
Meta-learning Adaptive Deep Kernel Gaussian
Processes for Molecular Property Prediction

Wenlin Chen
University of Cambridge

MPI for Intelligent Systems
wc337@cam.ac.uk

Austin Tripp
University of Cambridge
ajt212@cam.ac.uk

José Miguel Hernández-Lobato
University of Cambridge
jmh233@cam.ac.uk

Abstract

We propose Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-
IFT), a novel framework for learning deep kernel Gaussian processes (GPs) by
interpolating between meta-learning and conventional deep kernel learning. Our
approach employs a bilevel optimization objective where we meta-learn generally
useful feature representations across tasks, in the sense that task-specific GP
models estimated on top of such features achieve the lowest possible predictive
loss on average. We solve the resulting nested optimization problem using the
implicit function theorem (IFT). We show that our ADKF-IFT framework contains
previously proposed Deep Kernel Learning (DKL) and Deep Kernel Transfer
(DKT) as special cases. Although ADKF-IFT is a completely general method, we
argue that it is especially well-suited for drug discovery problems and demonstrate
that it significantly outperforms previous state-of-the-art methods on a variety
of real-world few-shot molecular property prediction tasks and out-of-domain
molecular property prediction and optimization tasks.

1 Introduction
Many real-world applications require machine learning algorithms to make robust predictions with
well-calibrated uncertainty given very limited training data. One important example is drug discovery,
where practitioners not only want models to accurately predict biochemical/physicochemical proper-
ties of molecules, but also want to use models to guide the search for novel molecules with desirable
properties, leveraging techniques such as Bayesian optimization (BO) which heavily rely on accurate
uncertainty estimates [11]. Despite the meteoric rise of neural networks over the past decade, their
notoriously overconfident and unreliable uncertainty estimates [53] make them generally ineffective
surrogate models for BO. Instead, most contemporary BO implementations use Gaussian processes
(GPs) [45] as surrogate models due to their analytically-tractable and generally reliable uncertainty
estimates, even on small datasets.
Traditionally, GPs are fit on hand-engineered features (e.g., molecular fingerprints), which can
limit their predictive performance on complex, structured, high-dimensional data where designing
informative features is challenging (e.g., molecules). Naturally, a number of works have proposed to
improve performance by instead fitting GPs on features learned by a deep neural network: a family
of models generally called Deep Kernel GPs. However, there is no clear consensus about how to
train these models: maximizing the GP marginal likelihood [18, 63] has been shown to overfit on
small datasets [37], while meta-learning [40] and fully-Bayesian approaches [37] avoid this at the
cost of making strong, often unrealistic assumptions. This suggests that there is demand for new,
better techniques for training deep kernel GPs.
In this work, we present a novel, general framework called Adaptive Deep Kernel Fitting with
Implicit Function Theorem (ADKF-IFT) for training deep kernel GPs which we believe is especially
well-suited to small datasets. ADKF-IFT essentially trains a subset of the model parameters with a

NeurIPS 2022 AI for Science Workshop.

meta-learning loss, and separately adapts the remaining parameters on each task using maximum
marginal likelihood. In contrast to previous methods which use a single loss for all parameters,
ADKF-IFT is able to utilize the implicit regularization of meta-learning to prevent overfitting while
avoiding the strong assumptions of a pure meta-learning approach which may lead to underfitting.
The key contributions and outline of the paper are as follows:

1. As our main technical contribution, we present the general ADKF-IFT framework and
its natural formulation as a bilevel optimization problem (Section 3.1), then explain how
the implicit function theorem (IFT) can be used to efficiently solve it with gradient-based
methods in a few-shot learning setting (Section 3.2).

2. We show how ADKF-IFT can be viewed as a generalization and unification of previous
approaches based purely on single-task learning [63] or purely on meta-learning [40] for
training deep kernel GPs (Section 3.3).

3. We propose a specific practical instantiation of ADKF-IFT wherein all feature extractor
parameters are meta-learned, which has a clear interpretation and obviates the need for any
Hessian approximations. We argue why this particular instantiation is well-suited to retain
the best properties of previously proposed methods (Section 3.4).

4. Motivated by the general demand for better GP models in chemistry, we perform an extensive
empirical evaluation of ADKF-IFT on several chemical tasks, finding that it significantly
improves upon previous state-of-the-art methods (Section 4).

2 Background and Notation

Gaussian Processes (GPs) are tools for specifying Bayesian priors over functions [45]. A
GP(mθ(·), cθ(·, ·)) is fully specified by a mean function mθ(·) and a symmetric positive-definite
covariance function cθ(·, ·). The covariance function encodes the inductive bias (e.g., smoothness)
of a GP. One advantage of GPs is that it is easy to perform principled model selection for its hyper-
parameters θ ∈ Θ using the marginal likelihood p(y |X,θ) evaluated on the training data (X,y)
and to obtain closed-form probabilistic predictions p(y∗ |X∗,X,y,θ) for the test data (X∗,y∗); we
refer the readers to [45] for more details.
Deep Kernel Gaussian Processes are GPs whose covariance function is constructed by first using
a neural network feature extractor fϕ with parameters ϕ ∈ Φ to create feature representations
h = fϕ(x),h

′ = fϕ(x
′) of the input points x,x′, then feeding these feature representations into

a standard base kernel cθ(h,h
′) (e.g., an RBF kernel) [18, 63, 62, 3, 4]. The complete covariance

function is therefore kψ(x,x
′) = cθ(fϕ(x), fϕ(x

′)) with learnable parameters ψ = (θ,ϕ).
Few-shot Learning refers to learning on many related tasks when each task has few labelled examples
[35, 26]. In the standard problem setup, one is given a set of training tasks D = {T t}Tt=1 (a meta-
dataset) and some unseen test tasks D∗ = {T ∗}. Each task T = {(xi, yi)}NT

i=1 is a set of points in
the domain X (e.g., space of molecules) with corresponding labels (continuous, categorical, etc.),
and is partitioned into a support set ST ⊆ T for training and a query set QT = T \ST for testing.
Typically, the total number of training tasks T = | D | is large, while the size of each support set
| ST | is small. Models for few-shot learning are typically trained to accurately predict QT given ST
for T ∈ D during a meta-training phase, then evaluated by their prediction error on QT ∗

given ST ∗
for unseen test tasks T ∗ ∈ D∗ during a meta-testing phase.

3 Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT)

3.1 The General ADKF-IFT Framework for Learning Deep Kernel GPs

Let AΘ and AΦ respectively be the sets of base kernel and feature extractor parameters for a deep
kernel GP. Denote the set of all parameters by AΨ = AΘ ∪AΦ. The key idea of the general ADKF-
IFT framework is that only a subset of the parameters AΨadapt ⊆ AΨ will be adapted to each individual
task by minimizing a train loss LT , with the remaining set of parameters AΨmeta = AΨ \ AΨadapt

meta-learned during a meta-training phase to yield the best possible validation loss LV on average
over many related training tasks (after AΨadapt is separately adapted to each of these tasks). This can

2

be naturally formalized as the following bilevel optimization problem:

ψ∗
meta = argmin

ψmeta

Ep(T)[LV (ψmeta,ψ
∗
adapt(ψmeta,ST), T)], (1)

such that ψ∗
adapt(ψmeta,ST) = argmin

ψadapt

LT (ψmeta,ψadapt,ST). (2)

Equations (1) and (2) are most easily understood by separately considering the meta-learned param-
eters ψmeta and the task-specific parameters ψadapt. For a given task T and an arbitrary value for
the meta-learned parameters ψmeta, in Equation (2) the task-specific parameters ψadapt are chosen
to minimize the train loss LT evaluated on the task’s support set ST . That is, ψadapt is adapted to
the support set ST of the task T , with the aim of producing the best possible model on ST for the
given value of ψmeta. The result is a model with optimal task-specific parameters ψ∗

adapt(ψmeta,ST)
for the given meta-learned parameters ψmeta and task T . The remaining question is how to choose a
value for the meta-learned parameters ψmeta, knowing that ψadapt will be adapted separately to each
task. In Equation (1), we propose to choose ψmeta to minimize the expected validation loss LV over
a distribution of training tasks p(T). There are two reasons for this. First, on any given task T , the
validation loss usually reflects the performance metric of interest on the query set QT of T (e.g., the
prediction error). Second, because the same value of ψmeta will be used for all tasks, it makes sense
to choose a value whose expected performance is good across many tasks drawn from p(T). That is,
ψmeta is chosen such that a GP achieves the lowest possible average validation loss on the query set
QT of a random training task T ∼ p(T) after ψadapt is adapted to the task’s support set ST .

In practice, ψmeta would be optimized during a meta-training phase using a set of training tasks D
to approximate Equation (1). After meta-training (i.e., at meta-test time), we make predictions for
each unseen test task T ∗ using the joint GP posterior predictive distribution with optimal parameters
ψ∗

meta and ψ∗
adapt(ψ

∗
meta,ST ∗):

p(Qy
T ∗

| Qx
T ∗

,ST ∗
,ψ∗

meta,ψ
∗
adapt(ψ

∗
meta,ST ∗)). (3)

Note that the description above does not specify a particular choice of AΨmeta , AΨadapt ,LT ,LV . This
is intentional, as there are many reasonable choices for these quantities. Because of this, we believe
that ADKF-IFT should be considered a general framework, with a particular choice for these being
an instantiaton of the ADKF-IFT framework. We give examples of this in Sections 3.3 and 3.4.

3.2 Efficient Meta-Training Algorithm
In general, optimizing bilevel optimization objectives such as Equation (1) is computationally com-
plex, mainly because each evaluation of the objective requires solving a separate inner optimization
problem (2). Although calculating the hypergradient (i.e., total derivative) of the validation loss LV

w.r.t. the meta-learned parameters ψmeta would allow Equation (1) to be solved with gradient-based
optimization:

dLV

dψmeta
=

∂ LV

∂ψmeta
+

∂ LV

∂ψ∗
adapt

∂ψ∗
adapt

∂ψmeta
, (4)

Equation (4) reveals that this requires calculating ∂ψ∗
adapt/∂ψmeta, i.e., how the optimal task-specific

parameters ψ∗
adapt(ψmeta,ST) change with respect to the meta-learned parameters ψmeta. Calculating

this naively with automatic differentiation platforms would require tracking the gradient through many
iterations of the inner optimization (2), which in practice requires too much memory to be feasible.
Fortunately, because ψ∗

adapt is an optimum of the train loss LT , Cauchy’s Implicit Function Theorem
(IFT) provides a formula for calculating ∂ψ∗

adapt/∂ψmeta for an arbitrary value of the meta-learned
parameters ψ′

meta and a given task T ′:

∂ψ∗
adapt

∂ψmeta

∣∣∣∣
ψ′

meta

= −
(
∂2 LT (ψmeta,ψadapt,ST ′)

∂ψadapt ∂ψ
T
adapt

)−1
∂2 LT (ψmeta,ψadapt,ST ′)

∂ψadapt ∂ψ
T
meta

∣∣∣∣∣∣
ψ′

meta,ψ
′
adapt

, (5)

where ψ′
adapt = ψ

∗
adapt(ψ

′
meta,ST ′). A full statement of the implicit function theorem in the context

of ADKF-IFT can be found in Appendix A. The only potential problem with Equation (5) is the
computation and inversion of the Hessian matrix ∂2 LT (ψmeta,ψadapt,ST)/∂ψadapt ∂ψ

T
adapt. This computation

can be done exactly if |AΨadapt | is small, which is the case considered in this paper (as will be discussed

3

Algorithm 1 Exact hypergradient computation in ADKF-IFT.

1: Input: a training task T ′ and the current meta-learned parameters ψ′
meta.

2: Solve Equation (2) to obtain ψ′
adapt = ψ

∗
adapt(ψ

′
meta,ST ′).

3: Compute g1 =
∂ LV (ψmeta,ψadapt,T

′)

∂ψmeta

∣∣∣
ψ′

meta,ψ
′
adapt

and g2 =
∂ LV (ψmeta,ψadapt,T

′)

∂ψadapt

∣∣∣
ψ′

meta,ψ
′
adapt

by auto-diff.

4: Compute the Hessian H =
∂2 LT (ψmeta,ψadapt,ST ′)

∂ψadapt ∂ψ
T
adapt

∣∣∣∣
ψ′

meta,ψ
′
adapt

by auto-diff.

5: Solve the linear system vH = g2 for v.

6: Compute the mixed partial derivatives P =
∂2 LT (ψmeta,ψadapt,ST ′)

∂ψadapt ∂ψ
T
meta

∣∣∣∣
ψ′

meta,ψ
′
adapt

by auto-diff.

7: Output: the hypergradient dLV
dψmeta

= g1 −vP. ▷ Equations (4) and (5)

in Section 3.4). Otherwise, an approximation to the inverse Hessian (e.g., Neumann approximation
[31, 7]) could be used, which reduces both the memory and computational complexities to O(|AΨ|).
Combining Equations (4) and (5), we have a recipe for computing the hypergradient dLV/dψmeta

exactly for a single task, as summarized in Algorithm 1. The meta-learned parameters ψmeta can then
be updated with the expected hypergradient over p(T).

3.3 ADKF-IFT as a Unification of Previous Methods
In prior work, the most common method used to train deep kernel GPs is to minimize the negative
log marginal likelihood (NLML) on a single dataset (optionally with extra regularization terms).
This is commonly referred to as Deep Kernel Learning (DKL) [63], and is stated explicitly in
Equation (6). The most notable departure from DKL is Deep Kernel Transfer (DKT) [40], which
instead proposes to train deep kernel GPs entirely using meta-learning, minimizing the expected
NLML over a distribution of training tasks, as is stated explicitly in Equation (7).

ψ∗ = argmin
ψ

NLML (ψ,ST) (6) ψ∗ = argmin
ψ

Ep(T)[NLML(ψ, T)] (7)

Interestingly, both DKL and DKT can be viewed as special cases of the general ADKF-IFT framework.
It is simple to see that choosing the partition to be AΨmeta = ∅, AΨadapt = AΨ and the train loss LT to
be the NLML in Equations (1) and (2) yields Equation (6): DKL is just ADKF-IFT if no parameters
are meta-learned. Similarly, choosing the partition to be AΨmeta = AΨ, AΨadapt = ∅ and the validation
loss LV to be the NLML in Equations (1) and (2) yields Equation (7): DKT is just ADKF-IFT if all
parameters are meta-learned. This makes ADKF-IFT strictly more general than these two methods.

3.4 Highlighted ADKF-IFT Instantiation: Meta-learn ϕ, Adapt θ
Among the many possible variations of ADKF-IFT, we wish to highlight the following instantation:

• The train loss LT and validation loss LV are the negative log GP marginal likelihood on
ST and the negative log joint GP predictive posterior on QT , respectively.

• AΨmeta = AΦ, i.e., all feature extractor parameters ϕ are meta-learned.
• AΨadapt = AΘ, i.e., all base kernel parameters θ are adapted (e.g., noise, lengthscales).

There are several benefits to this choice. First, this particular choice of loss functions has the advantage
that the prediction procedure during meta-testing (as defined in Equation (3)) exactly matches the
meta-training procedure, thereby closely following the principle of learning to learn. Second, the
partition of parameters can be intuitively understood as meta-learning a generally useful feature
extractor fϕ such that it is possible on average to fit a low-loss GP to the feature representations
extracted by fϕ for each individual task. This is very similar to previous transfer learning approaches.
Third, since most GP base kernels have only a handful of parameters, the Hessian in Equation (5) can
be computed and inverted exactly during meta-training using Algorithm 1; this removes any need for
Hessian approximations. Fourth, the inner optimization (2) for ψadapt is computationally efficient, as
it does not require backpropagating through the feature extractor fϕ.
More generally, we conjecture that adapting just the base kernel parameters will allow ADKF-IFT
to achieve a better balance between overfitting and underfitting than either DKL or DKT. The

4

𝓣𝟏

𝓣𝟐

𝓣𝟑

update 𝝍𝒎𝒆𝒕𝒂 using implicit function theorem

optimize 𝝍𝒂𝒅𝒂𝒑𝒕

𝝍𝒎𝒆𝒕𝒂 = 𝝓

𝝍𝒂𝒅𝒂𝒑𝒕 = 𝜽

train loss

Expected

validation

loss

train loss

train loss

optimize 𝝍𝒂𝒅𝒂𝒑𝒕

optimize 𝝍𝒂𝒅𝒂𝒑𝒕

(a) Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT)

optimize 𝝍𝒎𝒆𝒕𝒂

𝝍𝒎𝒆𝒕𝒂 = [𝜽,𝝓]

𝓣𝟏

𝓣𝟐

𝓣𝟑

(b) Deep Kernel Transfer (DKT)

𝝍𝒂𝒅𝒂𝒑𝒕 = [𝜽,𝝓]

optimize 𝝍𝒂𝒅𝒂𝒑𝒕

train loss𝓣𝟏

𝓣𝟐

𝓣𝟑

(c) Deep Kernel Learning (DKL)

optimize 𝝍𝒂𝒅𝒂𝒑𝒕

train loss

optimize 𝝍𝒂𝒅𝒂𝒑𝒕

train loss

Expected

validation

loss

Figure 1: A contrastive diagram illustrating the training procedures of ADKF-IFT, DKT, and DKL.

relationship between these methods are visualized in Figure 1. Panel (c) shows DKL, which trains a
separate deep kernel GP for each task. It is not hard to imagine that this can lead to severe overfitting
for small datasets, which has been observed empirically by [37]. Panel (b) shows DKT, which
prevents overfitting by fitting one deep kernel GP for all tasks. However, this implicitly makes a
strong assumption that all tasks come from an identical distribution over functions, including the
same noise level, same amplitude, and same characteristic lengthscales, which is unlikely to hold in
practice. Panel (a) shows ADKF-IFT, which allows these important parameters to be adapted, while
still regularizing the feature extractor with meta-learning. We conjecture that adapting the base kernel
parameters is more appropriate given the expected differences between tasks: two related tasks are
more likely to have different noise levels or characteristic lengthscales than to require substantially
different feature representations. We refer the readers to Appendix I for more discussions.

4 Experiments
In this section, we evaluate the empirical performance of ADKF-IFT from Section 3.4. We choose to
focus our experiments exclusively on molecular property prediction and optimization tasks because
we believe this application would benefit greatly from better GP models: firstly because many existing
methods struggle on small datasets of size ∼ 102 which are ubiquitous in chemistry, and secondly
because many tasks in chemistry require high-quality uncertainty estimates. First, we evaluate
ADKF-IFT on four commonly used benchmark tasks from MoleculeNet [64], finding that ADKF-IFT
achieves state-of-the-art results on most tasks (Section 4.1). Second, we evaluate ADKF-IFT on
the larger-scale FS-Mol benchmark [50], finding that ADKF-IFT is the best-performing method
(Section 4.2). In particular, our results support the hypothesis from Section 3.4 that ADKF-IFT
achieves a better balance between overfitting and underfitting than DKL and DKT. Finally, we
show that the ADKF-IFT feature representation is transferable to out-of-domain molecular property
prediction and optimization tasks (Section 4.3). The general configurations of ADKF-IFT for all
experiments considered in this paper are shown in Appendix C.

4.1 Few-shot Molecular Property Prediction on the MoleculeNet Benchmark

Benchmark and Baselines. We compare ADKF-IFT with two types of baselines on four few-shot
molecular property classification benchmark tasks (Tox21, SIDER, MUV, ToxCast) from MoleculeNet
[64] (see Appendix D for more details of MoleculeNet benchmark tasks): 1) methods with feature
extractor trained from scratch: Siamese [25], ProtoNet [48], MAML [10], TPN [30], EGNN [22],
IterRefLSTM [1] and PAR [59]; and 2) methods that fine-tune a pretrained feature extractor: Pre-

5

Table 1: Mean test performance (AUROC%) with standard deviations of all compared methods on
MoleculeNet benchmark tasks at support set size 20 (i.e., 2-way 10-shot).

Method
MoleculeNet benchmark task (#compounds in total)

Tox21 (8,014) SIDER (1,427) MUV (93,127) ToxCast (8,615)

Siamese 80.40 ± 0.35 71.10 ± 4.32 59.59 ± 5.13 -
ProtoNet 74.98 ± 0.32 64.54 ± 0.89 65.88 ± 4.11 63.70 ± 1.26
MAML 80.21 ± 0.24 70.43 ± 0.76 63.90 ± 2.28 66.79 ± 0.85

TPN 76.05 ± 0.24 67.84 ± 0.95 65.22 ± 5.82 62.74 ± 1.45
EGNN 81.21 ± 0.16 72.87 ± 0.73 65.20 ± 2.08 63.65 ± 1.57

IterRefLSTM 81.10 ± 0.17 69.63 ± 0.31 45.56 ± 5.12 -
PAR 82.06 ± 0.12 74.68 ± 0.31 66.48 ± 2.12 69.72 ± 1.63

ADKF-IFT 82.43 ± 0.60 67.72 ± 1.21 98.18 ± 3.05 72.07 ± 0.81

Pre-GNN 82.14 ± 0.08 73.96 ± 0.08 67.14 ± 1.58 73.68 ± 0.74
Meta-MGNN 82.97 ± 0.10 75.43 ± 0.21 68.99 ± 1.84 -

Pre-PAR 84.93 ± 0.11 78.08 ± 0.16 69.96 ± 1.37 75.12 ± 0.84
Pre-ADKF-IFT 86.06 ± 0.35 70.95 ± 0.60 95.74 ± 0.37 76.22 ± 0.13

GNN [19], Meta-MGNN [16] and Pre-PAR [59]. Pre-ADKF-IFT refers to ADKF-IFT starting
from a pretrained feature extractor. All compared methods in this section use GIN [65] as their feature
extractors. The pretrained weights for the methods of the second type are provided by [19].
Evaluation Procedure. We follow exactly the same evaluation procedure as that in [59, 19, 16]. The
task-level metric is AUROC (area under the receiver operating characteristic curve). We report the
averaged performance over ten runs with different random seeds for each compared method at the
support set size 20 (i.e., 2-way 10-shot, as the support sets in MoleculeNet are balanced). We did not
perform 1-shot learning, as it is an unrealistic setting in real-world drug discovery tasks. All baseline
results are taken from [59].
Performance. Table 1 shows that ADKF-IFT and Pre-ADKF-IFT achieve the best performance on
Tox21, MUV, and ToxCast. In general, the larger the dataset is, the larger the performance gains of
our method over other baselines are, highlighting the scalability of our method. In particular, our
method outperforms all baselines by a wide margin on MUV due to the relatively large amount of
available compounds, but underperforms many baselines on SIDER due to a lack of compounds.

4.2 Few-shot Molecular Property Prediction on the FS-Mol Benchmark
Benchmark. We further conduct our evaluation on the FS-Mol benchmark [50], which contains
a carefully constructed set of few-shot learning tasks for molecular property prediction. FS-Mol
contains over 5,000 tasks with 233,786 unique compounds from ChEMBL27 [34], split into training
(4,938 tasks), validation (40 tasks), and test (157 tasks) sets. Each task is associated with a protein
target. The original benchmark only considers binary classification of active/inactive compounds, but
we include the regression task (for the actual numeric activity target IC50 or EC50) in our evaluation
as well, as it is a desired and more preferred task to do in real-world drug discovery projects.
Baselines. We compare ADKF-IFT with four categories of baselines: 1) single-task methods:
Random Forest (RF), k-Nearest Neighbors (kNN), single-task GP with Tanimoto kernel (GP-
ST) [44], single-task GNN (GNN-ST) [15], Deep Kernel Learning (DKL) [63]; 2) multi-task
pretraining: multi-task GNN (GNN-MT) [9, 15]; 3) self-supervised pretraining: Molecule Attention
Transformer (MAT) [33]; 4) meta-learning methods: Property-Aware Relation Networks (PAR) [59],
Prototypical Network with Mahalanobis distance (ProtoNet) [48], Model-Agnostic Meta-Learning
(GNN-MAML) [10], Conditional Neural Process (CNP) [13], Deep Kernel Transfer (DKT) [40].
The GNN feature extractor architecture fϕ used for DKL, PAR, CNP, DKT, and ADKF-IFT is the
same as that used for ProtoNet, GNN-ST, GNN-MT, and GNN-MAML in [50]. All multi-task and
meta-learning methods are trained from scratch on FS-Mol training tasks. MAT is pretrained on 2
millions molecules sampled from the ZINC15 dataset [51]. The classification results for RF, kNN,
GNN-ST, GNN-MT, MAT, ProtoNet, and GNN-MAML are reproduced according to [50]. Detailed
configurations of all compared methods can be found in Appendix E.
Evaluation Procedure. The task-level metrics for binary classification and regression are ∆AUPRC
(change in area under the precision-recall curve) and R2

os (predictive/out-of-sample coefficient of
determination), respectively. Details of these metrics can be found in Appendix F. We follow exactly
the same evaluation procedure as that in [50], where the averaged performance over ten different
stratified support/query random splits of every test task is reported for each compared method. This

6

16 32 64 128 256
Support set size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

∆
A

U
P

R
C

ADKF-IFT

DKT

ProtoNet

CNP

GNN-MAML

GP-ST

GNN-MT

RF

MAT

kNN

GNN-ST

PAR

DKL

(a) Classification (157 tasks).

16 32 64 128 256
Support set size

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

R
2 os

ADKF-IFT

DKT

CNP

GP-ST

RF

GNN-MT

MAT

DKL

(b) Regression (111 tasks).

Figure 2: Mean performance with standard errors of all compared methods on all FS-Mol test tasks.

16 32 64 128 256
Support set size

0.200

0.225

0.250

0.275

0.300

0.325

0.350

∆
A

U
P

R
C

(a) Classification (157 tasks).

16 32 64 128 256
Support set size

0.1

0.2

0.3

0.4

0.5

R
2 os

ADKF-IFT

ADKF

DKT+

DKT

(b) Regression (111 tasks).

Figure 3: Mean performance with standard errors of ablation models on all FS-Mol test tasks. ADKF
is like ADKF-IFT but assuming ∂ θ∗

/∂ ϕ = 0, i.e., updating ϕ with the direct gradient ∂ LV/∂ ϕ.
DKT+ is like DKT but tuning the base kernel parameters θ during meta-testing.

evaluation process is performed for five different support set sizes 16, 32, 64, 128, and 256. Note that
the support sets are generally unbalanced for the classification task in FS-Mol, which is natural as the
majority of the candidate molecules are inactive in drug discovery.
Overall Performance. Figure 2 shows the overall test performance of all compared methods. Note
that RF is a strong baseline method, as it is widely used in real-world drug discovery projects and
has comparable performance to many pretraining methods. The results indicate that ADKF-IFT
outperforms all the other compared methods at all considered support set sizes for the classification
task. For the regression task, the performance gains of ADKF-IFT over the second best method,
namely DKT, get larger as the support set size increases. In Appendix G.1, we show that ADKF-IFT
achieves the best mean rank for both classification and regression at all considered support set sizes.
Statistical Comparison. We perform two-sided Wilcoxon signed-rank tests [61] to compare the
performance of ADKF-IFT and the next best method, namely DKT. The exact p-values from these
statistical tests can be found in Appendix G.2. The results indicate that ADKF-IFT significantly
outperforms DKT for the classification task at all considered support set sizes and for the regression
task at support set sizes 64, 128, and 256 (at significance level α = 0.05).
Ablation Study. To show that 1) the bilevel optimization objective for ADKF-IFT is essential for
learning informative feature representations and 2) the performance gains of ADKF-IFT are not
simply caused by tuning the base kernel parameters θ at meta-test time, we consider two ablation
models: DKT+ and ADKF. The test performance of these models are shown in Figure 3. For ADKF,
we follow the ADKF-IFT training scheme but assume ∂ θ∗

/∂ ϕ = 0, i.e., updating the feature extractor
parameters ϕ with the direct gradient ∂ LV/∂ ϕ rather than dLV/dϕ. The results show that ADKF
consistently underperforms ADKF-IFT, indicating that the hypergradient for the bilevel optimization
objective has non-negligible contributions to learning better feature representations. For DKT+, we
take a model trained by DKT and adapt the base kernel parameters θ on each task at meta-test time.

7

0 2 4 6 8 10 12 14 16 18 20
The number of molecules queried

12

11

10

9

8

7

To
p-

1
bi

nd
in

g
sc

or
e

(
)

(a) Molecular docking.

0 2 4 6 8 10 12 14 16 18 20
The number of molecules queried

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
re

la
tiv

e
gr

ow
th

 (
)

(b) Antibiotic discovery.

0 3 6 9 12 15 18 21 24 27 30
The number of molecules queried

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

To
p-

1
pI

C5
0

Fl
uo

re
sc

en
ce

 (
)

(c) Antiviral drug design.

0 4 8 12 16 20 24 28 32 36 40
The number of molecules queried

2

3

4

5

6

7

8

9

10

11

To
p-

1
po

we
r c

on
ve

rs
io

n
ef

fic
ie

nc
y

(
)

Optimum
Fingerprint
PAR representation
MAT representation
GNN-MT representation
CNP representation
ProtoNet representation
DKT representation
ADKF-IFT representation

(d) Material design.

Figure 4: Mean top-1 target values with standard errors as a function of the number of molecules
queried for all compared feature representations on four out-of-domain molecular optimization tasks.

Table 2: Mean predictive performance (test NLL) with standard errors of a GP operating on top of
each compared feature representation on the four out-of-domain molecular design tasks.

Feature
representation

Out-of-domain molecular design task

Molecular docking Antibiotic discovery Antiviral drug design Material design

Fingerprint 1.138 ± 0.014 1.669 ± 0.075 4.601 ± 0.086 1.091 ± 0.011
PAR 1.270 ± 0.019 2.185 ± 0.115 4.840 ± 0.086 1.283 ± 0.017
MAT 1.528 ± 0.028 2.390 ± 0.104 4.797 ± 0.088 2.198 ± 0.063

GNN-MT 1.994 ± 0.050 3.692 ± 0.225 6.399 ± 0.181 7.254 ± 0.217
CNP 1.493 ± 0.028 2.537 ± 0.162 5.005 ± 0.086 1.741 ± 0.043

ProtoNet 1.147 ± 0.013 1.615 ± 0.094 5.060 ± 0.086 1.032 ± 0.009
DKT 1.167 ± 0.012 1.602 ± 0.073 4.975 ± 0.092 1.026 ± 0.009

ADKF-IFT 1.137 ± 0.011 1.496 ± 0.043 4.781 ± 0.087 0.996 ± 0.007

The results show that DKT+ does not improve upon DKT, indicating that tuning the base kernel
parameters θ at meta-test time is not sufficient for obtaining better test performance with DKT.
Sub-benchmark Performance. The tasks in FS-Mol can be partitioned into 7 sub-benchmarks by
Enzyme Commission number [60]. In Appendix G.3, we show the test performance of top performing
methods on each sub-benchmark. The results indicate that, in addition to achieving best overall
performance, ADKF-IFT achieves the best performance on all sub-benchmarks for the regression
task and on more than half of the sub-benchmarks for the classification task.

4.3 Out-of-domain Molecular Property Prediction and Optimization
Finally, we demonstrate that the feature representation learned by ADKF-IFT is useful not only
for in-domain molecular property prediction tasks but also for out-of-domain molecular property
prediction and optimization tasks. For this, we perform experiments involving finding molecules with
best desired target properties within given out-of-domain datasets using Bayesian optimization (BO)
with a GP surrogate model operating on top of compared feature representations. We use the expected
improvement acquisition function [21] with query-batch size 1. All compared feature representations
are extracted using the models trained on the FS-Mol dataset from scratch in Section 4.2, except
for the pretrained MAT representation and fingerprint. We compare them on four representative
molecular design tasks outside of FS-Mol. Detailed configuration of the GP and descriptions of the
tasks can be found in Appendix H. We repeat each BO experiment 20 times, each time starting from
16 randomly sampled molecules from the worst ∼ 700 molecules within the dataset. Figure 4 shows
that the ADKF-IFT representation enables fastest discovery of top performing molecules for the
molecular docking, antibiotic discovery, and material design tasks. For the antiviral drug design task,
although the ADKF-IFT representation underperforms the MAT and GNN-MT representations, it
still achieves competitive performance compared to other baselines.
Table 2 explicitly reports the regression predictive performance of a GP operating on top of each com-
pared feature representation for these four out-of-domain molecular design tasks. The configuration
of the GP is the same as that in the BO experiments. We report test negative log likelihood (NLL)
averaged over 200 support/query random splits (100 for each of the support set sizes 32 and 64).
The results show that the ADKF-IFT representation has the best test NLL on the molecular docking,
antibiotic discovery, and material design tasks, and ranks second on the antiviral drug design task.

8

References
[1] Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, and Vijay S. Pande. Low data drug

discovery with one-shot learning. ACS Central Science, 3:283 – 293, 2017.

[2] Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural computation,
12(8):1889–1900, 2000.

[3] John Bradshaw, Alexander G de G Matthews, and Zoubin Ghahramani. Adversarial examples,
uncertainty, and transfer testing robustness in Gaussian process hybrid deep networks. arXiv
preprint arXiv:1707.02476, 2017.

[4] Roberto Calandra, Jan Peters, Carl E Rasmussen, and Marc Peter Deisenroth. Manifold Gaussian
processes for regression. In 2016 International Joint Conference on Neural Networks (IJCNN),
2016.

[5] Da Chen, Yuefeng Chen, Yuhong Li, Feng Mao, Yuan He, and Hui Xue. Self-supervised learning
for few-shot image classification. In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1745–1749. IEEE, 2021.

[6] Yutian Chen, Abram L Friesen, Feryal Behbahani, Arnaud Doucet, David Budden, Matthew
Hoffman, and Nando de Freitas. Modular meta-learning with shrinkage. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 2858–2869. Curran Associates, Inc., 2020.

[7] Ross M Clarke, Elre Talea Oldewage, and José Miguel Hernández-Lobato. Scalable one-pass
optimisation of high-dimensional weight-update hyperparameters by implicit differentiation. In
International Conference on Learning Representations, 2022.

[8] The COVID Moonshot Consortium, Hagit Achdout, Anthony Aimon, Elad Bar-David, Haim
Barr, Amir Ben-Shmuel, James Bennett, Vitaliy A. Bilenko, Vitaliy A. Bilenko, Melissa L.
Boby, Bruce Borden, Gregory R. Bowman, Juliane Brun, Sarma BVNBS, Mark Calmiano,
Anna Carbery, Daniel Carney, Emma Cattermole, Edcon Chang, Eugene Chernyshenko, John D.
Chodera, Austin Clyde, Joseph E. Coffland, Galit Cohen, Jason Cole, Alessandro Contini,
Lisa Cox, Milan Cvitkovic, Alex Dias, Kim Donckers, David L. Dotson, Alice Douangamath,
Shirly Duberstein, Tim Dudgeon, Louise Dunnett, Peter K. Eastman, Noam Erez, Charles J.
Eyermann, Mike Fairhead, Gwen Fate, Daren Fearon, Oleg Fedorov, Matteo Ferla, Rafaela S.
Fernandes, Lori Ferrins, Richard Foster, Holly Foster, Ronen Gabizon, Adolfo Garcia-Sastre,
Victor O. Gawriljuk, Paul Gehrtz, Carina Gileadi, Charline Giroud, William G. Glass, Robert
Glen, Itai Glinert, Andre S. Godoy, Marian Gorichko, Tyler Gorrie-Stone, Ed J. Griffen,
Storm Hassell Hart, Jag Heer, Michael Henry, Michelle Hill, Sam Horrell, Victor D. Huliak,
Matthew F.D. Hurley, Tomer Israely, Andrew Jajack, Jitske Jansen, Eric Jnoff, Dirk Jochmans,
Tobias John, Steven De Jonghe, Anastassia L. Kantsadi, Peter W. Kenny, J. L. Kiappes, Serhii O.
Kinakh, Lizbe Koekemoer, Boris Kovar, Tobias Krojer, Alpha Lee, Bruce A. Lefker, Haim
Levy, Ivan G. Logvinenko, Nir London, Petra Lukacik, Hannah Bruce Macdonald, Beth
MacLean, Tika R. Malla, Tatiana Matviiuk, Willam McCorkindale, Briana L. McGovern,
Sharon Melamed, Kostiantyn P. Melnykov, Oleg Michurin, Halina Mikolajek, Bruce F. Milne,
Aaron Morris, Garrett M. Morris, Melody Jane Morwitzer, Demetri Moustakas, Aline M.
Nakamura, Jose Brandao Neto, Johan Neyts, Luong Nguyen, Gabriela D. Noske, Vladas
Oleinikovas, Glaucius Oliva, Gijs J. Overheul, David Owen, Ruby Pai, Jin Pan, Nir Paran,
Benjamin Perry, Maneesh Pingle, Jakir Pinjari, Boaz Politi, Ailsa Powell, Vladimir Psenak,
Reut Puni, Victor L. Rangel, Rambabu N. Reddi, St Patrick Reid, Efrat Resnick, Emily Grace
Ripka, Matthew C. Robinson, Ralph P. Robinson, Jaime Rodriguez-Guerra, Romel Rosales,
Dominic Rufa, Kadi Saar, Kumar Singh Saikatendu, Chris Schofield, Mikhail Shafeev, Aarif
Shaikh, Jiye Shi, Khriesto Shurrush, Sukrit Singh, Assa Sittner, Rachael Skyner, Adam Smalley,
Bart Smeets, Mihaela D. Smilova, Leonardo J. Solmesky, John Spencer, Claire Strain-Damerell,
Vishwanath Swamy, Hadas Tamir, Rachael Tennant, Warren Thompson, Andrew Thompson,
Susana Tomasio, Igor S. Tsurupa, Anthony Tumber, Ioannis Vakonakis, Ronald P. van Rij,
Laura Vangeel, Finny S. Varghese, Mariana Vaschetto, Einat B. Vitner, Vincent Voelz, Andrea
Volkamer, Frank von Delft, Annette von Delft, Martin Walsh, Walter Ward, Charlie Weatherall,
Shay Weiss, Kris M. White, Conor Francis Wild, Matthew Wittmann, Nathan Wright, Yfat

9

Yahalom-Ronen, Daniel Zaidmann, Hadeer Zidane, and Nicole Zitzmann. Open science
discovery of oral non-covalent sars-cov-2 main protease inhibitor therapeutics. bioRxiv, 2022.

[9] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 13260–13271. Curran Associates, Inc., 2020.

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1126–1135. PMLR, 06–11 Aug 2017.

[11] Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[12] Miguel García-Ortegón, Gregor NC Simm, Austin J Tripp, José Miguel Hernández-Lobato,
Andreas Bender, and Sergio Bacallado. Dockstring: easy molecular docking yields better
benchmarks for ligand design. arXiv preprint arXiv:2110.15486, 2021.

[13] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and S. M. Ali Eslami. Conditional neural processes.
In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1704–1713.
PMLR, 10–15 Jul 2018.

[14] Damien Garreau, Wittawat Jitkrittum, and Motonobu Kanagawa. Large sample analysis of the
median heuristic. arXiv preprint arXiv:1707.07269, 2017.

[15] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Doina Precup and Yee Whye Teh, edi-
tors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 1263–1272. PMLR, 06–11 Aug 2017.

[16] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V
Chawla. Few-shot graph learning for molecular property prediction. arXiv preprint
arXiv:2102.07916, 2021.

[17] Johannes Hachmann, Roberto Olivares-Amaya, Sule Atahan-Evrenk, Carlos Amador-Bedolla,
Roel S Sánchez-Carrera, Aryeh Gold-Parker, Leslie Vogt, Anna M Brockway, and Alán Aspuru-
Guzik. The harvard clean energy project: large-scale computational screening and design of
organic photovoltaics on the world community grid. The Journal of Physical Chemistry Letters,
2(17):2241–2251, 2011.

[18] Geoffrey E Hinton and Russ R Salakhutdinov. Using deep belief nets to learn covariance kernels
for gaussian processes. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems, volume 20. Curran Associates, Inc., 2007.

[19] Weihua Hu*, Bowen Liu*, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations, 2020.

[20] Yuqing Hu, Vincent Gripon, and Stéphane Pateux. Leveraging the feature distribution in
transfer-based few-shot learning. In International Conference on Artificial Neural Networks,
pages 487–499. Springer, 2021.

[21] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[22] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang Dong Yoo. Edge-labeling graph
neural network for few-shot learning. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11–20, 2019.

[23] Minyoung Kim and Timothy Hospedales. Gaussian process meta few-shot classifier learning
via linear discriminant laplace approximation. arXiv preprint arXiv:2111.05392, 2021.

10

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[25] Gregory R. Koch. Siamese neural networks for one-shot image recognition. In ICML deep
learning workshop, volume 2, 2015.

[26] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning
of simple visual concepts. In Proceedings of the annual meeting of the cognitive science society,
volume 33, 2011.

[27] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[28] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

[29] Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshmi-
narayanan. Simple and principled uncertainty estimation with deterministic deep learning via
distance awareness. Advances in Neural Information Processing Systems, 33:7498–7512, 2020.

[30] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sungju Hwang, and Yi Yang.
Learning to propagate labels: Transductive propagation network for few-shot learning. In
International Conference on Learning Representations, 2019.

[31] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pages 1540–1552. PMLR, 26–28 Aug 2020.

[32] Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based
tuning of continuous regularization hyperparameters. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of The 33rd International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning Research, pages 2952–2960, New York, New
York, USA, 20–22 Jun 2016. PMLR.

[33] Łukasz Maziarka, Tomasz Danel, Sławomir Mucha, Krzysztof Rataj, Jacek Tabor, and Stanisław
Jastrzębski. Molecule attention transformer. arXiv preprint arXiv:2002.08264, 2020.

[34] David Mendez, Anna Gaulton, A Patrícia Bento, Jon Chambers, Marleen De Veij, Eloy Félix,
María Paula Magariños, Juan F Mosquera, Prudence Mutowo, Michał Nowotka, et al. Chembl:
towards direct deposition of bioassay data. Nucleic acids research, 47(D1):D930–D940, 2019.

[35] Erik G Miller, Nicholas E Matsakis, and Paul A Viola. Learning from one example through
shared densities on transforms. In Proceedings IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No. PR00662), volume 1, pages 464–471. IEEE, 2000.

[36] Radford M Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto,
1996.

[37] Sebastian W. Ober, Carl E. Rasmussen, and Mark van der Wilk. The promises and pitfalls of
deep kernel learning. In Cassio de Campos and Marloes H. Maathuis, editors, Proceedings of the
Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, volume 161 of Proceedings
of Machine Learning Research, pages 1206–1216. PMLR, 27–30 Jul 2021.

[38] Eunbyung Park and Junier B Oliva. Meta-curvature. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc., 2019.

[39] Massimiliano Patacchiola, John Bronskill, Aliaksandra Shysheya, Katja Hofmann, Sebastian
Nowozin, and Richard E Turner. Contextual squeeze-and-excitation for efficient few-shot image
classification. arXiv preprint arXiv:2206.09843, 2022.

11

[40] Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O' Boyle, and Amos J Storkey.
Bayesian meta-learning for the few-shot setting via deep kernels. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 16108–16118. Curran Associates, Inc., 2020.

[41] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In Maria Florina
Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on
Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 737–746,
New York, New York, USA, 20–22 Jun 2016. PMLR.

[42] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pages 55–69.
Springer, 1998.

[43] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[44] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels for chemical
informatics. Neural networks, 18(8):1093–1110, 2005.

[45] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, USA,
January 2006.

[46] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical
information and modeling, 50(5):742–754, 2010.

[47] Warren S. Sarle. Stopped training and other remedies for overfitting. In Proceedings of the 27th
Symposium on the Interface of Computing Science and Statistics, pages 352–360, 1995.

[48] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[49] Jake Snell and Richard Zemel. Bayesian few-shot classification with one-vs-each pólya-gamma
augmented gaussian processes. arXiv preprint arXiv:2007.10417, 2020.

[50] Megan Stanley, John F Bronskill, Krzysztof Maziarz, Hubert Misztela, Jessica Lanini, Marwin
Segler, Nadine Schneider, and Marc Brockschmidt. Fs-mol: A few-shot learning dataset of
molecules. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

[51] Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

[52] Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M.
Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zohar Bloom-Ackermann,
Victoria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran, Ian W. Andrews, Emma J. Chory,
George M. Church, Eric D. Brown, Tommi S. Jaakkola, Regina Barzilay, and James J. Collins.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702.e13, 2020.

[53] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[54] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? In European Conference on
Computer Vision, pages 266–282. Springer, 2020.

[55] Prudencio Tossou, Basile Dura, Francois Laviolette, Mario Marchand, and Alexandre Lacoste.
Adaptive deep kernel learning. arXiv preprint arXiv:1905.12131, 2019.

12

[56] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A
dataset of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096,
2019.

[57] Joost van Amersfoort, Lewis Smith, Andrew Jesson, Oscar Key, and Yarin Gal. On fea-
ture collapse and deep kernel learning for single forward pass uncertainty. arXiv preprint
arXiv:2102.11409, 2021.

[58] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

[59] Yaqing Wang, Abulikemu Abuduweili, Quanming Yao, and Dejing Dou. Property-aware
relation networks for few-shot molecular property prediction. Advances in Neural Information
Processing Systems, 34:17441–17454, 2021.

[60] Oren F. Webb, Tommy J. Phelps, Paul R. Bienkowski, Philip M. Digrazia, David C. White, and
Gary S. Sayler. Enzyme nomenclature, 1992.

[61] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics,
pages 196–202. Springer, 1992.

[62] Andrew G Wilson, Zhiting Hu, Russ R Salakhutdinov, and Eric P Xing. Stochastic variational
deep kernel learning. Advances in Neural Information Processing Systems, 2016.

[63] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel
learning. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine
Learning Research, pages 370–378, Cadiz, Spain, 09–11 May 2016. PMLR.

[64] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513–530, 2018.

[65] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ArXiv, abs/1810.00826, 2019.

[66] Miao Zhang, Steven W Su, Shirui Pan, Xiaojun Chang, Ehsan M Abbasnejad, and Reza Haffari.
idarts: Differentiable architecture search with stochastic implicit gradients. In International
Conference on Machine Learning, pages 12557–12566. PMLR, 2021.

13

A Cauchy’s Implicit Function Theorem

We state Cauchy’s Implicit Function Theorem (IFT) in the context of ADKF-IFT in Theorem 1.

Theorem 1 (Implicit Function Theorem (IFT)) Let T ′ be any given task. Suppose for some ψ′
meta

and ψ′
adapt that

∂ LT (ψmeta,ψadapt,ST ′)

∂ψadapt

∣∣∣
ψ′

meta,ψ
′
adapt

= 0. Suppose that ∂ LT

∂ψadapt
(ψmeta,ψadapt,ST ′) :

Ψmeta ×Ψadapt → Ψadapt is a continuously differentiable function w.r.t. ψmeta and ψadapt, and the Hes-

sian
∂2 LT (ψmeta,ψadapt,ST ′)

∂ψadapt ∂ψ
T
adapt

∣∣∣
ψ′

meta,ψ
′
adapt

is invertible. Then, there exists an open set U ∈ Ψmeta containing

ψ′
meta and a function ψ∗

adapt(ψmeta,ST ′) : Ψmeta → Ψadapt, such that ψ′
adapt = ψ∗

adapt(ψ
′
meta,ST ′)

and
∂ LT (ψmeta,ψadapt,ST ′)

∂ψadapt

∣∣∣
ψ′′

meta,ψ
∗
adapt(ψ

′′
meta,ST ′)

= 0, ∀ψ′′
meta ∈ U . Moreover, the rate at which

ψ∗
adapt(ψmeta,ST ′) is changing w.r.t. ψmeta for any ψ′′

meta ∈ U is given by

∂ψ∗
adapt(ψmeta,ST ′)

∂ψmeta

∣∣∣∣
ψ′′

meta

= −
(
∂2 LT (ψmeta,ψadapt,ST ′)

∂ψadapt ∂ψ
T
adapt

)−1
∂2 LT (ψmeta,ψadapt,ST ′)

∂ψadapt ∂ψ
T
meta

∣∣∣∣∣∣
ψ′′

meta,ψ
∗
adapt(ψ

′′
meta,ST ′)

.

B Related Work

ADKF-IFT is part of a growing body of literature of techniques to train deep kernel GPs. As discussed
in Section 3.3, ADKF-IFT generalizes DKL [63] and DKT [40], which exclusively use single-task
learning and meta-learning, respectively. [29] and [57] propose adding intelligent regularization terms
to the loss of DKL in order to mitigate overfitting. These works are better viewed as complementary
to ADKF-IFT rather than alternatives: their respective regularization terms could easily be added
to LT in Equation (2) to improve performance. However, it is worth noting that the regularization
strategies in both of these papers are designed for continuous inputs only, limiting their applicability
to structured data like molecules. Finally, the preprint of [55] proposes an alternative adaptive deep
kernel GP trained with meta-learning, where adaptation is performed by conditioning the feature
extractor on an embedding of the entire support set instead. However, their empirical results were
generally poor, and the method appeared very prone to overfitting; see Appendix J.

ADKF-IFT can also be viewed as a meta-learning algorithm comparable to many previously-proposed
methods [26, 58, 13, 56, 38, 54, 20, 59, 5, 39]. One distinguishing feature of ADKF-IFT is that
it is specially designed for deep kernel GPs, whereas most methods from computer vision are
designed exclusively for neural network models, which as previously stated are unsuitable when
reliable uncertainty estimates are required. Furthermore, many of these algorithms such as ProtoNet
[48] are designed principally or exclusively for classification, while ADKF-IFT is suited to both
regression and classification. Compared to model-agnostic frameworks like MAML [10], ADKF-IFT
does not require coarse approximations of the hypergradient due to its use of the implicit function
theorem. Finally, we note that the implicit function theorem employed in our work has been used
in many previous machine learning papers in various contexts, e.g., neural architecture search [66],
hyperparameter-tuning [2, 32, 41, 31, 7], and meta-learning [43, 27, 6].

C General Configurations of ADKF-IFT for Few-shot Learning Experiments

In this paper, we consider the specific instantiation of ADKF-IFT from Section 3.4. We solve the
inner optimization problem (2) using the L-BFGS optimizer [28], since we choose AΨadapt = AΘ

and L-BFGS is the default choice for optimizing base kernel parameters in the literature. For the
outer optimization problem (1), we approximate the expected hypergradient over p(T) by averaging
the hypergradients for a batch of K randomly sampled training tasks at each step, and update the
meta-learned parameters ψmeta with the averaged hypergradient using the Adam optimizer [24]. For
all experiments on FS-Mol, we evaluate the performance of our model on a small set of validation
tasks during meta-training and use early stopping [42] to avoid overfitting of ψmeta.

14

Table 3: Statistics of four few-shot molecular property prediction benchmarks from MoleculeNet.

Statistic
MoleculeNet benchmark task

Tox21 SIDER MUV ToxCast

#compounds 8,014 1,427 93,127 8,615
#tasks 12 27 17 617

#training tasks 9 21 12 450
#test tasks 3 6 5 167

We use zero mean function and set Matérn52 without automatic relevance determination (ARD) [36]
as the base kernel in ADKF-IFT, since the typical sizes of the support sets in few-shot learning are
too small to adjust a relatively large number of ARD lengthscales in ADKF-IFT. The lengthscale
in the base kernel of ADKF-IFT is initialized using the median heuristic [14] for each task, with a
log-normal prior centered at the initialization. Following [40], we treat binary classification as ±1
label regression for ADKF-IFT.

D Details of MoleculeNet Benchmark Tasks

In Table 3, we summarize the four few-shot molecular property classification benchmark tasks (Tox21,
SIDER, MUV, and ToxCast) from MoleculeNet [64] considered in Section 4.1.

E Detailed Configurations of All Compared Methods for FS-Mol

Single-task Methods. Single-task methods (RF, kNN, GP-ST, GNN-ST, and DKL) are trained
separately on the support set of each test task, without leveraging the knowledge contained in the
training tasks. The implementations of RF, kNN, and GNN-ST are taken from [50]. RF, kNN,
and GP-ST operates on top of manually curated features obtained using RDKit. RF and kNN use
extended connectivity fingerprint [46] (count-based fingerprint with radius 2 and size 2,048) and
phys-chem descriptors (with size 42). GP-ST uses fingerprint (with radius 2 and 2,048 bits based
on count simulation). DKL operates on top of a combination of extended connectivity fingerprint
[46] (count-based fingerprint with radius 2 and size 2,048) and features extracted by a GNN. We use
the same base kernel in DKL as in ADKF-IFT. DKL is trained for 50 epochs on the support set of
each test task. Hyperparameter search configurations for these methods are based on the extensive
industrial experience from the authors of [50]. GNN-ST uses a GNN with a hidden dimension of 128
and a gated readout function [15], considering ∼ 30 hyperparameter search configurations.

Multi-task Pretraining. The implementation of GNN-MT is taken from [50]. GNN-MT shares a
GNN with a hidden dimension of 128 using principal neighborhood message aggregation [9] across
tasks, and uses a task-specific gated readout function [15] and an MLP with one hidden layer on
top for each individual task. The model is trained on the support sets of all training tasks with early
stopping based on the validation performance on the validation tasks. The task-specific components
of the model are fine-tuned for each test task.

Self-supervised Pretraining. The implementation of MAT is taken from [50]. We use the official
pretrained model parameters [33], which is pretrained on 2 millions molecules sampled from the
ZINC15 dataset [51]. We fine-tuned it for each test task with hyperparameter search and early
stopping based on 20% of the support set for each task.

Meta-learning Methods. Meta-learning methods (PAR, ProtoNet, GNN-MAML, CNP, DKT, and
ADKF-IFT) enable knowledge transfer among related small datasets. The implementations of
ProtoNet and GNN-MAML are taken from [50]. The implementation of PAR is taken from its official
implementation and integrated into the FS-Mol training and evaluation pipeline. PAR, ProtoNet,
CNP, DKT, and ADKF-IFT operate on top of a combination of extended connectivity fingerprint [46]
(count-based fingerprint with radius 2 and size 2,048) and features extracted by a GNN. The feature
extractor architecture used for DKL, PAR, CNP, DKT, and ADKF-IFT is the same as that used for
ProtoNet, GNN-MAML, GNN-ST, and GNN-MT in [50], with the size of the feature representation
being tuned on the validation tasks. We use the same base kernel in DKT as in ADKF-IFT.

15

Table 4: Mean ranks of all compared methods in terms of their performance on all FS-Mol test tasks.

(a) Classification (157 tasks).

Method
Support set size

16 32 64 128 256

GNN-ST 11.29 11.53 11.75 11.85 12.19
kNN 10.89 10.48 10.33 10.15 9.37
MAT 10.43 10.44 10.19 9.69 9.70
RF 8.15 7.89 7.06 6.25 4.47

PAR 7.70 7.98 8.30 8.83 10.81
GNN-MT 7.33 7.18 7.08 6.59 6.53

DKL 7.28 7.49 7.98 8.42 8.21
GP-ST 6.71 6.57 6.28 6.18 5.14

GNN-MAML 6.36 6.92 7.42 7.89 8.90
CNP 5.00 5.81 6.36 6.91 7.78

ProtoNet 4.00 3.40 3.11 2.98 3.85
DKT 3.44 3.19 2.99 2.99 2.67

ADKF-IFT 2.41 2.12 2.14 2.26 1.38

(b) Regression (111 tasks).

Method
Support set size

16 32 64 128 256

MAT 7.60 7.45 7.26 7.06 7.19
GNN-MT 6.61 6.40 6.15 5.95 5.58

RF 5.00 4.47 4.16 3.72 3.56
DKL 4.42 5.16 5.63 6.10 6.35

GP-ST 4.23 4.14 3.87 3.37 3.07
CNP 3.88 4.45 4.95 5.73 6.47
DKT 2.12 2.08 2.29 2.32 2.43

ADKF-IFT 2.12 1.86 1.68 1.74 1.36

F Task-level Evaluation Metrics for FS-Mol

Binary Classification. Following [50], the task-level metric used for the binary classification task
in FS-Mol is change in area under the precision-recall curve (∆AUPRC), which is sensitive to the
balance of the two classes in the query sets and allows for a comparison to the performance of a
random classifier:
∆AUPRC(target classifier, T) = AUPRC(target classifier, QT) − AUPRC(random classifier, QT)

= AUPRC(target classifier, QT) − #positive data points in QT

NQT

.

Regression. We propose to use the predictive/out-of-sample coefficient of determination (R2
os) as the

task-level metric for the regression task in FS-Mol, which takes into account forecast errors:

R2
os(target regressor g, T) = 1−

∑
(xm,ym)∈QT

(ym − g(xm))2∑
ym∈Qy

T
(ym − ȳST)

2
,

where ȳST = 1
NST

∑
yn∈Sy

T
yn is the mean target value in the support set ST . This is different from

the regular coefficient of determination (R2), wherein the total sum of squares in the denominator are
computed using the mean target value ȳQT = 1

NQT

∑
ym∈Qy

T
ym in the query set QT .

G Further Experimental Results on FS-Mol

G.1 Overall Performance

Table 4 shows that ADKF-IFT achieves the best mean rank for both classification and regression tasks
at all considered support set sizes. The trends of these mean ranks are consistent to those in Figure 2.
Figures 6 and 7 show the box plots for the classification and regression performances of all compared
methods on all FS-Mol test tasks, respectively. These plots are a disaggregated representation of the
results in Figure 2.

G.2 Statistical Comparison

Table 5 shows the p-values from the two-sided Wilcoxon signed-rank test for statistical comparisons
between ADKF-IFT and the next second method, namely DKT. The test results indicate that their
median performance difference is nonzero (i.e., ADKF-IFT significantly outperforms DKT) for the
classification task at all considered support set sizes and for the regression task at support set sizes 64,
128, and 256 (at significance level α = 0.05).

G.3 Sub-benchmark Performance

The tasks in FS-Mol can be partitioned into 7 sub-benchmarks by Enzyme Commission (EC) number
[60], which enables sub-benchmark evaluation within the entire benchmark. Ideally, the best method

16

Table 5: p-values from the two-sided Wilcoxon signed-rank test for statistical comparisons between
ADKF-IFT and DKT. The null hypothesis is that the median of their performance differences on all
FS-Mol test tasks is zero. The significance level is set to α = 0.05.

FS-Mol learning task
Support set size

16 32 64 128 256

Classification (157 tasks) 1.4 × 10−12 8.1 × 10−14 2.3 × 10−12 1.0 × 10−8 3.4 × 10−7

Regression (111 tasks) 8.2 × 10−2 9.6 × 10−2 3.7 × 10−5 7.1 × 10−5 9.8 × 10−7

Table 6: Mean performance with standard errors of top performing methods on FS-Mol test tasks
within each sub-benchmark (broken down by EC category) at support set size 64 (the median of all
considered support sizes). Note that class 2 is most common in the FS-Mol training set (∼ 1, 500
training tasks), whereas classes 6 and 7 are least common in the FS-Mol training set (< 50 training
tasks each).

(a) Classification (∆AUPRC).

FS-Mol sub-benchmark (EC category) Method

Class Description #tasks RF GP-ST ProtoNet DKT ADKF-IFT

1 oxidoreductases 7 0.156 ± 0.044 0.152 ± 0.040 0.137 ± 0.037 0.145 ± 0.040 0.160 ± 0.045
2 kinases 125 0.152 ± 0.009 0.161 ± 0.009 0.285 ± 0.010 0.282 ± 0.010 0.299 ± 0.010
3 hydrolases 20 0.229 ± 0.032 0.230 ± 0.032 0.245 ± 0.034 0.254 ± 0.034 0.262 ± 0.033
4 lysases 2 0.276 ± 0.182 0.284 ± 0.189 0.265 ± 0.211 0.272 ± 0.206 0.279 ± 0.201
5 isomerases 1 0.166 ± 0.040 0.212 ± 0.052 0.172 ± 0.044 0.204 ± 0.058 0.198 ± 0.046
6 ligases 1 0.149 ± 0.035 0.199 ± 0.028 0.170 ± 0.028 0.229 ± 0.013 0.231 ± 0.022
7 translocases 1 0.128 ± 0.039 0.109 ± 0.049 0.099 ± 0.028 0.122 ± 0.022 0.109 ± 0.033

all enzymes 157 0.163 ± 0.009 0.171 ± 0.009 0.271 ± 0.009 0.271 ± 0.010 0.285 ± 0.010

(b) Regression (R2
os).

FS-Mol sub-benchmark (EC category) Method

Class Description #tasks RF GP-ST CNP DKT ADKF-IFT

1 oxidoreductases 6 0.108 ± 0.087 0.103 ± 0.076 −0.012 ± 0.011 0.098 ± 0.078 0.116 ± 0.079
2 kinases 82 0.160 ± 0.019 0.162 ± 0.022 0.127 ± 0.017 0.343 ± 0.022 0.363 ± 0.024
3 hydrolases 19 0.256 ± 0.058 0.267 ± 0.061 0.014 ± 0.015 0.295 ± 0.063 0.310 ± 0.062
4 lysases 2 0.418 ± 0.405 0.417 ± 0.416 0.100 ± 0.068 0.440 ± 0.418 0.442 ± 0.403
5 isomerases 1 0.125 ± 0.077 0.086 ± 0.082 −0.012 ± 0.010 0.209 ± 0.113 0.226 ± 0.063
6 ligases 1 0.182 ± 0.040 0.202 ± 0.079 0.002 ± 0.004 0.277 ± 0.035 0.279 ± 0.043

all enzymes 111 0.178 ± 0.019 0.181 ± 0.021 0.097 ± 0.014 0.321 ± 0.021 0.340 ± 0.022

should be able to perform well across all sub-benchmarks. Table 6 shows the test performance of
top performing methods on all sub-benchmarks at support set size 64 (the median of all considered
support sizes) for both the classification and regression tasks. The results indicate that, in addition to
achieving best overall performance, ADKF-IFT achieves the best performance on all sub-benchmarks
for the regression task and on more than half of the sub-benchmarks for the classification task.

G.4 Meta-testing Costs

Figure 5 shows the meta-testing costs of all compared meta-learning methods in terms of wall-clock
time1 on a pre-defined set of FS-Mol classification tasks. These experiments are run on a single
NVIDIA GeForce RTX 2080 Ti. It can be seen that ADKF-IFT is ∼ 2.5x slower than CNP, ProtoNet,
and DKT, but still much faster than GNN-MAML. We did not report the wall-clock time for PAR,
because it is extremely memory intensive (PAR takes > 10x memory than ADKF-IFT does) and thus
cannot be run on a GPU. We stress that this is not an important metric for this paper, as real-time
adaptation is not required in drug discovery applications, but could be of interest if ADKF-IFT were
to be deployed in other settings.

1We acknowledge that wall-clock time may not be the best metric for measuring the costs, since some
meta-learning methods could be parallelized, which will reduce the wall-clock time accordingly. An alternative
metric is multiply–accumulate operation (MAC). However, it is difficult to obtain the accurate number of MACs
due to the opaqueness of the GP modules used.

17

CNP
ProtoNet DKT

ADKF-IFT
GNN-MAML0

100

200

300

400

500

600

W
al

l-c
lo

ck
 ti

m
e

(s
ec

on
ds

)

Figure 5: Wall-clock time consumed (with standard errors) when meta-testing on a pre-defined set of
FS-Mol classification tasks using each of the compared meta-learning methods.

Table 7: Descriptions of four out-of-domain molecular design tasks.
Molecular design task Data source #compounds Target Target source

Molecular docking (ESR2) DOCKSTRING training set 2,312 binding score AutoDock Vina
Antibiotic discovery (E. coli BW25113) Antibiotic training set 2,335 relative growth screening

Antiviral drug design (SARS-CoV-2) COVID Moonshot 1,926 pIC50 Fluorescence experimental lab
Material design (Organic Photovoltaic) Harvard Clean Energy Project 2,012 power conversion efficiency DFT simulation

H Details of the Out-of-domain Molecular Optimization Experiments

In Table 7, we summarize the four molecular design tasks considered in Section 4.3. Note that the
datasets for the molecular docking and material design tasks are subsampled from the much larger
datasets provided in DOCKSTRING [12] and Harvard Clean Energy Project [17], respectively. The
datasets for the antibiotic discovery and antiviral drug design tasks are taken from the antibiotic
training set and the COVID Moonshot dataset provided in [52] and [8], respectively.

For the configuration of the GP, we use the Tanimoto kernel for fingerprint (with radius 2 and 2,048
bits based on count simulation) and Matérn52 kernel without ARD (with a log-normal prior over
the lengthscale, centered at the median heuristic initialization) for all the other compared feature
representations. We re-fit the base kernel parameters using all available data points at the beginning
of each BO iteration.

I Discussions of Methods for Learning Deep Kernel GPs

I.1 The Overfitting Issue in DKL

Deep Kernel Learning (DKL) [63] is a single-task method for fitting a deep kernel to a dataset. DKL
jointly fits both the feature extractor parameters ϕ and base kernel parameters θ by maximizing the
GP marginal likelihood on a single dataset (i.e., DKL essentially fits a neural network with a GP
“head” to a dataset).

It is well known that neural networks will easily overfit to small datasets [47]. This overfitting also
happens in DKL, despite the fact that it fits the neural network parameters using a type-II maximum
likelihood approach: although early DKL papers suggested that the “model complexity” term (as
measured by the log determinant of the kernel matrix) in the GP marginal likelihood objective would
prevent this overfitting from happening [63], recent follow-up work showed that this is not the case
[37] – a deep-kernel GP can simultaneously overfit to the training data and appear to have a low
“model complexity”.

18

I.2 The Underfitting Issue in DKT

Deep Kernel Transfer (DKT) [40] is a meta-learning method for fitting a deep kernel to a distribution
of datasets. DKT jointly fits both the feature extractor parameters ϕ and base kernel parameters θ by
maximizing the expected GP marginal likelihood over a distribution of datasets.

To mitigate the overfitting issue of DKL using meta-learning, DKT makes a very strong assumption
that different tasks in the task distribution are drawn from an identical GP prior over functions.
Explicitly, this means that the data generating process is assumed to have the same noise level, same
amplitude, and same “characteristic lengthscale” for every task in the meta-dataset, which is a very
restrictive assumption violated by most real-world problems. For example, different datasets in a
meta-dataset may have

• highly varying noise levels, so modelling all tasks with the same amount of observation
noise will not be realistic;

• different output ranges and units for regression: for example, one task might have data in the
range 1-20 µM, while another might have 0-100% inhibition, meaning that a single signal
variance (kernel amplitude) will not model the data well;

• different “characteristic lengthscales”: for some tasks, structurally similar molecules have
very strongly correlated output labels, while for other tasks it is much weaker (i.e., there is
much more variation in the labels of very similar molecules), suggesting that the “character-
istic lengthscale” will be different.

Inevitably, trying to fit such a misspecified model will result in a set of compromised base kernel
parameters θ which fit all datasets okay on average but do not fit each individual dataset very well.
This is the underfitting issue of DKT.

I.3 The Advantage of ADKF-IFT

ADKF-IFT combines DKL and DKT in a way that can potentially inherit the strengths of both
methods and the weaknesses of neither. By adapting the base kernel parameters θ specifically to each
task, it prevents underfitting due to varying ranges, lengthscales, or noise levels between datasets.
By meta-learning the feature extractor on many datasets, it prevents overfitting as observed by [37].
This advantage is both theoretically principled (by solving a bilevel optimization objective using
the implicit function theorem) and empirically observable (we showed a statistically significant
performance improvement of ADKF-IFT over DKT in Section 4.2).

J Comments on ADKL-GP

The training objective for ADKL-GP [55] is equivalent to the objective for DKT with an added
contrastive loss, weighted by a sensitive hyperparameter γ (see Equation (13) in their preprint [55]).
γ can be interpreted as balancing the degree of regularization between two extremes:

1. If γ = 0, there is no regularization of the task encoding network, making significant
overfitting to the meta-dataset possible. This is effectively equivalent to standard DKL [63].

2. As γ → ∞, the regularization becomes infinitely strong, causing the task embeddings zT
to collapse, and thereby preventing them from transmitting any information about specific
datasets. With no information from zT in this case, the objective is essentially the same as
that of DKT [40].

For this method to be an informative baseline, γ would need to be appropriately tuned so that the
method can be distinguished from DKL and DKT. Unfortunately, their preprint [55] contains little
guidance on how to perform this tuning. They perform a grid search over all hyperparameters
including γ ∈ {0, 0.01, 0.1} but find no consistent trend besides γ > 0 being slightly helpful,
although the differences in performance were small. Due to computational constraints, we were
unable to run extensive experiments tuning γ and the set encoder architecture. Our preliminary results
show that the performance of ADKL-GP is much worse than that of our ADKF-IFT, but we feel that
it would be unfair to report such preliminary results that were not tuned and checked as thoroughly as
the other baselines. Therefore, we chose not to report the results of ADKL-GP in our experiments.

19

Even if a carefully-tuned implementation of ADKL-GP was able to outperform our implementation
of ADKF-IFT, we do not believe that would diminish the value of our contribution. We see the lack
of tunable regularization hyperparameters in ADKF-IFT as a significant strength, because it makes
our method more consistent and reliable. Furthermore, our ADKF-IFT is able to adapt important
parameters such as likelihood noise level, kernel lengthscales, and signal variance (kernel amplitude),
which will almost certainly vary among datasets but cannot be adapted using the ADKL-GP method.
For all these reasons, we hope that the reader understands and agrees with our decision to omit results
for ADKL-GP from our experiments in Section 4.

K Conclusion and Future Work

We have proposed Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT), a
novel framework for fitting deep kernels that interpolates between meta-learning and conventional
deep kernel learning. ADKF-IFT meta-learns a feature extractor across tasks such that the task-
specific GP models estimated on top of the extracted feature representations can achieve lowest
possible prediction error on average. ADKF-IFT is implemented by solving a bilevel optimization
objective via implicit differentiation. We have shown that ADKF-IFT is a unifying framework
containing DKL and DKT as special cases. We have demonstrated that ADKF-IFT learns generally
useful feature representations, achieving state-of-the-art performance on a variety of real-world
few-shot molecular property prediction tasks and on out-of-domain molecular property prediction
and optimization tasks. We believe that ADKF-IFT could potentially be an important method to
produce well-calibrated models for fully-automated high-throughput experimentation in the future.

Some directions for future work are as follows: 1) using ARD in the base kernel so that feature
selection for each individual task can be done by the GP model, with potential overfitting problems
being reduced by assuming a sparse prior over lengthscales or by learning a low-dimensional manifold
for them; 2) adapting the feature extractor to each task as well by allowing small deviations across
tasks according to a meta-learned prior on the feature extractor parameters (e.g., as described in
[6]); 3) adopting a more principled approximate inference strategy for few-shot GP classification
(e.g., Pólya-Gamma data augmentation [49] or Laplace approximation [23]); and 4) injecting domain
expertise in drug discovery into the base kernel with hand-curated features and kernel combinations.

20

−0.1 0.0 0.1 0.2 0.3 0.4 0.5
∆AUPRC

ADKF-IFT

DKT

ProtoNet

CNP

GNN-MAML

GP-ST

GNN-MT

RF

MAT

kNN

GNN-ST

PAR

DKL

(a) NST ∗ = 16.

−0.1 0.0 0.1 0.2 0.3 0.4 0.5
∆AUPRC

ADKF-IFT

DKT

ProtoNet

CNP

GNN-MAML

GP-ST

GNN-MT

RF

MAT

kNN

GNN-ST

PAR

DKL

(b) NST ∗ = 32.

−0.1 0.0 0.1 0.2 0.3 0.4 0.5
∆AUPRC

ADKF-IFT

DKT

ProtoNet

CNP

GNN-MAML

GP-ST

GNN-MT

RF

MAT

kNN

GNN-ST

PAR

DKL

(c) NST ∗ = 64.

0.0 0.1 0.2 0.3 0.4 0.5
∆AUPRC

ADKF-IFT

DKT

ProtoNet

CNP

GNN-MAML

GP-ST

GNN-MT

RF

MAT

kNN

GNN-ST

PAR

DKL

(d) NST ∗ = 128.

0.0 0.1 0.2 0.3 0.4 0.5
∆AUPRC

ADKF-IFT

DKT

ProtoNet

CNP

GNN-MAML

GP-ST

GNN-MT

RF

MAT

kNN

GNN-ST

PAR

DKL

(e) NST ∗ = 256.

Figure 6: Box plots for the classification performance of all compared methods on 157 FS-Mol test
tasks at different support set sizes.

21

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

R2
os

ADKF-IFT

DKT

CNP

GP-ST

RF

GNN-MT

MAT

DKL

(a) NST ∗ = 16.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

R2
os

ADKF-IFT

DKT

CNP

GP-ST

RF

GNN-MT

MAT

DKL

(b) NST ∗ = 32.

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

R2
os

ADKF-IFT

DKT

CNP

GP-ST

RF

GNN-MT

MAT

DKL

(c) NST ∗ = 64.

−3 −2 −1 0 1

R2
os

ADKF-IFT

DKT

CNP

GP-ST

RF

GNN-MT

MAT

DKL

(d) NST ∗ = 128.

−0.2 0.0 0.2 0.4 0.6 0.8

R2
os

ADKF-IFT

DKT

CNP

GP-ST

RF

GNN-MT

MAT

DKL

(e) NST ∗ = 256.

Figure 7: Box plots for the regression performance of all compared methods on 111 FS-Mol test
tasks at different support set sizes.

22

	Introduction
	Background and Notation
	Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT)
	The General ADKF-IFT Framework for Learning Deep Kernel GPs
	Efficient Meta-Training Algorithm
	ADKF-IFT as a Unification of Previous Methods
	Highlighted ADKF-IFT Instantiation

	Experiments
	Few-shot Molecular Property Prediction on the MoleculeNet Benchmark
	Few-shot Molecular Property Prediction on the FS-Mol Benchmark
	Out-of-domain Molecular Property Prediction and Optimization

	Cauchy's Implicit Function Theorem
	Related Work
	General Configurations of ADKF-IFT for Few-shot Learning Experiments
	Details of MoleculeNet Benchmark Tasks
	Detailed Configurations of All Compared Methods for FS-Mol
	Task-level Evaluation Metrics for FS-Mol
	Further Experimental Results on FS-Mol
	Overall Performance
	Statistical Comparison
	Sub-benchmark Performance
	Meta-testing Costs

	Details of the Out-of-domain Molecular Optimization Experiments
	Discussions of Methods for Learning Deep Kernel GPs
	The Overfitting Issue in DKL
	The Underfitting Issue in DKT
	The Advantage of ADKF-IFT

	Comments on ADKL-GP
	Conclusion and Future Work

