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Abstract

Research on video generation has recently made tremendous progress, enabling
high-quality videos to be generated from text prompts or images. Adding con-
trol to the video generation process is an important goal moving forward and
recent approaches that condition video generation models on camera trajecto-
ries make strides towards it. Yet, it remains challenging to generate a video of
the same scene from multiple different camera trajectories. Solutions to this
multi-video generation problem could enable large-scale 3D scene generation with
editable camera trajectories, among other applications. We introduce collabora-
tive video diffusion (CVD) as an important step towards this vision. The CVD
framework includes a novel cross-video synchronization module that promotes
consistency between corresponding frames of the same video rendered from dif-
ferent camera poses using an epipolar attention mechanism. Trained on top of
a state-of-the-art camera-control module for video generation, CVD generates
multiple videos rendered from different camera trajectories with significantly bet-
ter consistency than baselines, as shown in extensive experiments. Project page:
https://collaborativevideodiffusion.github.io/.

1 Introduction

With the impressive progress of diffusion models [22, 51, 28, 44, 46, 43], video generation has
significantly advanced [12, 17, 26, 5, 6, 15, 64, 23, 32], with a transformative impact on digital
content creation workflows. Recent models like SORA [7] exhibit the ability to generate long high-
quality videos with complex dynamics. Yet, these methods typically leverage text or image inputs to
control the generation process and lack precise control over content and motion, which is essential for
practical applications. Prior efforts explore the use of other input modalities, such as flow, keypoints,
and depths, and develop novel control modules to incorporate these conditions effectively, enabling
precise guidance of the generated contents [60, 63, 67, 26, 56, 9]. Despite these advancements, these
methods still fail to provide camera control to the video generation process.

Recent works have started to focus on camera control using various techniques, such as motion
LoRAs [25, 17] or scene flows [63, 67]. Some representative works such as MotionCtrl [60] and
CameraCtrl [18] offer more flexible camera control by conditioning the video generative models
on a sequence of camera poses, showing the feasibility of freely controlling the camera movements
of videos. However, these methods are limited to single-camera trajectories, leading to significant
inconsistencies in content and dynamics when generating multiple videos of the same scene from
different camera trajectories. Consistent multi-video generation with camera control is desirable in
many downstream applications, such as large-scale 3D scene generation. Training video generation
models for consistent videos with different camera trajectories, however, is very challenging, partly
due to the lack of large-scale multi-view dynamic in-the-wild scene data.
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In this paper, we introduce CVD, a plug-and-play module capable of generating videos with different
camera trajectories sharing the same underlying content and motion of a scene. CVD is designed on a
collaborative diffusion process that generates consistent pairs of videos with individually controllable
camera trajectories. Consistency between corresponding frames of a video is enabled using epipolar
attention, introduced by a learnable cross-view synchronization module. To effectively train this
module, we propose a new pseudo-epipolar line sampling scheme to enrich the epipolar geometry
attention. Due to the shortage of large-scale training data for 3D dynamic scenes, we propose a hybrid
training scheme where multi-view static data from RealEstate10k [68] and monocular dynamic data
from WebVid10M [1] are utilized to learn camera control and motion, respectively. To our knowledge,
CVD is the first approach to generate multiple videos with consistent content and dynamics while
providing camera control. Through extensive experiments, we demonstrate that CVD ensures strong
geometric and semantic consistencies, significantly outperforming relevant baselines. We summarize
our contributions as follows:

• To our knowledge, our CVD is the first video diffusion model that generates multi-view
consistent videos with camera control;

• We introduce a novel module called the Cross-Video Synchronization Module, designed to
align features across diverse input videos for enhanced consistency;

• We propose a new collaborative inference algorithm to extend our video model trained on
video pairs to arbitrary numbers of video generation;

• Our model demonstrates superior performance in generating multi-view videos with consis-
tent content and motion, surpassing all baseline methods by a significant margin.

2 Related Work

Video Diffusion Models. Recent efforts in training large-scale video diffusion models have enabled
high-quality video generation [15, 6, 23, 21, 17, 7, 12, 50]. Video Diffusion Model [23], utilizes a
3D UNet to learn from images and videos jointly. With the promising image quality obtained by
text-to-image (T2I) generation models, such as StableDiffusion [44], many recent efforts focus on
extending pretrained T2I models by learning a temporal module. Align-your-latents [6] proposes
to inflate the T2I model with 3D convolutions and factorized space-temporal blocks to learn video
dynamics. Similarly, AnimateDiff [17] builds upon StableDiffusion [44], adding a temporal module
after each fixed spatial layer to achieve plug-and-play capabilities that allow users to perform
personalized animation without any finetuning. Pyoco [15] proposes a temporally coherent noise
strategy to effectively model temporal dynamics. More recently, SORA [7] shows a great step towards
photo-realistic long video generation by utilizing space-time diffusion with a transformer architecture.

Controllable Video Generation. The ambiguity of textual conditions often results in weak control
for text-to-video models (T2V). To provide precise guidance, some approaches utilize additional
conditioning signals such as depth, skeleton, and flow to control the generated videos [12, 59, 26,
48, 27, 8, 53]. Recent efforts like SparseCtrl [65] and SVD incorporate images as control signals for
video generation. To further control motions and camera views in the output video, DragNUWA [63]
and MotionCtrl [60] inject motion and camera trajectories into the conditioning branch, where the
former uses a relaxed version of optical flow as stroke-like interactive instruction, and the later
directly concatenate camera parameters as additional features. CameraCtrl [18] proposes to over-
parameterize the camera parameters using Plücker Embeddings [39] and achieves more accurate
camera conditioning. Alternatively, AnimateDiff [17] trains camera-trajectory LoRAs [25] to achieve
viewpoint movement conditioning, while MotionDirector [67] also utilizes LoRAs [25] but to overfit
to specific appearances and motions to gain their decoupling.

Multi-View Image Generation. Due to the lack of high-quality scene-level 3D datasets, a line
of research focuses on generating coherent multi-view images. Zero123 [35] learns to generate
novel-view images from pose conditions, and subsequent works extend it to multi-view diffu-
sion [11, 36, 37, 49, 54, 55, 62, 31] for better view consistency. However, these methods are only
restricted to objects and consistently fail to generate high-quality large-scale 3D scenes. Mul-
tiDiffusion [3] and DiffCollage [66] facilitates 360-degree scene image generation, while Sce-
neScape [14] generates zooming-out views by warping and inpainting using diffusion models. Simi-
larly, Text2Room [24] generates multi-view images of a room, where the images can be projected via
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Figure 1: An illustration of pairwise collaborative video generation. Existing video diffusion
models generate videos separately, which may result in inconsistent frame contents (e.g., geometries,
objects, motions) across videos (Left); Collaborative video generation aims to produce videos sharing
the same underlying content (Middle); In this work, we train our model on video pair datasets, and
extend it to generate more collaborative videos (Right).

depths to get a coherent room mesh. DiffDreamer [9] follows the setups in Infinite-Nature [34, 33]
and iteratively performs projection and refinement using a conditional diffusion model. A recent
work, PoseGuided-Diffusion [56], performs novel view synthesis from a single image by training
and adding an epipolar line bias to its attention masks on multi-view datasets with camera poses pro-
vided (RealEstate10k [68]). However, this method by construction does not generalize to in-the-wild
or dynamic scenes, as its prior is solely learned from well-defined static indoor data.

A comprehensive survey of recent advances in diffusion models for visual computing is provided by
Po et al. [40].

3 Collaborative Video Generation

Conventionally, video diffusion models (VDMs) aim to generate videos from randomly sampled
Gaussian noise with multiple denoising steps, given conditions such as text prompts, frames, or
camera poses. Specifically, let v0 ∼ qdata(v) be a data point sampled from the data distribution;
the forward diffusion process continuously adds noises to v0 to get a series of vt, t ∈ 1, ..., T until
it becomes Gaussian noise. Using the reparameterization trick from Ho et al.[22], the distribution
of vt can be represented as q(vt | v0) = N (vt;

√
ᾱtv0, (1 − ᾱt)I), where ᾱt ∈ (0, 1] are the

noise scheduling parameters, which are monotonously increasing, and ᾱT = 1. The video diffusion
model, typically denoted as pθ(vt−1|vt), is a model parameterized by θ that is trained to estimate the
backward distribution q(vt−1|vt,v0). According to Ho et al. [22], the optimization of pθ(vt−1|vt)
results in minimizing the following loss function:

L = Eϵ,v0,t,c∥ϵ− ϵθ(vt, t, c)∥2, (1)

where vt =
√
ᾱtv0 + (1− ᾱt)ϵ is the noisy video feature generated from v0 and a random sampled

Gaussian noise ϵ, ϵθ(vt, t) is the noise prediction of the VDM, and c is the video condition. During
inference time, one can start from a normalized Gaussian noise vT ∼ N (0, I) and apply the noise
prediction model ϵθ(vt, t) multiple times to denoise it until v0.

Empowered by readily available large-scale video datasets, many state-of-the-art VDMs have success-
fully shown ability to produce temporally consistent and realistic videos [23, 5, 7, 17, 26, 21, 12, 6, 15].
However, one of the key drawbacks of all these existing methods is the inability to generate consis-
tently coherent multi-view videos. As Fig. 1 shows, videos generated from a VDM under the same
textual conditions exhibit content and spatial arrangement disparities. One can use inference-stage
tricks, such as extended attention [8], to increase the semantic similarities between the videos, yet
this does not address the problem of structure consistency. To address this issue, we introduce a novel
objective for VDMs to generate multiple structurally consistent videos simultaneously given certain
semantic conditions and dub it Collaborative Video Diffusion (CVD).
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Figure 2: Architecture of collaborative video diffusion. Left: The model takes two (or more)
noisy video features and camera trajectories as input and generates the noise prediction for both
videos. Note that the image autoencoder of Stable Diffusion is omitted here; Right: Our Cross-View
Synchronization Module takes the same frames from the two videos along with the corresponding
fundamental matrix as input, and applies a masked cross-view attention between the frames.

In contrast to conventional video diffusion models, CVD seeks to find an arbitrary number of
videos vi, i ∈ 1, ...,M that comply with the unknown data distribution qdata(v

1,...,M ) given separate
conditions c1,...,M . Similarly, the CVD model can be represented as pθ(v1,...,M |c1,...,M ). An example
includes multi-view videos synchronously captured from the same dynamic 3D scene. Similarly, the
loss function for a collaborative video diffusion model is defined as:

LCVD = Eϵ1,...,M ,v1,...,M
0 ,t,c∥ϵ

1,...,M − ϵθ(v
1,...,M
t , t, c1,...,M )∥2. (2)

In practice, however, the scarcity of large-scale multi-view video data prevents us from directly
training a model for an arbitrary quantity of videos. Therefore, we build our training dataset of
consistent video pairs (i.e., M = 2) from existing monocular video datasets, and train the diffusion
model to generate pairs of videos sharing the same underlying contents and motions (see details
in Secs. 4.1 and 4.2). Our model is designed to accommodate any number of input video features,
however, and we develop an inference algorithm to generate an arbitrary number of videos from our
pre-trained pairwise CVD model (see Sec. 4.3).

4 Collaborative Video Diffusion with Camera Control

We seek to build a diffusion model that takes a text prompt y and a set of camera trajectories
cam1,...,M and generates the same number of collaborative videos v1,...,M . To ease the generation of
consistent videos, in this work we train our model with video pairs (M = 2), we make the assumption
that the videos are synchronized (i.e., corresponding frames are captured simultaneously), and set the
first pose of every trajectory to be identical, forcing the first frame of all videos to be the same.

Inspired by [18, 17], our model is designed as an extension of the camera-controlled video model
CameraCtrl [18]. As shown in Fig. 2, our model takes two (or more) noisy video feature inputs
and generates the noise prediction in a single pass. The video features pass through the pretrained
weights of CameraCtrl and are synchronized in our proposed Cross-View Synchronization Modules
(Sec. 4.1). The model is trained with two different datasets: RealEstate10K [68], which consists of
camera-calibrated video on mostly static scenes, and WebVid10M [1], which contains generic videos
without poses. This leads to our two-phase training strategy introduced in Sec. 4.2. The learned
model can infer arbitrary numbers of videos using our proposed inference algorithm, which will be
described in Sec. 4.3.

4.1 Cross-View Synchronization Module

State-of-the-art VDMs commonly incorporate various types of attention mechanisms defined on the
spatial and temporal dimension: works such as AnimateDiff [17], SVD [5], LVDM [19] disentangles
space and time and applies separate attention layers; the very recent breakthrough SORA [7] processes
both dimensions jointly on its 3D spatial-temporal attention modules. Whilst the operations defined
on the spatial and temporal dimensions bring a strong correlation between different pixels of different
frames, capturing the context between different videos requires a new operation: cross-video attention.
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Thankfully, prior works [10, 8] have shown that the extended attention technique, i.e., concatenating
the key and values from different views together, is evidently efficient for preserving identical
semantic information across videos. However, it refrains from preserving the structure consistency
among them, leading to totally different scenes in terms of geometry. Thus, inspired by [56], we
introduce the Cross-View Synchronization Module based on the epipolar geometry to shed light on
the structure relationship between cross-video frames during the generation process, aligning the
videos towards the same geometry.

Fig. 2 demonstrates the design of our cross-view module for two videos. Taking a pair of feature
sequences z11,..,N , z21,..,N of N frames as input, our module applies a cross-video attention between
the same frames from the two videos. Specifically, we define our module as:

out1k = ff(Attn(WQz
1
k,WKz2k,WV z

2
k,M

1,2
k )), ∀k ∈ 1, ..., N, (3)

M1,2
k (x1,x2) = 1(xT

2 F
1→2
k x1 < τepi) (4)

where k is the frame index, WQ,WK ,WV are the query, key, value mapping matrices,M is the
attention mask, Attn(Q,K, V,M) is the attention operator introduced from the Transformer [58],
ff is the feed-forward function and F1→2

k is the fundamental matrix between cam1
k and cam2

k. The
attention maskM between any two pixels x1,x2 is determined by the epipolar distance betweenx1

and x2, i.e. the shortest distance between x1 and the epipolar line of x2 in x1’s frame, which is set
to 1 if the epipolar distance is smaller than a given threshold τepi (set to 3 in all of our experiments)
and vise versa. The outputs of these modules are used as residual connections with corresponding
original inputs to ensure no loss of originally learned signals. The key insight of this module is as
the two videos are assumed to be synchronized to each other, the same frame from the two videos
is supposed to share the same underlying geometry and hence can be correlated by their epipolar
geometry defined by the given camera poses. For the first frames where the camera poses are set
to be identical since the fundamental matrix is undefined here, we generate pseudo epipolar lines
for each pixel with random slopes that go through the pixels themselves. In the scenario where
multi-view datasets are available, the modules can be further adapted to more videos by extending
the cross-view attention from 1-to-1 to 1-to-many. Our study shows that epipolar-based attention
remarkably increases the geometry integrity of the generated video pairs.

4.2 Hybrid Training Strategy from Two Datasets
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Figure 3: Two-Phase Hybrid Training. We use
different data processing schemes to handle the two
datasets (Top) and apply separate model structures
to train in corresponding phases (Bottom).

Considering the fact that there is no available
large-scale real-world dataset for video pairs,
we opt to make use of the two popular monoc-
ular datasets, RealEstate10K [68] and Web-
Vid10M [1], to develop a hybrid training strat-
egy for video pair generation models.

RealEstate10K with Video Folding.
The first phase of the training involves
RealEstate10K [68], a dataset consisting of
video clips capturing mostly static indoor scenes
and corresponding camera poses. We sample
video pairs by simply sampling subsequences
of 2N − 1 frames from a video in the dataset,
then cutting them from the middle and reversing
their first parts to form synchronized video pairs.
In other words, the subsequences are folded into
two video clips sharing the same starting frame.

WebVid10M with Homography Augmentation. While RealEstate10K [68] provides a decent
geometry prior, training our model only on this dataset is not ideal since it does not provide any
knowledge regarding dynamics and only contains indoor scenes. On the other hand, WebVid10M, a
large-scale video dataset, consists of all kinds of videos and can be used as a good supplement to
RealEstate10K. To extract video pairs, we clone the videos in the dataset and then apply random
homography transformations to the clones. Nonetheless, The WebVid10M dataset contains no camera
information, making it unsuitable for camera-conditioned model training. To address this problem,
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we propose a two-phase training strategy to adapt both datasets (with or without camera poses) for
the same model.

Two-Phase Training. As previously mentioned, our model is built upon the existing camera-
controlled VDM CameraCtrl [18]. It is an extended version of AnimateDiff [17] that adds a pose
encoder and several pose feature injectors for the temporal attention layers to the original model.
Both AnimateDiff [17] and CameraCtrl [18] are based on Stable Diffusion [44]. This implies that
they incorporate the same latent space domain, and thus, it is feasible to train a module that can be
universally adapted. Therefore, our training procedure follows a two-phase scheme Fig. 3 shows.
Specifically, we build a hybrid dataset that combines the data from both sources. Then in each training
iteration, if the training data is from RealEstate10K, we use CameraCtrl with LoRA fine-tuned on
RealEstate10K as the backbone and applying the ground truth epipolar geometry in the cross-video
module. Otherwise, we use AnimateDiff with LoRA fine-tuned on WebVid10M as the backbone, and
apply the pseudo epipolar geometry (the same strategy used for the first frames in RealEstate10K
dataset) in the cross-video module. The two training phases are applied alternatively to the same
instance of CVSM in a single training procedure. Experiments show that the hybrid training strategy
greatly helps the model generate videos with synchronized motions and great geometry consistency.

4.3 Towards More Videos

With the CVD trained on video pairs, during inference, we can generate multiple videos (for example,
M videos where M > 2) that share consistent content and motions. To achieve that, we start from
M individual gaussian noise maps and denoise them in multiple steps. At each denoising step
t, we select P feature pairs P = {vi1,j1

t ,vi2,j2
t , ...,viP ,jP

t | i1,...,P , j1,...,P ∈ 1, ...,M} among all
M video features. We then use the trained network to predict the noise of each feature pair, and
averaging them w.r.t. each video feature. That is, the output noise for the ith video feature is defined
as: ϵout(vi

t) = Avgvi,j∈P(ϵ
i
θ(v

i,j
t , t, cami,j)), where ϵiθ(v

i,j
t , t, cami,j) is the noise prediction for

vi
t given the video pair input vi,j

t . For pair selection, we propose the following strategies:

• Exhaustive Strategy: Select all M(M − 1)/2 pairs.

• Partitioning Strategy: Randomly divide M noisy video inputs into M
2 pairs.

• Multi-Partitioning Strategy: Repeat the Partitioning Strategy multiple times and combine all
selected pairs.

The exhaustive strategy has a higher computational complexity of O(M2) compared to the partitioning
one (O(M)) but covers every pair among M videos and thus can produce more consistent videos.
The multi-partitioning strategy, on the other hand, is a trade-off between the two strategies. We also
embrace the recurrent denoising method introduced by Bansal et al. [2] that does multiple recurrent
iterations on each denoising timestep. We provide the pseudo-code of our inference algorithm and
detailed mathematical analysis in our supplementary.

5 Experiments

5.1 Qualitative Results

5.1.1 Comparison with Baselines

Qualitative comparisons are shown in Fig. 4. Following our quantitative comparisons in Sec. 5.2,
we compare against CameraCtrl [18] and its combination with SparseCtrl [16], MotionCtrl [60] and
its combination with SVD [5]. The results indicate our method’s superiority in aligning the content
within the videos, including dynamic content such as lightning, waves, etc. More qualitative results
are provided in our supplemental material and video.

5.1.2 Additional results for arbitrary views generation

We also show the results of arbitrary view generation shown in Fig. 5. Using the algorithm introduced
in Sec. 4.3, our model can generate groups of different camera-conditioned videos that share the same
contents, structure, and motion. Please refer to our supplementary video for animated results.
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5.2 Quantitative Results

We compare our model with two state-of-the-art camera-controlled video diffusion models for
quantitative evaluation: CameraCtrl [18] and MotionCtrl [60]. Both of the two baselines are trained
on the RealEstate10K [68] for camera-controlled video generation. We conduct the following
experiments to test the geometric consistency, semantic consistency, and video fidelity of all models:

Table 1: Quantitative Results on Geometry Consistency. Following SuperGlue [47], we report
the area under the cumulative error curve (AUC) of the predicted camera rotation and translation
under certain thresholds (5◦, 10◦, 20◦), and the precision (P) and matching score (MS) of the Super-
Glue correspondences. We feed the models with prompts from RealEstate10K [68] (RE10K) and
WebVid10M [1] (WV10M) in two experiments separately. For RealEstate10K scenes, we also run
SuperGlue on the original RealEstate10K [68] frames as reference. Our model achieves the highest
scores on all metrics compared to baselines.

Scenes Methods Rot. AUC ↑ Trans. AUC ↑ Prec. ↑ M-S. ↑(@5◦/10◦/20◦) (@5◦/10◦/20◦)

RE10K

Reference 61.4 / 77.2 / 87.8 6.9 / 17.5 / 41.0 60.2 36.5
CameraCtrl [18] 34.8 / 55.2 / 72.4 2.3 / 6.6 / 17.0 50.8 27.3
MotionCtrl [60] 49.0 / 68.0 / 81.2 3.4 / 10.2 / 25.0 64.6 38.9

Ours 55.5 / 71.8 / 83.3 5.6 / 15.9 / 33.2 76.9 42.3

WV10M
CameraCtrl [18]+SparseCtrl [16] 6.2 / 14.3 / 25.8 0.5 / 1.7 / 4.7 16.5 5.4

MotionCtrl [60]+SVD [5] 12.2 / 28.2 / 48.0 1.2 / 4.9 / 13.5 23.5 12.8
Ours 25.2 / 40.7 / 57.5 3.7 / 9.6 / 19.9 51.0 23.5

Table 2: Quantitative Results for semantic & fidelity metrics. The semantic metrics are evaluated
on WebVid10M [1] and the fidelity metrics are performed on RealEstate10k [68]. As shown in the
table, our method is better than or on par with all prior work regarding semantic matching with the
prompt, cross-video consistency, and frame fidelity.

Semantic Consistency Fidelity
CLIP-T ↑ CLIP-F ↑ FID ↓ KID ↓ FVD ↓

MotionCtrl [60]+SVD [5] - 0.81 - - -
CameraCtrl [18] 0.28 0.79 32.10 0.79 277

AnimateDiff [17]+SparseCtrl [16] 0.29 0.86 51.97 1.86 327
CameraCtrl [18]+SparseCtrl [16] 0.29 0.85 61.68 2.47 430

Ours 0.30 0.93 32.90 0.61 285

Per-video geometric consistency on estate scenes. Following CameraCtrl [18], we first test the
geometry consistency across the frames in the video generated from our model, using the camera
trajectories and text prompts from RealEstate10K [68] (which mostly consists of static scenes).
Specifically, we first generate 1000 videos from randomly sampled camera trajectory pairs (two
camera trajectories with the same starting transformation) and text captions. All baselines generate
one video at a time; our model generates two videos simultaneously. For each generated video, we
apply the state-of-the-art image matching algorithm SuperGlue [47] to extract the correspondences
between its first frame and following frames and estimate their relative camera poses using the
RANSAC [13, 42] algorithm. To evaluate the quality of correspondences and estimated camera poses,
we adopt the same protocol from SuperGlue [47], which 1) evaluates the poses by the angle error of
their rotation and translation and 2) evaluates the matched correspondences by their epipolar error
(i.e., the distance to the ground truth epipolar line). The results are shown in Tab. 1, where our model
significantly outperforms all baselines. More details are provided in our supplementary materials.

Cross-video geometric consistency on generic scenes. Aside from evaluating the consistency be-
tween frames in the same video, we also test our model’s ability to preserve the geometry information
across different videos. To do that, we randomly sample 500 video pairs (1000 videos in total) using
camera trajectory pairs from RealEstate10K [68] and text prompts from WebVid10M’s captions [1].
To the best of our knowledge, there is no available large video diffusion model that is designed to
generate multi-view consistent videos for generic scenes. Hence, we modify the CameraCtrl [18] and
MotionCtrl [60] to generate video pairs as baselines. Here, we use the text-to-video version of each
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Figure 4: Qualitative comparison. Our method maintains consistency across videos for static and
dynamic scenes, while no prior work can generate synchronized different realizations. * Despite our
best efforts, we are incapable of getting MotionCtrl [60]+SVD [5] to generate any motion beyond the
simplest static camera zooming in-and-out. Please refer to our supplemental video for illustration.

model to generate a reference video first, then take its first frame as the input of their image-to-video
version (i.e., their combination with SparseCtrl [16] and SVD [5]) to derive the second video. We use
the same metrics as in the first experiment but instead evaluate between the corresponding frames
from the two videos. Results are shown in Tab. 1, where our model greatly outperforms all baselines.

Semantic and fidelity evaluations. Following the standard practice of prior works [17, 61, 29, 9,
10, 8], we report CLIP [41] embedding similarity between 1) each frame of the output video and the
corresponding input prompt and 2) pairs of frames across video pairs. The former metric, denoted
as CLIP-T, is to show that our model does not destroy the appearance/content prior of our base
model, and the latter, denoted as CLIP-F, is aimed to show that the cross-view module can improve
the semantic and structural consistency between the generated video pair. For these purposes, we
randomly sample 1000 videos using camera trajectory pairs from RealEstate10K, along with text
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captions from WebVid10M (2000 videos generated in total). To further demonstrate our method’s
ability to maintain high-fidelity generation contents, we report FID [20] and KID [4] ×100 using the
implementation [38], and FVD [57]. We do not compare against models that do not share the same
base model as us for FID [20], KID [4] and FVD [57], since these metrics are strongly influenced
by the abilities of the base models. Following prior work [18], we evaluate these two metrics on
RealEstate10k [68] because of the strong undesired bias, e.g., watermarks, on WebVid10M [1]. As
shown in Tab. 2, our model surpasses all baselines for the CLIP [41]-based metrics. This proves our
model’s ability to synthesize collaborative videos that share a scene while maintaining and improving
fidelity according to the prompt. Our model also performs better than or on par with all prior works
on fidelity metrics, which indicates robustness to the appearances and content priors learned by our
base models.

5.3 Ablation Study

Table 3: Ablation Study conducted on generic scenes (prompts from WebVid10M [1]), where we
deactivate each of our introduced modules. Results indicate that our full pipeline outperforms the
ablation settings for both geometric and semantic consistencies.

Rot. AUC Trans. AUC Semantic Consistency
(@5◦/10◦/20◦) (@5◦/10◦/20◦) CLIP-T ↑ CLIP-F ↑

Ours w/o Epi 16.8 / 31.8 / 49.1 1.5 / 5.4 / 13.7 0.30 0.91
Ours RE10K only 17.9 / 29.8 / 43.3 1.7 / 5.3 / 13.2 0.29 0.90

Ours w/o HG 22.0 / 35.5 / 50.5 2.3 / 6.1 / 14.5 0.29 0.92
Ours 1 Layer 22.7 / 37.8 / 54.3 3.1 / 8.5 / 19.2 0.29 0.92

Ours 25.2 / 40.7 / 57.5 3.7 / 9.6 / 19.9 0.30 0.93

We perform a thorough ablation study in Tab. 3 to verify our design choices, where the variants
are: 1) No epipolar line constraints (Ours w/o Epi), where we perform a normal self-attention
instead of epipolar attention in our Cross-View Synchronization Module; 2) No mixed training
(Ours RE10K only), where we follow the setups in CameraCtrl [18] and train the model only on
RealEstate10k [68]; 3) No homography augmentation (Ours w/o HG), where we switch off the
homography transformations applied to WebVid10M [1] videos during training; and 4) using only 1
Cross-View Synchronization Module instead of 2 (Ours 1 Layer). The ablation study indicates that
while we can get semantically consistent outputs without epipolar constraints, they are essential to
gain geometrical consistency. We also observe that the mixed training strategy and homography
augmentation greatly improve all metrics, including semantic consistency, further verifying their
purpose of closing the gap between static training scenes and desired dynamic outputs. We believe
there are two reasons why our full model outperforms the model trained on RealEstate10K [68]. The
first reason is our epipolar attention design. In the WebVid10M [1] training stage, while there are
no camera poses available, we use pseudo-gt epipolar lines (i.e. lines calculated from homography
matrix H. The line of pixel x in the warped frame goes through the pixel Hx) to describe the spatial
relationship between video frames. This enhances the model’s ability to generate videos that satisfy
the given line conditions. Hence, in a camera-control setting, the full model is more constrained
to the epipolar lines and generates videos that align better with the camera poses. Secondly, since
RealEstate10K [68] mostly consists of static indoor scenes, models trained on RealEstate10K [68]
may suffer from data bias and may not perform well on general scenes, thus resulting in poor
evaluation performance in this experiment.

6 Discussion

We introduce CVD, a novel framework facilitating collaborative video generation. It ensures seamless
information exchange between video instances, synchronizing content and dynamics. Additionally,
CVD offers camera customization for comprehensive scene capture with multiple cameras. The core
innovation of CVD is its utilization of epipolar geometry, derived from reconstruction pipelines, as a
constraint. This geometric framework fine-tunes a pre-trained video diffusion model. The training
process is enhanced by integrating dynamic, single-view, in-the-wild videos to maintain a diverse
range of motion patterns. During inference, CVD employs a multi-view sampling strategy to facilitate
efficient information sharing across videos, resulting in a "collaborative diffusion" effect for unified
video output. To our knowledge, CVD represents the first approach to tackle the complexities of
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trajectories trajectoriesprompt: A still life of vintage objects on a wooden table. prompt: A dynamic fly-through of a futuristic city with neon lights, 

high-tech structures, and hover cars zipping through aerial highways

Figure 5: Multi-view Video Generation. Left: The cameras move towards 4 directions, while all
cameras are looking at the same 3D point; Right: The trajectories are interpolated from one trajectory
(1st Row) to another (4th Row).

multi-view or multi-trajectory video synthesis. It significantly advances beyond existing multi-view
image generation technologies, such as Zero123 [35], by also ensuring consistent dynamics across all
videos produced. This breakthrough marks a critical development in video synthesis, promising new
capabilities and applications.

6.1 Limitations

CVD faces certain limitations. Primarily, the effectiveness of CVD is inherently linked to the
performance of its base models, AnimateDiff [17] and CameraCtrl [18]. While CVD strives to
facilitate robust information exchange across videos, it does not inherently solve the challenge of
internal consistency within individual videos. As a result, issues such as uncanny shape shifting
and dynamic inconsistencies that are presented in the base models may persist, affecting the overall
consistency across the video outputs. Additionally, it cannot synthesize videos in real time, owing to
the computationally intensive nature of diffusion models. Nevertheless, the field of diffusion model
optimization is rapidly evolving, and forthcoming advancements are likely to enhance the efficiency
of CVD significantly.

6.2 Broader Impacts

Our approach represents a significant advancement in multi-camera video synthesis, with wide-
ranging implications for industries such as filmmaking and content creation. However, we are
mindful of the potential misuse, particularly in creating deceptive content like deepfakes. We
categorically oppose the exploitation of our methodology for any purposes that infringe upon ethical
standards or privacy rights. To counteract the risks associated with such misuse, we advocate for the
continuous development and improvement of deepfake detection technologies.

Acknowledgement This project was partly supported by Google and Samsung.
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A Appendix / supplemental material

A.1 More Analysis on Collaborative Video Generation.

For simplicity, the video conditions are omitted in this section without loss of generality. In the
paper, we describe the collaborative video diffusion model as a multivariate denoising function
pθ(v

1,...,M
t ) that estimates the real distribution q(v1,...,M

t−1 |v1,...,M
t ,v1,...,M

0 ). Following Ho et.al. [22],
the problem can be transformed into the optimizing a noise prediction network ϵθ(v

1,...,M
t ) to predict

ϵt =
1√

1−ᾱt
v1,...,M
t −

√
ᾱt√

1−ᾱt
v1,...,M
0 . On the other hand, Song et.al. [52] demonstrated the relation

between noise prediction and the score function sθ(v
1,...,M
t , t) ≈ ∇ log q(v1,...,M

t ) is:

sθ(v
1,...,M
t , t) = −ϵθ(v

1,...,M
t , t)√
1− ᾱt

. (5)

As discussed in the paper, directly training sθ(v
1,...,M
t , t) for an arbitrary M is intractable due to the

lack of multi-view datasets, so we reduce the problem into generating video pairs (M = 2) instead.
Specifically, we train a score function sθ(v

i,j) using video pair datasets and apply it to infer all M
videos. Our collaborative video score function, denoted as sCVD(v

1,...,M ), is defined as:

sCVD(v
1,...,M ) =̇

∑
(i,j)∈P

wi,j
i sθ(v

i,j)i + wi,j
j sθ(v

i,j)j , (6)

where P is the set of all selected video pairs, and sθ(v
i,j)i = eisθ(v

i,j) represents the i’th video
component of the score function. Note that the order of i, j is irrelevant.In essence, we utilize the
weighted sum of video pair score functions to depict the score function of all videos. We demonstrate
that the defined score function sCVD(v

1,...,M ) can estimate the real score function∇ log q(v1,...,M ),
only if

∑
(i,j)∈P wi,j

i = 1 for all i ∈ 1, ...,M .

Lemma A.1. Let S be a subset of {1, ...,M}, and q(vS
t ) be the density function of a set of video

features vS
t = {vk

t |k ∈ S} derived from the forward diffusion process, that is, q(vS
t | vS

0 ) =

N (vS
t ;
√
ᾱtv

S
0 , (1 − ᾱt)I). Then ∇vk

t
log q(vS

t | vS
0 ) = 1(k∈S)

1−ᾱt
(
√
ᾱtv

k
0 − vk

t ), where 1(k ∈ S)
equals to 1 if k ∈ S and 0 otherwise.

Proof.

∇vk
t
log q(vS

t |vS
0 ) =∇vk

t
log(N (vS

t ;
√
ᾱtv

S
0 , (1− ᾱt)I)) (7)

=∇vk
t

−(vS
t −
√
ᾱtv

S
0 )

2

2(1− ᾱt)
(8)

=
1(k ∈ S)

1− ᾱt
(
√
ᾱtv

k
0 − vk

t ) (9)

Lemma A.2 (Updated Tweedies’s Formula). Let S be a subset of {1, ...,M}, and q(vS
t ) be the

density function of a set of video features vS
t = {vk

t |k ∈ S} derived from the forward diffusion
process, then ∇vk

t
log q(vS

t ) =
1(k∈S)
1−ᾱt

(
√
ᾱtEq(v

k
0 |vS

t )− vk
t ).
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Proof.

∇vk
t
log q(vS

t ) =
∇vk

t
q(vS

t )

q(vS
t )

(10)

=
∇vk

t
EvS

0
(q(vS

t |vS
0 ))

q(vS
t )

(11)

=
EvS

0
(∇vk

t
q(vS

t |vS
0 ))

q(vS
t )

(12)

=

∫
q(vS

0 )

q(vS
t )
∇vk

t
q(vS

t |vS
0 ) dv

S
0 (13)

=

∫
q(vS

0 |vS
t )∇vk

t
log q(vS

t |vS
0 ) dv

S
0 (Bayes’ Theorem) (14)

=

∫
q(vS

0 |vS
t ) ·

1(k ∈ S)

1− ᾱt
(
√
ᾱtv

k
0 − vk

t ) dv
S
0 (Lemma. A.1) (15)

=
1(k ∈ S)

1− ᾱt
(
√
ᾱt

∫
q(vS

0 |vS
t )v

k
0 dvS

0 − vk
t ) (16)

=
1(k ∈ S)

1− ᾱt
(
√
ᾱt

∫
q(vS0 |vS

t )v
k
0 dvS0 − vkt ) (17)

=
1(k ∈ S)

1− ᾱt
(
√
ᾱt

∫
q(vk0 |vSt )q(v

S/k
0 |vk0 , vSt )v

k
0 dvS0 − vk

t ) (18)

=
1(k ∈ S)

1− ᾱt
(
√
ᾱt

∫
q(vk0 |vSt )vk0

∫
q(vS/k0 |vk

0 , vS
t ) dvS/k

0 dvk0 − vk
t ) (19)

=
1(k ∈ S)

1− ᾱt
(
√
ᾱt

∫
q(vk0 |vSt )vk0 dvk0 − vk

t ) (20)

=
1(k ∈ S)

1− ᾱt
(
√
ᾱt

∫
q(vk

0 |vS
t )q(v

S/k
0 |vk

0 ,v
S
t )v

k
0 dvS

0 − vk
t ) (21)

=
1(k ∈ S)

1− ᾱt
(
√
ᾱt

∫
q(vk

0 |vS
t )v

k
0

∫
q(v

S/k
0 |vk

0 ,v
S
t ) dv

S/k
0 dvk

0 − vk
t ) (22)

=
1(k ∈ S)

1− ᾱt
(
√
ᾱt

∫
q(vk

0 |vS
t )v

k
0 dvk

0 − vk
t ) (23)

=
1(k ∈ S)

1− ᾱt
(
√
ᾱtEq(v

k
0 |vS

t )− vk
t ) (24)

Theorem A.3. The function sCVD(v
1,...,M
t ) can be an unbiased approximation of the real score

function∇ log q(v1,...,M
t ) for all timesteps t ∈ 1, ..., T , only if

∑
(i,j)∈P wi,j

i = 1 for all i ∈ 1, ...,M .

Proof. For any k ∈ 1, ..,M , the k’th component of sCVD(v
1,...,M
t ) can be written as:

sCVD(v
1,...,M
t )k (25)

=(
∑

(i,j)∈P

wi,j
i sθ(v

i,j)i + wi,j
j sθ(v

i,j)j)k (26)

=
∑

(k,j)∈P

wk,j
k sθ(v

k,j)k (27)

≈
∑

(k,j)∈P

wk,j
k ∇vk log q(vk,j) (Score Matching) (28)

=
1

1− ᾱt

∑
(k,j)∈P

wk,j
k (
√
ᾱtEq(v

k
0 |v

k,j
t )− vk

t ) (Lemma. A.2) (29)
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To unbiasedly estimate ∇xk
t
log q(v1,...,M

t ) = 1
1−ᾱt

(
√
ᾱtEq(v

k
0 |v

1,...,M
t ) − vk

t ) from Eq. 29 w.r.t.

all t and vk
t , there must be

∑
(k,j)∈P wk,j

k vk
t = vk

t , which means
∑

(k,j)∈P wk,j
k = 1.

In addition, we can observe that the accuracy of the estimation from Eq. 29 heavily relies on the
similarity between

∑
(k,j)∈P wk,j

k Eq(v
k
0 |v

k,j
t ) and Eq(v

k
0 |v

1,...,M
t ). That means, when we apply

a denoising step to a noisy input v1,...,M
t , the output v1,...,M

t−1 is more likely to align with the true
distribution if the prediction of vk

0 from vk,j
t resembles the prediction of vk

0 from all v1,...,M
t . We

think this is fairly reasonable in the context of consistent camera-controlled video generation, as the
underlying geometry of captured videos can often be discerned from just a few views. We believe
this is the key reason why our model can generate consistent multi-view videos trained from video
pair data only.

A.2 Implementing Details

We built our pipeline on top of AnimateDiff [17], a popular open-source T2V model that is widely
used among artists. We additionally deploy CameraCtrl [18] to utilize its camera conditioning ability.
Following this line of works, we benefit from their plug-and-play property and can swap our base
model with a fine-tuned version, e.g., via DreamBooth [45] or LORA [25].

A.2.1 Training

We select 65,000 videos from RealEstate10K [68] and 2,400,000 videos from WebVid10M [1] to
train our model. Each data point consists of two videos of 16 frames and their corresponding camera
extrinsic and intrinsic parameters. For RealEstate10K, we randomly sample a 31-frame clip from the
original video and split it into two videos using the method described in the paper. For WebVid10M,
we sample a 16-frame clip, duplicate it to create two videos, and then apply random homography
deformations to the second video. The homography transformation matrix H = HtHrHsHshHp is
defined as the composition of a series of transformations: translation, rotation, scaling, shearing, and
projection, where:

Ht =

[
1 0 t0
0 1 t1
0 0 1

]
, Hr =

[
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]
,

Hs =

[
1 + s0 0 0

0 1 + s1 0
0 0 1

]
, Hsh =

[
1 sh0 0
sh1 1 0
0 0 1

]
, Hp =

[
1 0 0
0 1 0
p0 p1 1

] (30)

are transformation matrices parameterized by controlling vectors t, θ, s, sh, p. We aim for the first
frame of the deformed video to remain unchanged, with the deformation gradually increasing in
subsequent frames. To achieve this, we randomly sample the controlling vectors for the last frame
from normal distributions. Then, we interpolate these vectors from 0 to the sampled values to obtain
the vectors for each intermediate frame and calculate the corresponding matrices.

Following [18], we use the Adam optimizer [30] with learning rate 1e− 4. During training, we freeze
the vanilla parameters from our backbones and optimize only our newly injected layers. We mix the
data points from RealEstate10K and WebVid10M under the ratio of 7 : 3 and train the model in two
phases alternatively. All models are trained on 8 NVIDIA A100 GPUs for 100k iterations using an
effective batch size 8. The training takes approximately 30 hours.

A.2.2 Inference

We use DDIM [51] scheduler with 1000 steps during training and 25 steps during inference. Assuming
wk,j

k is independent with j, we have wk,j
k = wk = 1

|(k,j)∈P| . Our algorithm is shown in Alg. 1.
We use the partitioning strategy in all of our experiments. For 2-view (video pair) results, we use
R = 1(no recurrent denoising) and P = 1; For 4-view results, we use R = 4, P = 1; and for
6-view results, we use R = 6, P = 2. We demonstrate multi-view video generation results in our
supplementary videos. Additionally, we show three potential applications of our algorithm: long
looping videos, view switching, and potential 3D generation.
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Algorithm 1: Algorithm for arbitrary number of videos generation
Parameter: Denoising steps T , recurrent steps R, video number M , noise scheduling

parameters {ᾱt}Tt=1, pair selecting strategy Stg ∈ {Exhaustive, Partition}, partition
number Q

Input: v1,...,M
T sampled from N (0, I), video pair diffusion model ϵθ, text prompt y, camera

trajectories cam1,...,M

for t = T, T − 1, ..., 1 do
ϵ1,...,Mout ← 0;
for r = 0, 1, ..., R− 1 do

if Stg is Exhaustive then
P ← {(i, j) | i, j ∈ 1, ...,M, i ̸= j} ; /* Selecting all pairs */
denom←M − 1;

else
P ← {};
for q = 0, 1, ..., Q− 1 do
P.Extend(RandomPairPartition(1, 2, ..,M))

end
denom← Q;

end
for (i, j) ∈ P do

ϵiout ← ϵiout + ϵiθ(v
i,j
t , t, cami,j);

ϵjout ← ϵjout + ϵjθ(v
i,j
t , t, cami,j);

end
v1,...,M
t−1 = NoiseSchedule(ϵ1,...,Mout /denom,v1,...,M

t , t);
if r ̸= R− 1 then

ϵ′ ∼ N (0, I);
v1,...,M
t =

√
ᾱt/ᾱt−1v

1,...,M
t−1 +

√
1− ᾱt/ᾱt−1ϵ

′ ; /* Renoise */
end

end
end

A.3 Results of Attention Maps

We show an exemplar visualization of our epipolar-based attention in Fig. 6, where we take the
highlighted pixel from the left image, and visualize its corresponding attention probability after
softmax. We can observe that information is taken from the second image according to the epipolar
line, and specifically, the corresponding region is being attended to.

A.4 Performances with identical camera trajectories

In Fig. 7, we show that our model can generate identical videos if the input camera trajectories are
identical, while none of the prior works communicates cross-videos, hence incapable of generating
identical contents. Quantitatively, our model reaches an MSE of 0.01, significantly outperforming
CameraCtrl at 0.07 and CameraCtrl+SparseCtrl at 0.06. We show more realizations of our model
when the camera trajectory pair and prompt are identical in Fig. 8

A.5 Additional results for LoRA fine-tuned models

Our model exhibits strong plug-and-play properties and can directly generalize to different fine-tuned
models, e.g., using Dreambooth [45] or LoRA [25]. We show a few rendering results in Fig. 9. For
better illustration, please refer to our supplemental video.
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Figure 6: Exemplar visualization of epipolar-attention map.
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Figure 7: Qualitative comparison with our baselines where the two camera trajectories are identical.

A.6 More Qualitative Results

Figures 10, 11, 12, 13 and 14 show more qualitative results, where we generate video pairs with
different realizations and camera trajectories for each prompt. Please refer to our supplementary
video for better illustrations.

A.7 Homography warping Visualization

In Fig. 15, we show visualization results of our homography warping augmentation applied in our
WebVid10M [1] phase. During our training, we removed the L2 loss in the potentially unseen
pixels (black regions) of the cloned video for data integrity.
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Figure 8: Qualitative results where the two camera trajectories are identical.
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prompt: b&w photo of 42 y.o man in black clothes, ..., Fujifilm XT3.trajectories

prompt: dark shot, epic realistic, portrait of halo, sunglasses, blue eyes, tartan scarf, ..., white hair.trajectories

RealisticVision

Lyriel

prompt: masterpiece, best quality, 1girl, solo, cherry blossoms, hanami, ..., pink flower.trajectories

Toonyou

prompt: best quality, masterpiece, photorealistic, 1boy, 50 years old beard, dramatic lighting.trajectories

Majicmix Realistic

Figure 9: Exemplar outputs from Dreambooth [45]/LoRA [25] fine-tuned models.
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prompt: A fish is swimming in the aquarium tank.trajectories

Figure 10: Additional Qualitative Results with different camera trajectories and realizations.
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prompt: an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality.trajectories

Figure 11: Additional Qualitative Results with different camera trajectories and realizations.
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prompt: A forbidden castle high up in the mountains, pixel art, game art, key visual, surreal.trajectories

Figure 12: Additional Qualitative Results with different camera trajectories and realizations.
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prompt: photo of coastline, rocks, storm weather, wind, waves, lightning,

8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3.

trajectories

Figure 13: Additional Qualitative Results with different camera trajectories and realizations.
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prompt: A fireworks display illuminating the night sky.trajectories

Figure 14: Additional Qualitative Results with different camera trajectories and realizations.
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Clip #1

Clip #2

Frame #1 Frame #4 Frame #8 Frame #12 Frame #16

Figure 15: Visualization of homography warping for WebVid10M data. For each video clip,
the top row represents the original frames from the video, and the bottom row represents the frames
warped by homography transformations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See abstract and Sec. 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Sec. 6.1

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

27



Justification: See Sec. A.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Sec. 5 and Sec. A.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We use public datasets and data processing details are provided in Sec. 4.2 and
Sec. A.2.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Sec. A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our evaluation uses protocols from previous works which do not use error
bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Sec. A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Sec. 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited all works of codes and datasets used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not conduct research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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