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ABSTRACT

Learning embeddings of any data largely depends on the ability of the target space
to capture semantic relations. The widely used Euclidean space, where embed-
dings are represented as point vectors, is known to be lacking in its potential to
exploit complex structures and relations. Contrary to standard Euclidean embed-
dings, in this work, we embed point clouds as discrete probability distributions in
Wasserstein space. We build a contrastive learning setup to learn Wasserstein em-
beddings that can be used as a pre-training method with or without supervision for
any downstream task. We show that the features captured by Wasserstein embed-
dings are better in preserving the point cloud geometry, including both global and
local information, thus resulting in improved quality embeddings. We perform
exhaustive experiments and demonstrate the effectiveness of our method for point
cloud classification, transfer learning, segmentation and interpolation tasks over
multiple datasets including synthetic and real-world objects in both supervised
and self-supervised settings. We also compare against other existing methods and
show that our method outperforms them in all downstream tasks. Additionally,
our study reveals a promising interpretation of capturing critical points of point
clouds that makes our proposed method self-explainable.

1 INTRODUCTION

Recent years have seen major advancements in 3D point cloud representation learning. It has gained
prominence in a wide spectrum of areas such as robotics (Maturana & Scherer, 2015), computer
vision (Su et al., 2015), animation (Pan et al., 2020) with a broad range of applications including
shape synthesis and modeling (Yi et al., 2016), autonomous driving (Mahjourian et al., 2018), indoor
navigation (Zhu et al., 2017). Metric learning for good quality point cloud embeddings is a crucial
problem given unique set of challenges associated with 3D data, from processing point clouds in
various forms to learning in different spaces. Processing and developing learning methods for point
clouds is one of the major challenges due to their irregular, unstructured and unordered nature.

Earlier methods process point clouds by converting them into regular structures like, volumetric
representations (Maturana & Scherer, 2015), (Wu et al., 2015) or 2D image projections (Qi et al.,
2016), (Su et al., 2015) to employ well explored powerful convolutional techniques. However,
these transformations either incur loss of information or require high memory and computational
complexity. Later, methods have been developed to learn representations by directly using raw point
clouds (Qi et al., 2017a), (Qi et al., 2017b), (Wang et al., 2019). These methods either process each
point individually or try to infer features from local regions in a point cloud. The state-of-the-art
methods in this category are largely classification, generation or reconstruction-based supervised,
unsupervised or self-supervised methods.

The common choice of recent 3D point cloud representation learning methods is to operate and
represent point clouds as point vectors in Euclidean spaces, where relation between data points is
depicted by either angle or distance. We all know that the embedding space largely determines
the quality of embeddings, as it depends on how well the target space can capture the structure of
data. Euclidean space is confined in its potential to capture complex structure and possible semantic
relations. Realizing these drawbacks, many works use hyperbolic space (Nickel & Kiela, 2018),
(Nickel & Kiela, 2017) to capture this uncertainty and asymmetric relationship for word and graph
embeddings.
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As Euclidean space is constrained in its ability to represent data structures, we need to go beyond
Euclidean space to get more expressive embeddings for point clouds. Recent studies show that
many spaces can be embedded into Wasserstein space with low distortion (Frogner et al., 2019), this
reflects how large Wasserstein spaces are. Recently, Courty et al. (2018) tries to mimic Wasserstein
distance in Euclidean space for image embeddings to build efficient methods along with availing
the flexibility of Wasserstein space. Also, there are some latest methods for point cloud embeddings
using Optimal Transport (OT) based distances. Kawano et al. (2020), motivated by Courty et al.
(2018), proposes a method to approximate Wasserstein distance by Euclidean norm between two
point cloud embeddings. Since Euclidean space is known for its limited ability, finding isometric
low-distortion point cloud embeddings is tough. Another work by Nguyen et al. (2021) presents
how Optimal Transport based distances for point cloud reconstruction affect the quality of learnt
embeddings. However, this method utilizes OT based distances only for reconstruction loss, which
is not enough to learn complex shapes and fails to capture fine details of point clouds.

(a)

(b)

(c)

Original Wasserstein Euclidean

Figure 1: Critical Points contribute to the point
cloud embedding by capturing global geometry.
(a), (b) and (c) represent original point cloud (first
column), critical point set for Wasserstein space
(second column) and Euclidean space (third col-
umn) for three examples (Chair, Monitor & Bed).

Motivated by aforementioned limitations and
inspired by Frogner et al. (2019), in this pa-
per, we advocate for mapping point cloud as a
discrete distribution in Wasserstein space. We
build a contrastive learning setup to learn point
cloud embeddings. Leveraging the idea of con-
trasting point clouds against each other, we in-
tend to learn common and distinctive features
between same and different distributions, re-
spectively. It can be applied to both supervised
and self-supervised settings. For this, Sliced
Wasserstein (SW) distance is considered which
is a low-cost approximation of Wasserstein dis-
tance due to its high computational complexity.
Along with comparisons with commonly used
distance measures such as L2 norm and Cosine
similarity, we also compare our method against
recent works on point clouds using OT. We
show that the learnt features capture the point
cloud structure better than Euclidean embed-
dings and consistently performs better in multi-
ple 3D analysis and synthesis tasks. We argue
that our approach of incorporating OT metric in
a contrastive learning setup captures the under-
lying geometry and global shape pertaining to
critical points (as shown in Figure 1) and fine
details of a point cloud.

Our contributions: i) To the best of our knowledge, we are the first to propose the use of OT
metric which exploits the geometry of the data along with contrastive learning for point clouds.
Unlike Euclidean embeddings, we represent a point cloud as a discrete probability distribution in
the embedding space. ii) Using this representation, we develop a method to learn Wasserstein em-
beddings for 3D point clouds endowed by contrastive learning setup. We introduce a novel neural
network architecture which takes pairs of point clouds as input. It uses supervised/ self-supervised
contrastive loss depending on the availability of labels, to minimize the Wasserstein distance be-
tween similar point clouds. A major advantage of our network is it can be used as a pretrained
model for any downstream network. iii) We perform exhaustive experiments over a wide variety
of tasks (supervised and self-supervised learning for classification, transfer learning, segmentation,
and interpolation) for four popular point cloud datasets. We show that our Wasserstein embeddings
are better in capturing the inherent geometry of point clouds. Additionally, we study the point cloud
embeddings in most commonly used Euclidean space for our proposed architecture by replacing the
OT metric with L2 norm (our baseline). We also compare our approach (CL+SW2) against the other
existing methods and show that our method outperforms in all the downstream tasks. iv) We further
explore the self-explaining aspect of our model and illustrate the 3D Wasserstein features computed
by the encoder (as shown in Figure 1). We show Wasserstein embeddings are better in capturing
critical points and semantic structure amenable to the optimization task.
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2 PRELIMINARIES

In this section, we briefly present the optimal transport metric, variants of Wasserstein distance, and
contrastive learning setup which are used in our proposed method.

2.1 OPTIMAL TRANSPORT AND WASSERSTEIN DISTANCE

Optimal transport aims to solve for the most efficient way to transport mass between two probability
distributions. Formally, given two probability distributions µ and ν on a metric space X , for p ≥ 1,
the p-Wasserstein distance is given by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

c(x, y)pdπ(x, y)

)1/p

(1)

where, π is a transport plan that defines a flow between mass from µ to locations in ν, Π(µ, ν) is
the joint probability distribution with the marginals µ and ν and c(x, y) is the ground metric which
assigns a cost of moving a unit of mass x ∈ X from µ to some location y ∈ X in ν. The cost
of moving the mass in µ to match in ν according to the optimal transport plan π∗, is called the
Wasserstein distance between the two distributions (Villani, 2003).

The above equation can also be written for discrete distributions, say µ̂ =
∑m

i=1 aiδ(xi) and ν̂ =∑n
j=1 bjδ(yj) are two discrete distributions, where, {ai}; i = 1 . . .m and {bj}; j = 1 . . . n are the

probability mass that should sum to 1, δ is the Dirac delta function and {xi}; i = 1 . . .m and {yj};
j = 1 . . . n are the support points in Rd with m and n being the number of points in each measure.
Then, the discrete version of Equation 1 is

Wp(µ̂, ν̂) =

(
min

P∈U(a,b)
⟨Cp, P ⟩

)1/p

(2)

where, ⟨·, ·⟩ denotes the Frobenius dot-product, C ∈ Rm×n
+ is the pairwise ground metric distance,

P is the coupling matrix and U is the set of all possible valid coupling matrices, i.e. U(a, b) = {P ∈
Rm×n : P1n = a, P⊤1m = b}.

Interestingly, there exists a closed-form solution for Wasserstein distance only when the distributions
are one-dimensional measures with Lp norm as the cost function. The closed-form for Wasserstein
distance in 1-D is (Peyré & Cuturi, 2019)

Wp(µ, ν) =

(∫ 1

0

|F−1
µ (t)− F−1

ν (t)|pdt
)1/p

(3)

where, F−1
µ and F−1

ν are the inverse cumulative distribution functions of µ and ν.

Generally, we are more interested in dimensions greater than one. Thus, we cannot use this closed-
form solution directly to solve the OT problem efficiently. Instead, the Wasserstein distance between
two measures on Rd can be approximated by aggregating the 1-D Wasserstein distance between their
projections over multiple directions on a unit sphere, which is called the Sliced Wasserstein distance
(Peyré & Cuturi, 2019):

SWp(µ, ν) =

(∫
Sd−1

Wp(Pθ,#µ, Pθ,#ν)
pdθ

)1/p

(4)

where, Sd−1 = {θ ∈ Rd : ∥θ∥ = 1} is the d-dimensional unit sphere and Pθ : Rd → R is the
projection. Since the projections are now 1-D measures, we can use the closed-form solution given
by Equation 3. When m = n, the Sliced Wasserstein distance can be easily computed by simply
sorting points in 1-D measures and can be given by:

SWp(µ̂, ν̂) =

(
1

D

D∑
k=1

m∑
i=1

|xαθk
(i) − yβθk

(i)|p
)1/p

(5)

where, αθk and βθk are the permutation ordering in the increasing order of the support points pro-
jected to the direction θk with D being the total number of directions.
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Figure 2: Overview of our proposed method. The two main parts are, point cloud encoding as
discrete distribution (left) and computation of Sliced Wasserstein distance (right). The ground metric
space is R2. T1(P ) and T2(P ) are two instances of P after random transformations.

2.2 CONTRASTIVE LEARNING

Contrastive learning aims to learn an embedding space that encourages augmentations of the same
input sample to have similar representations and of different samples to be dissimilar. Chopra et al.
(2005) is an early example of using contrastive learning in a supervised learning setup which takes
pair of samples as input to the network.

On the other hand, the contrastive loss introduced by Chen et al. (2020) is named as SimCLR. It
follows batch-wise training and is operated in self-supervised setting. For this setup, the distance
is reduced between the sample and its augmentations. Later, Khosla et al. (2020) proposed the
extension of SimCLR for supervised setup. It additionally aims at reducing the distance between a
sample and other samples from same class in a supervised setting.

3 OUR METHOD

In this section, we discuss our method of computing Wasserstein embeddings for point clouds in
a contrastive learning setup as shown in Figure 2. We build an in-batch contrastive learning setup
which can either be fully supervised or self-supervised and can be used as a pre-training method-
ology for any downstream task. The goal is to represent samples from same class closer than the
samples from different classes in the embeddings space (larger inter-cluster and smaller intra-cluster
distance). Here, the choice of embedding space plays a key role for desirable performance, as indi-
vidual metric spaces can embed data differently and represent different types of semantic structure.

3.1 CONTRASTIVE LEARNING WITH OPTIMAL TRANSPORT

Let O = {(Pm, lm)}; m = 1 . . .M be a collection of point clouds Pm = {pi}; i = 1 . . . Nm ,
where, pi ∈ R3 with their corresponding class labels lm ∈ L, where L = {1, . . . C} is a set of class
labels. Each point cloud Pm contains Nm number of points defined by 3D space points in x, y and z
direction. For defining the batch-wise contrastive loss, we first randomly draw K samples from the
collection O, that form a batch B = {(Pm, lm)k}; k = 1 . . .K. For every point cloud Pm ∈ B, we
apply fixed set of random transformations T1 and T2 to get two instances of Pm (as shown in Figure
2), giving an augmented batch B′ = {(P ′

m, lm)k′}; k′ = 1 . . . 2K. The augmented batch is twice
the size of the original batch. The point clouds P ′

m indexed at k′ and k′ + 1 are augmented version
of the point cloud Pm indexed at k. As these are augmented versions of Pm[k], their class labels are
lm[k′] = lm[k′+1] = lm[k].
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Table 1: Results of 3D object classification with supervised and self-supervised pre-training on
ModelNet10, ModelNet40 and ScanObjectNN (referred as ScanObject) datasets. WPCE and SSW-
AE are unsupervised methods and cannot be evaluated for supervised pre-training (represented by
“-”). Bold represents the best result and underlined represents the second best.

Method Supervised Pre-training Self-Supervised Pre-training
ModelNet10 ModelNet40 ScanObject ModelNet10 ModelNet40 ScanObject

CL+L2 90.85 84.64 62.82 90.63 84.72 63.51
CL+Cosine 85.90 70.42 56.11 85.90 72.64 56.45

WPCE - - - 89.97 78.84 52.83
SSW-AE - - - 88.88 76.86 51.29

CL+SW2(R2) 91.85 85.57 61.80 91.41 85.73 61.10
CL+SW2(R4) 91.74 85.53 61.61 91.96 85.45 63.85
CL+SW2(R8) 91.08 85.90 63.16 90.19 85.41 60.93

The input to the encoder is an augmented batch B′, from which all P ′
m needs to be mapped to the

embeddings space depending on its geometric features and appearance, with samples having same
class label being closer. The encoder represents function f : RNm×3 → W(X ), that maps a point
cloud P ′

m to the Wasserstein space W(X ), with Wp being the distance metric on W(X ) and X
being the ground metric space. We choose R2, R4 and R8 to be our ground metric spaces, in which
the corresponding embedding z′m of P ′

m is represented as discrete distribution { 1
S · xi}; i = 1 . . . S

supported by xi ∈ X with a total of S support points, all with uniform probability mass 1
S . In our

implementation, we reshape the embedding z′m of P ′
m to obtain the discrete distribution for different

ground metric spaces.

Generally, the computation for exact solution of Wp is costly. To make the computation of optimal
transport more tractable, we replace the distance metric Wp on Wasserstein space W(X ) by the
Sliced Wasserstein distance metric SW p. SW p is a low-cost approximation of Wasserstein distance
with computational complexity being O(S logS). For all our experiments, we set the value of p = 2
and number of slices D = 300.

Supervised Contrastive Loss. In the supervised setting, for any P ′
m ∈ B′ indexed at k′ with

corresponding label lm[k′], the positive set is defined as A = {P ′
m ∈ B′ : P ′

m = lm[k′]}. We define
our supervised contrastive loss for learning point cloud Wasserstein embeddings as:

Lsup = −
2K∑
i=1

log

∑
j∈A
j ̸=i

exp(−SW 2
2 (zi, zj))∑

t ̸=i exp(−SW 2
2 (zi, zt))

 (6)

The loss tries to minimize the Sliced Wasserstein distance between the embeddings represented as
discrete distribution of an anchor and all the samples having the same class in the augmented batch.
This can also be easily converted to a self-supervised version by making necessary modifications.

Self-Supervised Contrastive Loss. Contrary to the supervised setting, in self-supervised setting,
the class label of point clouds cannot be used in any way to train the encoder. Here, the positive set
of any P ′

m ∈ B′ contains only the other augmentation of P ′
m. If i ∈ {1 . . . 2K} be the index of any

P ′
m ∈ B′, then, let j(i) be the index of its other augmented sample. We define our self-supervised

loss for learning point cloud Wasserstein embeddings as:

Lself = −
2K∑
i=1

log

(
exp(−SW 2

2 (zi, zj(i)))∑
t ̸=i exp(−SW 2

2 (zi, zt))

)
(7)

Here, only the Sliced Wasserstein distance between embeddings of an anchor and its augmented
sample is minimized. Other than the augmented sample, the samples having the same class in
the augmented batch are treated as negatives, which might hinder the overall optimization process
depending on the batchsize.
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4 EXPERIMENTS

Representation that is able to capture good geometric information in a smooth latent space is gen-
erally better in various shape understanding and synthesis tasks. To demonstrate the representation
power of the learned Wasserstein embeddings compared to Euclidean embeddings, in this section,
we present qualitative and quantitative evaluations on multiple tasks: supervised and self-supervised
point cloud classification, transfer learning, point cloud segmentation and point cloud interpolation.

Datasets We use ModelNet10 (MN10) and ModelNet40 (MN40) (Wu et al., 2015) to perform ex-
periments on classification. MN40 consists of 12311 CAD models with a total of 40 categories,
where 9843 objects are used for training and 2468 for testing. We use the data provided by Qi et al.
(2017b), from which we randomly sample 2048 points for each point cloud. MN10 is a subset of
MN40 dataset for 10 categories. To evaluate how the learned embeddings perform on real-world
data, we also conduct experiments on ScanObjectNN (Uy et al., 2019). It contains object scans with
partial occlusions and background making it a challenging dataset. It has 2304 objects for training
and 567 for testing from 15 categories. For part segmentation, we use ShapeNetPart (SN) (Yi et al.,
2016) that consists of 16681 point clouds from 16 categories and 50 part categories in total.

Pre-training We use a 3-layer MLP followed by a max-pooling layer as our encoder for classifica-
tion and segmentation tasks. For interpolation, we consider the encoder and decoder proposed by
FoldingNet (Yang et al., 2018). In order to perform any downstream task on a particular dataset,
the encoder is first pre-trained on the dataset using the contrastive loss explained in Section 3.1 with
different distance metrics, followed by testing and evaluation of the desired task. Throughout the
experiments, we refer the encoder trained using our method as CL+SW2 followed by the ground
metric space in parenthesis. For the transformations required in contrastive loss, intended towards
forming augmented instances, we sequentially compose random scaling, rotation and point jittering.
In the case of Euclidean distance metrics, the encoder function f : RNm×3 → Rd maps a point cloud
to d-dimensional space, that can be interpreted as vectors, with l2-distance or cosine similarity as
distance measures. To account for similarity score given by cosine between two vectors depending
on their angles, in Eqs. 6, 7 the negative sign in the numerator should be discarded. Note that when
training the encoder with cosine similarity as a distance measure, the embeddings are normalized.

Baselines We consider L2-distance and Cosine similarity as distance measures for computing Eu-
clidean embeddings. We train the encoder using our loss (Eqs. 6, 7), by replacing SW 2

2 (·, ·) with
these measures in our method. We also consider recent methods for point clouds using Wasserstein
metric i.e., WPCE (Kawano et al., 2020) and SSW-AE (Nguyen et al., 2021) as our baselines. WPCE
embeds Wasserstein space into Euclidean space using Siamese network. It considers PointNet (Qi
et al., 2017a) based encoder-decoder architecture. The network is trained in such a way that the Eu-
clidean distance mimics the Wasserstein distance between two point clouds. SSW-AE proposed to
use SW distance and its variants (max SW and adaptive SW) for reconstruction to learn point cloud
embeddings. It tries to supervise PointNet based auto-encoder architecture with different metrics.

4.1 3D OBJECT CLASSIFICATION

We extract point cloud embeddings from a pre-trained encoder and use a simple linear SVM as our
classifier. Particularly, we fit a linear SVM classifier on the embeddings acquired by an encoder on
the train split and report the overall classification accuracy on the test split. In Figure 1, we can
see that features captured by Wasserstein embeddings summarize the overall object geometry in a
better way compared to the embeddings learned in Euclidean space. This property also reflects in
the classification performance shown in Table 1. We can observe that for both supervised and self-
supervised settings, the classification accuracy with embeddings extracted by the encoder trained
with CL+SW2 is higher than that of CL+L2 and CL+Cosine. Thus, compared to Euclidean space,
the performance of SW2 is consistently better on all the datasets, which implies that embeddings
learnt in Wasserstein space can increase classification accuracy.

We also show that our method is more effective compared to WPCE and SSW-AE. This improve-
ment can be explained by the difference in the approach of extracting Wasserstein embeddings,
where in, our methodology introduces usage of OT metric to directly operate in embedding space
endowed by contrastive learning. It helps in learning better representations by exploiting the simi-
larities between distributions along with utilizing the flexibility of the target Wasserstein space.
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Table 3: Results of part segmentation with supervised pre-training. Bold represents the best result
and underlined represents the second best.

Method mIoU aero bag cup car chair ear
phone guitar knife lamp laptop motor mug pistol rocket skate

board table

CL+L2 77.61 73.54 62.76 72.41 64.75 82.42 65.41 88.95 83.01 75.83 93.52 43.03 83.25 74.87 46.01 62.39 77.54
CL+Cosine 74.75 67.80 62.13 78.66 66.26 80.00 61.14 86.47 79.34 74.25 92.24 48.70 84.91 70.82 45.63 63.97 73.12

CL+SW2(R2) 81.40 80.50 64.69 74.41 70.97 87.34 69.71 89.34 82.96 77.59 95.31 57.28 88.03 77.14 53.18 69.60 79.84
CL+SW2(R4) 81.03 78.52 61.63 73.82 71.32 86.94 72.48 90.01 83.48 77.78 95.10 52.08 88.63 78.17 51.41 68.19 79.76
CL+SW2(R8) 80.16 78.41 66.97 75.67 67.73 84.96 67.74 90.03 81.91 78.06 94.66 45.95 82.54 75.47 49.40 68.44 80.01

Table 4: Results of part segmentation with self-supervised pre-training. Bold represents the best
result and underlined represents the second best.

Method mIoU aero bag cup car chair ear
phone guitar knife lamp laptop motor mug pistol rocket skate

board table

CL+L2 78.94 75.40 62.74 72.67 67.73 84.73 68.02 89.19 83.35 76.98 94.48 43.15 84.19 75.11 49.60 67.81 77.91
CL+Cosine 78.49 72.51 68.09 71.44 68.35 84.47 63.38 88.69 80.30 75.94 94.45 48.81 88.56 74.08 47.37 69.12 77.90

WPCE 79.92 77.47 69.06 74.22 66.59 86.79 66.23 89.30 81.77 75.97 94.60 42.29 88.71 74.33 41.05 67.39 79.28
SSW-AE 75.20 68.83 59.61 69.65 64.23 81.98 62.00 86.92 80.27 73.70 92.82 38.46 85.12 68.26 43.97 60.65 73.69

CL+SW2(R2) 81.12 78.98 65.46 76.36 70.36 87.45 68.78 89.45 83.04 77.82 95.58 51.21 88.29 76.61 54.42 70.10 79.71
CL+SW2(R4) 81.17 78.98 66.90 77.98 70.35 86.91 70.57 89.39 82.85 77.99 94.77 56.20 87.18 76.10 53.98 69.60 80.10
CL+SW2(R8) 80.97 79.69 64.27 77.42 69.64 86.54 67.35 89.72 83.59 77.22 94.47 48.35 88.45 74.67 50.99 70.42 80.33

4.2 TRANSFER LEARNING

Table 2: Results of 3D object classification with self-supervised
pre-training for transfer learning setup. WPCE and SSW-AE
are unsupervised methods and cannot be evaluated for supervised
pre-training (represented by “-”). Bold represents the best result
and underlined represents the second best.

Method Supervised Pre-training Self-Supervised Pre-training
MN10 to MN40 SN to MN40 MN10 to MN40 SN to MN40

CL+L2 85.37 85.81 84.27 83.83
CL+Cosine 74.51 69.12 75.32 71.47

WPCE - - 77.51 78.03
SSW-AE - - 76.05 76.66

CL+SW2(R2) 85.70 85.61 85.61 85.77
CL+SW2(R4) 86.18 86.18 85.57 84.88
CL+SW2(R8) 85.57 85.57 85.49 85.21

We examine the generalizing
ability of the embeddings ac-
quired by encoders trained with
different distance metrics to un-
seen classes, by performing
transfer learning for point cloud
classification. We follow the
same process as explained in
Section 4.1 for reporting the
overall classification accuracy.
The quantitative comparisons of
transfer learning is shown in
Table 2. We perform evalua-
tion in two transfer learning set-
tings, MN10 to MN40 and SN to
MN40. Here, the encoder is pre-
trained on MN10 and SN fol-
lowed by evaluation on MN40. In both the settings, the model generalizes to new unseen classes by
wielding the knowledge of geometry learned during training. We can see that CL+SW2 consistently
performs better than other distance measures and methods in both the transfer learning settings with
and without supervision. Results imply that Wasserstein embeddings are better in transferring the
knowledge of capturing geometry for yielding good classification performance.

4.3 3D OBJECT PART SEGMENTATION

We train a 3-layer MLP network to predict a class label for all points in a point cloud, where the
input to this network is the embedding provided by a pre-trained encoder. In particular, part segmen-
tation requires fine-grain understanding of the local geometry of the objects. Along with the global
embedding of the point cloud, per point embeddings acquired before max-pooling are stacked to-
gether and passed to the segmentation network. Note that, only the segmentation network weights
are optimized, using the standard cross-entropy loss and the encoder’s weights are frozen. We eval-
uate the performance using mIoU metric. For mIoU of each class, the IoU’s of all parts from that
class are averaged. Instance average mIoU is calculated by taking the mean of IoU’s for all the in-
stances. The comparison of average instance mIoU and per class average mIoU for both supervised
and self-supervised learning settings are shown in Table 3 and Table 4, respectively. We can see that
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Figure 3: Interpolation (linear-combination) between source and target for two examples (a) Car
to Lamp, (b) Chair to Chair from ShapeNet. The left and the right most represent original point
clouds. Top row of each example show results from reconstruction after interpolating two point
cloud embeddings in Euclidean space. The bottom row of each example provide interpolation results
in Wasserstein space. All rows follow the ratio of 0.2, 0.4, 0.6 and 0.8 (from left to right).

the results outperform other distance measures and methods, implying that Wasserstein embeddings
are able to capture better fine-grain local information required for the task.

4.4 3D SHAPE INTERPOLATION

We further examine the quality of our learnt space by performing shape interpolation between inter
and intra class point cloud instances. The main aim of conducting this task is to examine which learnt
space is capable of capturing geometric information needed to generate consistent interpolations of
3D point clouds based on their structure. As interpolation is a synthesis task, we need a decoder
network to reconstruct the object from its embedding. For this, we train an encoder-decoder network
with our contrastive loss (Eq. 6) on the embeddings for the encoder, along with a reconstruction loss
for the decoder. We use the encoder and decoder proposed by FoldingNet, which learns to deform
a unit sphere and take the shape of a 3D object’s surface. We found that optimizing the network
for better classification performance, as well as getting detailed reconstruction is difficult. As our
contrastive loss aims to pull point clouds closer with similar global representations, it becomes
difficult to accurately reconstruct the input point cloud without fine-grain characteristic information.
A simple way to deal with this issue is to assign weightage to the individual loss terms, with the
weights summing to 1. In order to train an encoder-decoder, the total effective loss is defined by
taking a weighted sum of our contrastive loss and a reconstruction loss, with weights being 0.2
and 0.8, respectively. We use Chamfer distance as the reconstruction loss. Interpolation results are
shown in Figure 3. We can see that the interpolations done using Wasserstein embeddings follow
a smooth path with relatively less noisy points. For example, in Figure 3 (b), we can see that
for Euclidean, the source chair suddenly transforms to take the shape of target chair, whereas in
Wasserstein, the legs of chair smoothly morph to become the base of target chair.

4.5 EXPLAINABILITY

We investigate what makes Wasserstein embeddings perform better as shown in the downstream
tasks. We visualize and compare the features captured by Wasserstein embeddings and Euclidean
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Figure 4: Ablation Study: Classification accuracy for noise model with Gaussian Noise (left) and
points removal using random sampling (right) for our method CL+SW2 and our baseline CL+L2.

embeddings in Figure 1. These features are called critical points, as shown by Qi et al. (2017a). The
embedding of a point cloud is completely determined by these subset of points. The embedding for
a point cloud would be the same, as long as, the set of critical points is unchanged. For a given
point cloud, the critical points are those 3D points that contribute to the global embeddings after the
max pooling layer. This implies that the number of critical points cannot be greater than that of the
embedding size. The selection of critical points is extremely important, as they solely decide the
embedding of a point cloud. This makes it clear that for good quality embeddings, critical points
should best describe the given point cloud. In Figure 1, we can see that the network intelligently tries
to summarize the point cloud by choosing boundary points as the critical points. Our Wasserstein
embeddings are able to capture the full skeleton structure of the given point cloud, whereas, criti-
cal points captured by Euclidean embeddings are comparatively poor with uneven distribution and
missing parts. Thus, we can say that Wasserstein space are indeed better in preserving and capturing
geometric structure amenable to the optimization task.

4.6 ABLATION STUDY

We perform point perturbation and point density variation to test their effects on the encoders pre-
trained with different distance metrics and report the classification accuracy on Modelnet40 as shown
in Figure 4. For the point perturbation test, we add Gaussian noise to input point clouds, with
standard-deviation of noise varying from 0.01 to 0.1. We can observe that for all noise levels,
even with severe distortion, CL+SW2 performs well than that of CL+L2. This implies that discrete
representation learnt in Wasserstein space is less prone to performance degradation due to noise
in inputs. Further, for varying density test, we randomly sample 8192, 4096, 2048, 1024, 512,
256, 128 points from input point clouds and perform evaluation on them. We can observe that
CL+SW2 consistently does better than CL+L2. This shows Wasserstein embeddings are robust
towards missing points in the input point cloud.

5 CONCLUSION

In this paper, we proposed to represent point clouds as discrete probability distributions in the
Wasserstein space. We built a contrastive learning method to learn Wasserstein embeddings for
3D point clouds. Our proposed method can be used as a pretrained model for any downstream net-
work in supervised and self-supervised settings. Empirically, we found that representations learnt
using our pre-training of contrastive learning with Sliced Wasserstein distance captured the struc-
ture and underlying geometry better than standard Euclidean embeddings. With improved embed-
dings, our method outperformed all the existing methods including our baseline with L2 norm and
Cosine similarity for all the downstream tasks (classification, segmentation, transfer learning, in-
terpolation) in both supervised and self-supervised settings. We also show an interesting study of
our self-explainable method by capturing critical points of point clouds better than embeddings in
Euclidean space. For future work, a possible direction is to explore other related problems such as
domain adaptation for point clouds using optimal transport. Another interesting aspect is to consider
complex datasets including multiple objects and scenes of point clouds.
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Reproducibility Statement:
Our proposed method is easily reproducible considering pairs of point clouds as input. The network
architecture explained in Figure 2 consists of simple MLP layers followed by max pooling and
reshaping of embedding. We mention contrastive loss functions for supervised and self-supervised
settings in Section 3.1. The pre-training setup is detailed in Experiments Section 4. Datasets used
in this paper are well-known in point cloud domain. We provided references for all the datasets in
Experiments Section. Our code will be made publicly available after the acceptance of the work.
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Linfei Pan, Ľubor Ladický, and Marc Pollefeys. Compression and completion of animated point
clouds using topological properties of the manifold. In International Conference on 3D Vision
(3DV), pp. 734–742, 2020.
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