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ABSTRACT

This work proposes a new perspective on the structure of Neural Networks (NNs).
Traditional Neural Networks are typically tree-like structures for convenience,
which can be predefined or learned by NAS methods. However, such a struc-
ture can not facilitate communications between nodes at the same level or signal
transmissions to previous levels. These defects prevent effective collaboration,
restricting the capabilities of neural networks. It is well-acknowledged that the
biological neural system contains billions of neural units. Their connections are
far more complicated than the current NN structure. To enhance the represen-
tational ability of neural networks, existing works try to increase the depth of
the neural network and introduce more parameters. However, they all have lim-
itations with constrained parameters. In this work, we introduce a synchronous
graph-based structure to establish a novel way of organizing the neural units: the
Neural Modules. This framework allows any nodes to communicate with each
other and encourages neural units to work collectively, demonstrating a departure
from the conventional constrained paradigm. Such a structure also provides more
candidates for the NAS methods. Furthermore, we also propose an elegant reg-
ularization method to organize neural units into multiple independent, balanced
neural modules systematically. This would be convenient for handling these neu-
ral modules in parallel. Compared to traditional NNs, our method unlocks the
potential of NNs from tree-like structures to general graphs and makes NNs be
optimized in an almost complete set. Our approach proves adaptable to diverse
tasks, offering compatibility across various scenarios. Quantitative experimental
results substantiate the potential of our structure, indicating the improvement of
NNs.

1 INTRODUCTION

Neural Networks are often organized hierarchically in a tree-like fashion. However, this conven-
tional approach obstructs effective communication among nodes and the structure can not facilitate
information interaction between nodes at the same level or signal transmissions to previous levels.
In fact, existing NN structures optimize in a limited space, significantly diminishing the potential
of NNs, and impeding their full capabilities. Our work involves a reimagining of traditional NNs.
We contend that the existing connectivity approaches inadequately capture the essence of neural
networks. The nodes in an asynchronous tree-like structure lack the ability to establish connections,
hindering information transfer between neural units and leading to deficiencies. To address this
limitation, we introduce a method to build a synchronous graph structure for the nodes by the pro-
posed Neural Modules, fostering collaboration among neural units. This innovative approach aims
to overcome the shortcomings of the asynchronous tree-like structure, providing a more effective
and interconnected framework for neural networks. Our framework progresses the structure of NN
from tree-like structures to general graphs, providing more candidates for NAS methods.

For our framework. the concept of the Neural Module is defined as follows:

Definition 1. A Neural Module is defined as a directed, connected subgraph and the absolute value
of the weight for any edge in the subgraph exceeds the predefined threshold γ.
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γ = the kth largest absolute valueof the weights. (1)

Our method enables synchronous communication among any nodes within the neural module. This
transformative adjustment enhances information transfer, thereby boosting the overall capacity of
NN structures. By fostering a collaborative environment among nodes, our approach leverages their
collective power to unlock NNs’ capabilities. This design promotes collaboration among nodes,
facilitating more accurate information transfer. It is noteworthy that the existing tree-like NNs are
essentially a substructure of our designed general graph. In our framework, multiple neural units
collaboratively execute precise functional implementations. Our innovation is poised to bridge the
gap between artificial and more general structures like biological neural networks. Furthermore, our
framework provides more candidates for NAS methods.

Designing such an architecture is a challenging task. While some similar works have made efforts,
improvement is still needed. We found that the fixed point of the implicitly hidden layer is a solu-
tion. Instead of using an infinite structure of hidden layers, we organize it into a graph. However,
for a larger number of nodes, the implicitly hidden layer imposes a heavier computational burden
and increases the risk of overfitting. For example, the Deep equilibrium models(DEQ) encounter
difficulties in finding the fixed point and calculating the Jacobian Matrix as well as its inverse ma-
trix for a larger number of nodes, which may also lead to serious overfitting problems due to poor
node organization. To address this, we propose a new regularization method to better organize these
nodes into multiple proper neural modules that are independent and can be handled in parallel. This
method allows nodes to form an automatic organization, enhancing the overall efficiency of the
learning process as well as its performance by reducing overfitting,

Our learning process exhibits adaptability to larger search spaces and diverse tasks, effectively elim-
inating the structural bias that some nodes cannot transfer information due to the limitations of the
current tree-like structure. We evaluate the effectiveness of our optimization method by conducting
experiments on state-of-the-art networks, demonstrating its competitiveness compared to existing
networks across various real-world tasks and datasets. The results from these experiments indicate
the superiority of the learned connectivity in terms of performance and efficiency.

To sum up, our contributions to this study can be outlined as follows: We propose a method to
generalize existing tree-like structures to learnable general graphs for NNs and we introduce a novel
regularization method to organize the neural units into Neural Modules that help to enhance the
efficiency of the structure as well as its performance by reducing overfitting.

2 RELATED WORKS

To progress the existing tree-like structure for NNs. Yuan (Kun Yuan & Yan, 2020) recently provided
a topological perspective, highlighting the benefits of dense connections offered through shortcuts in
optimization (Srivastava et al., 2015) (Sandler et al., 2018). Furthermore, sparsity constraints have
also been proven effective in optimizing learned structures across various applications (Srivastava
et al., 2015) (Chu et al., 2023) (Ahmed & Torresani, 2018) (He & Sun, 2016) (Huang & Weinberger,
2017). In their approach, the structure of NNs is organized as a DAG, whereas we organize it as a
more general graph structure.

The fixed point of the implicitly hidden layer can also be served as a solution (Bai et al., 2019)
(Tsuchida & Ong, 2022) (Chu et al., 2023) (Yang et al., 2022) (Heaton et al., 2021) (Zucchet &
Sacramento, 2022), as demonstrated in the subsequent works (Bai et al., 2020) (Szekeres & Izsák,
2024) (Yang & Liu, 2023). Departing from the infinite structure of implicitly hidden layers (Chu
et al., 2023) (Ling et al., 2023) (Ding et al., 2023) (Yang et al., 2022) (Liu et al., 2022), we organize
it into a general graph structure. Furthermore, for larger NNs, we introduce a novel regulariza-
tion method to organize neural units into multiple independent neural modules. Compared with
implicitly hidden layers, our method can improve the efficiency by parallel computing as well as
the performance by reducing overfitting. Furthermore, it enhances the interpretability of implicitly
hidden layers.

Our process also involves compressing NNs. In recent years, various algorithms have been devel-
oped, including quantization (Kai Han & Xu, 2020) (Mingzhu Shen & Wang, 2019) (Yang He &
Yang, 2018), low-rank approximation (Li & Shi, 2018) (Zhaohui Yang & Xu, 2019) (Xiyu Yu &
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Tao, 2017), knowledge distillation (Shumin Kong & Xu, 2020) (Shan You & Tao, 2018), and net-
work pruning (Pavlo Molchanov & Kautz., 2019), etc. The network pruning method we use in this
work is weight pruning, which aims to eliminate weak connections. In addition, the method also
involves filter pruning that removes entire redundant filters (Y Tang, 2020). We aim to improve
weight pruning for our framework using a method similar to Tao Lin (2020), which evaluates the
gradient at the pruned model and applies parameters’ updates to the dense model. In our framework,
this process coordinates with an elegant regularization to automatically allocate Neural Modules.

OptNet integrates optimization quadratic problems for nodes within the same layer (Amos & Kolter,
2017) (Yan & Zhang, 2021). However, this approach introduces bias and lacks an interpretable struc-
ture, affecting overall interpretability. Furthermore, OptNet uses parameters derived from quadratic
problems for backpropagation. These parameters, determined by nodes from the previous layer, are
difficult to manage in complexity. This complexity not only increases the computational burden
but also exacerbates overfitting problems. Using a differentiable function for these parameters adds
further bias.

Graph Neural Networks (GNNs) specially address the needs of geometric deep learning (Gori et al.,
2005) (Fan et al., 2019) (Scarselli et al., 2008) (Abadal et al., 2021). GNNs adapt their structure
to the input graph, capturing complex dependencies (Yong et al., 2007) (Abadal et al., 2021) (Fout
et al., 2017) (Fan et al., 2019). This adaptability enables them to predict properties of geometric
data, which primarily deal with graphs, our innovation involves evolving the tree-like structure into
a general graph format for NNs, expanding their applicability and potential.

The flexibility of this graph structure has also been investigated in studies similar to those on
Reservoir Computing (Lukoševicius & Jaeger, 2009) (Benjamin Schrauwen & Campenhout., 2007)
(Leshno & Schocken, 1993b). These studies have utilized a recurrent neural network frame-
work where neuron connections are established randomly, where the weights remain static post-
initialization. Reservoir Computing capitalizes on the dynamics of a non-linear system. In contrast,
our Neural Module framework is designed around a balanced system paradigm, allowing for the
adaptive learning of both weights and network structure during processing. This feature enhances
our framework’s versatility and effectiveness, setting it apart from Reservoir Computing with its
stronger capabilities.

3 METHODOLOGY

3.1 RATIONALE FOR INTRODUCING THE STRUCTURE

NNs represent a type of information flow. However, tree-like structures maintain a hierarchical,
nested form that limits information transfer, as each node can only be influenced by its precursor
nodes. These structures are asynchronous and lack the flexibility to form cycles. Moreover, we ob-
serve that these structures are notably inferior in complexity compared to biological neural networks,
which exhibit more intricate connectivity patterns beyond the simplicity of tree-like structures. The
adoption of these structures is primarily due to their favorable mathematical properties, particularly
in facilitating convenient forward and backward propagation.

Consider the traditional tree-like structure for an NN with m layers. Let N0 be the nodes of the
first layer and the input values feed into the first layer. Let Nm be nodes for the last layer and they
feed for the output values. For any node in the other layers, nk

i ∈ Nk, 0 < k < m, it represents
the intermediate values. The parameters of the model are represented as the edges in the structure.
Let eki,j ∈ Ek, 1 ≤ k ≤ m be the the edge connecting nk−1

i and nk
j . Then the traditional tree-like

structure for NNs which is organized as an asynchronous hierarchical structure can be formalized as
follows: T = {N0, E1, N1, ...Em, Nm}.

In our work, we organize the intermediate structure as a general graph. The model is denoted by
NM , NM = {N0, E1,G, Em, Nm}, where G = {E,N} and ni ∈ N is the ith node in G,
ei,j ∈ E is the edge from ni to nj . Let the number of the nodes in N be p, the number of the nodes
in N0 be |N0| and the number of the nodes in Nm be |Nm|.
In this way, we would enhance the description of the NNs compared to traditional approaches.
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3.2 MODEL STRUCTURE

In the traditional forward computation for a tree-like structure, each node in the first layer aggregates
inputs and is then transformed by tensor flow. Following the provided definition of NM, our structure
is constructed as follows: all the intermediate nodes are organized into a graph, as illustrated in
Figure 1. In this arrangement, each node is influenced by all other nodes in the graph. This collective
influence enables nodes to work together, significantly improving NNs’ characterization.

In our framework, nodes are initially computed based on their input nodes, which solely distribute
features. Additionally, each node is influenced by other nodes in the graph, creating mutual influ-
ence.

Figure 1: The first image shows the tree-like structure of a traditional NN. In the second depiction,
for the intermediate nodes, our model NM introduces a graph. Note that, the nodes’ spin part
represents its bias for itself.

In the upcoming section, we elaborate on the process of calculating node values using both input
nodes and the nodes within the graph G.

3.3 FORWARD PROCESS

First, we discuss the case of the value for each node in the graph. Here in this paper, the value
for each node is represented as x and the value for each edge is represented as w with the same
corresponding index. As introduced in the previous section, these values depend on the nodes in N0

as well as other nodes in G. Hence, we need a synchronization method to address this. We treat
the problem as a system of multivariate equations. For the value of the nodes in G, we have the
following:



w1,1 +
∑
j ̸=1

f(xj) · wj,1 +
|N0|∑
j=1

x0
j · w1

j,1 = x1

w2,2 +
∑
j ̸=2

f(xj) · wj,2 +
|N0|∑
j=1

x0
j · w1

j,2 = x2

...

wp,p +
∑
j ̸=p

f(xj) · wj,p +
|N0|∑
j=1

x0
j · w1

j,p = xp

In the above equations, w1,1, w2,2, ..., wp,p are the values of the self-spin edges for G and they
represent the bias of the nodes. f is the activation function.

Let Wm be the weights of Em and X = {x1, x2, ...} be the values of the nodes in G . Then,
according to the definition of NM,the output values Ỹ = Xm can be inferred by Xm = g(f(X) ·
WmT ), where g is the activation function for output.

Existing numerical methods such as Newton-Raphson method, can effectively solve these above
equations. In real-world applications, besides Newton’s methods, the efficiency can be optimized
by iterative methods, dichotomy, or secant methods. Note that, each variable is processed by an
activation function f , making the transformation nonlinear. If we consider G as a Neural Module,
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we can introduce the following theorem. According to Cybenko (1989) Hornik & White (1990)
Leshno & Schocken (1993a), the theorem will be proved in the Appendix.
Theorem 3.1 (Universal Neural Module Approximation Theorem). Let F be an implicit function
defined on a compact set, capable of being transformed into a continuous explicit function for all the
variables. In such a case, there exists a Neural Module that can effectively approximate the function
F .

3.4 BACKWARD PROCESS

To determine the gradient of the nodes in the neural module, we consider the gradient of the output
as the last layer ∇Xm = ∇Y . The same as the Forward Process, the nodes’ gradients also interact
with each other. Note that, each node has been processed by the activation function f . Then, we
treat the gradient of the nodes in the graph as variables within the following system of equations.

∑
j ̸=1

∇xj · f ′(xj) · w1,j +
|Nm|∑
j=1

∇xm
j · g′(xm

j ) · wm
1,j = ∇x1

∑
j ̸=2

∇xj · f ′(xj) · w2,j +
|Nm|∑
j=1

∇xm
j · g′(xm

j ) · wm
2,j = ∇x2

...∑
j ̸=m

∇xj · f ′(xj) · wp,j +
|Nm|∑
j=1

∇xm
j · g′(xm

j ) · wm
p,j = ∇xp

Finally, we can compute the gradient of the edges of our NM. First, for the gradient of the edges in
G, according to the system of equations, we need to consider the gradient of each node. For any jth
node in the graph, the weights of the incoming arc are represented by the jth(1 ≤ j ≤ p) column of
its adjacency matrix. For convenience, we introduce the following operator:

Hj = [f(x1), ..., f(xj−1), 1, f(xj+1), ..., f(xp)] , (2)

This operator is derived from the system of equations in the forward process. Then, by the gradient
of the jth node, its corresponding gradient for WT

:,j , 1 ≤ j ≤ p in G can be formulated as follows:

∇WT
:,j = ∇xj · f ′(xj) · Hj . (3)

Second, for the gradient for the edges in Em, according to the forward process,

∇Wm = ∇XmT · g′(XmT ) · f(X) . (4)

Third, for the gradient for the edges in E1, according to the forward process,

∇W 1 = ∇XT ·X0 . (5)

3.5 NEURAL MODULE OPTIMIZATION

For convenience, we take G as a single neural module as stated earlier, this serves as a universal set
for all possible connections. In our work, we optimize the structure to prioritize important connec-
tions. The optimization process typically involves emphasizing crucial connections in the graph. In
this paper, we introduce parameter γ acting on the formation of Neural Modules as Definition 1. A
larger γ generates sparser graphs and results in smaller Neural Modules. Here, we propose a new
regularization method to formalize multiple balance Neural Modules, as introduced earlier. And we
term it as NM regularization.

The forward and backward process of the structure, as discussed earlier, involves solving a system of
equations. Managing a large number of nodes would impose a considerable computational burden
when dealing with such systems. However, we can address this challenge by optimizing the graph at
any part using NM regularization, transforming the large graph into independent, smaller connected
subgraphs that formalize Neural Modules, as previously introduced. As each Neural Module does
not connect with others, we can calculate them in parallel. Compared with L1 regularization, NM
regularization can get more balanced neural modules, which would bring additional benefits for
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efficiency as if it is calculated in parallel, the overall efficiency is determined by the largest Neural
Module. This approach enables a significant reduction in computation. At the same time, it also
promotes the performance by mitigating overfitting.

NM regularization considers the number of edges that have a connected path to each node. Here,
we introduce operator:

Z = [z1, z2, ..., zp] , (6)
For the element zk, 1 ≤ k ≤ p in Z , initialized by the connected subgraphs formulated in the first
iteration,

zk = the number of edges connected to node nk. (7)

Let α be the parameter for regularization. By NM regularization, for the larger connected subgraph,
there is an adaptive adjustment to increase α in each iteration. This adjustment results in the auto-
matic organization of the graph into properly balanced subgraphs, forming rational neural modules
that effectively utilize neuron units. For the kth node in G, 1 ≤ k ≤ p, the formulation of our NM
regularization is as follows:

xk = wk,k +
∑
j ̸=k

f(xj) · wj,k +

|N0|∑
j=1

x0
j · w1

j,k + α · zk ·
∑
j ̸=k

norm(wj,k), (8)

where norm denotes the regular function like L1 or L2 regularization. In this manner, for larger
subgraphs, a larger value of z would cause the edges connected to these subgraphs to tend toward
zero, as shown in Figure 2.

Figure 2: The impact of L1 and L2 regularization is significant in neural modules. Nodes within
larger neural modules have a greater number of edges, which leads to a higher value of z and,
consequently, a stronger regularization signal. This results in a more potent force pulling the values
towards zero. The parameter γ plays a crucial role in pruning edges with smaller weights, which
not only prevents the uncontrolled growth of large neural modules but also fosters the emergence
of smaller, more manageable neural modules. This is why NM (Neural Module) regularization is
instrumental in creating a balanced structure within neural modules.

Based on the outcomes of L1 and L2 regularization, in the context of the L1 norm, the optimal value
associated with the node nk is.

w∗
j,k = sgn(wj,k)(|wj.k| − α · zk)+ , (9)

where + takes the positive part of the value. For the L2 norm case, the best value associated with
the node nk is

w∗
j,k =

1

1 + α · zk
· wj,k . (10)

As derived from Equations 9 and 10, an increased value of z leads to the reduction of weights,
thereby preventing the growth of large neural modules through the application of the threshold pa-
rameter γ, as previously mentioned. Concurrently, this mechanism fosters the emergence of smaller
neural modules by utilizing lower values of z. Consequently, NM regularization contributes to the
formation of well-balanced, independent neural modules, which, as discussed earlier, offer advan-
tages for parallel computing.

In this method, we only consider the absolute value of the weight for each edge larger than γ to
solve the system of equations during both the forward and backward processes. With the aid of
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Figure 3: If the node corresponds to a large connected subgraph, NM regularization increases its
weight for regularization, making it more prone to tend towards zero. NM regularization opts to
divide large neural modules into multiple smaller, independent, balanced ones. This approach con-
fines the calculation for the system of equations to each subgraph, enabling parallelized solutions.

NM regularization, we achieve properly balanced neural modules. Employing this method involves
solving large systems of equations into multiple smaller systems of equations. These smaller ones
are independent and can be solved in parallel. This strategy enables the framework to handle a large
number of nodes efficiently.

Lastly, we refer to the parameter γ as an approximation to solve the system of equations in the for-
ward and backward process. This approximation significantly reduces the heaviest computational
load. After obtaining the gradient of each node, we calculate the gradient for all edges including
those whose absolute values are smaller than γ, and then update them. This ensures that while γ
helps to approximate the solution to the system of equations, the update for edges is fully quanti-
fied and precise. In this way, our NM regularization achieves higher efficiency as well as better
performance and robustness.

4 EXPERIMENTS

4.1 PERFORMANCE OF NEURAL MODULES

In this section, we present experiments conducted with our Neural Modules, comparing their perfor-
mance with traditional NN methods, implicit hidden layers (DEQ), a topological perspective treating
NN as a DAG, and recently introduced OPTNET. The results are tabulated for three real datasets, all
of which are available in the UCI dataset. For the regular function norm, we use the absolute value
of the wights.

The first dataset comprises codon usage frequencies in genomic coding DNA from a diverse sample
of organisms obtained from different taxa in the CUTG database. The second dataset includes
measurements from 16 chemical sensors exposed to six different gases at various concentration
levels. The third dataset involves smartphone-based recognition of human activities and postural
transitions, performing various activities. All these tasks represent classification problems, and we
evaluate performance based on the error of each algorithm.

First, we assessed the effectiveness of our NMs and other methods across various node complexities.
This evaluation allows us to understand how the NMs perform with different levels of complexity.
The nodes were initially organized using NN, DEQ, DAG as well as OPTNET, and their percentage
of error was observed. Our experiments involved comparing the performance of NMs, examining
their performance with frequently-used L1 regularization and the proposed NM regularization, as
introduced earlier. The results, as presented in the tables, reveal that our novel structure consistently
achieves superior results in most cases. Additionally, the performance of NM regularization sur-
passes that of the benchmark, L1 regularization in most situations. With the optimal performance
achieved with a suitable number of nodes, our NM regularization is shown to perform the best
across all the datasets.

For all datasets and node variations within the graph, NN consistently exhibits improved results
when nodes are organized into neural modules. The efficacy of our NMs can be further enhanced
through regularization, as previously explained. Notably, even without regulation, our NMs outper-
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Table 1: The error of algorithms for Codon Usage Dataset

40 Nodes 60 Nodes 80 Nodes 100 Nodes 200 Nodes 300 Nodes

NN 0.2128 0.1917 0.1854 0.1964 0.1702 0.1839
DEQ 0.1714 0.1839 0.2136 0.1980 0.1714 0.2911
DAG 0.2410 0.2152 0.2027 0.2050 0.2074 0.1987
OPTNET 0.1792 0.1706 0.2152 0.2034 0.1745 0.1901
NMs 0.1761 0.1557 0.1643 0.1604 0.1792 0.1432
NMs&L1 0.1753 0.1549 0.1964 0.1591 0.1776 0.1549
NMs&NM 0.1495 0.1510 0.1505 0.1549 0.1659 0.1408

Table 2: The error of algorithms for Gases Concentration Dataset

40 Nodes 60 Nodes 80 Nodes 100 Nodes 200 Nodes 300 Nodes

NN 0.1669 0.1293 0.1113 0.1414 0.1639 0.2391
DEQ 0.1188 0.1233 0.1323 0.1098 0.1278 0.1474
DAG 0.2677 0.1835 0.1248 0.1263 0.2857 0.1293
OPTNET 0.1308 0.1774 0.1248 0.1549 0.1113 0.2541
NMs 0.1023 0.1098 0602 0.0767 0.1714 0.2135
NMs&L1 0.0932 0.0992 0.0586 0.0602 0.1714 0.2075
NMs&NM 0.0752 0.0962 0.0511 0.0301 0.1684 0.1970

form the traditional structure. After implementing NM regularization, our approach demonstrates
enhanced performance.

4.2 EFFICIENCY OF NEURAL MODULES

In this section, we delve into the optimization of Neural Module efficiency through the application
of NM regularization. As previously mentioned, every structure considered is a subgraph of a fully
connected graph, with the initial general graph acting as the search space for our model. Our NM
regularization serves as a potent mechanism for structural optimization, enhancing the effectiveness
and balance of neural modules. The performance of these modules, particularly for nodes numbering
less than 300, was demonstrated in the preceding section, where it was shown to yield superior
outcomes.

To assess the efficiency of our NM regularization, we present a comparison of the model’s running
time with DEQ across varying complexities, represented by node counts below 300. Figure 4, Image
A, illustrates that the efficiency of NM regularization significantly outperforms DEQ, especially
with a larger number of nodes. This superiority is attributed to NM regularization’s ability to create
multiple independent neural modules, which efficiently mitigate computational complexity.

For networks with a larger number of nodes, we can leverage the parallel processing capabilities of
Neural Modules to enhance the efficiency of our framework, as previously discussed. NM regular-
ization facilitates the creation of multiple independent and well-balanced neural modules, which are
inherently suited for parallel computing, particularly when transitioning to GPU-based computation.

Table 3: The error of algorithms for Postural Transitions Dataset

40 Nodes 60 Nodes 80 Nodes 100 Nodes 200 Nodes 300 Nodes

NN 0.1062 0.1099 0.1008 0.1069 0.0811 0.1245
DEQ 0.1232 0.2755 0.0882 0.0889 0.0859 0.0658
DAG 0.1154 0.1130 0.1184 0.0937 0.1025 0.1639
OPTNET 0.1188 0.1055 0.0940 0.1164 0.0994 0.1639
NMs 0.1018 0.2559 0.0886 0.0699 0.1035 0.1059
NMs&L1 0.0865 0.2538 0.0821 0.0665 0.0787 0.0726
NML&NM 0.0709 0.2416 0.0724 0.0570 0.0631 0.0635
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In this extension, we increase the node count from 300 to 3000 and incorporate GPU acceleration to
compute the algorithms more efficiently.
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(a) Nodes’ number up to 300. Neural mod-
ules vs.DEQ.
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(b) Nodes’ number up to 3000. Neural mod-
ules parallel vs. Neural modules.

Figure 4: Neural Modules offer significant advantages over DEQ in terms of computational effi-
ciency. Moreover, through parallel computation, NM regularization provides an opportunity to
extend the applicability of this framework to larger-scale applications. By harnessing the power of
parallel processing, NM regularization allows for the efficient handling of increased complexity,
making it a promising approach for tackling more extensive computational challenges.

In Figure 4, Image B, we conducted a comparison between the running times of Neural Modules
operating in parallel and Neural Modules without parallelization on large realistic models. For these
experiments, we utilized 12 threads. Our results indicate that the parallel implementation of NM
regularization offers a computational speedup of approximately 6 to 7 times. This demonstrates the
substantial efficiency gains achievable through parallel processing in the context of NM regulariza-
tion.

Furthermore, for networks with a higher number of nodes, parallel NM regularization also yields
increasingly better results, as demonstrated in Figure 5. In our analysis, we compared methods
such as DEQ, DAG, and OPTNET, and observed that when the number of nodes exceeds 300, these
methods generally result in overtime. We established the average performance of these three models
with node counts within 300 as our baseline for comparison.

Additionally, to assess the performance of our framework on applications with larger node numbers,
we included the NN structure as a reference in our experiments. We discovered that our framework
performs better on larger models. This indicates that our framework is more efficient and accurate,
particularly when dealing with complex, large-scale neural network structures.

4.3 THE EFFECT OF NM REGULARIZATION

At last, Figure 6 presents examples of neural modules generated by our NM regularization, where
each black square denotes a neural module. The image on the left shows the neural modules gen-
erated at the first iteration, where the effects of NM regulation are not yet apparent. The image
on the right, at the 10000th iteration, illustrates how NM regulation achieves independence and
balance within the generated neural modules. NM regularization helps break large neural modules
into smaller, more manageable neural modules. This segmentation leads to improved performance
and efficiency, as previously introduced.

5 CONCLUSION

This study introduces a novel general graph structure designed for the NNs, aiming to improve
performance by facilitating significant information transfer. We address structural bias analysis for
the current tree-like structure. Our model employs a synchronization method for the simultaneous
calculation of node values, thereby fostering collaboration within neural modules. Additionally, we
propose a novel NM regularization method that encourages the learned structure to prioritize critical
connections and automatically formulate multiple independent, balanced neural structures, which

9
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(a) Codon Usage Dataset
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(b) Gases Concentration Dataset
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(c) Postural Transitions Dataset

Figure 5: The performance on the 3 Datasets with larger nodes’ number.

(a) Codon Usage Dataset (b) Gases Concentration Dataset (c) Postural Transitions Dataset

Figure 6: Neural modules generated by our NM regularization for the Codon Usage Dataset,
the Gases Concentration Dataset, and the Postural Transitions Transitions Dataset with each black
square denoting a neural module. The left image depicts the neural modules at the first iteration, and
the right image shows the neural modules at the 10000th iteration.NM regularization helps break
large neural modules into smaller, more manageable neural modules.

would help to achieve better efficiency by calculation in parallel. This approach not only reduces
the computational load associated with managing more nodes but also improves the performance
by mitigating overfitting. Quantitative experimental results affirm the superiority of our proposed
method over traditional structures for NNs.
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A THE SIGNIFICANCE OF OUR STUDY

Particularly, what sets our research apart is its inspiration drawn from the intricate dynamics of
biological neural systems with billions of neural units. Many units are influenced by each other and
generate a collaborative effect. Unlike the traditional stacked unit approach, our approach mirrors
the cooperative nature of biological neural modules. In these systems, multiple neural units work
together to perform precise functional tasks, resulting in exquisite performance as illustrated in the
2nd image of Figure 8. Our innovation seeks to bridge the gap between artificial and biological
neural networks, thus propelling NN structures toward the performance observed in their natural
counterparts.

Figure 7: The left image illustrates the typical structure of an NN, while the right image depicts a
biological neural network, showcasing its inherently more complex connectivity patterns.

The NNs structure in the current framework fails to incorporate a cyclic graph which indicates a
synchronous structure that makes the collaboration of the neural units in NNs. The current tree-like
structure is asynchronous, the cyclic graph would produce an infinite loop, as illustrated in Figure
9. Our framework facilitates collaborative interactions among neural units. In this paper, we present
a method that enables synchronous communication among nodes within the neural module. This
transformative adjustment enhances information processing and increases the overall capacity of
NN structures.

Figure 8: Illustration of the limitations preventing the application of a cyclic graph which is a syn-
chronous structure within the current tree-like NN structure.
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B THE CONNECTION WITH NNS

In this section, we argue that the existing tree-like NN structure in fact is a special case of our
framework. The comparison is detailed in the following table, the asynchronous process for the
current tree-like structure can also be formalized by our system of equations for our framework.

Table 4: table B

NNs NMs

Model T = {N0, E1, N1, ..., Em, Nm} NM = {N0, E1.G, Em, Nm} = {N0, E1.E,N,Em, Nm}

Variables T =


X0 = [1, X0]

W0 = [bias1,W
1]

X1 = [1, X1]
...

Wm = [biasm.Wm]
Xm

 NM =


X0

W1

W
X

Wm

Xm



FP


X0 · W1T = X1

X1 · W2T = X2

...

Xm−1 · WmT = Xm



w1,1 +
∑
j ̸=1

f(xj) · wj,1 +
|N0|∑
j=1

x0
j · w1

j,1 = x1

w2,2 +
∑
j ̸=2

f(xj) · wj,2 +
|N0|∑
j=1

x0
j · w1

j,2 = x2

...

wp,p +
∑
j ̸=p

f(xj) · wj,p +
|N0|∑
j=1

x0
j · w1

j,p = xp

X · WmT = Xm

BP


∇Xm · g′(Xm) · Wm = ∇Xm−1

...

∇X2 · f ′(X2) · W2 = ∇X1



∑
j ̸=1

∇xj · f ′(xj) · w1,j +
|Nm|∑
j=1

∇xm
j · g′(xm

j ) · wm
1,j = ∇x1

∑
j ̸=2

∇xj · f ′(xj) · w2,j +
|Nm|∑
j=1

∇xm
j · g′(xm

j ) · wm
2,j = ∇x2

...∑
j ̸=m

∇xj · f ′(xj) · wp,j +
|Nm|∑
j=1

∇xm
j · g′(xm

j ) · wm
p,j = ∇xp

From the table, we can see that the traditional NN structure represents a special case of our frame-
work where the system of equations is solved asynchronously. In the tree-like structure, the co-
efficient matrix of the equations is composed of the parameter matrices for each level, and these
coefficients are positioned near the diagonal. In contrast, our framework generalizes the coefficient
to form a full matrix across the 1 to the p−1 level, indicating a transition from a tree-based structure
to a general graph structure.

C THE MOTIVATION OF REORGANIZING THE NEURAL NETWORKS FROM
TREE-LIKE STRUCTURE TO GENERAL GRAPH STRUCTURE

For the traditional tree-like structure, the asynchronous forward and backward process can also be
considered to solve a system of equations as shown in Table 4. In our framework, the feed-forward
processes for traditional tree-like structures are essential to solve the equations as shown in Figure
9, which is similar to the backward process.

For traditional tree-like structures, the asynchronous forward and backward processes can indeed be
utilized to address the solution of a system of equations, as illustrated in Table 4. In our framework,
the feed-forward processes for traditional tree-like structures are essential to solve the equations as
shown in Figure 9, This process bears resemblance to the backward propagation phase.

Assign the input and bias-related values to the right side. Allocate the values associated with each
node to the left side. Consequently, the equations are reformulated as shown in Figure 10.

Then, the coefficient C for the tree-like structure in our framework would be as Image A in Figure
11.

The tree-like structure in our framework is indeed more constrained for each node within the struc-
ture. According to the Universal Approximation Theorem, the flexibility of a Neural Network (NN)
is contingent upon the number of neurons within a single hidden layer. This implies that for any
nodes in a tree structure if they are solely dependent on the neurons in the preceding layer, their
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

w1
1 +

|N0|∑
j=1

x0
j · w1

j,1 = x1
1

w1
2 +

|N0|∑
j=1

x0
j · w1

j,2 = x1
2

...

w1
|N1| +

|N0|∑
j=1

x0
j · w1

j,|N1| = x1
|N1|

......

wm−1
1 +

|Nm−2|∑
j=1

f(xm−2
j ) · wm−1

j,1 = xm−1
1

wm−1
2 +

|Nm−2|∑
j=1

f(xm−2
j ) · wm−1

j,2 = xm−1
2

...

wm−1
|Nm−1| +

|Nm−2|∑
j=1

f(xm−2
j ) · wm−1

j,|Nm−1| = xm−1
|Nm−1|

Figure 9: Tadition tree-like structure for NN is essentially to solve these equations in our framework.



−x1
1 = −w1

1 −
|N0|∑
j=1

x0
j · w1

j,1

−x1
2 = −w1

2 −
|N0|∑
j=1

x0
j · w1

j,2

...

−x1
|N1| = −w1

|N1| −
|N0|∑
j=1

x0
j · w1

j,|N1|

......
|Nm−2|∑
j=1

f(xm−2
j ) · wm−1

j,1 − xm−1
1 = −wm−1

1

|Nm−2|∑
j=1

f(xm−2
j ) · wm−1

j,2 − xm−1
2 = −wm−1

2

...
|Nm−2|∑
j=1

f(xm−2
j ) · wm−1

j,|Nm−1| − xm−1
|Nm−1| = wm−1

|Nm−1|

Figure 10: Assign the values associated with inputs and bias to the right-hand side. Place the values
related to each node on the left-hand side. This arrangement allows us to extract the coefficient C
for our framework.

capacity for complex function approximation is severely limited. Typically, nodes in the first layer
are represented as a linear transformation of the input values.

Some existing work has attempted to generalize the structure to a Directed Acyclic Graph (DAG),
such as in the case of ResNet. In these architectures, additional weights are introduced to the Lower
Triangular of the coefficient matrix C. Let these weights be represented by V . Consequently, the
matrix C is depicted in Image B of Figure 11. This modification allows for a more flexible and ex-
pressive model, which can better approximate complex functions and handle larger datasets, align-
ing with the theorem’s assertion that a single hidden layer with a sufficient number of neurons can
approximate any continuous function on a compact subset of the real numbers.
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
−E1 0 0 0 ... 0 0
W 1 −E2 0 0 ... 0 0
0 W 2 −E3 0 ... 0 0
0 0 W 3 −E4 ... 0 0

......
0 0 0 0 ... Wm−2 Em−1


(a) The Coefficient C for the Tree-like Structure and E
is the identity matrix for each level.
−E1 0 0 0 ... 0 0
W 1 −E2 0 0 ... 0 0
V 1 W 2 −E3 0 ... 0 0
V 1 V 2 W 3 −E4 ... 0 0
......
V 1 V 2 V 3 V 4 ... Wm−2 Em−1


(b) The Coefficient C for the DAG or ResNet Structure
and E is the identity matrix for each level.

Figure 11: The Coefficient C for traditional NN Structure

The Lower Triangular Coefficient matrix indeed reaches the limits of asynchronous structures. How-
ever, the potential of the Upper Triangular matrix remains largely untapped. In our work, we extend
the asynchronous structure to a synchronous one, breaking through the limitations of the Lower Tri-
angular and generalizing the coefficient matrix C. Within our Neural Module framework, the C is
depicted in Figure 12, showcasing a more comprehensive and interconnected structure that allows
for greater flexibility and performance.

−1 w2,1 w3,1 w4,1 ... wp−1,1 wp,1

w1,2 −1 w3,2 w4,2 ... wp−1,2 wp,2

w1,3 w2,3 −1 w4,3 ... wp−1,3 wp,3

w1,4 w2,4 w3,4 −1 ... wp−1,4 wp,4

......
w1,p w2,p w3,p w4,p ... wp−1,p −1


Figure 12: The Coefficient C for our NM Structure

In our framework, we have enhanced the representational capacity of each neuron, thereby unlock-
ing the full potential of Neural Networks (NNs). Concurrently, we have eliminated the structural
bias that is typically inherent in predefined structures such as traditional tree structures or Directed
Acyclic Graphs (DAGs). This innovation allows our framework to be more adaptable and less con-
strained by the limitations of fixed architectural biases, leading to a more flexible and effective NN
design.

For large coefficient matrices C, solving the system of equations can indeed be challenging. Our
framework addresses this by proposing NM regularization, which serves as an approximation
method for C and incorporates parallel computation to enhance efficiency. However, it’s impor-
tant to note that NM regularization is an approximation technique, and it operates on the complete
set of the coefficient matrix C as previously introduced. This approach allows us to break down
the complex system into more manageable parts, which can then be solved in parallel, significantly
reducing the computational burden and improving the overall performance of the framework.

D THE CONNECTION WITH DEQ

Previous research has observed the existence of a stable point in an infinite-level NN structure with
identical weights. DEQ addresses this issue by modeling the problem across infinite levels and
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simplifying it to an implicit function. Specifically, achieving a fixed point is equivalent to solving
the root of the implicit function. In our approach, we find that our general graph structure can also
be managed by solving a system of functions.

In fact, DEQ focuses on infinite levels with the same weight. Suppose treating the infinite path
as a circle. The essential research object of DEQ is also a cyclic graph. In this paper, we unveil
the fundamental nature of the fixed point, recognizing its role as a solution within our synchronous
neural module structure. Our neural module not only assists in finding its essence but also enables
concurrent visualization of the implicit function as shown in Figure 10 and Figure 11.

Figure 13: For the infinite structure, DEQ abstracts an implicit function to solve the fixed point.

Figure 14: Our model tries to find the essence of the implicit function, a general graph structure.

Furthermore, adhering to the Universality of Single-layer DEQ, it is established that multiple im-
plicitly hidden layers are tantamount to a single implicitly hidden layer. As a result, DEQ encounters
limitations in managing multiple implicitly hidden layers.

Most importantly, DEQ struggles when managing a larger number of nodes as introduced in the
paper. These layers must solve the implicit function. In our paper, by considering implicit hidden
layers from infinite levels to elegant general graphs, we would organize the neural units well to op-
timize the efficiency as well as the performance of the model. To address this, we introduce NM
regularization that organizes these nodes into neural modules. In contrast to the DEQ, our framework
provides a methodology for handling multiple neural modules. Our analysis of the regularization
encompasses both theoretical foundations and experimental parameters, enabling our framework to
manage larger graphs effectively. Furthermore, the organized independent, balanced neural models
achieve superior results on both efficiency and performance, as previously demonstrated. These neu-
ral modules improve performance by reducing overfitting and improving efficiency through parallel
computation. Previous work like DEQ did not discuss how to organize the neural units to optimize
efficiency and performance.

E THE CONNECTION WITH OPTNET

In earlier research, OPTNET examines the interconnections among nodes within the same level
in traditional tree-like structures. Their approach involves implementing Quadratic Programming
within these nodes, which introduces significant bias. Furthermore, OptNet uses parameters derived
from quadratic problems for backpropagation, determined by nodes from the previous layer which
brings difficulties to regularization as illustrated before. The defects of OPTNET make it challenging
to fine-tune its performance as well as overall efficiency.

In contrast, our neural module is nonlinear and exhibits sufficient flexibility to accommodate any
compact function without introducing bias, as affirmed by the Universal Neural Module Approxi-
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Table 5: Experimental Environment

CPU Gen Intel(R) Core(TM) i9-12900H 2.90 GHz
Cores 12
Memory 32G
GPU NVidia GeForce RTX 3060
Graphics Memory 12G
Norm Function L1
Other Parameters Refer to Figure 15

mation Theorem. Additionally, we can readily control the complexity of the parameters to enhance
performance and efficiency simultaneously.

F THE SUPPLEMENTARY MATERIALS FOR THE EXPERIMENTS

In this section, we provide a detailed description of the experimental setup, which is presented
in Table 5. Additionally, as evidenced in this section, the parameters within our framework are
adjustable, allowing for optimization and fine-tuning to achieve the best performance.

In our experimental setup, for the regularization function norm, we employ the absolute value of
the weights, akin to L1 regularization. This choice is strategic, as it helps to expand the neural
module while also highlighting a few critical edges during each iteration. In the context of larger
neural modules, these critical edges may become less frequent as the process of NM regularization
unfolds. This approach encourages the model to concentrate on the most significant connections,
thereby improving the efficiency and performance of the neural module.

In real applications, other regular functions can be tried for norm to get better performance.

F.1 THE OPTIMIZATION OF THE NEURAL MODULES

In this section, we explore the process of optimizing the structure of Neural Modules using NM
regularization. As discussed earlier, the results obtained have shown that NM regularization would
yield better results. Here, we investigate the parameter-setting strategies for our NM regularization.

The images in Figure 15 illustrate the impact of different parameters on the error rates of our NM
regulation across various percentages of approximations(controlled by parameter γ) for the Codon
Usage Dataset. We found that the performance can be optimized by fine-tuning the NM regular-
ization and the percentages of approximations(controlled by parameter γ). Higher approximation
percentages and regularization parameters produce more Neural Modules, which help reduce over-
fitting problems and in turn, enhance performance as well as robustness. However, overly sparse
NMs could introduce extra bias and degrade performance. After standardization, the NM regular-
ization parameter with 100 nodes performs best at 0.2 and the approximation on top 0.05 edges by
controlling parameter γ for the Codon Usage Dataset. However, more stable performance appears
on the approximation of top 0.03 edges.

In Figure 15, we also offer this on the Gases Concentration Dataset and the Postural Transitions
Dataset. We reached a similar conclusion that performance can be well optimized by tuning both
the NM regularization and the parameters of approximation. We observe that for these two datasets,
the higher parameter γ and NM regularization parameters result in better performance. NM reg-
ularization helps break large neural modules into smaller, more manageable neural modules. This
segmentation leads to improved performance as previously introduced. However. compared with
the Codeon Usage Data, the approximation can not to too large. On average, for 100 nodes, the NM
regularization parameter usually performs best at 0.2 with the approximation on top 0.01 edges by
controlling parameter γ.

F.2 TRADE OFF PERFORMANCE AGAINST EFFICIENT ON TRADITIONAL NN

In this section, we propose an additional experiment to compare our framework with widely used
traditional Neural Networks(NNs). The aim of this experiment is to assess how well our method
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(b) Gases Concentration Dataset
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(c) Postural Transitions Dataset

Figure 15: Parameter setting for NM regularization.

performs in comparison to traditional NNs, especially when these networks have an adequate num-
ber of nodes, and to evaluate the trade-offs regarding efficiency. To prevent overfitting, we employ
a more complex dataset with thousands of features. We utilize a web graph, a page-page graph of
verified Facebook sites. In this graph, nodes represent official Facebook pages, and the edges repre-
sent mutual likes between these sites. This dataset can also be found in the UCI Machine Learning
Repository.
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(b) Running Time NM vs.NN. Measured in
seconds.

Figure 16: NM vs. NN

From Image A Figure 16, we observed that the performance of traditional Neural Networks(NNs)
deteriorates at 4000 nodes due to overfitting, which is also the best result it achieves. In contrast,
our NM framework yields a more than 40 percent improvement in accuracy at 500 nodes and a even
better result at 1000 nodes. On the other hand, as depicted in Figure B Figure 16, the improvement
is with the count of several hours on efficiency. However, both performance and running time can
be controlled by parameters such as sparsity. This indicates that our method is well-suited for tasks
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that prioritize accuracy. Users can weigh the trade-off between employing our method to enhance
accuracy and the associated efficiency costs.

F.3 THE EFFECT OF NM REGULARIZATION

From the experiments, NM regularization can better capture the trend of the weights in each itera-
tion. It enables accurate weight regularization and formulates effectively balanced neural modules.
More importantly, these independent, balanced neural modules bring additional benefits for effi-
ciency. As previously mentioned, the overall efficiency is determined by the size of the largest
neural module, especially when they are processed in parallel.

To analyze the effect of NM regularization, consider the probability of the edge’s weight being
lower than γ denoted as θ in the current iteration. For a neural module with q nodes, the probability
of a new edge integrating into the neural module would be denoted as

1− θq (11)

. In the case of a small q value, NM regularization seeks to increase the probability. Conversely,
for larger q values, NM regularization works to decrease the probability. Thus, NM regularization
endeavors to minimize the disparity in the probability of a new edge integrating into the neural
modules with varying sizes. This effect is illustrated in the first image of Figure 4.
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Figure 17: Image A shows the analysis of NM Regularization and image B displays the time-
consumption for different sizes of neural modules which indicates parallel computing’s advantage.

Image A in Figure 17 illustrates the analysis of NM Regularization and how balanced Neural Mod-
ules are formed through this process. Image B in Figure 17 shows the time consumption associated
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with different sizes of neural modules. As previously mentioned, the neural modules generated are
independent and can be calculated in parallel. For instance, if a neural module comprises 50 nodes,
the time to solve the system of equations required would be reduced to just 10ms in our experiments.
Thus, NM regularization enables sufficient management of larger node counts.

G NEURAL MODULE IS ONLY FOR APPROXIMATION TO SOLVE THE SYSTEM
OF EQUATIONS

In the forward and backward process, the solution involves a system of nonlinear equations. The
presence of numerous nodes in the neural module can lead to performance issues. To address this
challenge, we propose NM regularization, which organizes multiple independent, balanced neural
modules. Breaking down a large system of nonlinear equations into more manageable systems
significantly reduces the computational burden. Furthermore, solving these equations in parallel
would further enhance the overall efficiency.

Note that, we update all the edges in every iteration, which provides additional benefits such as
enhanced robustness. For the absolute value of the edge’s weight lower than γ, it also chance to
grow larger than γ in the coming iteration. That means every edge in the graph has the opportunity to
change, thereby retaining the dynamism of Neural Modules and exerting our model’s performance.

H THE PROOF OF THE UNIVERSAL NEURAL MODULE APPROXIMATION
THEOREM

Note that the array of equations involves an activation function. Therefore, in our model, the sys-
tem of functions is non-linear and possesses sufficient flexibility to fit any appropriate function,
according to our Universal Neural Module Approximation Theorem.

Proof. In the forward process, the system of equations constructs implicit functions across all nodes
within the neural module. Subsequently, any node ni can be transformed into an explicit func-
tion. According to the Universal Approximation Theorem (Cybenko, 1989) (Hornik & White, 1990)
(Leshno & Schocken, 1993a), which states that for any continuous function on a compact set, there
exists a one-hidden-layer feed-forward network capable of approximating the function, our system
satisfies this condition. This is because our array of equations involves an activation function, ful-
filling the requirement of the theorem. Therefore, the proof is complete.

21


	Introduction
	Related Works
	Methodology
	Rationale for Introducing the Structure
	Model Structure
	Forward Process
	Backward Process
	Neural Module Optimization

	Experiments
	Performance of Neural Modules
	Efficiency of Neural Modules
	The Effect of NM Regularization

	Conclusion
	The Significance of Our Study
	The Connection with NNs
	The Motivation of Reorganizing the Neural Networks from Tree-like Structure to General Graph Structure 
	The Connection with DEQ
	The Connection with OPTNET
	The supplementary materials for the experiments
	The Optimization of the Neural Modules
	Trade off Performance against Efficient on Traditional NN
	The Effect of NM Regularization

	Neural Module Is Only for Approximation to Solve the System of Equations
	The Proof of the Universal Neural Module Approximation Theorem

