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Abstract
Large language models (LLMs) have shown re-
markable capabilities in language understanding
and generation. However, such impressive capa-
bility typically comes with a substantial model
size, which presents significant challenges in de-
ployment and inference. While structured pruning
of model parameters offers a promising way to
reduce computational costs at deployment time,
current methods primarily focus on single model
pruning. In this work, we develop a novel strat-
egy to compress models by strategically combin-
ing or merging layers from finetuned model vari-
ants, which preserves the original model’s abil-
ities by aggregating capabilities accentuated in
different finetunes. We pose the optimal tailoring
of these LLMs as a zero-order optimization prob-
lem, adopting a search space that supports three
different operations: (1) Layer removal, (2) Layer
selection from different candidate models, and (3)
Layer merging. Our experiments demonstrate that
this approach leads to competitive model pruning,
for example, for the Llama2-13B model families,
our compressed models maintain approximately
97.3% of the original performance while remov-
ing ∼ 25% of parameters, significantly outper-
forming previous state-of-the-art methods.

1. Introduction
The unique strengths of modern Large Language Models
(LLMs) in language understanding, generation, and reason-
ing (Touvron et al., 2023; OpenAI et al., 2023; Chiang et al.,
2023) are inextricably linked to their immense size. Re-
search in this field has generally followed a trajectory of
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scaling model parameters and data to enhance performance,
guided by two fundamental principles: scaling laws, which
establish that performance improves predictably with in-
creased parameters (Kaplan et al., 2020; Hoffmann et al.,
2022; Wei et al., 2022), and over-parameterization theory,
which demonstrates that models with excess parameters
achieve better optimization and generalization (Allen-Zhu
et al., 2019a;b; Li et al., 2020). These principles have led
researchers to develop billion-parameter architectures deliv-
ering unprecedented performance across diverse tasks.

Despite these impressive capabilities, deploying LLMs
presents significant challenges due to their substantial com-
putational demands. Various post-training techniques have
been proposed to address the issues faced when deploying
models to consumer GPUs or local devices, or when re-
ducing costs, including model pruning (Frantar & Alistarh,
2023; Dettmers et al., 2023b; Xia et al., 2023; Kim et al.,
2024; Ma et al., 2023), knowledge distillation into smaller
models (Chen et al., 2022; Hsieh et al., 2023; Shridhar et al.,
2023; Tunstall et al., 2023), and quantization of weights
(Yao et al., 2022; Gholami et al., 2022; Dettmers et al.,
2023a). While quantization reduces parameter precision but
requires specific hardware support, and knowledge distilla-
tion necessitates costly retraining, structured pruning offers
a flexible and hardware-agnostic approach by eliminating
redundant parameters to decrease computation costs.

Existing pruning methods typically focus on pruning in-
dividual models through manually designing metrics that
assess the importance of specific structures or layers based
on hidden state changes or gradient information (Kim et al.,
2024; Men et al., 2024; Ma et al., 2023). However, these
approaches inevitably cause performance degradation and
require additional post-training to recover performance.

To address these limitations, we take a radically different
perspective and re-formulate structured pruning as the prob-
lem of pruning not individual models, but a family of task-
specific finetuned versions of a given model. These fine-
tuned variants are surprisingly helpful for model pruning,
as each variant accentuates a particular task, such as cod-
ing, math, or language understanding. Further, the variants
are close enough that model merging can be employed to
re-combine layers from multiple variants, if needed (Worts-

1



Large Language Model Pruning Through Layer Cutting and Stitching

Figure 1. Our Approach: Model Pruning through Cutting and Stitching. We achieve competitive model pruning performance by
running a zero-order search that tailors layers based on a shared pool of finetuned variants of the original model, selecting and stitching
layers if necessary. The model finetunes accentuate task-specific skills, allowing us to merge key components into a smaller model,
maintaining, for example, 97% of capabilities of Llama-13B, even after a 25% reduction in layers.

man et al., 2022). These observations lead us to our main
question: Can we develop better compressed models by
strategically combining or merging layers from different
models? Motivated by this question, we propose a novel
structured pruning method based on zero-order optimization
that supports three different operations to combine layers
from different models into a smaller, more efficient model:
(1) Layer removal, (2) Layer selection from related can-
didate models, (3) Layer merging.

For the optimization, we define multiple objective functions
that capture different aspects of model performance across
different tasks to better preserve the original model’s capa-
bilities and run a fully data-driven zero-order optimization,
instead of relying on expert-made heuristics for pruning. We
employ SMAC (Lindauer et al., 2022), which strategically
allocates computational resources by evaluating configura-
tions at different calibration data sizes, thereby reducing
computational costs while boosting the efficiency of finding
superior solutions. We rigorously validate our method’s
effectiveness by evaluating it on Llama-7B and Llama-
13B with four state-of-the-art structural pruning methods
across comprehensive benchmarks. Our experimental re-
sults demonstrate that our approach maintains excellent per-
formance while outperforming existing pruning methods.

In summary, the main contributions of this paper are:

• We propose a novel structured pruning method that for-
mulates pruning as a zero-order optimization problem
over a pool of candidate models, enabling automated
discovery of efficient models that leverage capabilities
from multiple models.

• We find that this approach allows for a cost-effective
model pruning stage that is effective without the need
for post-training to heal the pruned model.

• We validate our method’s effectiveness through ex-
tensive experiments, comparing against modern LLM
pruning methods on 14 benchmark tasks.

Our method maximally preserves the capabilities of the
dense model: 92.2% for the 7B model and 97.3% for the
13B model. significantly outperforming previous methods.

2. Related Work
Compression of Language Models. Large language mod-
els (Touvron et al., 2023; OpenAI et al., 2023) require com-
pression to reduce parameters and latency. We focus on
structural pruning, with recent methods including LLM-
Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024),
LaCo (Yang et al., 2024) and ShortGPT (Men et al., 2024).
our work employs zero-order search to combine pruning
and merging across model families.

Model Merging. Model merging enhances capabilities with-
out additional training, evolving from weighted parameter
averaging (Utans, 1996) to Task Arithmetic (Ilharco et al.,
2022). Recent approaches leverage sparsity: TIES-Merging
(Yadav et al., 2024) selects parameters by magnitude while
resolving sign conflicts, and DARE (Yu et al., 2024) com-
bines sparsification with rescaling. Evolutionary model
merging (Akiba et al., 2024) optimizes coefficients through
evolutionary search, while multi-fidelity approaches enable
efficient fine-grained exploration (Su & Geiping, 2025). Our
work builds upon multi-fidelity optimization for efficient
compressed model search.

3. Methods
We reformulate model compression as a zero-order optimiza-
tion problem selecting and merging layers across multiple
candidate models. An overview is provided in Figure 1.
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Problem Setup Given a base model Mbase and candidate
models M = {M1,M2, ...,MK} fine-tuned from it, we
aim to find an optimal pruned model maximizing perfor-
mance under a target sparsity constraint s ∈ [0, 1]. The
pruned model combines layers from candidate models
through merging, selection, and removal operations, de-
termined by hyperparameters ω ∈ Ω. Each configuration ω
defines how to form a pruned model Mω , with performance
evaluated by function f(Mω). Our optimization problem
is: ω∗ = argminω∈Ω f(Mω) subject to S(Mω) ≤ s
where S(·) calculates the fraction of pruned parameters com-
pared to the base model.

Search Space Design For a base model with l layers and K
candidate models, we design the search space through: (1)
A binary vector r = [r1, r2, . . . , rl] where ri ∈ {0, 1} indi-
cates layer retention (ri = 0) or removal, with

∑l
i=1 ri =

⌈l · s⌉ satisfying target sparsity. (2) For each retained layer
i, a selection vector ci = [ci,1, ci,2, . . . , ci,K ] where ci,j ∈
{0, 1} indicates whether the j-th candidate model’s layer is
selected. If

∑K
j=1 ci,j = 0, we use the base model’s layer.

(3) When multiple candidates contribute (
∑K

j=1 ci,j > 1),
we specify a merge method mi ∈ {1, 2, . . . , Z} with hy-
perparameters hi = [hi,1, hi,2, . . . , hi,Pi

] controlling the
combination mechanism.

Target Objective Function We define a multi-objective
function measuring model effectiveness across calibration
datasets Dcalibration. Given tasks T = {T1, T2, . . . , Tm},
we employ Pareto Efficient Global Optimization (ParEGO)
(Knowles, 2006) to identify Pareto-optimal solutions
through scalarization:

fmulti(Mω, λ) = max
i=1,...,m

{λi·fi(Mω)}+α

m∑
i=1

λi·fi(Mω)

(1)
where fi(Mω) is the i-th objective, λi are weights satisfy-
ing

∑m
i=1 λi = 1 and λi ≥ 0. The optimizer outputs a

Pareto front of configurations representing different task
performance trade-offs.

Search Optimizer We employ SMAC (Lindauer et al.,
2022) to efficiently navigate the search space, using cal-
ibration dataset size as fidelity represented by budgets b
where bmin ≤ b ≤ bmax. Smaller budgets use fewer samples
for faster evaluations, while larger budgets use more sam-
ples for greater reliability. We use Random Forest (Breiman,
2001) as a surrogate model to sample new configurations.
The complete process is described in Algorithm 1.

4. Experiments
4.1. Experimental Settings

Benchmarks. We evaluate using OpenCompass (Contrib-
utors, 2023) across five aspects: Reasoning (CMNLI (Xu

et al., 2020), HellaSwag (Zellers et al., 2019), PIQA (Bisk
et al., 2020)), Language (CHID (Zheng et al., 2019), WSC
(Levesque et al., 2012)), Knowledge (CSQA (Talmor et al.,
2018), BoolQ (Clark et al., 2019)), Examination (MMLU
(Hendrycks et al., 2020), CMMLU (Li et al., 2023)), and Un-
derstanding (Race-H/M (Lai et al., 2017), XSum (Narayan
et al., 2018), C3 (Sun et al., 2020)). We use generative
evaluation for CHID and XSum, both cloze and generative
for WSC, and cloze for the rest. Details in Appendix C.

Baselines. We compare with LLM-Pruner (Ma et al., 2023),
SliceGPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024),
and ShortGPT (Men et al., 2024), ensuring comprehensive
comparison through three scenarios: (1) pruning each can-
didate model separately, (2) pruning then merging, and (3)
merging then pruning. All merging uses task-arithmetic
(Ilharco et al., 2022) with factors in [0.5, 1.0].

Model Selection. We evaluate on Llama2-7B and Llama2-
13B (Touvron et al., 2023). For 7B, our base model is
Llama-2-7B with three candidates: Llama-2-7B-Chat (Tou-
vron et al., 2023), MAmmoTH-7B (Yue et al., 2023), and
Llama-2-Coder-7B (Manuel Romero, 2023). For 13B, we
use Llama-2-13B with WizardLM-13B (Xu et al., 2023),
WizardMath-13B (Luo et al., 2023), and Llama-2-13B-
Code-Alpaca (Chaudhary, 2023). We remove 28% (9/32) of
layers for 7B and 25% (10/40) for 13B, matching the setting
in ShortGPT and LaCo for fair comparison.

Calibration Data. Our calibration dataset includes 1000
examples from PIQA training set, 500 from WSC training
set, 1000 from CSQA training set, and 1000 from MMLU
validation set, ensuring diverse capability coverage.

Objective and Optimizer. We implement SMAC (Lindauer
et al., 2022) with 500 search trials. To improve efficiency,
we start with models with randomly removed middle layers
(Su & Geiping, 2025). We set bmin = 100, bmax = 1000,
and η = 3, resulting in budgets of {100, 300, 1000} for
PIQA, CSQA, and MMLU, and {100, 200, 500} for WSC.

4.2. Main Results
To validate our method, we compared it with the four base-
lines: LLM-Pruner (LLMPru) (Ma et al., 2023), SliceGPT
(Ashkboos et al., 2024), LaCo (Yang et al., 2024), and Short-
GPT (Men et al., 2024). We reproduce results and evaluate
on OpenCompass (Contributors, 2023). As mentioned, to
validate that our proposed approach of "pruning while merg-
ing" is optimal, we also re-run each pruning method on
(1) pruning each candidate model individually and picking
the best, (2) "pruning-then-merging": First pruning each
candidate model using the baseline method and then merg-
ing them, and (3) "merging-then-pruning": First merging
the candidate models and then applying pruning. Table 1
reports the best single model pruning and best merge results
of all baselines, with full results in Appendix E.
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Table 1. Comparison of pruning methods on multiple natural language benchmarks. "Single" refers to the best performance achieved
when pruning a single model directly, while "Merge" refers to the best performance achieved through either "pruning-then-merging" or
"merging-then-pruning". For 7b model: Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), Llama-2-Coder-7B (Code), and Llama-2-7B
(Base), for 13b model: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13b- code-alpaca (Code), and Llama-2-13B (Base). The
cells highlighted in blue show three selected Pareto-optimal solutions of our method.

LLM Pruner Type Reasoning Language Knowledge Understanding Avg Avg*
(ratio) CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama
-7B

Dense
(0.0%)

Base 32.98 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 35.53 33.36 19.55 43.84 45.47 42.30
Math 32.99 68.60 75.79 39.71 39.42 36.54 50.78 69.36 43.04 32.16 30.36 36.42 20.88 43.45 44.25 41.70
LM 31.30 71.28 75.95 36.11 63.46 59.62 64.29 74.77 48.30 33.93 52.52 55.22 22.45 47.56 52.63 47.24

Code 32.99 70.27 78.62 41.61 36.54 41.35 57.41 71.04 46.22 32.20 41.25 39.69 18.79 46.25 46.73 43.79
LLMPru
(25.3%)

Single 32.99 59.57 73.34 30.32 46.15 0.00 20.15 57.28 23.21 25.16 21.56 21.52 15.19 31.07 32.68 32.74
Merge 34.71 60.57 73.50 26.62 40.38 5.77 19.90 52.14 24.01 25.30 23.07 22.98 15.51 32.49 32.64 32.60

SliceGPT
(26.3%)

Single 31.89 41.55 58.81 18.43 39.42 4.81 19.49 40.09 25.38 25.02 25.59 26.88 8.78 39.56 28.98 28.64
Merge 32.85 37.61 57.56 17.33 53.85 2.88 19.41 42.66 25.22 24.68 25.21 24.72 12.78 40.22 29.78 28.67

LaCo
(27.1%)

Single 32.97 55.24 69.53 31.47 36.54 34.62 22.11 67.22 29.08 26.16 28.53 28.27 14.68 43.51 37.14 36.45
Merge 31.89 56.26 71.22 27.32 39.42 22.12 23.42 72.66 29.30 26.00 25.19 26.81 16.11 43.62 36.52 36.21

ShortGPT
(27.1%)

Single 33.09 57.42 66.54 21.53 56.73 48.08 52.50 67.34 43.68 28.31 32.53 31.69 12.40 39.45 42.24 35.97
Merge 34.10 54.18 64.42 16.83 61.54 36.54 55.61 73.21 36.84 25.61 42.94 45.89 10.12 35.73 42.40 37.62

Ours
(27.1%)

35.46 54.43 67.74 23.63 63.46 43.27 62.90 75.08 48.75 33.86 55.35 58.64 12.99 44.16 48.55 43.73
34.94 58.14 69.48 21.53 63.46 41.35 62.74 66.24 47.39 34.11 49.17 50.56 3.46 41.53 46.01 39.96
34.95 54.92 67.08 24.48 63.46 46.15 62.00 75.90 48.73 34.13 54.03 57.45 13.20 43.01 48.54 43.56

Llama
-13B

Dense
(0.0%)

Base 32.99 74.77 79.71 47.35 50.96 63.46 67.24 71.38 55.84 38.74 57.98 60.17 23.47 47.51 55.11 50.48
LM 35.36 70.41 78.73 36.21 57.69 60.58 65.03 73.70 53.48 30.85 66.12 71.66 22.44 52.00 55.30 50.97

Math 32.99 68.78 77.26 44.36 36.54 19.23 60.36 78.44 54.21 38.12 47.74 48.82 19.51 44.66 47.93 47.05
Code 32.99 74.82 80.14 47.30 51.92 63.46 68.88 72.72 55.92 39.26 58.03 63.72 24.45 48.38 55.86 51.30

LLMPru
(21.2%)

Single 33.49 60.28 75.57 23.68 39.42 0.00 19.00 63.24 23.27 25.23 22.36 21.45 17.13 32.00 32.58 33.21
Merge 33.86 64.11 73.50 22.18 60.58 0.00 21.46 61.96 23.84 25.62 22.16 21.59 14.98 32.11 34.14 33.17

SliceGPT
(23.6%)

Single 33.19 42.44 59.90 18.03 54.81 19.23 32.51 41.22 33.09 25.75 29.45 29.87 9.99 37.75 33.37 29.74
Merge 30.98 46.83 62.57 19.33 51.92 49.04 37.76 38.38 33.55 25.22 23.53 23.05 9.95 39.67 35.13 28.55

LaCo
(24.6%)

Single 32.33 60.18 70.57 32.67 34.62 34.62 52.58 62.66 36.26 25.80 60.38 62.53 8.79 49.21 44.51 43.84
Merge 33.49 62.50 74.37 35.26 63.46 63.46 18.84 64.65 41.83 24.87 26.10 25.97 15.93 39.51 42.16 34.71

ShortGPT
(24.6%)

Single 32.95 62.64 73.50 28.22 36.54 50.96 65.44 67.71 53.50 30.73 65.52 71.38 19.12 48.60 50.49 47.43
Merge 31.07 63.24 68.61 27.17 49.04 43.27 65.68 78.01 51.26 36.88 57.38 62.67 16.94 44.05 49.66 46.38

Ours
(24.6%)

32.99 66.81 75.03 29.07 54.81 62.50 69.37 74.28 55.90 39.71 65.52 71.03 16.80 46.74 54.33 49.22
31.80 68.63 72.52 30.97 60.58 55.77 67.49 73.70 54.61 39.29 61.92 70.13 16.19 48.11 53.69 48.97
29.05 69.76 72.74 34.22 58.65 54.81 68.06 69.82 53.99 38.36 62.32 66.71 16.60 51.01 53.29 48.65

Our approach achieves the best results across multiple
benchmarks compared to all tested LLM pruning meth-
ods. In terms of overall performance, our method maxi-
mally preserves the capabilities of the dense model: 92.2%
(48.55/52.63) for the 7B model and 97.3% (54.33/55.86) for
the 13B model. To ensure our results were not biased by
our calibration data, we also calculate an avg* excluding
the four benchmarks from which training data was selected
for calibration (MMLU, CSQA, WSC, PIQA). As shown
in the avg* column, our method still outperformed all base-
lines, further validating our approach. Notably, our method
achieved comparable or even better results than dense mod-
els on many benchmarks. We attribute these gains to: 1)
Pruning might mitigate "overthinking" (Kaya et al., 2019)
effects, evident in benchmarks like CNLI and WSC where
other baseline pruning methods also improved performance,
and 2) our merging strategy is effectively compensating for
information loss from pruning.

Figure 2 illustrates our best-performing 7B-pruned model
and best-performing 13B-pruned models’s structure (See
Table 12 for architectural details). We observe that both
models tend to remove middle-to-later layers, with the 13B
model removing layers from layer 25 and the 7B model
from layer 19. This suggests information redundancy in
these layers, aligning with findings that later layers exhibit

high similarity and redundancy (Men et al., 2024; Gromov
et al., 2024). The 13B model shows a simpler structure
dominated by a single LM model with concentrated layer
removal, while the 7B model shows a more complex struc-
ture utilizing mixed and specialized models with scattered
layer removal. This suggests that as model size decreases,
more diverse mixing strategies may be needed to maintain
performance. This architectural difference, coupled with
the superior preservation rate of the 13B model compared
to the 7B model, demonstrates that robustness (redundancy)
scales with model size. More results in Appendix A.

5. Conclusions
We present a novel LLM compression approach combining
layers from fine-tuned model variants rather than pruning
single models. By formulating this as zero-order optimiza-
tion with a search space supporting layer removal, selection
and merging, we effectively preserve capabilities while re-
ducing size. Experiments show our compressed Llama2-7B
and Llama2-13B models retain 92.2% and 97.3% of orig-
inal performance despite removing 25% of parameters,
outperforming previous methods without expensive post-
training. Our work demonstrates that cutting and stitching
layers from multiple fine-tuned variants is more effective
than traditional single-model pruning.
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A. Additional results

Figure 2. (a) Structure of our best-performing 7B-pruned model. The model integrates layers from multiple candidates: Llama-2-7B-Chat
(LM), MAmmoTH-7B (Math), Llama-2-Coder-7B (Code), and Llama-2-7B (Base). The pruning ratio is 9/32, removing 9 layers out
of 32 total layers. (b) Structure of our best-performing 13B-pruned model. The model integrates layers from multiple candidates:
WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13b-code-alpaca (Code), and Llama-2-13B (Base). The pruning ratio is 10/40,
removing 10 layers out of 40 total layers.

Algorithm 1 The optimization process of pruning.
Require: Configuration space Ω, minimum budget bmin, maximum budget bmax, reduction factor η, maximum trials Tmax

Ensure: Optimized configuration ω∗

0: smax = ⌊logη bmax

bmin
⌋, D ← ∅, T ← 0 {Initialization}

0: for s ∈ {smax, smax − 1, . . . , 0} and T < Tmax do
0: n← ⌈ (smax+1)

(s+1) · η
s⌉, r ← bmin · ηs {Config count & budget}

0: C ← Sample Configurations(n, D, Ω) {Sample configurations}
0: for i ∈ {0, 1, . . . , s} and T < Tmax do
0: ni ← ⌊n · η−i⌋, ri ← r · ηi {Stage parameters}
0: for each w ∈ C and T < Tmax do
0: Evaluate yw ← fmulti(Mw, λ, ri), D ← D ∪ {(w, ri, yw)}, T ← T + 1
0: end for
0: Sort C by performance, keep the top ⌊ni/η⌋ configurations in C
0: end for
0: end for
0: return the best-performing configuration ω∗ evaluated at highest budget =0

A.1. Efficiency Analysis

Our optimizer dynamically adjusts the budget allocation during the search process, where the budget is defined as the
calibration dataset size used for search. As the allocation of search trials directly determines the overall search duration.
Here, we analyze the budget distribution during the search process, as shown in Table 2. Our analysis reveals that only 22%
of the search trials utilize the full budget, while over 41.4% of the evaluations were conducted with the minimum budget,
which is 5-10 times smaller. This efficient allocation enables our pruning to significantly increase the chance of discovering
superior configurations under the same computational budget.

A.2. Which Parts of the Search Space are Critical ?

To determine where the benefits of our approach come from, we designed ablation experiments to evaluate the contribution
of different components in our search space. As our framework supports: (1) selectively choosing layers from different
candidate models, (2) layer merging, and (3) layer removal, we conducted several experiments to isolate the impact of
each component. Table 3 summarizes the performance comparison across various benchmarks (full results available in the
Table 9)

Layer Removal Only (LR-only). We restricted the search space to only allow layer removal operations on a single 7B
model. We ran experiments on all 7B models and report the best performer. This ablation shows a performance drop from
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Search Budget Percentage Trials Dataset Size

Low 41.4 207

PIQA 100
WSC 100
CSQA 100
MMLU 100

Medium 36.6 183

PIQA 300
WSC 200
CSQA 300
MMLU 300

High 22.0 110

PIQA 1000
WSC 500
CSQA 1000
MMLU 1000

Table 2. Budget allocation to search trials for pruning. 41% of
trials require only the smallest budget size, significantly increasing
efficiency.
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our full approach (48.55 → 44.83 on average), confirming that merely pruning layers from a single model is insufficient
for optimal performance. The performance degradation is particularly notable on language tasks (WSCP : 63.46 → 49.04)
and understanding benchmarks (RaceH : 55.35 → 42.51, RaceM : 58.64 → 43.04). It is worth highlighting that even our
layer-removal-only for single model still outperforms the strongest baseline method, ShortGPT (44.83 vs. 42.24). This
demonstrates that our approach can enhance performance even in this simplified setting.

Layer Selection and Removal (LS+LR). In this setting, we enabled both layer selection from different candidate models
and layer removal operations but disabled the layer merging functionality. The results show even greater performance
degradation (48.55 → 43.20 average) compared to the layer-removal-only setting. We observe a dramatic drop on WSCG

(43.27 → 26.92), indicating that merging operations play a critical role for certain grammatical reasoning tasks. The superior
performance of LR-only (44.83) compared to LS+LR (43.20) demonstrates that simply combining layers from different
models without proper integration through merging is suboptimal.

Table 3. Comparison of different searching settings across various benchmarks. Settings: LR-only: Layer-remove only, LS+LR: Layer-
selection + layer-remove, FL-merge: Folding Layers Merging, Single-obj: Single-objective, PPL-obj: PPL as search objective.

Setting Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Ours 35.46 54.43 67.74 23.63 63.46 43.27 62.90 75.08 48.75 33.86 55.35 58.64 12.99 44.16 48.55
LR-only 34.96 53.80 66.70 18.58 49.04 58.65 60.61 68.87 47.85 33.54 42.51 43.04 8.05 41.42 44.83
LS+LR 32.92 55.84 65.07 17.98 63.46 26.92 58.97 51.22 48.97 34.61 48.68 49.44 8.33 42.41 43.20
FL-merge 32.99 52.90 63.66 19.28 46.15 62.50 60.52 75.20 48.30 34.33 50.77 55.29 6.39 39.40 46.26
Single-obj 32.15 56.02 67.46 19.08 39.42 48.08 62.33 74.43 47.40 34.14 50.94 52.86 12.35 41.97 45.62
PPL-obj 33.39 23.89 52.07 14.84 45.19 7.69 19.33 39.51 24.25 24.69 22.81 21.17 0.06 26.36 25.38

A.3. Additional Analysis

A.3.1. VARYING THE PRUNING RATIO

To evaluate the benefits of evolving from "pruning single model" to "pruning from model variants" under varying pruning
ratios, we compared our approach with each candidate model using the layer-remove configuration, as it achieves the
strongest performance among single-model pruning methods, even surpassing the best-performing baseline, ShortGPT.
Figure 3 visualizes the average accuracy among benchmark performances at different pruning ratios, with detailed results in
Table 10. The accuracy of all models decreases as the pruning ratio increases. Our model achieves the best performance at
almost all pruning ratios, especially in the low pruning ratio range of 0 - 37.5%. When pruning reaches 50%, the performance
gap narrows across all models as they all experience performance collapse, including ours. We believe this is due to excessive
parameter removal, after which effective model function cannot be maintained without additional post-training.

A.3.2. PRUNING THROUGH LAYER FOLDING

LaCo (Yang et al., 2024) is another pruning approach based on merging, but it differs from our method by merging only
the later layers of a single model into adjacent earlier layers, based on activation similarity heuristics. To validate the
effectiveness and potential of this type of within-model merge operation, we use our hyperparameter optimization framework
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with a specially designed search space consisting of: (1) A binary selection vector s = [s1, s2, . . . , sk] indicating which
layers to remove, and (2) An importance weight vector w = [w1, w2, . . . , wk] representing each layer’s importance value.

Retained layer L′
i performs a depth-wise linear combination with itself and adjacent removed layers:

L′
i = βi · Li +

∑
j∈N (i)

βj · Lj · 1sj=1

where N (i) represents adjacent layers to Li, 1sj=1 indicates layer j is removed, and βj are normalized weights derived
from w such that βi +

∑
j∈N (i) βj · 1(sj = 1) = 1. This ensures retained layers incorporate information from nearby

removed layers, preserving network functionality. This configuration parametrizes the options proposed in LACO and
achieves better overall performance (46.26) compared to previous ablations but still falls short of our full approach. The
performance gap is most pronounced on XSum (12.99 → 6.39) and PIQA (67.74 → 63.66), highlighting the importance of
our optimized merging strategy for generative and reasoning tasks.

A.3.3. DIFFERENT CALIBRATION DATASETS AND METRICS

In our method, we use multiple-choice datasets as calibration data with accuracy as the metric in a multi-objective
optimization approach. This results in a pruned model with broad capabilities. To further analyze this design choice, we
conducted the following experiments:

Single Objective (Single-obj). We used the MMLU validation dataset for calibration with accuracy as the optimization
objective. We evaluate the resulting pruned models across our benchmark suite. As shown in Table 3, while these models
still perform adequately (45.62 average), the single-objective optimization led to a noticeable decline from our full approach
(48.55 → 45.62). Importantly, the single-objective models demonstrated stronger performance on MMLU-related tasks
but showed performance degradation on certain other tasks due to their narrow optimization focus. This confirms our
hypothesis that broad, multi-objective optimization is necessary to preserve the broad functionality of modern LLMs, rather
than overfitting to a single task domain.

Perplexity Objective (PPL-obj). We also experiment with perplexity (PPL) on WikiText (Merity et al., 2016) as a search
metric, taking 1500 examples as our calibration dataset. The performance of resulting pruned models across benchmarks in
Table 3 demonstrates a dramatic performance gap compared to all other configurations, with an average score of only 25.38
across benchmarks. Even when compared to the single-objective MMLU optimization (which uses a similarly sized dataset),
the PPL-optimized models showed considerably weaker performance across most tasks. The catastrophic degradation
on tasks like XSum (12.99 → 0.06) and reasoning benchmarks like HeSw (54.43 → 23.89) underscores the limitations
of perplexity-guided optimization. This evidence reveals that while perplexity is a common metric for language model
evaluation, it fails to serve as an effective signal for preserving model capabilities during pruning, particularly for tasks
requiring reasoning and knowledge application rather than just fluent text generation.

A.3.4. EXTENDING TO LLAMA-3

We further extend our validation to Meta’s Llama 3 8B model(Grattafiori et al., 2024). Llama 3 training on 15 trillion
tokens—7× more data than Llama 2, incorporates architectural improvements including universal Grouped Query Attention
(GQA), an optimized 128K vocabulary tokenizer and longer context window. These modifications further boost the
performance on reasoning, code generation, and multilingual tasks. Despite similar model size, Llama-3 8B achieves better
performance compared to Llama-2 7B(Touvron et al., 2023), which may carry different semantic densities that provide new
challenges for maintaining model performance under compression. Validating on this next-generation model is crucial for
establishing the practical applicability of our method in rapidly evolving LLM landscapes.

We use Meta-Llama-3-8B(Grattafiori et al., 2024) as base model, with three candidate models: Meta-Llama-3-8B-Instruct
(LM)(Grattafiori et al., 2024), Code-Llama-3-8B (Code)(Ajibawa, 2023), and MathCoder2-Llama-3-8B (Math)(Lu et al.,
2024a;b). We target removing 9 of the 32 layers and use the same experimental settings as Llama2-7B. We compare our
method with the best-performing baseline, ShortGPT. As results shown in Table 4(full results available in the Table 11), our
method retains 84.55% of the original performance after removing 9 layers, outperforming ShortGPT’s 62.79% retention
under same compression ratios. while both show lower retention than Llama2-7B results (92.2%) with similar model
size. This decline indicates Llama3’s reduced compressibility, We attribute this decline to (1) higher parameter utilization
efficiency and (2) denser knowledge distribution from large-scale training, which eliminates layer redundancy. Despite this
challenge, our method consistently outperforms the baseline, validating its effectiveness across model generations.
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Table 4. Comparison of pruning methods on multiple natural language benchmarks. "Single" refers to the best performance achieved
when pruning a single model directly, while "Merge" refers to the best performance achieved through either "pruning-then-merging" or
"merging-then-pruning". For 8b model: Meta-Llama-3-8B-Instruct (LM), MathCoder2-Llama-3-8B (Math), Code-Llama-3-8B (Code),
and Meta-Llama-3-8B (Base). The cells highlighted in blue show three selected Pareto-optimal solutions of our method.

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

ratio/layer CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama3
-8B

Dense

Base 32.98 74.67 80.96 73.78 56.73 36.54 73.79 69.97 64.74 50.79 63.21 70.54 3.28 55.18 57.65
LM 33.00 71.08 80.69 65.53 55.77 69.23 76.66 78.87 65.97 53.64 76.44 81.75 17.97 63.95 63.61

Math 32.99 71.66 77.97 57.09 37.50 58.65 68.22 69.08 62.08 45.85 64.75 69.08 8.68 53.86 55.53
Code 32.98 65.56 74.70 78.42 61.54 61.54 63.47 78.35 48.03 34.55 52.40 58.43 19.36 46.41 55.41

ShortGPT
Single 32.83 45.06 65.78 23.38 41.35 53.85 39.56 63.73 32.37 28.69 40.14 45.19 3.68 43.51 39.94
Merge 32.95 48.58 64.96 18.43 36.54 35.58 42.83 67.22 33.05 28.71 30.16 32.45 3.66 44.27 37.10

Ours
33.46 54.81 69.53 32.27 41.35 58.65 72.81 65.29 63.36 50.14 71.41 75.97 3.22 47.12 52.81
33.07 55.15 69.37 31.77 46.15 64.42 73.55 64.43 62.35 49.06 74.36 78.27 2.95 46.03 53.64
33.42 54.83 69.75 34.02 47.12 62.50 73.79 64.34 63.13 50.04 72.81 77.65 3.00 46.52 53.78

B. Baseline
To ensure fair comparison, we applied various baseline pruning methods including LLM-Pruner(LLMPru) (Ma et al., 2023),
SliceGPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024) and ShortGPT (Men et al., 2024):

LLM-Pruner adopts structural pruning that selectively removes non-critical coupled structures based on gradient informa-
tion, maximally preserving the majority of the LLM’s functionality. It applies post-training to the pruned model, for fair
comparison, we do not apply post training to it.

SliceGPT is a post-training sparsification scheme that replaces each weight matrix with a smaller matrix, reducing the
embedding dimension of the network. Specifically, they applied PCA to the hidden representation from shallow to deep
layers, and incorporated the dimension reduction matrix into existing network parameters.

LaCo is a pruning method for large language models based on reducing layers. LaCo gradually merges similar layers from
deep to shallow and sets a threshold to avoid continuously merging too many layers.

ShortGPT introduced the Block Influence (BI) metric, which uses the similarity between layer’s input and output to measure
the importance of each layer.

C. Evaluation Benchmarks
To thoroughly assess the capabilities of large language models before and after pruning, we employed a comprehensive suite
of benchmark datasets spanning various aspects of language understanding and reasoning:

CMNLI (Chinese Multi-Genre Natural Language Inference) (CNLI) consists of two parts: XNLI and MNLI. It contains
text from various domains, including fiction, telephone conversations, travel, and government sources. XNLI is a cross-
lingual extension of the MultiNLI corpus, professionally translated into multiple languages, including Chinese, providing a
robust framework for assessing language understanding across linguistic boundaries. Models must determine whether pairs
of sentences exhibit entailment, contradiction, or neutrality.

HellaSwag (HeSw) tests commonsense reasoning about physical situations. The dataset uses a "Goldilocks" zone of
complexity where examples are obviously nonsensical to humans but challenging for state-of-the-art models. Despite being
trivial for humans (>95% accuracy), even advanced models struggled with this benchmark upon its release, making it
effective for measuring progress in commonsense inference.

PIQA (Physical Interaction Question Answering) Developed by Bisk et al. (2020), this multi-choice question and answer
dataset focuses on everyday scenarios, exploring models’ understanding of real-world physical laws through daily situations.

CHID (Chinese IDiom) is an idiom cloze test focusing on the representation and selection of Chinese idioms, requiring
cultural and linguistic knowledge specific to Chinese.

WSC (Winograd Schema Challenge) serves as a prominent benchmark for evaluating machine understanding through
pronouns resolution problems that are trivial for humans but require commonsense reasoning for machines to solve correctly.
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The dataset consists of pairs of sentences differing in one or two words with ambiguous pronouns resolved differently in the
two sentences, designed to test a system’s commonsense reasoning abilities.

CommonSenseQA (CSQA) is a multiple-choice question answering dataset containing 12,102 questions with one correct
answer and four distractor answers, requiring different types of commonsense knowledge to predict the correct answers.
The dataset was constructed using ConceptNet relations and crowd-sourced questions to test commonsense reasoning.

BoolQ provides 15,942 yes/no questions that occur naturally in unconstrained environments, testing models’ binary
decision-making abilities.

MMLU (Massive Multitask Language Understanding) evaluates models across 57 diverse subjects covering STEM,
humanities, and social sciences. The benchmark tests knowledge and problem-solving ability with content ranging from
elementary to professional levels. This benchmark has become a standard evaluation metric in the field, with scores
prominently reported for virtually all language models, and uses multiple-choice questions that allow for simple accuracy
calculations.

CMMLU (Chinese Massive Multitask Language Understanding) (CMLU) Developed to address the gap in evaluating
knowledge and reasoning capabilities in Chinese, CMMLU is a comprehensive benchmark covering 67 subjects from
elementary to advanced professional levels across natural sciences, social sciences, engineering, and humanities. The
benchmark includes topics with Chinese-specific answers that may not be universally applicable in other regions or languages,
making it a fully Chinese-oriented evaluation tool.

RACE (Reading Comprehension from Examinations) is collected from English examinations in China designed for
middle and high school students, providing a culturally diverse reading assessment.

XSum evaluates abstract single document summarization systems, focusing on the ability to create concise one-sentence
summaries capturing the essence of articles.

C3 (Chinese Multiple-Choice Machine Reading Comprehension) consists of multiple-choice questions from Chinese
proficiency exams and ethnic Chinese exams.

D. Task Arithmetic Merging
Task Arithmetic (Ilharco et al., 2022) enhances model capabilities through vector operations by leveraging weighted
combinations of task-specific knowledge. Given a base model with weights θpre and task-specific fine-tuned weights
{θft

t }nt=1, task vectors are defined as:

τt = θft
t − θpre (2)

The merged weights are then computed through:

θMerge = θpre + λ
n∑

t=1

τt (3)

where λ controls the magnitude of task-specific adaptations.

E. Full Baseline Results
To validate the efficiency of our proposed method, we conducted comparative experiments against established baseline
techniques. For fair comparison with other baseline methods, we selected the same pruning ratios matching those used
in LaCo (Yang et al., 2024) and ShortGPT (Men et al., 2024) while being lower than those of other approaches. In order
to make a fairer comparison, we reproduced all the results and evaluated them on OpenCompass (Contributors, 2023) as
in LaCo.All experiments run on NVIDIA Tesla A100 GPUs. For each baseline method, we explored three scenarios: (1)
applying each baseline pruning method individually to all candidate models, (2) first pruning each candidate model using
existing methods and then merging them, and (3) first merging the candidate models and then applying pruning techniques.

We use the official implement of LLM-pruner and LaCo, It’s worth noting that when reproducing the LaCo method,

12



Large Language Model Pruning Through Layer Cutting and Stitching

we referenced the hyperparameter settings from the original paper. Due to differences in hardware, we couldn’t fully
reproduce the paper’s results: we couldn’t obtain models with pruning ratios consistent with the paper using the provided
hyperparameters. We maintained consistency in all other parameters while gradually adjusting the threshold from 0.75 until
achieving the desired pruning ratio. The specific parameters are detailed in the Table 5.

For the reproduction of ShortGPT, we implemented the algorithm based on the original paper and similarly sampled 10,000
instances from the PG19 (Rae et al., 2019) dataset as calibration data, following the methodology described in the paper.
The resulting removed layers are shown in the Table. The removed layers for the base model align with those reported in the
ShortGPT paper, albeit in a different sequence. We attribute this variation to slight differences in calculated layer importance
scores. The specific configuration of removed layers for each model is detailed in the Table 6.

For the merging process, we employed task arithmetic with weighting parameters in the range of [0.5, 1.0]. The full results
of the baseline methods on the 7B model and the 13B model are presented in Table 7 and Table 8, respectively.

Table 5. Hyperparameter settings for LaCo results. C: Number of layers combined in each merge; L,H: Layer range [L, H]; I: Minimum
interval between two adjacent merged layers; T : Threshold for representation similarity.

Size Model C L H I T

Llama2-13B

Llama-2-13B 6 1 40 2 0.7
WizardLM-13B 6 1 40 2 0.65
WizardMath-13B 6 1 40 2 0.7
llama-2-13b-code-alpaca 6 1 40 2 0.7
Merge-then-prune 6 1 40 2 0.65
Prune-then-merge 6 1 40 2 0.65

Llama2-7B

Llama-2-7B 6 1 40 2 0.7
Llama-2-7B-Chat 6 1 40 2 0.65
MAmmoTH-7B 6 1 40 2 0.7
Llama-2-Coder-7B 6 1 40 2 0.7
Merge-then-prune 6 1 40 2 0.65
Prune-then-merge 6 1 40 2 0.65

Table 6. Setup of Removed Layers for Candidate Models in ShortGPT.

Model Removed Layers

Llama-2-7B 25, 27, 24, 28, 26, 29, 23, 22, 21

Llama-2-7B-Chat 27, 25, 24, 28, 29, 26, 23, 22, 21

MAmmoTH-7B 27, 25, 24, 28, 29, 23, 26, 22, 21

Llama-2-Coder-7B 27, 25, 24, 28, 29, 26, 23, 21, 22

Llama-2-13B 33, 32, 31, 30, 34, 35, 29, 28, 27, 26

WizardLM-13B 33, 32, 31, 30, 34, 35, 29, 28, 27, 36

WizardMath-13B 33, 31, 32, 30, 34, 35, 29, 28, 27, 36

llama-2-13b-code-alpaca 33, 31, 32, 30, 34, 35, 29, 28, 27, 26
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Table 7. The main results of baseline methods on the 7B model across multiple natural language benchmarks using candidate models:
Llama-2-7B-Chat (LM), MAmmoTH-7B (MAth), Llama-2-Coder-7B (Code), and Llama-2-7B (base). "PTM" (Pruning-then-Merging)
refers to first pruning each candidate model using current pruner and then merging them. "MTP" (Merging-then-Pruning) refers to
first merging the candidate models and then applying pruning. For LLMPruner and SliceGPT, alignment challenges exist after pruning.
LLMPruner removes different model blocks, while SliceGPT calculates orthogonal transformation matrices that are highly dependent on
each model’s specific weight distributions and activation patterns, resulting in incompatible transformation spaces. Therefore, we only
implemented "merge then prune".

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

(ratio/layer) CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama
-7B

Dense

Base 32.98 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 35.53 33.36 19.55 43.84 45.47
Math 32.99 68.60 75.79 39.71 39.42 36.54 50.78 69.36 43.04 32.16 30.36 36.42 20.88 43.45 44.25
LM 31.30 71.28 75.95 36.11 63.46 59.62 64.29 74.77 48.30 33.93 52.52 55.22 22.45 47.56 52.63

Code 32.99 70.27 78.62 41.61 36.54 41.35 57.41 71.04 46.22 32.20 41.25 39.69 18.79 46.25 46.73

LLMPruner
(25.32%)

Base 33.00 58.72 72.25 29.52 41.35 0.00 19.74 57.25 23.69 25.49 22.07 21.10 14.67 28.11 31.93
LM 34.94 59.25 72.85 22.28 43.27 9.62 19.41 57.61 23.77 24.51 21.78 22.42 16.32 28.66 32.62

MATH 32.99 55.74 70.84 25.82 37.50 21.15 18.84 54.31 24.77 25.20 22.87 23.89 10.91 28.00 32.35
Code 32.99 59.57 73.34 30.32 46.15 0.00 20.15 57.28 23.21 25.16 21.56 21.52 15.19 31.07 32.68
MTP 34.71 60.57 73.50 26.62 40.38 5.77 19.90 52.14 24.01 25.30 23.07 22.98 15.51 32.49 32.64

SliceGPT
(26.33%)

Base 31.08 42.90 61.43 19.53 36.54 0.00 20.88 37.95 24.78 24.78 21.24 21.73 6.58 37.42 27.63
LM 31.70 43.50 61.37 18.28 40.38 0.96 21.21 38.96 25.56 25.28 21.93 22.42 13.13 38.36 28.79

MATH 31.89 41.55 58.81 18.43 39.42 4.81 19.49 40.09 25.38 25.02 25.59 26.88 8.78 39.56 28.98
Code 31.81 44.02 63.17 18.48 36.54 13.46 19.74 37.92 24.71 25.22 21.41 21.66 2.59 38.19 28.49
MTP 32.85 37.61 57.56 17.33 53.85 2.88 19.41 42.66 25.22 24.68 25.21 24.72 12.78 40.22 29.78

LACO

Base 32.85 53.33 68.23 31.62 36.54 4.81 20.39 62.02 26.60 25.27 24.70 23.61 9.38 42.47 32.99
LM 32.97 55.24 69.53 31.47 36.54 34.62 22.11 67.22 29.08 26.16 28.53 28.27 14.68 43.51 37.14

Math 32.97 55.24 69.53 31.47 50.00 34.62 22.11 67.22 29.44 26.16 22.53 23.68 14.68 39.34 37.07
Code 32.28 53.68 69.15 32.22 36.54 1.92 20.56 61.99 26.31 25.43 27.10 22.70 11.14 43.07 33.15
MTP 32.43 57.80 71.82 28.97 41.35 16.35 27.52 71.28 30.49 26.88 25.76 27.09 8.27 44.33 36.45
PTM 31.89 56.26 71.22 27.32 39.42 22.12 23.42 72.66 29.30 26.00 25.19 26.81 16.11 43.62 36.52

ShortGPT
(27.1%)

Base 33.09 57.42 66.54 21.53 56.73 48.08 52.5 67.34 43.68 28.31 32.53 31.69 12.40 39.45 42.24
LM 33.85 53.93 63.82 14.59 39.42 22.12 58.48 67.95 35.85 26.60 48.03 51.18 6.93 37.21 40.00

MATH 33.97 56.69 63.38 17.78 54.81 44.23 37.26 69.82 30.68 25.26 28.24 30.29 8.26 31.67 38.02
Code 32.74 56.69 65.07 17.78 58.65 35.58 53.24 67.52 44.82 28.92 35.62 37.53 14.32 40.66 42.08
MTP 34.10 54.18 64.42 16.83 61.54 36.54 55.61 73.21 36.84 25.61 42.94 45.89 10.12 35.73 42.40
PTM 34.10 54.18 64.42 16.83 61.54 36.54 55.61 73.21 36.84 25.61 42.94 45.89 10.12 35.73 42.40
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Table 8. The main results of baseline methods on the 13B model across multiple natural language benchmarks using candidate models:
WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13b-code-alpaca (Code), and Llama-2-13B (Base). "PTM" (Pruning-then-
Merging) refers to first pruning each candidate model using the current pruner and then merging them. "MTP" (Merging-then-Pruning)
refers to first merging the candidate models and then applying pruning. For LLMPruner and SliceGPT, alignment challenges exist
after pruning. LLMPruner removes different model blocks, while SliceGPT calculates orthogonal transformation matrices that are
highly dependent on each model’s specific weight distributions and activation patterns, resulting in incompatible transformation spaces.
Therefore, we only implemented "merge then prune"

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

ratio/layer CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama
-13B

Dense

Base 32.99 74.77 79.71 47.35 50.96 63.46 67.24 71.38 55.84 38.74 57.98 60.17 23.47 47.51 55.11
LM 35.36 70.41 78.73 36.21 57.69 60.58 65.03 73.70 53.48 30.85 66.12 71.66 22.44 52.00 55.30

MATH 32.99 68.78 77.26 44.36 36.54 19.23 60.36 78.44 54.21 38.12 47.74 48.82 19.51 44.66 47.93
Code 32.99 74.82 80.14 47.30 51.92 63.46 68.88 72.72 55.92 39.26 58.03 63.72 24.45 48.38 55.86

LLMPruner
(21.2%)

Base 33.27 63.57 75.41 34.17 37.50 0.00 19.57 45.35 23.08 25.36 21.61 21.80 14.41 29.64 31.77
LM 33.49 60.28 75.57 23.68 39.42 0.00 19.00 63.24 23.27 25.23 22.36 21.45 17.13 32.00 32.58

MATH 32.99 55.49 72.91 30.02 41.35 0.00 19.08 53.18 23.06 25.53 21.36 21.31 12.25 29.10 31.26
Code 33.18 64.21 75.52 34.17 43.27 0.00 19.90 47.80 23.19 25.52 21.61 22.08 16.08 29.59 32.58
MTP 33.86 64.11 73.50 22.18 60.58 0.00 21.46 61.96 23.84 25.62 22.16 21.59 14.98 32.11 34.14

SliceGPT
(23.6%)

Base 30.39 46.69 63.22 18.78 42.31 25.96 25.23 37.83 30.43 25.14 23.47 24.65 8.78 39.56 31.60
LM 33.19 42.44 59.90 18.03 54.81 19.23 32.51 41.22 33.09 25.75 29.45 29.87 9.99 37.75 33.37

MATH 32.73 36.27 59.30 17.38 42.31 0.00 21.62 37.83 30.33 25.16 23.84 24.16 1.54 40.82 28.09
Code 30.82 46.69 63.00 19.18 42.31 27.88 24.82 37.83 31.38 25.20 23.47 24.65 8.83 40.00 31.86
MTP 30.98 46.83 62.57 19.33 51.92 49.04 37.76 38.38 33.55 25.22 23.53 23.05 9.95 39.67 35.13

LaCo
(24.6%)

Base 32.97 59.38 73.45 36.26 37.50 37.50 19.41 57.31 25.03 24.41 22.47 23.19 16.39 37.92 35.94
LM 32.33 60.18 70.57 32.67 34.62 34.62 52.58 62.66 36.26 25.80 60.38 62.53 8.79 49.21 44.51

Math 33.97 56.51 72.25 33.52 44.23 44.23 21.38 64.19 25.35 24.55 21.98 21.94 12.77 37.48 36.74
Code 32.99 59.53 75.03 38.41 51.92 0.00 19.49 53.18 24.48 24.72 22.87 22.28 17.70 37.53 34.30
MTP 33.49 62.50 74.37 35.26 63.46 63.46 18.84 64.65 41.83 24.87 26.10 25.97 15.93 39.51 42.16
PTM 31.85 29.80 51.31 12.74 36.54 36.54 19.57 62.08 24.37 25.19 22.10 22.77 0.40 35.12 29.31

ShortGPT
(24.6%)

Base 32.99 67.07 73.45 36.46 42.31 45.19 66.99 58.56 54.74 38.39 56.89 54.06 18.58 46.19 49.42
LM 32.95 62.64 73.50 28.22 36.54 50.96 65.44 67.71 53.50 30.73 65.52 71.38 19.12 48.60 50.49

MATH 32.99 59.63 70.40 31.12 40.38 1.92 59.71 70.00 52.70 36.94 43.51 44.29 7.73 43.84 42.51
Code 32.92 67.03 74.37 36.41 55.77 46.15 68.96 60.55 54.94 38.30 53.60 58.57 8.41 47.18 50.23
MTP 31.07 63.24 68.61 27.17 49.04 43.27 65.68 78.01 51.26 36.88 57.38 62.67 16.94 44.05 49.66
PTM 31.08 63.32 68.66 27.12 49.04 43.27 65.68 77.98 51.23 36.82 57.40 62.47 17.01 43.95 49.65
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Table 9. Performance comparison of various model pruning strategies across multiple benchmark categories. The settings include LR-only
(Layer Removal only), LS+LR (combined Layer Selection and Layer Removal), FL-merge (Folding Layers Merging), Single-obj (Single-
objective optimization), and PPL-obj (Perplexity-based objective). For multi-objective optimization approaches, three representative
Pareto-optimal solutions (numbered 1-3) are presented.

setting Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

LR-only-LM-1 33.93 57.51 65.49 18.18 62.46 48.03 58.79 62.18 45.76 30.95 49.54 53.36 1.45 38.60 44.73
LR-only-LM-2 33.58 52.10 64.25 19.53 50.00 62.50 63.64 41.80 48.33 32.84 51.03 51.46 5.47 39.56 44.01
LR-only-LM-3 34.96 53.80 66.70 18.58 49.04 58.65 60.61 68.87 47.85 33.54 42.51 43.04 8.05 41.42 44.83
LR-only-Math-1 33.77 54.49 68.23 21.93 62.50 37.50 27.85 57.52 37.08 28.73 31.42 34.05 7.51 37.92 38.61
LR-only-Math-2 31.69 56.56 68.77 27.07 63.46 30.77 36.69 62.35 39.17 29.15 33.39 38.65 4.41 43.34 40.39
LR-only-Math-3 32.94 58.43 69.64 25.97 54.81 25.96 29.89 62.84 33.46 26.92 31.39 32.10 8.06 40.16 38.04
LR-only-Code-1 30.13 57.60 70.35 27.07 63.46 11.54 50.94 65.96 42.64 30.96 36.39 36.77 3.15 43.78 40.77
LR-only-Code-2 34.94 57.37 68.55 28.67 42.31 41.35 54.46 63.00 42.49 27.39 34.88 35.31 4.08 43.78 41.33
LR-only-Code-3 34.93 56.71 69.42 25.92 59.62 31.65 52.83 62.20 43.03 28.80 38.51 39.07 2.87 41.70 41.95
LR-only-Base-1 32.67 54.21 66.00 26.07 36.54 1.92 49.47 64.19 44.47 28.84 38.99 38.86 0.25 41.59 37.43
LR-only-Base-2 32.22 56.48 67.46 26.32 61.54 50.00 41.44 66.91 40.54 28.01 37.94 39.35 0.96 41.92 42.22
LR-only-Base-3 31.13 52.90 67.95 27.97 36.54 0.00 54.63 64.13 43.01 30.03 35.56 37.05 6.79 41.70 37.81

FL-merge-1 32.99 52.90 63.66 19.28 46.15 62.50 60.52 75.20 48.30 34.33 50.77 55.29 6.39 39.40 46.26
FL-merge-2 32.99 51.99 63.44 18.33 46.15 63.46 61.26 74.77 48.80 33.84 51.11 56.34 5.75 37.86 46.15
FL-merge-3 33.89 51.15 62.62 18.63 50.00 61.54 60.44 75.78 48.61 33.96 50.74 55.85 5.72 38.03 46.15

LS+LR-1 34.75 53.65 66.32 17.83 63.46 22.12 59.71 70.61 47.32 33.77 36.62 33.91 8.54 42.35 42.21
LS+LR-2 31.74 55.25 68.39 26.77 63.46 10.58 58.72 66.27 47.40 33.15 40.02 45.26 2.62 44.16 42.41
LS+LR-3 32.92 55.84 65.07 17.98 63.46 26.92 58.97 51.22 48.97 34.61 48.68 49.44 8.33 42.41 43.20

Single-obj 32.15 56.02 67.46 19.08 39.42 48.08 62.33 74.43 47.40 34.14 50.94 52.86 12.35 41.97 45.62
PPL-obj 33.39 23.89 52.07 14.84 45.19 7.69 19.33 39.51 24.25 24.69 22.81 21.17 0.06 26.36 25.38

Table 11. The main results of the Llama3-8B model across multiple natural language benchmarks using candidate models: Meta-Llama-3-
8B-Instruct (LM), MathCoder2-Llama-3-8B (Math), Code-Llama-3-8B (Code), and Meta-Llama-3-8B (Base). "PTM" (Pruning-then-
Merging) refers to first pruning each candidate model using the current pruner and then merging them. "MTP" (Merging-then-Pruning)
refers to first merging the candidate models and then applying pruning.

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

ratio/layer CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama3
-8B

Dense

Base 32.98 74.67 80.96 73.78 56.73 36.54 73.79 69.97 64.74 50.79 63.21 70.54 3.28 55.18 57.65
LM 33.00 71.08 80.69 65.53 55.77 69.23 76.66 78.87 65.97 53.64 76.44 81.75 17.97 63.95 63.61

Math 32.99 71.66 77.97 57.09 37.50 58.65 68.22 69.08 62.08 45.85 64.75 69.08 8.68 53.86 55.53
Code 32.98 65.56 74.70 78.42 61.54 61.54 63.47 78.35 48.03 34.55 52.40 58.43 19.36 46.41 55.41

ShortGPT
(24.6%)

Base 36.00 31.36 62.84 25.77 36.54 63.46 53.97 50.61 36.05 33.83 30.73 32.38 1.17 38.96 38.12
LM 32.83 45.06 65.78 23.38 41.35 53.85 39.56 63.73 32.37 28.69 40.14 45.19 3.68 43.51 39.94

Math 32.98 42.89 63.00 17.18 36.54 36.54 45.37 46.30 33.95 29.71 28.87 30.22 1.45 40.49 34.68
Code 32.26 45.99 64.96 17.03 36.54 36.54 36.20 63.98 28.78 26.25 27.27 29.46 3.57 39.01 34.85
MTP 32.98 48.51 64.85 18.33 36.54 35.58 42.83 67.06 33.05 28.73 30.07 32.66 3.64 44.33 37.08
PTM 32.95 48.58 64.96 18.43 36.54 35.58 42.83 67.22 33.05 28.71 30.16 32.45 3.66 44.27 37.10

16



Large Language Model Pruning Through Layer Cutting and Stitching

Table 10. Model Performance Comparison Across Pruning Ratios
Model Prune Ratio Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Base 0 32.98 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 35.53 33.36 19.55 43.84 45.47
Base 12.5 32.99 67.06 74.92 39.61 36.53 1.92 57.41 69.36 47.15 31.61 39.11 38.65 17.59 44.60 42.75
Base 25 32.98 63.80 69.21 35.37 36.54 0.00 50.78 64.74 40.80 30.31 35.19 35.62 16.11 43.51 39.64
Base 37.5 32.58 45.04 61.53 20.68 36.54 2.88 42.18 64.43 39.87 29.42 31.90 29.74 2.77 41.37 34.35
Base 50 34.51 34.89 55.33 17.08 36.54 11.54 19.82 62.29 28.72 25.10 23.41 26.04 1.21 35.07 29.40
Base 62.5 35.14 29.71 52.83 14.94 39.42 1.92 21.46 50.06 24.55 25.16 26.76 25.42 0.09 27.62 26.80
Base 75 34.94 26.71 51.03 13.59 36.54 8.65 20.56 52.60 24.23 24.47 23.18 22.63 0.08 27.29 26.17

LM 0 31.30 71.28 75.95 36.11 63.46 59.62 64.29 74.77 48.30 33.93 52.52 55.22 22.45 47.56 52.63
LM 12.5 32.42 67.58 72.72 28.91 50.92 60.50 60.92 72.88 46.69 32.02 51.34 54.45 18.26 45.94 49.68
LM 25 30.10 60.63 66.82 20.53 48.96 42.31 65.88 70.82 42.09 32.40 48.23 50.43 15.75 43.62 45.11
LM 37.5 33.29 45.13 60.66 20.03 36.54 11.73 59.38 68.07 39.18 29.64 39.71 42.20 6.36 41.04 39.40
LM 50 34.93 34.67 56.20 16.18 36.54 8.65 22.28 62.14 32.01 26.44 25.39 25.49 2.34 35.01 29.88
LM 62.5 34.11 30.50 53.21 14.34 51.92 2.88 20.56 57.95 24.58 25.21 23.13 23.75 0.18 27.12 27.82
LM 75 34.87 27.03 52.19 14.54 39.42 0.00 20.23 53.87 24.45 24.83 21.41 22.14 0.02 26.69 25.82

Math 0 32.99 68.60 75.79 39.71 39.42 36.54 50.78 69.36 43.04 32.16 30.36 36.42 20.88 43.45 44.25
Math 12.5 32.97 64.72 73.06 37.50 23.08 23.07 51.43 71.16 42.91 31.90 32.99 36.07 19.30 43.83 41.71
Math 25 34.92 46.24 61.92 19.38 36.54 56.73 45.45 72.81 35.07 29.78 31.45 34.33 6.24 39.89 39.34
Math 37.5 32.99 55.42 62.81 23.82 38.38 4.81 37.87 68.68 36.46 27.19 28.02 33.79 13.88 39.37 36.04
Math 50 32.73 35.93 55.06 16.73 39.42 39.42 20.15 64.34 29.94 25.52 26.82 26.60 2.31 35.56 32.15
Math 62.5 34.93 31.06 54.08 13.79 58.65 4.81 20.56 46.24 26.70 25.05 26.56 26.53 0.57 28.33 28.42
Math 75 34.94 27.35 52.07 14.39 43.27 2.88 20.88 56.51 24.25 23.14 24.76 24.79 0.15 27.45 27.20

Code 0 32.99 70.27 78.62 41.61 36.54 41.35 57.41 71.04 46.22 32.20 41.25 39.69 18.79 46.25 46.73
Code 12.5 32.97 65.79 75.78 39.06 36.54 0.96 56.67 71.13 47.09 32.00 44.73 44.84 19.21 47.29 43.86
Code 25 32.99 63.06 72.02 35.67 36.54 0.00 50.59 68.87 40.50 28.87 36.64 38.59 17.59 45.64 40.51
Code 37.5 33.21 44.12 62.13 20.78 36.54 2.88 48.81 63.91 40.29 29.56 36.25 35.52 5.35 42.14 35.82
Code 50 34.93 34.15 54.95 16.73 36.54 17.31 22.03 62.54 28.46 25.16 24.13 24.44 2.03 36.62 30.00
Code 62.5 34.72 29.67 52.99 14.39 40.38 8.65 22.52 50.70 24.78 25.15 27.16 28.04 0.12 27.78 27.50
Code 75 34.94 26.79 50.82 13.99 38.46 5.77 24.08 48.38 24.08 24.52 22.73 22.49 0.13 27.29 26.03

Ours 0 36.88 73.16 78.67 39.46 64.46 45.19 65.37 78.43 49.75 35.08 58.78 61.65 24.50 49.33 54.34
Ours 12.5 33.00 66.78 75.19 34.92 64.42 63.46 63.98 75.87 48.79 34.13 53.89 56.20 20.21 45.37 52.59
Ours 25 32.99 57.31 68.34 22.38 63.46 63.46 57.58 62.17 45.92 30.96 52.20 56.06 7.12 39.67 47.11
Ours 37.5 35.67 51.02 63.44 20.68 62.50 22.00 57.99 67.52 47.09 34.11 44.00 46.38 2.96 39.34 42.00
Ours 50 33.97 41.99 58.16 21.08 38.54 24.12 26.52 46.03 32.32 28.30 28.99 28.88 6.30 36.11 32.23
Ours 62.5 33.30 28.34 51.96 18.09 46.15 6.88 23.88 45.81 26.41 26.95 28.73 28.72 5.09 28.47 28.48
Ours 75 34.93 30.45 49.18 20.48 39.54 10.81 21.98 45.29 25.28 24.68 26.30 26.93 0.46 28.38 27.47
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Table 12. Architecture Parameters of pruned 13B models
Layer Model-1 Model-2 Model-3

Type Merge
Factor

Output
Scale Type Merge

Factor
Output
Scale Type Merge

Factor
Output
Scale

0 Base - 1.00 LM - 1.00 LM - 1.00
1 LM - 1.00 LM+Math 0.64 1.00 Base - 1.00
2 LM - 1.00 LM+Code 0.60 1.05 LM+Code 0.60 1.05
3 LM - 1.00 LM - 1.00 LM+Code 0.60 1.00
4 LM - 1.00 LM - 1.00 LM - 1.00
5 Code - 1.00 LM+Math 0.59 1.00 LM+Math 0.58 1.00
6 Base - 1.00 LM - 1.00 LM - 1.00
7 LM - 1.00 LM+Math 0.60 1.00 LM+Math 0.60 1.00
8 LM - 1.00 LM - 1.00 LM+Code 0.59 1.00
9 LM - 1.00 LM - 0.84 LM - 0.93

10 LM - 1.00 LM - 1.02 LM - 1.22
11 LM - 1.00 LM+Code 0.66 0.77 LM+Math 0.66 1.00
12 LM - 0.91 LM+Code 0.60 1.00 LM+Code 0.60 1.13

13 LM+Code 0.70 1.00 LM+Math 0.60 1.00 LM+Math
+Code 0.60 1.11

14 LM+Math 0.70 1.00 LM+Math 0.60 1.00 LM - 1.00
15 LM - 1.00 LM+Math 0.70 1.00 LM+Math 0.66 1.00
16 Base - 1.00 LM+Math 0.60 1.00 LM+Math 0.60 1.00
17 LM - 1.00 LM - 1.00 LM - 1.00
18 LM - 1.00 REMOVED REMOVED
19 LM+Code 0.70 1.00 LM+Code 0.60 1.00 LM+Code 0.60 1.01
20 LM+Code 0.70 1.00 LM - 1.00 REMOVED
21 LM - 1.00 Base - 1.07 Base - 1.07
22 LM - 1.00 Math - 1.00 LM+Math 0.60 1.09
23 LM - 1.00 REMOVED REMOVED
24 LM - 1.00 Base - 1.01 Base - 1.01
25 REMOVED REMOVED REMOVED
26 REMOVED LM - 1.04 LM - 1.04
27 REMOVED REMOVED REMOVED
28 REMOVED REMOVED REMOVED
29 REMOVED REMOVED REMOVED
30 REMOVED Base - 1.00 Base - 1.00
31 REMOVED REMOVED REMOVED
32 REMOVED REMOVED LM - 1.00
33 REMOVED REMOVED REMOVED
34 LM - 1.00 Base - 1.00 Code - 1.00
35 Base - 1.00 LM - 1.13 LM - 1.28
36 LM - 1.00 REMOVED REMOVED
37 LM - 1.00 LM - 1.00 LM - 1.00
38 LM - 0.75 LM - 1.00 Math - 1.00
39 REMOVED Math - 1.00 Math - 1.00
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Large Language Model Pruning Through Layer Cutting and Stitching

Table 13. Architecture Parameters of pruned 7B models

Layer Model-1 Model-2 Model-1

Type
Merge
Factor

Output
Scale

Type
Merge
Factor

Output
Scale

Type
Merge
Factor

Output
Scale

0 LM - 1.00 Math+Code 0.48 1.00 LM+Math 0.48 0.92
1 LM+Math+Code 0.50 1.00 LM - 1.00 LM - 1.00
2 LM - 1.03 LM+Code 0.52 1.06 LM - 1.03
3 LM - 1.00 Base - 0.98 Math - 1.05
4 LM - 1.04 LM - 1.11 LM - 1.11
5 LM+Code 0.59 1.08 LM+Math 0.38 1.12 LM - 1.13
6 Code - 1.19 Math - 1.25 Code - 1.11
7 Code - 0.88 LM+Code 0.50 0.77 LM+Code 0.50 0.77
8 LM - 1.28 LM - 1.34 LM - 1.19
9 LM - 0.86 LM - 0.93 LM+Code 0.51 0.56
10 Base - 1.00 LM - 1.00 LM - 1.00
11 LM+Math 0.50 1.00 Math - 1.02 LM - 1.05
12 LM - 1.00 LM+Math 0.41 0.99 LM+Math 0.41 1.00
13 Math - 1.00 LM+Math 0.50 1.20 LM+Math 0.58 1.20
14 LM+Math 0.60 1.00 LM - 1.00 LM+Math 0.54 1.00
15 LM - 1.18 Code - 0.97 Code - 1.05
16 LM+Math 0.50 1.00 LM+Math 0.50 1.00 LM+Math 0.45 1.00
17 LM+Math+Code 0.50 1.00 Code - 1.00 Math+Code 0.50 1.00
18 Math+Code 0.50 1.00 Base - 1.00 Base - 1.01
19 REMOVED REMOVED REMOVED
20 REMOVED REMOVED REMOVED
21 LM - 1.00 REMOVED LM - 1.00
22 REMOVED REMOVED REMOVED
23 REMOVED REMOVED REMOVED
24 REMOVED LM - 1.00 REMOVED
25 REMOVED REMOVED REMOVED
26 REMOVED REMOVED REMOVED
27 LM - 1.00 Base - 0.99 LM - 0.99
28 REMOVED LM - 1.00 REMOVED
29 LM+Code 0.50 1.00 LM - 1.00 LM+Code 0.50 1.00
30 REMOVED REMOVED REMOVED
31 LM+Math 0.50 1.00 REMOVED LM+Math 0.50 1.00
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