
SpReME: Sparse Regression for Multi-Environment Dynamic Systems

MoonJeong Park1*, Youngbin Choi1*, Dongwoo Kim1

1 Graduate School of Artificial Intelligence, POSTECH

Abstract

Learning dynamical systems provides a new opportunity to
tackle a central challenge in science and engineering. Model-
based approaches show promising results with data samples
captured from a single environment. On the other hand, pure
data-driven approaches provide plausible results in extracting
governing dynamics from multiple environments. The data-
driven approach, however, raises a concern about the fore-
casting of dynamics as recent studies show the limitations
of neural networks on extrapolation. In this work, we pro-
pose sparse regression for multi-environment (SpReME) that
can leverage the best of both model-based and data-driven
approaches to extract the governing dynamics from multiple
environments. We cast the dynamic discovery as a sparse re-
gression problem over multiple environments. The bases of
the regression model can be curated with incomplete prior
knowledge. We demonstrate our framework on four differ-
ent dynamic systems ranging from simple linear to complex
chaotic systems. The experimental results show that the ex-
tracted knowledge from multiple environments can be gener-
alized to predict the dynamics of an unseen environment.

Introduction
Learning dynamic systems requires to understand underly-
ing governing equations that are often difficult to identify.
For example, uncovering the underlying form of the dynam-
ics of flow passing a cylinder took nearly three decades for
experts in fluid mechanics (Noack et al. 2003). Based on the
recent progress of deep learning, data-driven approaches for
learning dynamical systems have recently gained increasing
attention across the physics and engineering communities.
The deep learning approaches provide alternative ways to
the cases where a traditional approach often fails to model.
Especially, the previous studies show promising results in
the cases where the physical model is unknown (Shi et al.
2015; Wang et al. 2018), underlying dynamics are incom-
plete (Yin et al. 2021b), and the presence of perturbation
from unknown external sources (Li, Ratliff, and Açikmese
2021).

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org), AAAI 2023 Workshop “When Ma-
chine Learning meets Dynamical Systems: Theory and Applica-
tions” (MLmDS 2023). All rights reserved.

Many current approaches focus on learning a dynamical
system from a single environment (Long et al. 2018). The
approaches with partially known physical models especially
show remarkable results in predicting future dynamics (Yin
et al. 2021b). However, learning from a single environment
raises the question of whether the learned dynamics can be
generalized to the unseen environment. For example, sup-
pose the training dynamics contain additional perturbation
from external sources irrelevant to the governing dynamics.
In that case, the learned model is unlikely to generalize to
the new environment in which we want to predict future dy-
namics.

To tackle the limitation of the single environment, some
recent works study the learning from multiple environments
to capture the commonality across the different environ-
ments (Yin et al. 2021a; Kirchmeyer et al. 2022). Current
developments with multiple environments are mostly data-
driven without prior knowledge of the system. Although the
studies with multiple environments show promising results,
the pure data-driven approaches still raise a question on the
extrapolation ability of neural networks, which remains un-
clear for the standard neural networks (Xu et al. 2021).

In this work, we aim to provide a general framework
that can uncover governing dynamics from multiple environ-
ments with the help of incomplete prior knowledge. Based
on previous work (Brunton, Proctor, and Kutz 2016), we
formulate dynamics discovery as a sparse regression prob-
lem, assuming that only a few terms govern the dynamics.
We expand the sparse regression problem to multiple envi-
ronments by enforcing that different environments share the
same sparse structure over the bases while having different
coefficients for the same basis across different environments.
To uncover the correct sparse structure, we provide a training
algorithm alternating coefficients optimization and pruning.
Four different dynamic systems are used to validate the per-
formance of our framework. The experimental results show
that the framework can accurately forecast the evolution of
systems.

Related Work
Several model-based approaches leveraging prior knowl-
edge for finding unknown dynamics have been pro-
posed (Yin et al. 2021b; Brunton, Proctor, and Kutz 2016).
APHYNITY (Yin et al. 2021b) assumes that a physical

model is partially known and proposes using neural net-
works to learn unknown parts of dynamics. In sparse identi-
fication of non-linear dynamics (SINDy) (Brunton, Proctor,
and Kutz 2016), possible elements of unknown dynamics are
used as feature (basis) functions to form a sparse regression
problem of dynamic systems. Under the presence of correct
basis functions, SINDy accurately discovers the underlying
dynamics.

Data-driven approaches have been proposed to uncover
the dynamics given the data collected from multiple envi-
ronments (Yin et al. 2021a; Kirchmeyer et al. 2022; Nor-
cliffe et al. 2021). LEADS (Yin et al. 2021a) consists of
two neural network components: one for capturing common
dynamics across all environments and the other for cap-
turing environment-specific dynamics. CoDA (Kirchmeyer
et al. 2022) has common parameters and adapts environment
with a combination of environment-specific parameters. The
number of environment-specific parameters is much less
than that of common. Neural ODE Processes (NDP) (Nor-
cliffe et al. 2021) combines Neural ODE (Chen et al. 2018)
and Neural Processes (Garnelo et al. 2018). NDP estimates
the uncertainty of neural ODE while dealing with multi-
environment data. The proposed approaches for the multi-
environment data are mostly data-driven. This raises a ques-
tion of their ability to forecast the unseen environment given
the limitation of neural networks on extrapolation (Ziyin,
Hartwig, and Ueda 2020; Xu et al. 2021).

Preliminary
In this section, we describe the details of the sparse identi-
fication of nonlinear dynamics (SINDy) (Brunton, Proctor,
and Kutz 2016) algorithm served as a baseline model in our
work.

We consider nonlinear dynamical systems formalized as

dx(t)

dt
= f(x(t)), (1)

where x(t) = [x1(t), · · · , xn(t)] ∈ R1×n represents n-
dimensional state of the system at time t, and function f(·)
describes a motion of the system. Under the assumption that
the function f consists of only a few terms, SINDy casts the
problem of uncovering dynamics into a problem of solving
a sparse regression problem.

Let X = [x(t1);x(t2); · · · ;x(tm)] ∈ Rm×n and Ẋ =
[dx(t1)/dt; dx(t2)/dt; · · · ; dx(tm)/dt] ∈ Rm×n be a se-
quence of observations from m different time steps and their
derivatives, respectively. Given a set of p non-linear feature
functions ϕi : Rm×n → Rm×1, SINDy constructs a data
matrix Φ(X) = [ϕ1(X);ϕ2(X); · · · ;ϕp(X)] ∈ Rm×p,
where each column represents a candidate non-linear func-
tion. SINDy models the dynamics discovery as a sparse re-
gression problem

Ẋ = Φ(X)Ξ, (2)

where Ξ ∈ Rp×n represents a set of sparse coefficient.
To find a sparse structure of Ξ, SINDy iterates over op-

timization and pruning steps alternatively. During the opti-
mization step, mean-squared-error (MSE) loss with ℓ1 regu-

larization term is used to minimize the following objective:

min
Ξ

∥∥∥Ẋ − Φ(X)Ξ
∥∥∥2
2
+ λ ∥Ξ∥1 , (3)

where hyperparameter λ controls the strength of the regular-
ization term. During the pruning step, the coefficients whose
absolute values are smaller than a predetermined threshold
are set to zero. Once the coefficients are pruned, they are not
optimized in the further steps.

Note that the choice of the feature functions is important
since the feature functions are the candidate terms to form
the dynamic equation. Although, in the original work, con-
stant, polynomial, and trigonometric feature functions are
used as candidates, with prior knowledge of dynamic sys-
tems, one can choose a proper set of candidates that can po-
tentially explain the dynamic systems well.

Methodology
In practice, observing similar dynamics from different en-
vironments is more common. For example, the dynamics
of the flow passing a cylinder can be captured from vary-
ing sizes and lengths of cylinders. We propose SParse RE-
gresssion for Multi Environment (SpReME) to uncover the
underlying dynamics that govern multiple environments by
utilizing the commonality between different environments.
More specifically, the environments share the same form of
the governing equation with a different coefficient for each
term. Thus, our goal is to find the proper terms of the gov-
erning equation and a proper value of coefficients in each
environment.

We consider the dynamics of the form

dxe(t)

dt
= fe(xe(t)), (4)

where xe(t) ∈ R1×n is state observed from environment
e. Assume that we have a dataset collected from E dif-
ferent environments. Our goal is to find a general form of
dynamics when data collected over m time stamps, i.e.,
Xe = [xe(t1);xe(t2); · · · ;xe(tm)] ∈ Rm×n and Ẋe =
[dxe(t1)/dt; dxe(t2)/dt; · · · ; dxe(tm)/dt] ∈ Rm×n are
given for each environment e.

In the ideal situation, if we solve the sparse regression
problem for each environment individually, then the coef-
ficient matrix Ξe obtained from different environments has
the same sparse structure with different values for each non-
zero entry. In reality, however, it is often difficult to obtain
the same sparse structure from the results of the optimiza-
tion process. To enforce the multiple environments share the
same government dynamics, we introduce a binary meta-
mask matrix M∗ ∈ {0, 1}p×n. With the meta-mask, we
model the sparse regression problem given environment e
as

Ẋe = Φ(Xe)(M
∗ ◦Ξe), (5)

where ◦ indicates element-wise multiplication. By explic-
itly introducing a binary mask matrix, we force the multiple
environments to share the same candidate feature functions
while having a different coefficient for each candidate across
different environments.

Algorithm 1: Training algorithm for meta-mask

Input: dynamics state {Xe}Ee=1, state derivative {Ẋe}Ee=1
Output: binary meta-mask M∗

1: Ξe ← (Φ(Xe)
⊤Φ(Xe))

−1Φ(Xe)
⊤Ẋe, ∀e

2: Randomly initialize M
3: for τ = 1, · · · T do
4: Update M∗ via Equation 9
5: Ξe ← Ξe − αΞ∇LΞ, ∀e ▷ Optimize coefficient
6: Prune coefficients smaller than threshold ηΞ
7: M ←M − αM∇LM ▷ Optimize mask
8: Prune M via Equation 8
9: end for

10: M∗ ← QηM
(σ(M))

Meta-mask training
To uncover the dynamics, we need to train the model to find
the meta-mask applied to all environments and coefficient
matrix Ξe for each environment. The standard gradient-
based methods cannot be applied due to the presence of the
meta-mask. To overcome the such challenge, we propose a
training algorithm that iteratively updates the coefficient ma-
trix and meta-mask in turn.

Given meta-mask M∗, we formulate the sparse regres-
sion problem as a minimization of the following loss for co-
efficient matrices {Ξe}Ee=1 at τ -th run:

LΞ(M
∗, λ, s, τ) =

∑
e

∥∥∥Ẋe − Φ(Xe)(M
∗ ◦Ξe)

∥∥∥2
2

+λ(1 + s)−τ
∑
e

∥M∗ ◦Ξe∥1, (6)

where λ ≥ 0 and s ≥ 0 are hyperparameters. We introduce
a weight scheduler (1 + s)−τ for the regularizer term. The
weight decreases as the training step increases. A gradient
descent is used to optimize the coefficients. In practice, we
find that further pruning the coefficients based on predefined
threshold ηΞ improves the sparsity after the coefficient opti-
mization step.

Given coefficients {Ξe}Ee=1, optimization over the dis-
crete binary mask requires solving the combinatorial prob-
lem, which is intractable in general. To make the optimiza-
tion tractable, we first relax the binary meta-mask to a con-
tinuous meta-mask M ∈ Rp×n. With the continuous relax-
ation, we minimize the following objective to update M :

LM (M , λ, s, τ) =
∑
e

∥∥∥Ẋe − Φ(Xe)(σ(M) ◦Ξe)
∥∥∥2
2

+λ(1 + s)τ
∑
e

∥σ(M) ◦Ξe∥1,

(7)

where σ is a sigmoid function making the relaxed mask
ranges between zero and one. The relaxed meta-mask is up-
dated through gradient descent. Note that unlike the coef-
ficient loss in Equation 6, the weight of the regularizer in-
creases as the training step increases. We find that increasing
weight helps to explore the sparse structure more in practice.

Once M is optimized, we further prune the mask based
on the predefined threshold ηM by setting the corresponding
entries as negative infinity. We also prune the entries if the
corresponding coefficients are zero across all environments:

Mij ←
{
−∞, if Mij < ηM or Ξeij = 0 ∀e
Mij , otherwise.

(8)

Note that the pruned entries are not optimized in further
steps. After pruning, binary mask M∗ can be obtained by
quantization:

M∗
ij =

{
0, if σ(Mij) = 0,

1, otherwise,
(9)

which is again used to update the coefficient.
We initialize coefficient Ξe with the analytical solution of

the least square loss, i.e., (Φ(Xe)
⊤Φ(Xe))

−1Φ(Xe)
⊤Ẋe,

making train more efficient. To initialize the continuous
meta mask, we use Xavier initialization (Glorot and Bengio
2010).

The overall optimization algorithm is described in Algo-
rithm 1. Note that the optimization steps for the masking
matrix are similar to the straight through estimator (Bengio,
Léonard, and Courville 2013). Our algorithm alternates the
optimization over the continuous mask and the optimization
over the coefficients through the quantization.

Validation process
At train time, the ground truth of the meta-mask is not
available. Given the assumption that the learned model ex-
trapolates well on future dynamics, we measure the ex-
trapolation performance as a validation criterion. We split
the given data {Xe, Ẋe}Ee=1 into data for timestamp 1

to v and v + 1 to m, i.e., {(Xe):v,∗, (Ẋe):v,∗}Ee=1 and
{(Xe)v+1:,∗, (Ẋe)v+1:,∗}Ee=1. We use the data point from
1 to v for training and v + 1 to m for validation. The mean-
squared error without regularization term, i.e., Equation 6
with λ = 0, is used as a validation loss.

Adaptation at test time
During the test time, the model encounters an unobserved
environment e∗ with partial observation {Xe∗ , Ẋe∗}. To
adapt the new environment, we optimize coefficient Ξe∗

conditioned on the optimized meta-mask M∗:

Ξe∗ = argmin
Ξ

∥∥∥Ẋe∗ − Φ(Xe∗)(M
∗ ◦Ξ)

∥∥∥2
2
. (10)

We optimize randomly initialized Ξ using gradient descent
until convergence.

Experiment
We conducted experiments on four systems of ordinary dif-
ferential equations (ODE): one linear ordinary differential
equation (3D linear model) and three complex non-linear
differential equations (Lotka-Volterra, damped pendulum,
and Lorenz models).

meta-mask train adaptation

time horizon dt # trajectories train test

time horizon dt # trajectories time horizon dt # trajectories

3D linear 4 0.02 16 4 0.02 1 10 0.01 16
Lorenz 4 0.02 16 4 0.02 1 10 0.01 16

LV 10 0.50 4 10 0.50 1 25 0.25 32
DP 4 0.20 8 4 0.20 1 10 0.10 32

Table 1: Experiment settings for data generation. LV and DP refer to Lotka Volterra and Damped Pendulum, respectively. dt
means time interval.

Experimental settings

To test our model, we generate training trajectories for
each ODE system. Given a system of ODE, LSODA ODE
solver (Hindmarsh and Petzold Sep 2005) is used to gener-
ate a trajectory from an initial state with a fixed time inter-
val over a limited time horizon. Using state trajectories and
ODE, derivative of states are computed except the 3D linear
model. The numerical method is used for 3D linear. We use
the first 80% for the train and the remaining 20% for vali-
dation for each trajectory. Each dimension of the initial state
for each trajectory is sampled from the standard normal dis-
tribution, i.e., N (0, 1), except in Lotka-Volterra. In Lotka-
Volterra, each dimension of the initial state is sampled from
the normal distribution N (1, 1).

At test time, we use a single unobserved environment. We
use the same time horizon and interval for adaptation. To
interpolate and extrapolate trajectories, we use half of the
time interval over 2.5× longer time horizon to predict unob-
served states. Table 1 describes the settings used to generate
the training and test data sets.

To construct a data matrix Φ(·), we choose the feature
functions for the candidate as constant and polynomial with
degree five, except for a system of the damped pendu-
lum. We additionally choose trigonometric feature function
sin(x1(t)), sin(x2(t)) and sin(x1(t) + x2(t)) as candidates
for a system of damped pendulum.

3D linear model. 3D linear model is a toy example of
ODE. Given state x ∈ R3, ODE has the form:

dx0/dt = αx0 + βx1,

dx1/dt = γx0 + δx1,

dx2/dt = ωx2,

where α, β, γ, δ, ω are parameters of the model. We use
three environments in meta-mask training. For each en-
vironment, parameter α, β, γ, δ, ω are randomly sampled
from an independent normal distribution with a mean of
−0.1, 2,−2,−0.1,−0.3, respectively, and standard devia-
tion of 0.01. At test time, we use the mean values as the
parameters of ODE to generate the test trajectory.

Lorenz. Lorenz is a non-linear model representing atmo-
spheric convection in R3. This is a chaotic system where a
small difference in the initial point rapidly becomes a large
difference (Sparrow 1982). The dynamics of the Lorenz

model follows:

dx/dt = σ(y − x),

dy/dt = x(ρ− z)− y, (11)
dz/dt = xy − βz,

where σ, ρ, β are parameters assumed to be positive val-
ues. For meta-mask training, we use three environments. For
each environment, parameter σ, ρ, β are independently sam-
pled from a normal distribution with a mean of 10, 8/3, 28,
respectively, and a standard deviation of 0.01. At test time,
we use the mean values as the parameters of ODE to gener-
ate an unobserved environment.

Lotka-Volterra. This model describes the dynamics of
biological interaction between predator and prey. The dy-
namics have the form of ODE (Bacaër 2011):

du/dt = αu− βuv,

dv/dt = δuv − γv,

where α, β, γ, δ are parameters of LV model. We use nine
environments for meta-mask training. For training and test-
ing, we use the same value of the parameters following the
prior work (Kirchmeyer et al. 2022).

Damped Pendulum. This model describes the dynamics
of a damped pendulum (Quiroga and Ospina-Henao 2017):

dθ2/dt2 + (b/m)dθ/dt+ g/L sin(θ) = 0,

where θ, b,m, g, L are angular, damping factor, the pendu-
lum’s mass, gravity, and length, respectively. x is defined
as {θ, dθ/dt}. Nine environments are used for meta-mask
training. For training and testing, we use the same value of
the parameters following the prior work (Kirchmeyer et al.
2022).

Baselines
We evaluate adaptation in a new environment with the mean
squared error (MSE) between prediction and ground truth.
We use two baseline models for comparison: LEADS (Yin
et al. 2021a) and CoDA (Kirchmeyer et al. 2022). Both ap-
proaches are proposed to deal with multi-environment data.

LEADS. LEADS generalizes dynamics from multi-
environment data with a combination of the neural network
capturing common dynamics across all environments and
environment-specific neural networks:

dxe(t)

dt
= (f + ge)(xe(t)), (12)

3D Linear Lorenz LV DP

Precision 1 0.7 1 1
Recall 1 1 1 1

candidates 56 56 21 24

Table 2: The precision and recall of the trained mask ob-
tained from the lowest validation loss. LV and DP refer to
Lotka Volterra and Damped Pendulum, respectively.

3D Linear Lorenz LV DP

Avg

LEADS 0.0099 1.019 0.2682 0.0275
CoDA 0.0217 3.591e+10 0.0610 0.0162
SINDy 0.2620 7.8967 0.5078 0.1375

SpReME 1.648e-05 0.3841 0.0022 1.576e-6

Best

LEADS 0.0015 0.1220 0.1733 0.0105
CoDA 0.0021 293.5 0.0158 0.0006
SINDy 0.0998 4.8762 0.3169 0.0330

SpReME 1.059e-6 0.0468 0.0006 2.093e-8

Worst

LEADS 0.0223 4.4185 0.3917 0.2557
CoDA 0.0554 2.288e+11 0.2089 0.1081
SINDy 0.4760 12.9167 0.7647 1.8176

SpReME 4.254e-5 2.3557 0.0052 3.150e-5

Table 3: Test MSE loss in adaptation. Avg represents the
average MSE loss across all trajectories. Best and worst rep-
resent the best and worst MSE loss among all trajectories.
LV and DP refer to Lotka Volterra and Damped Pendulum,
respectively. SINDy is trained with adaptation dataset. Bold
denotes the best result for each dataset.

where f is a shared neural network across all environments,
and ge is an environment-specific neural network. LEADS
generalizes dynamics at the function level.

CoDA. CoDA uses meta-learning for the generalization
of dynamics. It has common parameters across all environ-
ments. It adapts a few environment-specific parameters and
combines them with common parameters:

dxe(t)

dt
= fθ+Wϕe

(xe(t)), (13)

where f is neural networks, θ ∈ Rp are common param-
eters, ϕe ∈ Ra are environment-specific parameters, and
W ∈ Rp×a is a matrix for parameter combination. CoDA
generalizes dynamics at the parameter level.

We search hyper-parameters of both models with the val-
idation steps described in the previous section.

Results
Table 2 shows the performance on the accuracy of trained
mask results obtained from the best validation loss. We eval-
uate trained masks with precision and recall. The recall of
trained masks is one in all cases, meaning each mask has all
elements of governing equation. The precision of the mask
is one without in the Lorenz dataset, which means the mask
has no dummy elements. In adaptation, we use the result of
Table 2.

Table 3 shows test MSE loss of SpReME, LEADS, CoDA
and SINDy in adaptation. We report the average perfor-

Figure 1: Interpolation and extrapolation results of pendu-
lum dynamics with various approaches. The y-axis repre-
sents L sin(θ(t)). The solid black line is the ground truth,
the dotted orange line is our prediction, the dashed blue line
is prediction of LEADS, and the dashed green line is pre-
diction of CoDA. Note that the first four seconds are used to
train the models.

mance over all trajectories as well as the cases with the best
and worst performance. SpReME outperforms the others in
all cases. Note that the performance on the Lorenz model
is relatively worse than the other cases. CoDA fails to un-
cover the original dynamics in almost all cases, whereas our
approach shows more stable results across all cases than
the others. In Figure 1 and 2, we plot the predicted tra-
jectories of SpReME, LEADS, and CoDA with different
models with the same training sets. In Lorenz and Lotka-
Volterra datasets, LEADs and SpReME achieve similar per-
formance in terms of interpolation. The extrapolation results
of SpReME are better than those of Lorenz, showing the
importance of using prior knowledge in modeling dynam-
ics even though the knowledge is incomplete.

Case study As shown in Table 2, the Lorenz model has
identified incorrect terms in trained mask. The model identi-
fies additional three terms incorrectly. The dynamics uncov-
ered by the trained mask is as follows:

dx/dt = σ(y − x) + ϵ1xz
2,

dy/dt = x(ρ− z)− y + ϵ2x
2yz,

dz/dt = xy − βz + ϵ3y
2,

where incorrectly identified terms are the underlined with
their coefficient ϵi (c.f., Equation 11). We find that, at
test time, the coefficients of incorrect terms are small (<
0.00605), leading to a better performance than the other
baseline models.

Conclusion
We propose SpReME for discovering dynamics from mul-
tiple environments data with incomplete prior knowledge.
Unlike prior work, SpReME use incomplete prior knowl-
edge while dealing with multiple environments. Through the
meta-masking scheme, we extract commonalities between
different environments. Our model adapts to new environ-
ments based on the meta-mask. The experimental results
show that SpReME outperforms LEADS and CoDA in most
cases.

Figure 2: Comparison between the prediction of SpReME, LEADS and CoDA for 3D linear, Lorenz and Lotka-Volterra mod-
els. The solid black lines are ground truth, the dotted orange lines are interpolation results, and the dashed green lines are
extrapolation results. With the Lorenz model, we provide the enlarged views of the extrapolated region (red boxed), changing
dramatically from the training trajectory.

Acknowledgement
This work was supported by Institute of Information
& communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government(MSIT)
(No.2019-0-01906, Artificial Intelligence Graduate School
Program(POSTECH)).

References
Bacaër, N. 2011. Lotka, Volterra and the predator–prey sys-
tem (1920–1926), 71–76. London: Springer London. ISBN
978-0-85729-115-8.
Bengio, Y.; Léonard, N.; and Courville, A. C. 2013. Estimat-
ing or Propagating Gradients Through Stochastic Neurons
for Conditional Computation. CoRR, abs/1308.3432.
Brunton, S. L.; Proctor, J. L.; and Kutz, J. N. 2016. Discover-
ing governing equations from data by sparse identification of
nonlinear dynamical systems. PNAS, 113(15): 3932–3937.
Chen, R. T. Q.; Rubanova, Y.; Bettencourt, J.; and Duve-
naud, D. K. 2018. Neural Ordinary Differential Equations.
In NeurIPS.
Garnelo, M.; Schwarz, J.; Rosenbaum, D.; Viola, F.;
Rezende, D. J.; Eslami, S. M. A.; and Teh, Y. W. 2018. Neu-
ral Processes. CoRR, abs/1807.01622.
Glorot, X.; and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In AIS-
TATS, 249–256.
Hindmarsh, A. C.; and Petzold, L. R. Sep 2005. LSODA,
Ordinary Differential Equation Solver for Stiff or Non-Stiff
System.
Kirchmeyer, M.; Yin, Y.; Dona, J.; Baskiotis, N.; Rakotoma-
monjy, A.; and Gallinari, P. 2022. Generalizing to New
Physical Systems via Context-Informed Dynamics Model.
In ICML.
Li, S. H. Q.; Ratliff, L. J.; and Açikmese, B. 2021. Distur-
bance Decoupling for Gradient-Based Multi-Agent Learn-
ing With Quadratic Costs. L-CSS, 5: 223–228.
Long, Z.; Lu, Y.; Ma, X.; and Dong, B. 2018. PDE-Net:
Learning PDEs from Data. In ICML.

Noack, B. R.; Afanasiev, K.; MORZYŃSKI, M.; Tadmor,
G.; and Thiele, F. 2003. A hierarchy of low-dimensional
models for the transient and post-transient cylinder wake.
JFM, 497: 335–363.
Norcliffe, A.; Bodnar, C.; Day, B.; Moss, J.; and Liò, P.
2021. Neural ODE Processes. In ICLR.
Quiroga, G. D.; and Ospina-Henao, P. A. 2017. Dynamics
of damped oscillations: physical pendulum. Eur. J. Phys.,
38(6): 065005.
Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-k.;
and Woo, W.-c. 2015. Convolutional LSTM Network: A
Machine Learning Approach for Precipitation Nowcasting.
In NeurIPS.
Sparrow, C. 1982. Introduction and Simple Properties, 1–
12. New York, NY: Springer New York. ISBN 978-1-4612-
5767-7.

Wang, Y.; Gao, Z.; Long, M.; Wang, J.; and Yu, P. S. 2018.
PredRNN++: Towards A Resolution of the Deep-in-Time
Dilemma in Spatiotemporal Predictive Learning. In ICML.
Xu, K.; Zhang, M.; Li, J.; Du, S. S.; Kawarabayashi, K.-
i.; and Jegelka, S. 2021. How neural networks extrapolate:
from feedforward to graph neural networks. ICLR.
Yin, Y.; Ayed, I.; de Bézenac, E.; Baskiotis, N.; and Galli-
nari, P. 2021a. LEADS: Learning Dynamical Systems that
Generalize Across Environments. CoRR, abs/2106.04546.
Yin, Y.; GUEN, V. L.; DONA, J.; de Bezenac, E.; Ayed,
I.; THOME, N.; and patrick gallinari. 2021b. Augmenting
Physical Models with Deep Networks for Complex Dynam-
ics Forecasting. In ICLR.
Ziyin, L.; Hartwig, T.; and Ueda, M. 2020. Neural Net-
works Fail to Learn Periodic Functions and How to Fix It.
In NeurIPS.

