The dataset comprises 377,110 images corresponding to 227,835 radiographic studies conducted on
65,379 patients. Each radiographic study is accompanied by a radiology report and the correspond-
ing chest X-ray image, which may be frontal or lateral views. The radiology report serves as a com-
prehensive summary provided by radiologists, encompassing various sections such as examination,
indication, impression, findings, technique, and comparison. In this study, we use MIMIC-CXR
training set for training and MIMIC-CXR test set for retrieval based report generation evaluation.
After data cleaning, the training set, test set, and validation set each contain 228,594, 3,858, and
3,018 image-text pairs, respectively. For image data, we select the frontal views of chest X-ray
image, and for text data, we select the findings and impressions sections.

12
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Open-I|Demner-Fushman et al.|(2016) Open-I contains 3,955 reports and 7,470 Chest X-ray images,
which includes manual annotations for 18 different multi-label diseases. In this study, we use Open-I
for zero-shot and finetune classification evaluation.

CheXpert [Irvin et al.| (2019) CheXpert has 224,316 CXRs collected from 65,240 patients. The
official test set contains 500 patients annotated by a consensus of 5 board-certified radiologists:
Atelectasis, Cardiomegaly, Consolidation, Edema, and Pleural Effusion. In this study, we use the
official test set and only the above five disease labels for zero-shot classification evaluation.

ChestXray14|Wang et al.|(2017) NIH ChestXray14 has 112,120 chest X-ray images with 14 disease
labels from 30,805 unique patients. The official test set released by the NIH, comprising 22,433
images, are distinctively annotated by boardcertified radiologists. In this study, we use the official
test set for zero-shot classification evaluation.

ChestXDet10 Liu et al.| (2020) ChestX-Det10 is a subset of NIH ChestXray14, which is consisting
of 3543 CXRs with boxlevel annotations provided by 3 board-certified radiologists of 10 diseases.
The official test set contains 542 CXRs with 10 diseases and corresponding box-level annotations.
In this study, we use the official test set for zero-shot classification evaluation.

A.2 IMPLEMENTATION DETAILS

The fusion module employs shared weights for both 12T and *T2I” alignments. Images are stan-
dardized to a size of 224 x 224 pixels. We implement standard data augmentation techniques such
as random horizontal flips, random affine transformations, and color jittering. After segmented into
sentences by LLM, a random sentence capped at 97 characters selected per training cycle. The
LLM we use is Meta-Llama-3-8B-Instruct| Al@Meta| (2024). The Adam optimizer is utilized with a
learning rate of Se-5. All experiments are conducted with an 80G A800 GPU.

A.3 LLM LABLE CATEGORY

In order from top to bottom, each category corresponds to 1, 2, ..., 24 in the LLM Label set C, and
Others corresponds to 25.

Train Test
MIMIC Openl ChestXDet10 ChestXray14 Chexpert
Atelectasis Atelectasis Atelectasis Atelectasis Atelectasis

Pleural Effusion

Pleural Effusion

Pleural Effusion

Pleural Effusion

Pleural Effusion

Pneumothorax

Pneumothorax

Pneumothorax

Pneumothorax

Cardiomegaly Cardiomegaly Cardiomegaly Cardiomegaly
Lung Opacity Lung Opacity
Pneumonia Pneumonia Pneumonia
Pulmonary Mass Pulmonary Mass Pulmonary Mass
Edema Pulmonary Edema Pulmonary Edema Pulmonary Edema

Lung Nodule Lung Nodule Lung Nodule
Lung Infiltration Pulmonary Infiltration
Pulmonary Fibrosis Fibrosis Fibrosis

Pulmonary Emphysema

Pulmonary Emphysema

Pulmonary Emphisema

Pleural Thickening

Pleural Thickening

Hernia

Hernia

Consolidation

Pulmonary Consolidation

Pulmonary Consolidation

Pulmonary Consolidation

Fracture

Bone Fracture

Bone Fracture

Enlarged Cardiomediastinum

Pleural Other

Lung Lesion

Support Devices

Abnormal Lesion

Lung Granuloma

Calcified Granuloma

Tissue Calcification

Others

Others

Others

Others

Others

Table 4: LLM Lable Category

A.4 LLM PROMPT

An example of the prompt for tagging using LLM is as follows, and detailed prompts are available
in the code repository.
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A AN EXAMPLE OF THE LLM PROMPT

def prompt_data (sent):
prompt P nmn
Assume you are an experienced radiologist. Help me identify the
correct medical condition label for the given radiology report
sentence. Below are the medical condition labels with
corresponding numbers and their medical descriptions:

1.Atelectasis: Lung tissue exhibits signs of partial or complete
atelectasis, with decreased lung volume and increased localized
radiographic density.

2.Pleural Effusion: There is an abnormal accumulation of fluid within the

pleural cavity, which is evident on X-ray imaging as a blunted
costophrenic angle or the presence of a fluid level.

3.Pneumothorax: There is evidence of free air within the thoracic cavity,

resulting in partial or complete atelectasis. This is characterized
by a retracted lung edge and an area devoid of lung markings.
4.Cardiomegaly: The cardiac silhouette is enlarged, indicating a size
beyond the normal range.

5.0pacity: A lung region demonstrates increased radiopacity, potentially
suggestive of inflammatory changes, a tumor, or hemorrhage.

6.Pneumonia: Patchy to diffuse lung infiltrates are observed, frequently
associated with air bronchograms.

7.Pulmonary Mass: A lung mass, either well-circumscribed or poorly
defined, is present, typically measuring over 3 cm in diameter.

8.Edema: Interstitial or alveolar fluid accumulation in the lungs is
evident, characterized by increased and indistinct lung markings, a
common finding in cardiogenic pulmonary edema.

9.Lung Nodule: A round or oval opacity within the lung, measuring less
than 3 cm in diameter.

10.Lung Infiltration: Patchy or reticular opacities are noted within the
lung tissue, suggestive of inflammatory processes or other
infiltrative conditions.

11.Fibrosis: Interstitial lung thickening and fibrosis are present,
exhibiting a reticular pattern and a honeycomb-like appearance on
imaging studies.

12 .Emphysema: Overinflation of the lungs with alveolar destruction is
observed, manifesting as increased lung lucency and expanded lung
fields on the chest X-ray.

13.Pleural Thickening: Pleural layer thickening is evident, appearing as
broadened pleural shadows on imaging, often attributed to chronic
inflammation or fibrosis.

14 .Hernia: Internal organ protrusion through either normal or abnormal
openings is observed; in the case of a diaphragmatic hernia, this may

present as an abnormal position and contour of the diaphragm on X-
ray imaging.

15.Consolidation: The lung alveoli are opacified with fluid or solid
material, manifesting as regions of increased density with indistinct

borders on imaging. the lung tissue exhibits a solidified appearance
, a common finding in cases of pneumonia.

16.Bone Fracture: A discontinuity within the bone structure is observed
on X-ray, characterized by a disrupted cortical bone and the presence

of fracture lines.

17.Enlarged Cardiomediastinum: An enlargement of the mediastinal shadow
or cardiomediastinal silhouette is noted.

18.Pleural Other: Other pleural abnormalities, such as pleural
calcifications or plaques, are present, exhibiting specific imaging
features that are indicative of the underlying condition.

19.Lung Lesion: An encompassing term for a variety of abnormal imaging
findings within the lung, encompassing nodules, masses, infiltrates,
and other anomalies.

20.Support Devices: Visualized on imaging are various medical devices,
including catheters, stents, prosthetic heart valves, and other
implanted or inserted medical apparatus.
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21.Abnormal Lesion: A non-specific term denoting any abnormal imaging
findings within the lungs, which may encompass a range of
presentations such as nodules, masses, opacities, or other anomalies.

22 .Lung Granuloma: A small pulmonary nodule, usually measuring less than
3 cm in diameter, frequently exhibiting calcification.

23.Calcified Granuloma: A calcified granuloma is observed, manifesting as

a high-density nodule on imaging studies.

24 .Tissue Calcification: Calcifications within soft tissue are noted,
appearing as areas of increased density on imaging, indicative of
calcified spots or plaques.

25.No Mention: None of the above symptoms are mentioned or related,
cannot exist with any other labels at the same time.

Examples:

Sentence: there is no focal consolidation pleural effusion or
pneumothorax.
Label: 15, 2, 3

Sentence: bilateral nodular opacities that most likely represent nipple
shadows.
Label: 9

Sentence: chronic deformity of the posterior left sixth and seventh ribs
are noted.
Label: 16

Sentence: the patient shows no signs of free air below the right
hemidiaphragm.
Label: 3

Sentence: the imaged upper abdomen shows no remarkable findings.
Label: 25

Sentence: the patient’s overall condition is normal.
Label: 25

Special Note:

If the sentence mentions a condition (whether positive or negative), use
the corresponding label.

If the sentence describes multiple conditions, except 25(No Mention),
output multiple labels, separated by commas ",".

Remember, 25 (No Mention) and other labels cannot exist at the same time.

In case you forgot, let me repeat these labels:
Atelectasis
Pleural Effusion
Pneumothorax
Cardiomegaly
Opacity
Pneumonia
Pulmonary Mass
Edema
Lung Nodule
Lung Infiltration
Fibrosis
Emphysema
Pleural Thickening
Hernia
Consolidation
Bone Fracture
Enlarged Cardiomediastinum
Pleural Other
Lung Lesion
Support Devices

O Joy Ul W

NP RRRRPRRP PR RREE O
CLWOWJNUTd WN R O -

15




Under review as a conference paper at ICLR 2025

21. Abnormal Lesion

22. Lung Granuloma

23. Calcified Granuloma
24. Tissue Calcification
25. No Mention

Now, please select the most appropriate label for the following sentence
and output only the corresponding number (s) .
Notice: you only need to output the label (pure numbers), do not output

anything else!
mmww

messages = [
{"role": "system", "content": prompt},
{"role": "user", "content": sent}

]

return messages
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