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Abstract

As machine learning models reach human level performance on many real-world1

medical imaging tasks, it is crucial to consider the mechanisms they may be using2

to make such predictions. Prior work has demonstrated the surprising ability of3

deep learning models to recover demographic information from chest X-rays. This4

suggests that disease classification models could potentially be utilizing these5

demographics as shortcuts, leading to prior observed performance gaps between6

demographic groups. In this work, we start by investigating whether chest X-ray7

models indeed use demographic information as shortcuts when classifying four8

different diseases. Next, we apply five existing methods for tackling spurious9

correlations, and examine performance and fairness both for the original dataset10

and five external hospitals. Our results indicate that shortcut learning can be11

corrected to remedy in-distribution fairness gaps, though this reduction often does12

not transfer under domain shift. We also find trade-offs between fairness and other13

important metrics, raising the question of whether it is beneficial to remove such14

shortcuts in the first place.15

1 Introduction16

Real-world data often contain spurious correlations [1, 2], which are features in the training data that17

are correlated with the label, but are not used in the true label function [3]. Models trained to minimize18

empirical risk often utilize these correlations as shortcuts, relying solely on these features to make19

predictions. Such models then exhibit poor worst-group accuracy (WGA), gaps in class-conditioned20

accuracy across different attributes, as well as catastrophic performance drops when deployed in an21

environment where attribute characteristics change [4].22

In the field of medicine, machine learning models are being increasingly deployed in real-world23

clinical environments [5, 6]. In such settings, it is important to consider not only overall model24

performance, but also potential model biases across demographic groups [7, 8]. Though deep learning25

has reached human level performance in many tasks in the medical imaging domain [9, 10, 11],26

prior works have found that they often exhibit biases in the form of performance disparities across27

protected groups [12, 13, 14, 15]. For example, It has been shown that chest X-ray classifiers trained28

to predict the presence of any disease systematically underdiagnose Black patients [16], which could29

lead to delays in care. In order to ensure safe and equitable deployment of such models, it is crucial30

to understand the source of such biases, and, where possible, take actions to correct them [17, 18].31

In a parallel line of work, researchers have found the surprising ability of deep models to predict32

demographic information from medical images, achieving performance far beyond that of radiologists.33

For example, self-reported patient race can be predicted with high accuracy from chest X-rays, chest34

CTs, and mammographs [19], and gender and age can also be predicted from X-rays with high35

accuracy [20]. This suggests that such demographic attributes may be used as a potential shortcut for36

disease prediction models.37
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In this work, we connect these findings from shortcut learning and algorithmic fairness to ask the38

question: Do chest X-ray disease classification models use demographics as shortcuts, and what39

happens if we remove this shortcut when learning the model? We make the following empirical40

contributions:41

1. We follow prior work [21] in showing that representations learned for disease prediction us-42

ing chest X-rays encode demographic information across age, race, sex, and the intersection43

of race and sex.44

2. We show that encoding of demographic attributes is correlated with a greater fairness gap45

between demographic groups.46

3. Applying a variety of existing machine learning methods for shortcut removal, we find that47

it is possible to achieve a fairer model with minimal loss in overall performance.48

4. However, we find that these fairness interventions lead to worse calibration error, and the49

reduced fairness gaps in-distribution do not typically transfer to out-of-distribution external50

sites.51

Ours findings underscore the need for broader evaluations across a wide range of metrics on both52

in-distribution and out-of-distribution data, as well as a careful consideration of the features that we53

want to integrate into clinical machine learning models [22].54

2 Related Work55

Spurious Correlations Spurious correlations, which is an instance of subpopulation shift [4], arise56

in a variety of real-world data settings [1]. For example, in the medical setting, chest X-ray models57

trained on multi-site data may use the site as a spurious correlation [23, 24]. Methods for tackling58

spurious correlations take several distinct approaches, including adversarial training [25, 26], robust59

optimization [27, 28], sample weighting [29, 30], final-layer retraining [3, 31, 32], data augmentation60

[33, 34], and weight averaging [35, 36].61

Fair Medical Imaging There have been many prior works which demonstrate gaps in performance62

(typically measured using the false positive and false negative rates) between demographic groups63

in medical imaging tasks for various modalities, including chest X-rays [12, 13], MRIs [14], CT64

scans [37], and dermoscopic images [15]. Most relevant to this work is Seyyed-Kalantari et al.65

[16], which shows that chest X-ray models for predicting No Finding have higher false positive rate66

(i.e. underdiagnosis) for Black, female, and younger patients. Zhang et al. [38] applied various67

fairness algorithms to the same dataset, finding mixed results. Ktena et al. [39] used conditional68

diffusion models to generate synthetic images, finding improvements in both in-distribution and69

out-of-distribution fairness.70

In comparison, our work approaches the fairness problem from the shortcut learning angle, which71

is a potential cause of the fairness gap due to the ability of deep models to predict demographic72

information chest X-rays [19, 20]. Our work is motivated by Glocker et al. [21], which shows that73

representations learned for disease classification contain demographic information, and Brown et al.74

[40], which proposes a test for shortcut learning in medical imaging. Compared with Brown et al.75

[40], our work (1) applies a wide range of algorithms, including the adversarial training approach76

examined in their paper, (2) examines trade-offs between fairness and a wide range of other metrics,77

and (3) examines model performance and fairness on external sites.78

3 Experiments79

We start by training DenseNet-121 [41] models (pre-trained on ImageNet [42]) on MIMIC-CXR [43],80

and evaluating on the same dataset (the in-distribution (ID) dataset). We examine four binary classifi-81

cation tasks, as they have been studied in prior work for potential biases [12, 16, 44]: No Finding,82

Pneumothorax, Effusion, and Cardiomegaly. We evaluate six algorithms: empirical risk minimization83

(ERM, [45]), resampling to equalize group size (Resample, [46]), GroupDRO (GroupDRO, [27]),84

domain adversarial training (DANN, [25]), domain adversarial training conditioned on the label85

(CDANN, [26]), and weight averaging (MA, [47]).86

For each combination of task, algorithm, and demographic attribute, we conduct a random hyper-87

parameter search [48] with 15 runs. Where applicable, we select the hyperparameter setting that88
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Figure 2: Does fairness transfer under distribution shift? We examine the transfer of performance (overall
AUROC) and fairness between the ID (MIMIC-CXR) and OOD (all five other) datasets. (a) Pearson correlation
coefficient of (ID vs. OOD) performance versus the Pearson correlation coefficient of (ID vs. OOD) fairness,
where each point is a grid of trained models or a particular combination of task and attribute. We find that there
is a high correlation between ID and OOD performance in all cases, but the correlation between ID and OOD
fairness is tenuous. (b), (c) We show how two particular points in the first plot are obtained.

maximizes the worst-attribute validation AUROC. Confidence intervals are computed as the standard89

deviation across three different random seeds for each hyperparameter setting. We evaluate fairness90

as the False Positive Rate (FPR) gap for No Finding, and the False Negative Rate (FNR) gap for all91

other tasks (i.e. equal opportunity [49]), as these both correspond to underdiagnosis, which could92

lead to delays in treatment. For metrics where a binary decision is required, we binarize the score by93

selecting the threshold that maximizes the validation F1 score [50].94

We then evaluate these models under domain shift, on CheXpert [51], NIH [52], SIIM [53], PadChest95

[54], and VinDr-CXR [55]. For convenience, we present aggregated results across the five sites as a96

single out-of-distribution (OOD) dataset. Dataset statistics can be found in Table A.1 and Table A.2.97

4 Results98

Disease Classification Models Encode Demographic Attributes and Are Unfair. We confirm99

that deep models trained for disease classification encode demographic attributes by training a linear100

attribute prediction head (i.e., logistic regression) on top of the feature extractor (weights frozen).101

Fig. B.1(a) shows that across different diseases and sensitive attributes, the penultimate layer of the102

models contain substantial information about demographic attributes, with attribute prediction AUC103

significantly higher than chance. In addition, we observe that these models are highly unfair across104

groups, where the fairness gaps can be larger than 20% (Fig. B.1(b)).105
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Figure 1: SOTA methods fix ID fairness
gaps while maintaining performance.

SOTA Algorithms Fix In-Distribution Fairness Gaps and106

Maintain Performance. In the ID setting (i.e., test on the107

same dataset), state-of-the-art robustness methods can effec-108

tively address fairness gaps while maintaining the overall per-109

formance (Fig. 1 and B.2). Specifically, ERM models ex-110

hibit large fairness gaps (e.g., models centered in the top right111

corner), whereas methods like GroupDRO and DANN can112

effectively close the gap while achieving similar AUC (e.g.,113

the bottom right corner). We further plot the Pareto front114

that exploits the performance-fairness tradeoff across differ-115

ent diseases and attributes (Fig. 1 and B.2), where existing116

algorithms consistently balance the tradeoff, achieving high117

in-distribution fairness without losing overall performance for118

disease prediction.119
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Figure 3: Inherent tradeoff between the fairness gap and the Expected Calibration Error (ECE) gap. Complete
results for other metrics (e.g., WGA) are in Fig. B.3.

Fairness Does Not Transfer Under Distribution Shift. When deploying AI models in real settings,120

it is crucial to ensure models can generalize to data from unseen institutions or environments. We121

directly test all trained models in the OOD setting, where we report results on external datasets that122

are unseen during model training. Fig. 2 illustrates that the performance correlation between ID123

and OOD is high across different settings, consistent with prior work [56]. However, the fairness124

correlation between ID and OOD does not show consistent pattern. This indicates that a model that125

is fair ID does not necessarily deliver fair outcomes when tested OOD. The observation holds across126

diseases and attributes.127

Metrics Beyond Fairness. Finally, we demonstrate the inherent tradeoff between fairness and128

other important metrics. First, we show that enforcing fair predictions across groups can result129

in worse expected calibration error gap (ECE Gap, Fig. B.3) between attributes, a result that is130

consistent with previous work showing a theoretical impossibility between probabilistic equalized131

odds and calibration by group [57, 58]. Next, we explore the relationship between fairness and132

worst-group accuracy (WGA, Fig. B.3), a common metric for evaluating shortcut reliance in the133

spurious correlation literature [4] (where groups are defined as the product of the attribute and the134

label). We find that, surprisingly, fairer models exhibit worse WGA. We hypothesize that, though135

fair models encode less demographic information (Fig. B.1) and thus cannot rely as much on the136

shortcut, this regularization leads to a worse model for all, a phenomenon that has been observed137

in prior work [38, 59, 60, 61]. This finding uncovers the limitation of blindly optimizing fairness,138

where more realistic evaluations are needed for reliable medical AI models.139

5 Discussion140

Overall, our results present a cautious view on the efficacy and consequences of removing demo-141

graphic shortcuts in disease classification models. Though removing shortcuts fixes ID fairness, the142

trade-offs with other metrics, as well as the lack of transfer to external domains, questions whether143

it provides any utility in the first place. These considerations demonstrate the complexities of the144

healthcare setting, where the relationship between the demographics and the label are complex,145

there could be mislabelling in both variables [62, 63], and distribution shifts between domains are146

difficult to quantify. This clearly contrasts with simple datasets for spurious correlations such as147

Waterbirds [64], where relying only on the invariant “bird” features over the spurious “background”148

features would improve WGA both in-distribution, and out-of-distribution when the set of possible149

backgrounds change [4].150

In this work, we frame demographic features as “shortcuts” – nuisances [65] which should not be151

utilized by the model to make disease predictions. However, some demographic variables could be152

a direct causal factor in some diseases (e.g. sex as a causal factor of breast cancer). In these cases,153

it would not be desirable to remove all demographic reliance, but instead match the reliance of the154

model on the demographic attribute to its true causal effect [66, 67]. In addition, in the tasks we have155

examined here, demographic variables such as race likely have an indirect causal effect on disease156

(e.g. through socioeconomic status), though this effect certainly varies across geographic location.157

Whether demographic variables should serve as proxies for these causal factors is a decision that158

should rest with the model developers [22, 68].159
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A Dataset Statistics361

Table A.1: Dataset statistics for six chest X-ray classification datasets. We train models on MIMIC,
and evaluate on the remaining datasets.

MIMIC [43] CheXpert [51] NIH [52] SIIM [53] PadChest [54] VinDr [55]

Location Boston, MA Stanford, CA Bethesda, MD Bethesda, MD Alicante, Spain Hanoi, Vietnam
# Images 357,167 222,792 112,120 11,582 144,478 6,354
% Frontal 64.5 85.5 100.0 100.0 69.1 100.0

Sample Image

Sex (%) Male 52.2 59.3 56.5 55.4 49.6 56.9
Female 47.8 40.7 43.5 44.6 50.4 43.1

Race (%)
White 61.0 56.4 - - - -
Black 15.6 5.4 - - - -
Asian 3.1 10.5 - - - -
Other 20.3 27.8 - - - -

Age (%)

0-18 - - 4.8 5.0 3.7 21.8
18-40 13.8 13.9 27.7 27.3 9.2 16.0
40-60 31.1 31.1 43.9 42.9 26.5 27.1
60-80 40.0 39.0 22.7 23.9 38.0 30.0
80-100 15.1 16.0 0.9 0.9 22.6 5.1

Intersection (%)

White Male 33.8 34.1 - - - -
White Female 27.3 22.2 - - - -
Black Male 6.3 2.7 - - - -
Black Female 9.3 2.6 - - - -
Asian Male 1.6 6.0 - - - -
Asian Female 1.5 4.5 - - - -
Others Male 10.5 16.5 - - - -
Others Female 9.8 11.3 - - - -

Task Prevalence (%)
No Finding 39.8 10.0 53.8 - 34.9 41.2
Effusion 20.0 38.6 11.9 - 5.9 7.5
Pneumothorax 3.4 8.7 4.7 28.4 0.3 0.7
Cardiomegaly 14.9 12.1 2.5 - 9.5 22.6

Table A.2: Prevalences of the four diseases examined in this work for each demographic attribute in
MIMIC-CXR and CheXpert.

MIMIC CheXpert
Cardiomegaly No Finding Effusion Pneumothorax Cardiomegaly No Finding Effusion Pneumothorax

Sex (%) Male 14.8 37.2 21.1 4.0 12.4 9.9 38.4 9.0
Female 15.1 42.6 18.9 2.8 11.6 10.2 38.8 8.3

Race (%)
White 15.5 34.6 24.0 4.0 11.5 9.4 39.4 9.1
Black 17.6 44.3 13.4 1.8 19.6 11.7 31.7 5.8
Asian 16.6 36.0 24.2 5.4 12.7 10.4 40.5 9.8
Other 11.1 52.5 12.6 2.5 11.7 10.8 37.6 8.0

Age (%)
18-40 6.8 64.0 8.1 3.6 9.1 20.5 27.0 12.5
40-60 11.4 46.5 15.0 3.0 10.1 12.4 36.2 8.6
60-80 17.6 32.5 23.9 3.8 12.4 7.0 42.3 8.9
80-100 22.9 23.3 31.0 3.0 17.9 3.7 44.2 5.0

Intersection (%)

White Male 15.4 33.3 24.4 4.4 12.4 9.4 39.0 9.2
White Female 15.5 36.3 23.5 3.5 10.2 9.4 39.9 9.0
Black Male 16.7 41.0 13.9 2.2 18.2 11.9 31.6 6.8
Black Female 18.3 46.6 13.0 1.5 20.9 11.5 31.8 4.7
Asian Male 16.4 33.6 25.5 6.1 12.8 10.1 40.4 9.8
Asian Female 16.9 38.6 22.7 4.7 12.5 10.7 40.5 9.8
Others Male 11.5 48.1 14.2 3.3 11.4 10.4 37.6 8.7
Others Female 10.7 57.2 10.9 1.7 12.1 11.4 37.6 7.0
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B Additional Experimental Results362
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Figure B.1: We train ERM models on MIMIC-CXR to predict four different binary tasks. (a) We show
the performance of a linear model that predicts the demographic attribute from frozen representations
for the best ERM model, finding that ERM representations encode demographic attributes to a high
degree. (b) We show the fairness gap, as defined by the FPR gap for No Finding, and the FNR
gap for all other tasks for the best ERM model. We find that ERM models exhibit high fairness
gaps, especially between age groups. (c) We examine the correlation between attribute prediction
performance and fairness for all learned models (not only ERM), selecting models with overall
validation AUROC ≥ 0.7. We find that there is a high correlation between the two.
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Figure B.2: We examine the trade-off between the fairness gap and two performance metrics ((a),
(b): overall AUROC, (c), (d): worst-attribute AUROC) for all trained models. Each plot represents
a specific disease prediction task (e.g., Cardiomegaly) with a specific attribute (e.g., age). In each
case, we plot the Pareto front – the best achievable fairness gap with a minimum constraint on the
performance. We find that for many tasks, it is possible to achieve a model that is fairer than ERM
with minimal reduction of performance.
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Figure B.3: For the No Finding task, we examine the trade-off between the fairness gap and (a) the
Worst Group Accuracy (WGA), and (b) the Expected Calibration Error (ECE) gap. We find that
enforcing fairness constraints lead to worsening of the other two metrics.
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Figure B.4: We examine the transfer of performance (overall AUROC) and fairness between the ID
(MIMIC-CXR) and OOD (all five other) datasets. (a) We plot the Pearson correlation coefficient
of (ID vs. OOD) performance versus the Pearson correlation coefficient of (ID vs. OOD) fairness,
where each point is a grid of trained models or a particular combination of task and attribute. We find
that there is a high correlation between ID and OOD performance in all cases, but the correlation
between ID and OOD fairness is tenuous. (b), (c) We show how two particular points in the first plot
are obtained. (d), (e) We show the transformation of the ID Pareto front to the OOD Pareto front, for
Cardiomegaly prediction and using race as the attribute.
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