
Under review as a conference paper at ICLR 2021

SHARING LESS IS MORE: LIFELONG LEARNING IN
DEEP NETWORKS WITH SELECTIVE LAYER TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective lifelong learning across diverse tasks requires diverse knowledge, yet
transferring irrelevant knowledge may lead to interference and catastrophic forget-
ting. In deep networks, transferring the appropriate granularity of knowledge is
as important as the transfer mechanism, and must be driven by the relationships
among tasks. We first show that the lifelong learning performance of several cur-
rent deep learning architectures can be significantly improved by transfer at the
appropriate layers. We then develop an expectation-maximization (EM) method
to automatically select the appropriate transfer configuration and optimize the
task network weights. This EM-based selective transfer is highly effective, as
demonstrated on three algorithms in several lifelong object classification scenarios.

1 INTRODUCTION

Transfer at different layers within a deep network corresponds to sharing knowledge between tasks at
different levels of abstraction. In multi-task scenarios that involve diverse tasks, reusing low-layer
representations may be appropriate for tasks that share feature-based similarities, while sharing high-
level representations may be more appropriate for tasks that share more abstract similarities. Selecting
the appropriate granularity of knowledge to transfer is an important architectural consideration for
deep networks that support multiple tasks.

In scenarios where tasks share substantial similarities, many multi-task methods have found success
using a static configuration of the knowledge to share (Caruana, 1997; Yang & Hospedales, 2017;
Lee et al., 2019; Liu et al., 2019; Bulat et al., 2020), such as sharing the lower layers of a deep
network with upper-level task-specific heads. As tasks become increasingly diverse, the appropriate
granularity for transfer may vary between tasks based on their relationships, necessitating more
selective transfer. Prior work in selective sharing for deep networks has typically either (1) branched
the network into a tree structure (Lu et al., 2017; Yoon et al., 2018; Vandenhende et al., 2019; He
et al., 2018), which emphasizes the sharing of lower layers or (2) introduced new learning modules
between task models (Yang & Hospedales, 2017; Xiao et al., 2018; Cao et al., 2018) which increases
the complexity of training. The transfer configuration could then be optimized in batch settings to
maximize performance across the tasks.

However, the problem of selective transfer is further compounded in continual or lifelong learning
settings, in which tasks are presented consecutively. The optimal transfer configuration may vary
between tasks or it may vary over time. And indeed, we may not want to transfer at all layers, as some
task-specific layers may need to be interleaved with shared knowledge in order to customize that
shared knowledge to individual tasks. To verify this premise and motivate our work, we conducted a
simple brute-force initial experiment: we took a multi-task CNN with shared layers and a lifelong
learning CNN that uses factorized transfer (DF-CNN, Lee et al., 2019) and varied the set of CNN
layers that employed transfer (with task-specific fully connected layers at the top). Using two data
sets, we considered several transfer static configurations: transferring at all CNN layers, transfer
at the top-k CNN layers, transfer at the bottom-k CNN layers, and alternating transfer/no-transfer
CNN layers. The results are shown in Figure 1, with details given in Section 2. Clearly, we see
that the optimal a posteriori transfer configuration varies between task relationships and transfer
mechanisms. Restricting the transfer layers significantly improves performance over the naïve
approach of transferring at all layers, with the alternating configuration performing extremely well
for both multi-task and lifelong learning.

1

Under review as a conference paper at ICLR 2021

HPS all

HPS top1

HPS top2

HPS top3

HPS bottom
1

HPS bottom
2

HPS bottom
3

HPS alter.

0

0.1

0.2

0.3

0.4

0.5

M
e
a
n
 P

e
a
k

Pe
r-

ta
sk

 A
cc

u
ra

cy

(a) Multi-Task CNN with HPS / CIFAR-100

HPS all

HPS top1

HPS top2

HPS top3

HPS bottom
1

HPS bottom
2

HPS bottom
3

HPS alter.

0

0.2

0.4

0.6

M
e
a
n
 P

e
a
k

Pe
r-

ta
sk

 A
cc

u
ra

cy

(b) Multi-Task CNN with HPS / Office-Home

DF-CNN all

DF-CNN top1

DF-CNN top2

DF-CNN top3

DF-CNN bottom
1

DF-CNN bottom
2

DF-CNN bottom
3

DF-CNN alter.

0

0.1

0.2

0.3

0.4

M
e
a
n
 P

e
a
k

Pe
r-

ta
sk

 A
cc

u
ra

cy

(c) DF-CNN / CIFAR-100

DF-CNN all

DF-CNN top1

DF-CNN top2

DF-CNN top3

DF-CNN bottom
1

DF-CNN bottom
2

DF-CNN bottom
3

DF-CNN alter.

0

0.2

0.4

0.6

M
e
a
n
 P

e
a
k

Pe
r-

ta
sk

 A
cc

u
ra

cy

(d) DF-CNN / Office-Home

Figure 1: Accuracy of CNN models averaged over ten tasks in a lifelong learning setting with
95% confidence interval. This empirically shows that the optimal transfer configuration varies, and
choosing the correct configuration is superior to transfer at all layers.

Instead of only considering such a restricted set of static configurations in brute-force search, our goal
is automate this process of selective transfer during learning, enabling it to customize the transfer
configuration to each task. We investigate the use of architecture search during learning to dynamically
adjust the transfer configuration between tasks and over time, using expectation-maximization (EM)
to learn both the parameters of the task models and the layers to transfer within the deep net. This
approach, Lifelong Architecture Search via EM (LASEM), enables deep nets to transfer different sets
of layers for each task, allowing more flexibility over prior work in branching-based configurations
for selective transfer. It also introduces little additional computational cost over the base learner
in comparison to training selective transfer modules between task networks, and in contrast to the
expense of brute-force search over all transfer configurations. To demonstrate its effectiveness, we
applied LASEM to three architectures that support transfer between tasks in several lifelong learning
scenarios and compared it against other lifelong learning and architecture search methods.

2 THE EFFECT OF DIFFERENT TRANSFER CONFIGURATIONS

This section further describes the initial experiments mentioned in the introduction as motivation for
our proposed LASEM method. The hypothesis of our work is that lifelong deep learning can benefit
from using a more flexible transfer mechanism that selectively chooses the transfer architecture
configuration for each task. This would permit it to dynamically select, for each task model, which
layers to transfer and which to keep as task-specific (enabling it to customize transferred knowledge
to an individual task).

To determine the effect of different transfer configurations, we conducted a set of initial experiments
using two established methods:

Multi-Task CNN with hard parameter sharing (HPS): This approach shares the hidden CNN
layers between all tasks, and maintains task-specific fully connected output layers. It is one of the
most common methods for multi-task learning of neural nets (Caruana, 1997), and is widely used.

Deconvolutional factorized CNN (DF-CNN): The DF-CNN (Lee et al., 2019) adapts CNNs to a
continual learning setting by sharing layer-wise knowledge across tasks. Instead of using the same

2

Under review as a conference paper at ICLR 2021

convolutional filters for multiple tasks, the convolutional filters are dynamically generated from a
task-independent layer-dependent shared tensor through a task-specific deconvolutional operation
and tensor contraction. Similar to HPS, the DF-CNN maintains task-specific fully connected topmost
layers. When training the task models consecutively, gradients flow through to update the shared
tensors and the task-specific parameters that transform those shared tensors to construct the task CNN.
This transfer architecture enables the DF-CNN to learn and compress knowledge universal among
the observed tasks into the shared tensors.

Both these methods utilize a set of transfer-based CNN layers and non-transfer task-specific layers.
For a network with d CNN layers, there are 2d potential transfer configurations. To explore the effect
of transfer at different layers, we varied the transfer configuration among several options:

• All: Transfer at all CNN layers. Note that the original DF-CNN used this configuration.
• Top k: Transfer across task models occurs only at the k highest CNN layers, with all others

remaining task-specific. We would expect this transfer configuration to benefit tasks that
share high-level concepts but have low-level feature differences.
• Bottom k: Transfer occurs only at the k lowest CNN layers, with all others remaining

task-specific. This architecture is opposite of the Top d− k, so we would expect it to benefit
tasks that share perceptual similarities but have high-level differences.
• Alternating: This configuration alternates transfer and non-transfer layers, enabling the

non-transfer task-specific layers to further customize the transferred knowledge to the task.

We evaluated the performance of various transfer configurations on the CIFAR-100 (Krizhevsky &
Hinton, 2009) and Office-Home (Venkateswara et al., 2017) data sets, following the lifelong learning
experimental setup used in previous work (Lee et al., 2019). CIFAR-100 involves ten consecutive
tasks of ten-way image classification, where any object class occurs in only one task. Office-Home
involves ten tasks of thirteen-way classification, separated into two domains: “Product” images and
“Real World” images. The CNN architectures used for each data set and optimization settings follow
prior work and are detailed in Appendix A. During training, we measured the peak per-task accuracy
on held-out test data, averaging results over five trials.

Our results in Figure 1 reveal that permitting transfer at all layers does not guarantee the best perfor-
mance. This observation complicates learning on novel tasks, since the best transfer configuration
depends both on the algorithm and the task relations in the data set. Notably, we see that the DF-CNN,
which is designed for lifelong learning, can be improved beyond the original version (Lee et al.,
2019) by allowing transfer at only some layers. Furthermore, we can see that the optimal transfer
configuration varies between data sets and algorithms. For instance on Office-Home, sharing lower
layers in the HPS multi-task CNN achieves better performance on average, but transferring upper
layers works better for the DF-CNN. Similarly, the Alternating configuration consistently achieves
near the best performance for the DF-CNN, benefiting from permitting the non-transfer layers to
customize transferred knowledge to the individual task, but it is not consistently as good for HPS.

3 ARCHITECTURE SEARCH FOR THE OPTIMAL TRANSFER CONFIGURATION

The experiment presented above reveals that the transfer configuration can have a significant effect
on lifelong learning performance, and that the best transfer configuration varies. These observations
inspire our work to develop a more flexible mechanism for selective transfer in lifelong learning.

We can view the transfer configuration as a new hyper-parameter for each task model. Even with
the constraint that all task models use the same transfer configuration, the search space grows
exponentially as the neural network gets deeper (i.e., 2d configurations for d CNN layers). In more
flexible settings where the transfer configuration is customized to each task, this search space grows
even more, linearly in the number of tasks. Although we could compound this problem further by
permitting partial transfer within a layer, we focus on optimizing layer-based transfer configurations.

Formally, a layer-based transfer configuration for task t can be specified by a d-dimensional binary
vector ct ∈ C = {0, 1}d, where each ct,j is a binary indicator whether or not the jth layer involves
transfer. We can compactly notate ct by a set of indices of transferred layers. For example, the
Alternating configuration described in Section 2 can be denoted by c = [0, 1, 0, 1] = {2, 4}; Figure 2
depicts this particular configuration for three approaches.

3

Under review as a conference paper at ICLR 2021

Figure 2: The Alternating {2, 4} transfer configuration for three different approaches using CNNs
with four convolutional layers and one fully connected layer. Models are illustrated for two tasks, red
and green, with shared or transfer-based layers denoted in blue.

Our goal is to determine the task-specific transfer configuration while simultaneously optimizing
the log-likelihood of the task models and shared knowledge in a lifelong setting. Treating ct as a
latent variable of the model for task t, we can employ expectation-maximization (EM) to perform
this joint optimization. For each layer l, LASEM maintains a shared set of transfer-based model
parameters θ(l)s and, for each new task, a set of task-specific model parameters θ(l)t , using the chosen
configuration c(t) to determine which combination of parameters will be used to form the specific
model for that task. In brief, the E-step estimates the usefulness of the representation that each transfer
configuration ci ∈ C can learn from the given data (i.e., the likelihood of data P (ynew | Xnew , ci)),
while the M-step optimizes parameters of the task model and shared knowledge. We next detail this
approach.

We first consider how to model the prior πt on possible configurations of the current task’s c(t).
Using a simple frequency-based probability estimate with Laplace smoothing represents the prior
probability of each transfer configuration as

P (c(t) = ci) = πt(ci) =
nci + 1∑
j(ncj

+ 1)
, (1)

where c(t) denotes the configuration for task t, and nci
is the number of previous mini-batches for

which ci is the most probable configuration. This estimate, which we adopt in the experiments,
considers each transfer configuration solely based on the current task’s data. Alternative priors could
instead be used, such as measuring the historic transfer configuration frequency over all tasks (which
assumes substantial similarity among tasks) or measuring configuration frequency over related tasks
(which requires a notion of task similarity, such as via a task descriptor (Isele et al., 2016; Sinapov
et al., 2015), or as determined dynamically by the task model’s relation to shared knowledge). During
development, we also considered estimating the prior based on the probability of configurations
averaged over training samples instead of the number of mini-batches ncj

, but this alternative was
not different statistically from Equation 1 in an empirical evaluation on CIFAR100 and Office-Home.

In the E-step, the posterior on configurations is derived by combining the above prior and likelihood,
which can be computed from the output of the task network on the current task’s data (Xnew , ynew):

P (ci | Xnew , ynew) ∝ P (c(t) = ci)P (ynew | Xnew , ci) . (2)

The M-step improves the log-likelihood via the estimated probability distribution over the transfer
configurations. Both θs and θt are updated by the aggregated gradients of the log-likelihood in cases
where the transfer configurations match the corresponding parameter. To combine the gradients of a
specific parameter vector (θs and θt) over multiple possible configurations, we take the sum of the
corresponding gradients weighted by the posterior estimate in Equation 2.

θ
(l)
s ← θ

(l)
s + λ

∑
i:ci,l=1 P (ci | Xnew , ynew)∇ logP (ynew | Xnew , ci) ∀l ∈ {1, · · · , d}

θ
(l)
t ← θ

(l)
t + λ

∑
i:ci,l=0 P (ci | Xnew , ynew)∇ logP (ynew | Xnew , ci) ∀l ∈ {1, · · · , d}

. (3)

4

Under review as a conference paper at ICLR 2021

Algorithm 1 Lifelong Learning with EM-based Partial Layer Transfer

1: {θ(l)s }dl=1 ← randomInitializer(netSize)
2: while isMoreTrainingDataAvailable() do . Loop over entire training lifetime
3: (Xnew , ynew , t)← getNextTrainingData() . Get current task data
4: if isNewTask(t) then . Initialize parameters for new tasks
5: {θ(l)t }dl=1 ← randomInitializer(netSize)
6: πt ← priorInitializer()
7: end if
8: Calculate likelihood P (ynew | Xnew , ci) ∀ci ∈ C
9: Calculate posterior P (ci | Xnew , ynew) ∝ πt(ci)P (ynew | Xnew , ci) ∀ci ∈ C . Eqn 2

10: loop numMSteps times . Eqn 3
11: {θ(l)s ,θ

(l)
t }dl=1 ← gradOptimizer

(
Xnew , ynew , λ, P (C | Xnew , ynew), {θ(l)s ,θ

(l)
t }dl=1

)
12: end loop
13: πt ← priorUpdater(πt, P (ci | Xnew , ynew)) . Eqn 1
14: end while

The main difference in the update rules in Equation 3 is the condition for the index of the summation.
Since one gradient step on the configurations {θ(l)s ,θ

(l)
t }dl=1 may have little effect on the likelihood,

we can hold the likelihood fixed to take multiple M-steps per E-step by iterating Equation 3.

Our approach, Lifelong Architecture Search via EM (LASEM), is specified in Algorithm 1. The
parameters of the transfer-based components are initialized only at the beginning of the lifelong
learning process (line 1), while the parameters of the task-specific components and prior probability of
configurations are initialized when the algorithm encounters a new task (lines 4-7). Each iteration, the
lifelong learner obtains a mini-batch of labeled data (Xnew , ynew) drawn i.i.d for some task t, training
the task model online. Typically, there would be multiple consecutive mini-batches experienced per
task before the environment would switch to a new task. The algorithm applies the E-step (lines 8,
9, and 13) and M-step (lines 10–12) using the data mini-batch at each iteration. LASEM takes E-
and M-steps for each mini-batch, so over the consecutive mini-batches per task, this process would
be similar to the alternation of multiple E- and M-steps performed by the standard EM algorithm.
We consider lifelong learning scenarios in which a learner has no control over tasks, so the current
task can be switched to another one without convergence of the learning algorithm. Because of this
setting, we do not require EM convergence, but it is possible to monitor the convergence by checking
the probability weight over transfer configurations.

LASEM uses one set of transfer-based and task-specific parameters (θs and θt) for all transfer
configurations, rather than maintaining distinct sets of parameters for each configuration. This
approximation reduces the number of parameters and permits parameter updates across transfer
configurations via a single gradient step.

Computational Cost The computational cost of LASEM depends heavily on the tasks, the choice of
deep net, and how quickly the transfer configuration converges. We show empirically in Section 4.2
that LASEM in practice introduces relatively little additional time complexity (∼30–50% over
the base learner’s time). Empirically, the E-step takes ∼15–20% time of the M-step, but frequent
switching of the configuration by the E-step may interfere with the M-step, consequently harming the
convergence speed. Taking more M-steps per E-step (by increasing numMSteps) can improve this
stability and consequently the computational complexity by accelerating convergence.

For a d-layer neural network with a time complexity of N(·), the per-iteration computational com-
plexity of both the E- and M-steps are O(2dN(·)). As the network depth d increases, it is well known
that neural architecture search (NAS) (Pham et al., 2018; Liu et al., 2018) requires exponentially
additional computation. To remedy this issue, LASEM can adopt a similar solution to that of these
other NAS methods by considering transfer configurations over groups of layers instead of individual
layers; we explore this variation in Appendix E. Memory requirements are analyzed in Appendix F.

5

Under review as a conference paper at ICLR 2021

HPS TF DF-CNN HPS TF DF-CNN TF DF-CNN
0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
a
n
 P

e
a
k

Pe
r-

ta
sk

 A
cc

u
ra

cy

CIFAR100
4% data

Office-Home
60% data

STL10
20% data

Static Transfer Configurations
Transfer at All Layers
LASEM

HPS TF DF-CNN HPS TF DF-CNN TF DF-CNN
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

C
a
ta

st
ro

p
h
ic

 F
o
rg

e
tt

in
g
 R

a
ti

o CIFAR100
4% data

Office-Home
60% data

STL-10
20% data

Transfer at All Layers
Best Static Transfer Configuration
LASEM

Figure 3: (Left) Performance of LASEM applied to three methods and three lifelong scenarios.
Black boxes show the range of mean accuracies that different static configurations can achieve,
with the blue lines denoting mean performance of Transfer at All Layers. The red dots denote the
mean performance of LASEM. Whiskers depict 95% confidence intervals. (Right) Mean catastrophic
forgetting ratio after training all tasks. Less forgetting is indicated by a ratio near 1.0; see Appendix B.

4 EXPERIMENTS

We evaluated LASEM following the same experimental protocol for lifelong learning as used in
Section 2; see Appendix A for details. In addition to using the CIFAR100 and Office-Home data sets,
we introduce a lifelong learning version of the STL-10 data set (Coates et al., 2011). STL-10 has
5,000 training and 8,000 test images divided evenly among 10 classes, with higher resolution than
CIFAR-100. We constructed 20 tasks of three-way classification using 20% and 5% of the given
training data for training and validation, respectively. To increase the task variations, for each task
we randomly chose three image classes, applied Gaussian noise to the images with a random mean
and variance, and randomly permuted the channels. All results were averaged over five trials with
different random seeds. The code and data set generators are available at http://bit.ly/ICLR_LASEM.

4.1 PERFORMANCE OF LASEM

We applied LASEM to three algorithms: a multi-task CNN with hard-parameter sharing (HPS)
(Caruana, 1997), Tensor Factorization (TF) (Yang & Hospedales, 2017; Bulat et al., 2020) and the
Deconvolutional Factorized CNN (DF-CNN) (Lee et al., 2019). HPS interconnects CNNs in tree
structures, with task models explicitly using the same parameters of all shared layers. In contrast, the
TF and DF-CNN task models explicitly share only a fraction of tensors, and the parameters of each
task model are generated via transfer.

Figure 3 (left) compares the performance of the task-specific transfer configurations discovered by
LASEM (red) to using a single static transfer configuration (black boxes). These black boxes depict
the performance range of the methods using various static transfer configurations (i.e., All, Top k,
Bottom k, Alternating) for all task models, with All shown in blue. To estimate this range, we tested
eight (50%) and 16 (25%) of the possible static configurations for the four-CNN-layer (CIFAR-100
and Office-Home) and six-CNN-layer (STL-10) task models, respectively.

We can see that LASEM chose transfer configurations that perform toward the top of each range,
especially on the DF-CNN designed for lifelong learning. LASEM clearly outperforms Transfer at All
Layers. Automatically selecting the transfer configuration becomes even more beneficial for methods
that have a wide range of performances for different configurations. Examining the catastrophic
forgetting ratio (Figure 3 right, with details in Appendix B) reveals the importance of selecting the
appropriate transfer configuration for maintaining performance on previous tasks, revealing that
LASEM exhibited less forgetting than baselines in most cases, especially on the DF-CNN. Moreover,
LASEM imposes little additional cost in order to determine the transfer configuration. In timing
experiments, we found that, compared to training with a pre-determined static configuration, LASEM
requires only 30-50% additional wall-clock time to search over 16 configurations of a network with
four layers, and only double the time to search over 64 configurations of a network with six layers. In

6

http://bit.ly/ICLR_LASEM

Under review as a conference paper at ICLR 2021

layer1 layer2 layer3 layer4
0

20

40

60

80

100

Tr
a
n
sf

e
r-

b
a
se

d
 F

re
q

u
e
n
cy

 (
%

)

LASEM HPS
LASEM TF
LASEM DF-CNN

(a) CIFAR-100

layer1 layer2 layer3 layer4
0

20

40

60

80

100

Tr
a
n
sf

e
r-

b
a
se

d
 F

re
q

u
e
n
cy

 (
%

)

LASEM HPS
LASEM TF
LASEM DF-CNN

(b) Office-Home

Figure 4: Frequency of each layer being transfer-based according to the selection of LASEM.
Generally, upper layers are preferable for transfer, but there are exceptions, i.e. HPS on CIFAR-100.

Selective Sharing Accuracy(%) Forgetting Time
Ratio (k sec)

DEN 48.00 ± 0.60 0.28 ± 0.01 55.9
APD-Net 59.58 ± 0.45 0.83 ± 0.03 21.5
ProgNN 60.03 ± 0.45 1.00 ± 0.00 96.7

DARTS HPS 45.64 ± 1.20 0.70 ± 0.07 43.8
DARTS DF-CNN 56.77 ± 0.49 0.35 ± 0.04 33.2

LASEM HPS 58.44 ± 0.90 0.81 ± 0.08 70.2
LASEM TF 59.14 ± 0.80 0.90 ± 0.04 77.3

LASEM DF-CNN 59.45 ± 1.10 0.98 ± 0.01 83.2

Table 1: Comparison of peak per-task accuracy, forgetting,
and training time for the same epochs between baselines
and LASEM on Office-Home, ± 95% confidence interval.

0.6 0.8 1
Probability of Top 2 Transfer

0.58

0.59

0.6

0.61
LASEM DF-CNN (Prior on Top 2)
LASEM DF-CNN

Figure 5: Performance of LASEM DF-
CNN compared to LASEM with a fixed
posterior distribution over the optimal
configuration (on Office-Home).

stark contrast, brute-force search over the transfer configurations requires 15× and 63× additional
time per task, respectively, over the base learner (see Appendix C).

The ratio of transfer configurations chosen by LASEM are depicted in Figure 4; see Appendix D for
detailed results. Figure 4 shows the proportion of time each layer was chosen to be transfer-based.
We see that HPS tends to prefer task-specific layers, while TF and DF-CNN are more likely to use
transfer layers due to their ability to adapt transferred knowledge. We can also see trends among the
chosen layers, such as DF-CNN preferring transfer among higher layers.

4.2 COMPARISON TO OTHER SELECTIVE TRANSFER ALGORITHMS

We compared the performance of LASEM on Office-Home against other methods that employ some
notion of selective transfer, including the Dynamically Expandable Network (DEN) (Yoon et al.,
2018), the Additive Parameter Decomposition Network (APD-Net) (Yoon et al., 2020), the Progressive
Neural Net (ProgNN) (Rusu et al., 2016), and Differentiable Architecture Search (DARTS) (Liu
et al., 2018). DEN is a lifelong learning architecture that extends HPS by expanding, splitting, and
selectively retraining the network to introduce both shared and task-specific parameters in each layer
if required. APD-Net has base parameters shared across tasks like HPS, but introduces task-specific
masks and additive parameters for adaptation to each task. ProgNN learns lateral connections from
earlier task models to the current task model. Both DEN and ProgNN can support complex transfer
configurations due to their lack of constraints, such as no assumption of a tree-structured configuration.
For example, a ProgNN with all zero-weighted lateral connections for a level creates a task-specific
layer, and zero-weighted current task model connections creates a transfer-based layer. DARTS
is another general framework for neural architecture search, determining both the most suitable
operation of each layer and the best architecture of stacking these layers simultaneously.

Table 1 summarizes the performance of these methods and our approach: mean peak per-task
accuracy, catastrophic forgetting ratio and training time. APD-Net, ProgNN and LASEM DF-CNN

7

Under review as a conference paper at ICLR 2021

are statistically indistinguishable and perform better than the other methods in terms of accuracy.
However, APD-Net is weaker in retaining the knowledge of earlier tasks, as shown by its catastrophic
forgetting ratio being significantly lower than ProgNN and LASEM DF-CNN. LASEM DF-CNN is
∼14% faster than ProgNN, whose time complexity is proportional to the square of the number of
tasks. DEN and DARTS have better training times, but fail to perform as well. Note that LASEM
shows high accuracy regardless of the base lifelong learner (e.g., HPS, TF, or DF-CNN) while
introducing relatively little additional time complexity (∼30–50% over the base learner’s time).

4.3 THE EFFECT OF NON-OPTIMAL TRANSFER CONFIGURATIONS ON LASEM

Besides the capability to customize the transfer configuration to each task, LASEM has a key
difference from using a static transfer configuration as in Section 2: LASEM updates both the transfer-
based and task-specific parameters (θs and θt) by gradients backpropagated from the loss of all
configurations weighted by the posterior. Consequently, gradients from non-optimal configurations
might act as noise or be counterproductive to the optimization process.

To determine whether this aspect had a significant effect on LASEM, we performed an ablative
experiment using a static probability on the transfer configurations, instead of the posterior derived
from data. This makes LASEM always select the same transfer configuration for all task models,
with the experiment varying the noise and controlling the amount of adverse effects from non-optimal
configurations during LASEM’s optimization.

We first determined the optimal transfer configuration (Top 2 in this experiment), and gave it a static
probability of selection, which we varied from P = 0.5 to 1 with a uniform distribution over other
configurations. Figure 5 compares the full LASEM DF-CNN against the ablated version. Knowing
the correct transfer configuration a priori (when P = 1) certainly does improve performance, as we
would expect, but the overall performance difference as P varies is relatively small. Therefore, the
effect of interference from considering non-optimal configurations is minimal, but does exist. Using
a more informed prior over the transfer configurations, such as initializing it from the posteriors from
previously learned related tasks, may further improve LASEM, which we leave to future work.

5 RELATED WORK

The simplest transfer mechanism is hard parameter sharing (HPS), which directly reuses parameters
(e.g., layers) between task models (Caruana, 1997). HPS is beneficial when tasks share identical
features, but its structural rigidity degenerates as tasks become diverse. Constraints such as regular-
ization (Kirkpatrick et al., 2017; Yoon et al., 2018; He et al., 2018), orthogonality (Suteu & Guo,
2019; Riemer et al., 2019; Farajtabar et al., 2019) or attention mechanisms (Serra et al., 2018; Yoon
et al., 2020; Abati et al., 2020) may reduce interference among tasks, but can deter positive transfer.
Using tree-like structures (Lu et al., 2017; Vandenhende et al., 2019; He et al., 2018) as the transfer
configuration for HPS in multi-task nets give flexibility, but assume that lower level representations
are shared, which may not be the case for diverse tasks, as shown in this paper.

Soft parameter sharing (Duong et al., 2015; Bilen & Vedaldi, 2017) builds task-specific networks
with weights that are related to other task models via implicit constraints. This architecture provides
flexibility to the representations that each task network can learn, so it typically outperforms HPS for
more diverse tasks. Success has often been found by using task-agnostic shared knowledge with a
task-specific mapping from that shared knowledge to the task models, facilitating transfer between
tasks (Yang & Hospedales, 2017; Bulat et al., 2020; Lee et al., 2019; Liu et al., 2019). These works
focus on the mapping operation, but put less importance on what layers to transfer, as we explored.

Direct reuse of learned representations from previous tasks models (Rusu et al., 2016; Misra et al.,
2016; Cao et al., 2018; Xiao et al., 2018) prevents forgetting, but only permits forward transfer to new
tasks (not reverse transfer) and exhibits super-linear training time w.r.t the number of tasks. Progress
and compress (Schwarz et al., 2018) tackles this issue by combining progressive neural nets and
elastic weight consolidation (Kirkpatrick et al., 2017), but this method has a similar capacity issue of
HPS for diverse tasks since one neural net must handle all learned tasks.

Neural architecture search (NAS) examines both the operators and their order in a neural net to
optimize performance (Elsken et al., 2018). Our problem of selective layer-based transfer is an

8

Under review as a conference paper at ICLR 2021

instance of NAS. Strategies for NAS include reinforcement learning (Tan et al., 2019; Chang et al.,
2019), evolutionary algorithms (Fernando et al., 2017) and gradient-based learning (Alet et al., 2018).
In contrast to these methods, DARTS makes optimization more feasible by using a soft selection of
the operators, a weighted sum of operations. Most NAS methods including DARTS train better once
the architecture has stabilized, but the weights of DARTS’ soft selections are susceptible to vanishing
gradients, so it is slower to stabilize than LASEM.

6 CONCLUSION

We have shown that the transfer configuration can have a significant impact on lifelong learning,
and that the configuration can be dynamically selected during the lifelong learning process with
minimal computational cost. Choosing the optimal transfer configuration significantly improves the
performance of the DF-CNN and TF over the original method. Using a dynamic transfer configuration
reduces the assumptions of algorithm designers in terms of task similarities, but opens potential for
the selected configurations to incorporate biases from data.

Although we focused on layer-based transfer, LASEM could easily be extended to support partial
transfer within a layer by imposing within-layer partitions and redefining the transfer configuration
space C to support those partitions. Discovering these partitions directly from data, or providing
more flexible mechanisms for partial within-layer transfer may further improve performance.

ACKNOWLEDGMENTS

Omitted for blind review.

REFERENCES

Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cucchiara, and
Babak Ehteshami Bejnordi. Conditional channel gated networks for task-aware continual learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020.

Ferran Alet, Tomas Lozano-Perez, and Leslie P. Kaelbling. Modular meta-learning. In Aude Billard,
Anca Dragan, Jan Peters, and Jun Morimoto (eds.), Proceedings of The 2nd Conference on Robot
Learning, volume 87 of Proceedings of Machine Learning Research, pp. 856–868. PMLR, 2018.
URL http://proceedings.mlr.press/v87/alet18a.html.

Hakan Bilen and Andrea Vedaldi. Universal representations: the missing link between faces, text,
planktons, and cat breeds. CoRR, abs/1701.07275, 2017. URL http://arxiv.org/abs/1701.07275.

Adrian Bulat, Jean Kossaifi, Georgios Tzimiropoulos, and Maja Pantic. Incremental multi-domain
learning with network latent tensor factorization. In Proceedings of the AAAI Conference on
Artificial Intelligence. AAAI Press, 2020. URL https://www.adrianbulat.com/downloads/
AAAI20/incremental_muli-domain_tensor_factorization.pdf.

Jiajiong Cao, Yingming Li, and Zhongfei Zhang. Partially shared multi-task convolutional neural
network with local constraint for face attribute learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4290–4299, 2018.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Michael Chang, Abhishek Gupta, Sergey Levine, and Thomas L. Griffiths. Automatically composing
representation transformations as a means for generalization. In Proceedings of the Interna-
tional Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
B1ffQnRcKX.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the International Conference on Artificial Intelligence and
Statistics, pp. 215–223, 2011.

9

http://proceedings.mlr.press/v87/alet18a.html
http://arxiv.org/abs/1701.07275
https://www.adrianbulat.com/downloads/AAAI20/incremental_muli-domain_tensor_factorization.pdf
https://www.adrianbulat.com/downloads/AAAI20/incremental_muli-domain_tensor_factorization.pdf
https://openreview.net/forum?id=B1ffQnRcKX
https://openreview.net/forum?id=B1ffQnRcKX

Under review as a conference paper at ICLR 2021

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing, volume 2, pp. 845–850, 2015. URL https://www.aclweb.org/
anthology/P15-2139.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. CoRR,
abs/1808.05377, 2018. URL http://arxiv.org/abs/1808.05377.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. CoRR, abs/1910.07104, 2019. URL http://arxiv.org/abs/1910.07104.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. CoRR, abs/1701.08734, 2017. URL http://arxiv.org/abs/1701.08734.

Xiaoxi He, Zimu Zhou, and Lothar Thiele. Multi-task zipping via layer-wise neuron sharing. In
Advances in Neural Information Processing Systems, pp. 6016–6026, 2018.

David Isele, Mohammad Rostami, and Eric Eaton. Using task features for zero-shot knowledge
transfer in lifelong learning. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, pp. 1620–1626, 2016.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, and
Andrei A. Rusu, et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the
National Academy of Sciences, 114(13):3521–3526, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Seungwon Lee, James Stokes, and Eric Eaton. Learning shared knowledge for deep lifelong
learning using deconvolutional networks. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, pp. 2837–2844, 2019. URL https://doi.org/10.24963/
ijcai.2019/393.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. CoRR,
abs/1806.09055, 2018. URL http://arxiv.org/abs/1806.09055.

Huaping Liu, Fuchun Sun, and Bin Fang. Lifelong learning for heterogeneous multi-modal tasks. In
Proceedings of the International Conference on Robotics and Automation, pp. 6158–6164. IEEE,
2019.

Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogério Feris. Fully-
adaptive feature sharing in multi-task networks with applications in person attribute classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3994–4003, 2016.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In Proceedings of the International Conference on Machine Learning,
2018.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interference.
In Proceedings of the International Conference on Learning Representations, 2019.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR,
abs/1606.04671, 2016. URL http://arxiv.org/abs/1606.04671.

10

https://www.aclweb.org/anthology/P15-2139
https://www.aclweb.org/anthology/P15-2139
http://arxiv.org/abs/1808.05377
http://arxiv.org/abs/1910.07104
http://arxiv.org/abs/1701.08734
https://doi.org/10.24963/ijcai.2019/393
https://doi.org/10.24963/ijcai.2019/393
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1606.04671

Under review as a conference paper at ICLR 2021

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual
learning. In Proceedings of the International Conference on Machine Learning, pp. 4528–4537,
2018.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In Proceedings of the International Conference on
Machine Learning, pp. 4548–4557, 2018.

Jivko Sinapov, Sanmit Narvekar, Matteo Leonetti, and Peter Stone. Learning inter-task transferability
in the absence of target task samples. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, pp. 725–733, 2015.

Mihai Suteu and Yike Guo. Regularizing deep multi-task networks using orthogonal gradients. CoRR,
abs/1912.06844, 2019. URL http://arxiv.org/abs/1912.06844.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

Simon Vandenhende, Bert De Brabandere, and Luc Van Gool. Branched multi-task networks: deciding
what layers to share. CoRR, abs/1904.02920, 2019. URL http://arxiv.org/abs/1904.02920.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

Liqiang Xiao, Honglun Zhang, Wenqing Chen, Yongkun Wang, and Yaohui Jin. Learning what to
share: leaky multi-task network for text classification. In Proceedings of the 27th International
Conference on Computational Linguistics, pp. 2055–2065, 2018.

Yongxin Yang and Timothy Hospedales. Deep multi-task representation learning: a tensor factori-
sation approach. In Proceedings of the International Conference on Learning Representations,
2017.

Jaehong Yoon, Eunho Yang, and Sungju Hwang. Lifelong learning with dynamically expandable
networks. In Proceedings of the International Conference on Learning Representations, 2018.

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sungju Hwang. Scalable and order-robust continual
learning with additive parameter decomposition. In Proceedings of the International Conference
on Learning Representations, 2020.

11

http://arxiv.org/abs/1912.06844
http://arxiv.org/abs/1904.02920

Under review as a conference paper at ICLR 2021

Supplementary Material for ICLR 2021 Submission
Sharing Less is More: Lifelong Learning in Deep Networks

with Selective Layer Transfer

A EXPERIMENT DETAILS

This section provides detail on the experiments from the main paper. The experiments are based
on three image recognition datasets: CIFAR-100 (Krizhevsky & Hinton, 2009), Office-Home
(Venkateswara et al., 2017) and STL-10 (Coates et al., 2011).

CIFAR-100 consists of images of 100 classes. The lifelong learning tasks are created following Lee
et al. (2019) by separating the dataset into ten disjoint sets of ten classes, and randomly selecting 4%
of the original training data to generate training and validation sets in the ratio of 5.6:1 (170 training
and 30 validation instances per task). The images are used after normalization.

The Office-Home dataset has images of 65 classes in four domains. Again following Lee et al.,
lifelong learning tasks are generated by choosing ten disjoint groups of thirteen classes in two
domains: Product and Real-World. There is no pre-defined training/testing split in Office-Home, so
we randomly split the images in the ratio 6:1:3 for the training, validation, and test sets. The image
sizes are not uniform, so we resized all images to be 128-by-128 pixels and re-scaled each pixel value
to the range of [0, 1].

We introduce a lifelong learning variant of the STL-10 dataset, which contains ten classes. We
constructed 20 three-way classification tasks by randomly choosing the classes, applying Gaussian
noise to the images (with a mean and variance randomly sampled from {−10%,−5%, 0%, 5%, 10%}
of the range of pixel values) after re-scaling each pixel value to the range of [−0.5, 0.5], and randomly
swapping channels. Note that any pair of tasks differs by at least one image class, the mean and
variance of the Gaussian noise, or the order of channels for the swap. We sampled 25% of the given
training data and split it into training and validation sets with the ratio 5.7:1 (318 training and 57
validation instances per task). All of the original STL-10 test data are used for held-out evaluation of
performance.

The architectural details of the task models used for each data set are described in Figure 6. We
used the following values for the hyper-parameters of the algorithms, following the original papers
wherever possible:

• The multi-task CNN with hard parameter sharing (HPS) has no additional hyper-parameters.

• Tensor factorization has a scale of the weight orthogonality constraint, whose value was
chosen by grid search among {0.001, 0.005, 0.01, 0.05, 0.1} following the original paper
(Bulat et al., 2020).

Dataset CIFAR-100 Office-Home STL-10
Number of Tasks 10 10 20

Type of Task Heterogeneous Classification Semi-heterogeneous
Classification

Classes per Task 10 10 3
Amount of Training Data 4% - 25%

Ratio of Training and Validation Set 5.6:1 6:1 5.7:1
Size of Image 32 × 32 128 × 128 96 × 96

Optimizer RMS Prop
Learning Rate 1× 10−4 2× 10−5 1× 10−4

Epoch per Task 2000 1000 500
Ratio of M-steps to E-step (numMSteps) 1

Table 2: Parameters of the lifelong learning experiments. We used the notion of task type (e.g.
heterogeneous) introduced in previous work of multi-task learning (Yang & Hospedales, 2017), which
is based on the similarity of data distribution of tasks.

12

Under review as a conference paper at ICLR 2021

32X32X3

Conv
3X3, 32
stride 1
ReLU

Conv
3X3, 32
stride 1
ReLU

max pool
2X2

32X32X32 16X16X32

Conv
3X3, 64
stride 1
ReLU

16X16X64

Conv
3X3, 64
stride 1
ReLU

max pool
2X2

8X8X64

Flatten

4096

FC

64

FC

10

(a) Architecture of task models of CIFAR-100 experiment

128X128X3

Conv
11X11, 64
stride 1
ReLU

Conv
5X5, 256
stride 1
ReLU

max pool
3X3

43X43X64 15X15X256

Conv
3X3, 256
stride 1
ReLU

111

8X8X256

Conv
3X3, 256
stride 1
ReLU

max pool
2X2

4X4X256

Flatten

4096

FC

64

FC

13

max pool
3X3

max pool
2X2

FC

256

(b) Architecture of task models of Office-Home experiment

96X96X3

Conv
3X3, 32
stride 1
ReLU

Conv
3X3, 32
stride 1
ReLU

max pool
3X3

96X96X32 32X32X32

Conv
3X3, 64
stride 1
ReLU

32X32X64

Conv
3X3, 64
stride 1
ReLU

11X11X64

Flatten

2048

Conv
3X3, 128
stride 1
ReLU

11X11X128

Conv
3X3, 128
stride 1
ReLU

4X4X128

FC

16

FC

3

FC

128

max pool
3X3

max pool
3X3

(c) Architecture of task models of STL-10 experiment

Figure 6: Details of the task model architectures used in the experiments. Text by each convolutional
layer describes the filter sizes and the number of channels. All convolutional layers are zero-padded.

• DF-CNN requires the size of the shared tensors and the parameters of the task-specific
mappings to be specified. Following the original paper (Lee et al., 2019), we chose the
spatial size of the shared tensors to be half the spatial size of the convolutional filters, and
the spatial size of the deconvolutional filters as 3 × 3. For each convolutional layer with
input channels cin and output channels cout, the number of channels in the shared tensors
was one-third of cin + cout and the number of output channels of the deconvolutional filters
was two-thirds of cin + cout.

• DEN has several regularization terms and the size of the dynamic expansion. We used
the regularization values in the authors’ published code, and set the size of the dynamic
expansion to be 32 by choosing the most favorable value among {8, 16, 32, 64}.
• APD-Net has two regularization terms for the sparsity of additive parameters λ1 and catas-

trophic forgetting λ2. As described in the original paper (Yoon et al., 2020), we used 4e−4

and 100 as the value of λ1 and λ2, respectively.

• ProgNN requires the compression ratio of the lateral connections, which we set to be 2,
following the original paper (Rusu et al., 2016).

• For DARTS, we used the hyper-parameter settings described in the original paper (Liu et al.,
2018).

A lifelong learner has access to the training data of only the current task, and it optimizes the
parameters of the current task model as well as any shared knowledge, depending on the algorithm.
After the pre-determined number of training epochs, the task switches to a new one regardless of
the convergence of the lifelong learner, which favors learners that can rapidly adapt to each task.
When the learner encounters a new task, it initializes newly introduced parameters of the new task
model, but re-uses the parameters of shared components, which initialize only once at the beginning
of the first task. As mentioned earlier, these new task-specific parameters and shared parameters are
optimized according to the training data of the new task for another batch of training epochs. We used
the RMSProp optimizer with the hyper-parameter values (such as learning rate and the number of

13

Under review as a conference paper at ICLR 2021

training epochs per task) described in Table 2. In our experiments, we conservatively have LASEM
take a single M-step per E-step by setting numMSteps = 1.

B CATASTROPHIC FORGETTING OF LASEM

We investigated catastrophic forgetting of LASEM in addition to mean peak per-task accuracy. The
catastrophic forgetting ratio is shown in Figure 7. The catastrophic forgetting ratio, proposed in Lee
et al. (2019), measures the ability of the lifelong learning algorithm to maintain its performance on
previous tasks during subsequent learning. A low ratio indicates that there is negative reverse transfer
from new tasks to previously learned tasks, and so the learner experiences catastrophic forgetting. A
ratio greater than 1 can be interpreted as positive backward transfer. As depicted in Figure 7, LASEM
is able to retain the performance of previous tasks compared to transferring at all CNN layers and
transferring at specific CNN-layers for all tasks (using a static transfer configuration).

2 4 6 8 10
Task Number

0.5

0.6

0.7

0.8

0.9

1

C
a
ta

st
ro

p
h
ic

 F
o
rg

e
tt

in
g

 R
a
ti

o

HPS all
HPS best accuracy
LASEM HPS

(a) HPS on CIFAR-100

2 4 6 8 10
Task Number

0.5

0.6

0.7

0.8

0.9

1

C
a
ta

st
ro

p
h
ic

 F
o
rg

e
tt

in
g
 R

a
ti

o

TF all
TF best accuracy
LASEM TF

(b) TF on CIFAR-100

2 4 6 8 10
Task Number

0.5

0.6

0.7

0.8

0.9

1

C
a
ta

st
ro

p
h
ic

 F
o
rg

e
tt

in
g
 R

a
ti

o

DF-CNN all
DF-CNN best accuracy
LASEM DF-CNN

(c) DF-CNN on CIFAR-100

2 4 6 8 10
Task Number

0.6

0.7

0.8

0.9

1

C
a
ta

st
ro

p
h
ic

 F
o
rg

e
tt

in
g
 R

a
ti

o

HPS all
HPS best accuracy
LASEM HPS

(d) HPS on Office-Home

2 4 6 8 10
Task Number

0.6

0.7

0.8

0.9

1

C
a
ta

st
ro

p
h
ic

 F
o
rg

e
tt

in
g
 R

a
ti

o

TF all
TF best accuracy
LASEM TF

(e) TF on Office-Home

2 4 6 8 10
Task Number

0.6

0.7

0.8

0.9

1
C

a
ta

st
ro

p
h
ic

 F
o
rg

e
tt

in
g
 R

a
ti

o

DF-CNN all
DF-CNN best accuracy
LASEM DF-CNN

(f) DF-CNN on Office-Home

5 10 15 20
Task Number

0.8

0.85

0.9

0.95

1

1.05

C
a
ta

st
ro

p
h
ic

 F
o
rg

e
tt

in
g
 R

a
ti

o

TF all
TF best accuracy
LASEM TF

(g) TF on STL-10

5 10 15 20
Task Number

0.8

0.85

0.9

0.95

1

1.05

C
a
ta

st
ro

p
h
ic

 F
o
rg

e
tt

in
g
 R

a
ti

o

DF-CNN all
DF-CNN best accuracy
LASEM DF-CNN

(h) DF-CNN on STL-10

Figure 7: Catastrophic forgetting ratio of transfer at all CNN layers (blue), best static transfer
configuration (black) and LASEM (red), exhibiting the benefit of LASEM. Note that the y-axis range
differs for each data set.

C COMPARISON TO BRUTE-FORCE CONFIGURATION SEARCH

We compared LASEM to the performance of task-wise brute-force search over transfer configurations,
shown in Table 3. Here, “task-wise brute-force search over transfer configurations” refers to the
method of training every transfer configuration and choosing the best configuration for each task,

14

Under review as a conference paper at ICLR 2021

Architecture LASEM Transfer All Layers Brute-force Search
Accuracy (%) Accuracy (%) Rel. Time Accuracy (%) Rel. Time

CIFAR-100 (10 Tasks)
HPS 39.3 ± 0.1 24.7 ± 0.6 0.78 40.4 ± 0.3 6.55
TF 38.4 ± 0.5 36.3 ± 1.0 0.64 39.9 ± 1.1 8.81

DF-CNN 42.0 ± 0.6 36.3 ± 1.3 0.59 42.6 ± 0.7 9.45
Office-Home (10 Tasks)

HPS 58.4 ± 0.9 54.9 ± 0.7 0.72 59.4 ± 0.2 4.72
TF 59.1 ± 1.0 56.2 ± 0.7 0.66 58.7 ± 0.3 5.22

DF-CNN 59.5 ± 1.1 49.1 ± 0.6 0.61 58.8 ± 0.3 4.04

Table 3: Comparison of test accuracy and training time for the same epochs to brute-force config-
uration search, ± 95% confidence interval. Training time shown above is ratio to training time of
LASEM. Relative time greater than 1.0 means that training the model is slower than our approach.

thereby allowing task models to use different transfer configurations. The accuracy of brute-force
search is almost indistinguishable from LASEM at 95% confidence, but it requires at least 3×
additional time for training. This result shows that LASEM achieves approximately the best accuracy
of dynamic transfer configuration with a boost in training speed.

D LASEM-DISCOVERED TRANSFER CONFIGURATIONS

Figure 8 shows the most frequent transfer configurations as well as the proportion of the time each
layer was chosen to be transfer-based or task-specific. For CIFAR-100 and Office-Home, there is
tendency of transferring top layers more than bottom layers. However, interesting observation is that
non-tree structures, such as Alternating {2, 4} and sharing middle layers [0,1,1,0], are often chosen.
This contradicts the assumption of a tree structure made often by related research, and supports the
consideration of more complex transfer configurations for diverse tasks.

The top eight most-chosen configurations of STL-10, unlike the other datasets which employed deep
nets with fewer CNN layers, plateau with a peak less than 10%. This is likely due to the smaller
number of STL-10 tasks, more flexible (deeper) network, and a much larger number of possible
transfer configurations than in the other two experiments. The tensor factorization model for STL-10
seems to prefer transfer at higher layers to transfer more than lower layers, while the preference for
DF-CNN is more varied.

E LASEM FOR TRANSFER OVER GROUPS OF LAYERS

As discussed in Section 3, it is a well-known problem in neural architecture search that the search over
layer-based transfer configurations requires time exponential to depth of the network d. One common
technique to compensate for this problem, as used by other methods (Pham et al., 2018; Liu et al.,
2018), is to search over groups of layers instead of individual layers, thereby reducing the size of the
search space. LASEM easily supports this same technique by redefining the transfer configuration
space C = {0, 1}d to be binary indicators over a partition P of the set of layer indices {1, . . . , d},
where the cardinality |P| � d. Consequently, this reduces the search space from 2d to 2|P|. Most
naturally, the partition P should ensure that either adjacent layers (e.g., {{1, 2}, {3, 4}, {5, 6}}) or
nearby1 layers (e.g. {{1, 3}, {2, 4}, {5}, {6}}) are grouped together.

We evaluated this variation of LASEM in lifelong learning scenarios using the STL-10 data set.
Different from the aforementioned experiments using STL-10, this experiment consisted of 15 five-
way classification tasks by random selection of the classes. We sampled only 10% of the given training
data and split it into training and validation sets with the ratio 1:1. For this scenario, we trained a
DF-CNN transferring at all layers and layer-based LASEM on a DF-CNN with 9 convolutional layers.
The group-based LASEM used the partition {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, splitting 9 convolutional
layers into three groups of three adjacent layers.

1This pattern of grouping nearby layers together, instead of only adjacent, may allow more flexible adaptation
of transferred knowledge to individual tasks, similar to the Alternating configuration explored in Section 2.

15

Under review as a conference paper at ICLR 2021

1000 0001 1001 0000 0101 0011
0

5

10

15

20

25

30

Tr
a
n
sf

e
r

C
o
n
fi
g
u
ra

ti
o
n
s

(%
)

0001 0110 1011 1000 0100 0010
0

5

10

15

20

25

30

Tr
a
n
sf

e
r

C
o
n
fi
g
u
ra

ti
o
n
s

(%
)

1011 0111 1111 1101 1110 0101
0

5

10

15

20

25

30

Tr
a
n
sf

e
r

C
o
n
fi
g
u
ra

ti
o
n
s

(%
)

layer1 layer2 layer3 layer4
0

20

40

60

80

100

La
y
e
rw

is
e
 T

ra
n
sf

e
r

(%
)

Transfer-based Task-Specific

(a) HPS on CIFAR-100

layer1 layer2 layer3 layer4
0

20

40

60

80

100

La
y
e
rw

is
e
 T

ra
n
sf

e
r

(%
)

Transfer-based Task-Specific

(b) TF on CIFAR-100

layer1 layer2 layer3 layer4
0

20

40

60

80

100

La
y
e
rw

is
e
 T

ra
n
sf

e
r

(%
)

Transfer-based Task-Specific

(c) DF-CNN on CIFAR-100

0011 0001 0000 0101 0010 1011
0

10

20

30

40

50

Tr
a
n
sf

e
r

C
o
n
fi
g
u
ra

ti
o
n
s

(%
)

1111 1101 1110 0101 0110 1001
0

10

20

30

40

50

Tr
a
n
sf

e
r

C
o
n
fi
g
u
ra

ti
o
n
s

(%
)

0111 0011 0110 0010 0101 0001
0

10

20

30

40

50

Tr
a
n
sf

e
r

C
o
n
fi
g
u
ra

ti
o
n
s

(%
)

layer1 layer2 layer3 layer4
0

20

40

60

80

100

La
y
e
rw

is
e
 T

ra
n
sf

e
r

(%
)

Transfer-based Task-Specific

(d) HPS on Office-Home

layer1 layer2 layer3 layer4
0

20

40

60

80

100

La
y
e
rw

is
e
 T

ra
n
sf

e
r

(%
)

Transfer-based Task-Specific

(e) TF on Office-Home

layer1 layer2 layer3 layer4
0

20

40

60

80

100

La
y
e
rw

is
e
 T

ra
n
sf

e
r

(%
)

Transfer-based Task-Specific

(f) DF-CNN on Office-Home

011110 010101 001111 101111 101001 000000 001100 100001
0

2

4

6

8

10

Tr
a
n
sf

e
r

C
o
n
fi
g

u
ra

ti
o
n
s

(%
)

111001 010000 110000 111000 001010 110101 100111 011000
0

2

4

6

8

10

Tr
a
n
sf

e
r

C
o
n
fi
g

u
ra

ti
o
n
s

(%
)

layer1 layer2 layer3 layer4 layer5 layer6
0

20

40

60

80

100

La
y
e
rw

is
e
 T

ra
n
sf

e
r

(%
)

Transfer-based Task-Specific

(g) TF on STL-10

layer1 layer2 layer3 layer4 layer5 layer6
0

20

40

60

80

100

La
y
e
rw

is
e
 T

ra
n
sf

e
r

(%
)

Transfer-based Task-Specific

(h) DF-CNN on STL-10

Figure 8: (Top) Histogram of the most-selected configurations (i.e., the binary vectors ct, where
1 denotes that a CNN layer employs transfer). (Bottom) The fraction of the time each layer was
selected to be transfer-based (red) or task-specific (blue).

16

Under review as a conference paper at ICLR 2021

The DF-CNN achieved a mean task-wise best accuracy of 45.4±0.4 with a training time of 7.58×104
seconds. The layer-based LASEM DF-CNN exceeded the capacity of our computing source (an Intel
core i7 workstation with dual 1080 Ti GPUs). However, the group-based LASEM DF-CNN achieved
a mean accuracy of 46.0± 0.7 % in 7.02× 104 seconds. This showcases LASEM’s ability to support
group-based transfer configurations in addition to layer-based configurations.

F MEMORY USAGE COMPARISON

In this section, we analyze LASEM’s memory requirements to show that it is approximately equivalent
to the other methods considered in the paper. Let the base learner require O(A) non-transfer-based
task-specific storage or O(B) transfer-based task-specific storage with O(S) shared knowledge.
LASEM shares network parameters across transfer configurations to minimize memory, so the
current task model stores two parameter sets at a cost of O(A+B). Earlier task models require only
O(max(A,B)) storage, yielding a total memory requirement of O(S + (T + 1)max(A,B)) for T
tasks when the base learner constructs one network per task. Compared to this, the model with the
best static transfer configuration requires O(max(A,B)) additional storage per task, resulting in a
total memory requirement of O(S + T max(A,B)). Brute-force search over transfer configurations
requires at least O(2 max(A,B)), one for parameters of the best configuration and the other for
parameters of the current training, yielding O(S + (T + 1)max(A,B)). Hence, LASEM’s memory
requirements are approximately equivalent to the alternative methods. The memory requirement may
differ from the above analysis according to the base lifelong learning architecture used (such as HPS
or a modular network), but if that base learner requires O(T) memory for T tasks, LASEM needs
only O(T + 1) memory.

17

	Introduction
	The effect of different transfer configurations
	Architecture search for the optimal transfer configuration
	Experiments
	Performance of LASEM
	Comparison to other selective transfer algorithms
	The effect of non-optimal transfer configurations on LASEM

	Related work
	Conclusion
	Experiment details
	Catastrophic Forgetting of LASEM
	Comparison to Brute-force Configuration Search
	LASEM-discovered transfer configurations
	LASEM for transfer over groups of layers
	Memory usage comparison

