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ABSTRACT

Several accounts of human cognition posit that our intelligence is rooted in our
ability to form abstract composable concepts, ground them in our environment,
and reason over these grounded entities. This trifecta of human thought has
remained elusive in modern intelligent machines. In this work, we investigate
whether slot representations extracted from visual scenes serve as appropriate
compositional abstractions for grounding and reasoning. We present the Neu-
ral Slot Interpreter (NSI), which learns to ground object semantics in slots. At the
core of NSI is an XML-like schema that uses simple syntax rules to organize the
object semantics of a scene into object-centric schema primitives. Then, the NSI
metric learns to ground primitives into slots through a structured objective that
reasons over the intermodal alignment. We show that the grounded slots surpass
unsupervised slots in real-world object discovery and scale with scene complexity.
Experiments with a bi-modal object-property and scene retrieval task demonstrate
the grounding efficacy and interpretability of correspondences learned by NSI.
Finally, we investigate the reasoning abilities of the grounded slots. Vision Trans-
formers trained on grounding-aware NSI tokenizers using as few as ten tokens
outperform patch-based tokens on challenging few-shot classification tasks.

1 INTRODUCTION

Humans possess a repertoire of strong structural biases, a kind of abstract knowledge that enables
us to perceive and rapidly adapt to our environments (Griffiths et al., 2010). Compositionality is one
such structural prior that helps us systematically reason about complex stimuli as a whole by recur-
sively reasoning about its parts (Zuberbiihler, 2019; Lake & Baroni, 2023). We decompose broad
motor skills into finer dexterous finger movements, sentences into words and phrases, and speech
into phonemes. In the visual world, the concept of “objectness” serves as a natural compositional
prior, enabling us to decompose novel scenes into familiar objects and reason about their properties
(Lake et al., 2016). We also have the uncanny ability to connect real-world entities and concepts
to these abstract object-like symbols in our heads, canonically referred to as the grounding problem
(Harnad, 1990; Greff et al., 2020). For instance, human infants, while looking at a zebra for the
first time, might excitedly conclude that it is, in fact, “a striped horse.” If grounded object-like rep-
resentations are fundamental to human-like compositional generalization, how do we instill these
inductive biases into neural network representations?

Unsupervised object-centric autoencoder models (Burgess et al., 2019; Greff et al., 2019; 2020; Lo-
catello et al., 2020; Engelcke et al., 2019; 2021; Singh et al., 2021; Chang et al., 2023b; Seitzer et al.,
2023; Kori et al., 2024) have become increasingly adept at learning object-centric representations
called slots from raw visual stimuli. Further work has demonstrated that learned slots can be flexi-
bly composed together for tasks like scene composition, causal induction, learning intuitive physics,
dynamics simulation, and control (Dedhia et al., 2023; Jiang et al., 2023; Wu et al., 2023a;b; Chang
et al., 2023a; Jabri et al., 2023). While object slots hold promise as a compositional building block
for machines that mimic human abstraction and generalization, a key challenge emerges. Unlike hu-
mans, these learned slots lack grounding in real-world concepts. For example, a slot representation
of an object like “apple” could refer to the fruit, the company, or a generic round artifact. Without
grounding, a slot-based system cannot disambiguate these meanings effectively (Haugeland, 1985)
and is fundamentally limited in its embodied reasoning abilities. Prior works (Locatello et al., 2020;
Seitzer et al., 2023; Kori et al., 2024) have tackled learning to ground slots by predicting object
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properties (texture, material, category, etc.) from the representations. The grounding objective is,
therefore, implicit within the prediction of object semantics. However, ground truth correspondences
between object concepts and slots are generally unknown, restricting prediction to a set-matching
template. Under a set-matching framework, a single slot predicts object properties of a single object,
thereby constraining the grounding information assimilated per slot. We circumvent the limitations
of prediction as a surrogate for grounding by making the grounding objective explicit in the form of
a co-training paradigm that we call the Neural Slot Interpreter (NSI).

The core insight behind NSI is simple: instead of
predicting a single object-concept from a slot, assign
multiple concepts to slots over a shared latent space.
Our primary contribution is a similarity metric that
explicitly reasons about the intermodal assignments.
Notably, the proposed metric for NSI supplants the
one-object-per-slot assumption and facilitates flexi-
ble assignment. Contrastive learning over the sim-
ilarity objective yields grounded slots that outper-
form their ungrounded and set-matched counterparts
over a broad swath of tasks (see Fig. 1). We propose
an object-centric annotation schema in Section 3.1
for dense alignment to organize scene annotations
for grounding into slots. We describe the design of
a hierarchical transformer-based architecture in Sec-
tion 3.2.2 to extract neural representations from the
schema. To enable slots to ground a wide array of
Figure 1: NSI abstracts grounded slots concepts flexibly without relying on matching tem-
from scenes and enhances object discovery, plates, we formulate a bi-level scoring metric over a
grounding efficacy, and downstream reason- learned latent space in Section 3.2.

ing abilities of slot representations.

—— Ungrounded slots Set Match Slots NSI Slots

Do NSI modules require specialized training
recipes? Our experiments demonstrate that NSI is a plug-and-play paradigm that can be easily
augmented to the traditional object-centric learning objective. Does NSI preserve compositional-
ity? NSI preserves and often improves visual compositionality, as shown in Section 4.2, where we
demonstrate its competitiveness on object discovery benchmarks. Are notions of objects effectively
grounded in emergent slot representations? We validate the efficacy of grounded slots on a bimodal
property-image retrieval task in Section 4.3, where we show that NSI surpasses the state of the art.
Are NSI-grounded slots effective substrates for visual reasoning? In Section 4.4, we train a vision
transformer (ViT) (Dosovitskiy et al., 2021) for a scene classification task where significantly fewer
grounded slot tokens show improved performance and adaptability over traditional patch-based to-
kens. Can dense associations learned by NSI inform real-world reasoning systems? Our experi-
ments described in Appendix F.1 show the usefulness of learned correspondences in identifying and
locating objects in diverse scenes. Concretely, our contributions are as follows:

1. We present NSI, a co-training grounding paradigm for object-centric learners. We also propose
an object-centric annotation schema called visXML for dense slot-label alignment. We formulate
a similarity metric that measures scene-schema similarity by recursively reasoning over the sim-
ilarity of compositional attributes of the respective modalities. NSI utilizes the metric to ground
slots via a contrastive learning objective.

2. Our experiments demonstrate the efficacy of NSI over a wide array of tasks that encompass
(1) object discovery, (2) scene-property retrieval, (3) few-shot scene classification, and (4) object
detection. Overall, we find that grounded slot representations are key to object-centric perception,
property grounding, and downstream adaptability for object-centric reasoning.

2 RELATED WORK

Object-Centric Learning. Researchers have formulated inductive biases for learning composable
visual representations called ‘slots’ from raw visual stimuli (Burgess et al., 2019; Greff et al., 2019;
Locatello et al., 2020; Greff et al., 2020; Engelcke et al., 2019; 2021; Singh et al., 2021; Seitzer
et al., 2023) and auxiliary temporal information (Kipf et al., 2021; Elsayed et al., 2022; Singh et al.,
2022). While this line of work demonstrates unsupervised object discovery, the adoption of slot
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representations for grounding scenes remains largely underexplored. Prior works have been limited
to using the Hungarian Matching Criterion to align slots to ground-truth property labels for property
prediction (Locatello et al., 2020) or fine-tuning shallow property predictors on pre-trained back-
bones (Seitzer et al., 2023). A recent work (Kori et al., 2024) improves the predictive power of slots
by learning quantized priors. Fundamentally, the single-object prediction per slot constraint poses
the difficult problem of learning highly specialized representations. In contrast, this work proposes
an approach that explicitly reasons about grounding via a flexible assignment metric.

Visual Tokenizers. Patch-based tokens have been adopted as the standard for visual understanding
(Dosovitskiy et al., 2021) and generation (Peebles & Xie, 2023). Variations of this template include
discretized patch tokens (Du et al., 2024), mixed-resolution patch tokens (Ronen et al., 2023), and
pruned patch tokens (Kong et al., 2022; Tang et al., 2023). Beyond patches, recent works have
explored region-based tokens (Ma et al., 2024). However, these tokenizers are inherently grounding-
agnostic, in contrast to humans, who possess the ability to abstract concepts based on linguistic or
cultural grounding priors, (Segall et al., 1966; Winawer et al., 2007). To this end, our work explores
a grounding-aware tokenizer.

Program Induction. Such problems occur in many guises across computer vision (Li et al., 2020;
Wau et al., 2017), natural language processing (Xu et al., 2018; Devlin et al., 2017), and cognitive
science (Ellis et al., 2020). Grounding slots in an annotation schema via NSI is akin to neural
program induction in the schema space.

3 NEURAL SLOT INTERPRETERS
Recall that the goal of NSI is to ground concepts into slot representations such that the objects

contained within the slot align with the embodied notions of the object. We begin by discussing our
proposed Extensible Markup Language (XML) for annotating object concepts.

3.1 visXML OBJECT-CENTRIC ANNOTATION SCHEMA

visXML is a simple markup syntax for ab-
stracting scene labels as a collection of objects

) and their associated properties. Instances in
<element:idl><cat>person</cat> A . . . . .
AV <BBoR>. ... </Bbox></elenent> visXML comprise multiple object-centric prim-
|y Solementiidzccatyive/caty itives. Primitives, in turn, are instantiated with
¥ <erement  1a3><cat>conehe/cats respective object properties 'tha't'form atomic
| bbox>..... </bbox></element> units of the language. Each primitive starts with
A element: i cat>cloc] ca: 1 1 1
Slementiiddyscaclock/cat an <element> tag that identifies a unique ob-
a <elenent:ids><catopersonc/cat> ject in the scene. The <p;> tags form the chil-
<Bbox>..... </Bbox></element> dren of the <element> tags and capture prop-
A e o e emants erties p1,--- ,py of the parent object. Some
examples of <p;> tags are, but not limited to,

shape, material, category, and object position.
Figure 2: visXML description of a real-world Thus, instance primitives naturally capture the
scene. The dotted arrows show correspondences notion of an object and neural representations
between primitives and the objects they annotate. extracted from primitives are, as such, well
suited for being grounded in slots. In Section 4.1, we demonstrate the straightforward application
of visXML organization on popular datasets. See Fig. 2 for an example instance and Appendix B.3
for more examples. On a more practical note, such markup languages are commonly-used soft-
ware abstractions and can be ubiquitously interfaced with graphics engines, web APIs, or even large
language models for semantic understanding (Dunn et al., 2022; Bubeck et al., 2023).

3.2 NSI GROUNDING TECHNIQUE

Scenes and their corresponding visXML instances capture object-centric representations through
slots and primitives, respectively. NSI learns to align the object-centric representations of the re-
spective modalities, i.e., slots and primitives, by grounding neural representations of schema primi-
tives into slots (see Fig. 3). The grounding is learned by optimizing a contrastive learning objective
over ground-truth scene-schema pairs (see Fig. 4). We describe the scene and schema encoder next.
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Figure 3: NSI Architecture. NSI augments object-centric learning autoencoders with a contrastive
learning objective over a batch of scene-schema pairs. A DINOSAUR backbone (Seitzer et al.,
2023) extracts slot representations S1% from a batch of scenes and a schema encoder extracts neural
primitives Z1*Y from their corresponding schema pair. The slots are then passed to a decoder for

reconstruction and the slot-primitive neural pairs are passed to the contrastive learning objective.

3.2.1 LEARNING SCENE REPRESENTATIONS

A given scene I, is represented via K slots S} € RE*4 abstracted from its perceptual features
H, € R, For a given feature extractor £,(.), the slots are obtained as

H,=E&s(I,) = S =SA(H,)— Slot Attention (1)

A spatial broadcast decoder Dy(.) (Locatello et al., 2020) reconstructs the features from slots, with
the reconstruction error used as a learning signal:
2

H;c =Dy (Sgng) = Lrecon = HHQI, - H;r 2

3.2.2 LEARNING SCHEMA REPRESENTATIONS

A bi-level architecture (see Appendix C.2) learns neural representations of the visXML primitives.
First, a lower-level primitive encoder learns property-specific dictionaries D(.) and embeds the prop-
erty features into neural primitive representations. For discrete-valued properties, D(.) is modeled
as a simple lookup table of learnable weights, while continuous-valued properties are embedded via
multi-layered perceptrons (MLPs). Let the dictionary D;(.) learn features for property p;. Then, a
primitive embedding Z,;,, is computed as:

Z = concat [D1(p1),--- . Dy(ps)] = Zprim = MLP(Z) 3)

Note that these lower-level representations are schema-agnostic and only capture object-specific
features. Then an upper-level schema encoder uses a bidirectional schema Transformer to further
embed primitives, endowing representations with the overall schema context. For a given schema in-
stance P, with N primitives, the final representations Z} € R">*? are computed via Transformer

7-schema(-) as:

Z;:N = ﬁchemu (Z;rima te 7ZIJ)\7’-im) (4)

3.2.3 COMPOSITIONAL SCORE AGGREGATION

Recall that we want to ground entities Z;’N into the entities S1%. As a first step, we project these

embeddings into a shared semantic space Y € Réroi. The projection head Hscene(.) for slots is
modeled as the following residual network:

YF = W,0SE, W e Rlpreixd = yE_yk L MLP (LayerNorm (fﬂf)) (5)

Here, Layer N orm denotes the layer normalization operation. A separate residual head Hscpemal(-)
projects the primitive representations Z;:N into the semantic embeddings YylzN . Next, we supplant
the traditional single object per slot assumption by assigning each primitive to its nearest slot in the
latent space, as measured by dot-product similarity. The similarity score S, between a scene = and
primitive y is the sum of nearest-neighbor similarities resulting from the primitive-slot assignment.

ky= argmax YAV = S,= Y. max (Y"”‘TYy"> 6)

xr
k6{1,~-,K} nEln-NkE{l’m’K}
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(a) Compositional Score Aggregation (b) Contrastive Learning Objective
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)

Figure 4: NSI similarity metric. (a) The inner loop of the metric computes the score S, between
compositional abstractions of an image I, and a schema P,. Object slots and schema primitives are
projected onto a shared embedding space and every latent primitive is assigned to its nearest slot
for score aggregation. (b) The S, scores obtained from local entities are used to optimize a global
contrastive learning objective in the outer loop over a batch of image-schema pairs.

3.2.4 CONTRASTIVE LEARNING OBJECTIVE

The modality-specific embeddings and the resultant grounding are learned by optimizing a con-
trastive learning objective. More precisely, given a B-sized batch of {scene, schema} pairs, we use
the S, scores to distinguish the B correct pairs from the B> — B incorrect pairs. The probability
of correctly classifying schema P, as the true pairing for scheme I, (and conversely predicting I,
from P,) is formulated as follows:

]P;;chema exp (SII/T) ]P)icene _ €xp (Sfﬂfﬂ/T) (7)

= =
Zye{l,-~~ ,B} TP (Say/T) Zye{l,--- ,B} €TP (Sya/T)

Here, the calculated scores are interpreted as logits and 7 denotes the temperature parameter. The
cross-entropy losses for scene and schema prediction are given by:

‘Cschema = - Z lOg (Pichema) ;‘Cscene - — Z lOg (Picene) (8)
ze{l,---,B} ze{l,-,B}

The global contrastive learning objective is based on a symmetric cross-entropy (CE) loss as follows:

»Ccontrastive = (Escene + ['schema)/2 (9)
The overall training objective for NSI is given by:
['train = 61 X Lcontrastive + /82 X ‘Crecon (10)

Note that 51 = 0.0, 82 = 1.0 corresponds to traditional autoencoder object-centric learning frame-
works. Appendix C.3 presents the NSI pseudocode.

4 EXPERIMENTS

In this section, we set up experiments to answer (1) whether the NSI objective leads to the emergence
of slots that bind to raw object features, (2) whether the slots are concurrently and coherently imbued
into the notion of the object properties, and (3) if the slots are effectively grounded, do they enable
improved reasoning over objects.

4.1 visXML INSTANTIATION AND ARCHITECTURE BACKBONE

Our experiments encompass different tasks on scenes ranging from synthetic renderings to in-the-
wild scenes viz. (1) CLEVr Hans (Stammer et al., 2020): objects scattered on a plane, (2) CLEVrTex
(Karazija et al., 2021): textured objects placed on textured backgrounds (3) MOVi-C (Greff et al.,
2022): photorealistic objects on real-world surfaces, and (4) MS-COCO 2017 (Lin et al., 2015):
a large-scale object detection dataset containing real-world images. In a pre-processing step, we
organize scene labels into the visXML schema (Section 3.1). The property tags <p;> that populate
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Dataset Property tags <p;>
CLEVr Hans <color>, <shape>, <material>, <size>, <3D position>
CLEVrTex <texture>, <shape>, <size>, <3D position>
MOVi-C <category>, <scale>, <2D position>, <bounding box>
MS-COCO 2017 <category>, <bounding box>

Table 1: Property tags used to instantiate and ground schema primitives.

schema primitives in each dataset are listed in Table 1. We use the schema instances to ground object
information in their corresponding scenes via NSI. See Appendix B.3 for visXML instances.

We followed the DINOSAUR (Seitzer et al., 2023) recipe for learning slot representations. DI-
NOSAUR uses semantically-informative DINO ViT (Caron et al., 2021) features as an autoencoding
objective, significantly improving real-world object-centric learning abilities. More specifically, we
train an MLP decoder to reconstruct features from slots for all our experiments. Training details and
hyperparameters are given in Appendix D.2.

4.2 OBIJECT DISCOVERY

Object-centric frameworks have been traditionally used to bind neural network representations to
distinct objects within a scene. Here, we evaluate whether grounded slots are more adept at discov-
ering objects in the context of visual segmentation. To systematically probe the effect of grounding,
we use a common backbone trained within the same compute budget and ablated across the ground-
ing continuum: (a) ungrounded slots derived from the autoencoder objective, (b) set-matching
prediction via Hungarian Matching Criterion (HMC), and (c) latent semantic assignment via NSI.

For each method, we extracted object masks from the backbone derived from slot-attention clusters
and reported two segmentation metrics in Fig. 5(a): (1) Foreground Adjusted Rand Index (FG-
ARI): measures the accuracy of clustering foreground objects into their respective segments and
(2) Mean Best Overlap (mBO): assesses the best overlap between predicted and ground truth object
masks. We report both instance (mBO?) and class (mBO°) level mBO scores for COCO. Mask
instances are shown in Fig. 5(b). We observed that:

(a) NSI endowed slots meaningfully segment objects. Object masks generated by NSI are com-
petitive on synthetic scenes and markedly improve object discovery on COCO scenes. We posit
that contrastive learning via NSI enhances symmetry breaking of the slot attention backbone
for challenging real-world scenes, effectively binding slots to raw visual features.

(b) HMC matching obscures object discovery on COCO. Constraining slots to predict a single
object forces the backbone to develop specialized representations for each object. In real-world
scenes, this imposes a difficult learning problem and causes slots to deteriorate.

(c) NSIis biased towards semantic classes over instance classes. On COCO instances, semantic
segmentation scores (mBO°) are higher compared to the baseline. We attribute this to the NSI
metric that biases slots to represent broader categories by grounding multiple objects.

4.3 GROUNDED COMPOSITIONAL SEMANTICS

Grounded concepts should be effectively aligned to the slots they represent. To this end, we set up
a bimodal scene-property retrieval task that evaluates the grounding efficacy of various methods,
i.e., the degree to which they learn to associate object properties with their representations. In the
first half, models retrieve a set of object properties from a database, given the scene, using their
respective alignment scores. In the second half, the task is inverted, where the models search for
scenes, given the object properties. We use the test split across datasets as a retrieval database. For
NSI, we use similarity scores S, as the retrieval metric and also evaluate various comparisons.

(a) CLIP embeddings: Such embeddings (Radford et al., 2021) form a strong non-slot baseline.
Here, we encode the schema as a string and measure the similarity between the text-image
CLIP embeddings.

(b) Ungrounded slots (Seitzer et al., 2023): We freeze the backbone and fine-tune a shallow pre-
dictor on it for property prediction using HMC (Kuhn, 1955). Subsequently, we use HMC
scores for retrieval.
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Figure 5: Object discovery results. (a) Segmentation results on three datasets. We report scores
of FG-ARI (higher is better) and mBO (higher is better). We also show scores relative to the
ungrounded baseline on top of each bar. (b) Visualization of attention masks learned by different
models on instances of the datasets. See Appendix E.1.1 for error bars and more results.

(c) HMC matching: We fine-tune the slot architecture end-to-end to predict object properties from
slots. We use the optimal HMC scores of fine-tuned slots for retrieval.

(d) Ablations: On NSI, where NSI-ResNet 34 replaces DINO ViT with the ResNet backbone, as
described in (Elsayed et al., 2022), and on NSI-Schema Agnostic where schema primitives are
encoded without the schema Transformer (Appendix C.2).

In Fig. 6(a),(b),(c), we report Recall@(1/5), which denotes the accuracy with which the correct
scene (property) is among the top (1/5) retrieved entities.

(a) Grounded slots via NSI significantly improve semantic alignment compared to set match-
ing: NSI and its ablations that explicitly reason about compositional semantics enable improved
retrieval compared to slots that rely on set-matching prediction. The performance gap widens
as we evaluate the methods on more realistic datasets like MOVi-C and COCO.

(b) The full model is essential: Schema-agnostic encoders that encode object primitives inde-
pendently perform sub-par compared to NSI. The pre-trained DINO backbone is crucial for
textured objects and real-world generalization, as evidenced by CLEVrTex/COCO results.

(c) Non-compositional embeddings inadequately capture object semantics: CLIP embeddings
fall short in capturing object properties beyond basic semantic categories. Moreover, natural
language appears insufficiently equipped for object-centric grounding (Chandu et al., 2021).

Qualitative interpretation: In Fig. 6(d),(e),(f), we visualize the slot-object pairs inferred by our
scoring metric. Interpretable and dense correspondences emerge from NSI contrastive learning. In
real-world COCO scenes, we find that slots ground as many as ten objects. See Appendix E.2.6 for
more results.
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Figure 6: Retrieval results. (a), (b), (c) Property and scene retrieval results. We report Recall@1/5
(higher is better). Standard deviation (over five seeds) was < (.3 across all model instances and
retrieval tasks. (d), (e), (f) Visualization of correspondences learned by the NSI similarity metric.
The colored arrows show the respective correspondences of schema primitives to the slots. Each
schema instance is chunked and color-coded by the slot to which its primitives are assigned.

4.4 GROUNDED SLOTS AS VISUAL TOKENS

Grounding-agnostic patch-based tokens are the de facto standard for transformer-based models. On
the other hand, humans can flexibly abstract out entities free of rigid geometric templates. Here, we
investigate the ability of grounded slots to bridge this abstraction gap by training a ViT architecture
on slot-based tokenizers for a few-shot classification task. The test suites are derived from the
CLEVr-Hans reasoning benchmark (Stammer et al., 2020) that consists of multiple classes based on
object attributes and relations. Moreover, the true membership properties are confounded with other
attributes in the train split. We explore the following tokenization schemes:

(a) Traditional patch tokens extracted from 14 x 14 image patches.

(b) Ungrounded slot tokens learned from autoencoder object-centric learning on CLEVT.

(c) Conditional Slot Attention (CoSA) tokens (Kori et al., 2024) derived from set-matching.

(d) NSI-CLEVrTex slot attention trained on semantically-similar CLEVrTex via NSI. The back-
bone is frozen and subsequently used to infer CLEVTr slots, making it partially grounded.

(e) Fully grounded NSI-CLEVTr slot attention trained on CLEVr via NSI.

In Fig. 7(a),(b), we report test accuracy against the k—shot training sweep for CLEVr-Hans 3 and
CLEVr-Hans 7. We found that

(a) Grounded slots facilitate improved reasoning and surpass patch-based tokenizers across
data regimes using 25x fewer tokens. While the performance of the patch-tokens saturates,
grounded slots deconfound object attributes with greater ability with increasing data.

(b) Partial grounding is often sufficient: NSI-CLEVrTex slots that are grounded in a different
dataset demonstrate competitive reasoning capabilities.

(c) Property prediction ability does not necessarily transfer to class prediction: CoSA slots
trained on object-attribute prediction show weaker transfer on the Hans-3 dataset.

How many visXML annotations are essential? In Fig. 7(c), when ablating the number of annota-
tions used to train the NSI-CLEVr tokenizer, we observe that inductive biases instilled by grounding
are key, as seen from the sensitivity of the performance to the number of examples. On the other
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Figure 7: Few-shot classification results. (a) (b) Few-shot classification accuracy on Hans 3 and
Hans 7 datasets, respectively. (c) Task accuracy on NSI-CLEVr tokenizers trained on different
numbers of grounding examples. Standard deviation (over five seeds) was < 0.03 across tasks and
methods. (d) Visual rationales generated across the grounding continuum by extracting attention
maps from the final ViT layer. See Appendix E.3.2 for more examples.

hand, significant annotation of scenes is not necessary. Annotating just 100 visXML examples yields
performative accuracy within a 3% margin of the tokenizer trained on the complete set.

Qualitative interpretation: We probe the attention maps from the final layer of the ViT to generate
visual rationales. Fig. 7(d) visualizes the maps across the grounding continuum. The ungrounded
slots show little to no correlation with the class rule. On the other hand, ViT trained on the NSI-
CLEVr slots weighs slots pertinent to the class rule with greater attention. Grounded slots provide
abstractions for reasoning that are not only compute-efficient substrates but also yield interpretable
visual rationales.

5 CONCLUSION

This work introduced NSI, which grounds object semantics into slots for object-centric understand-
ing. It uses a simple schema abstraction to define object concepts and learns to flexibly associate
neural embeddings of the schema primitives with object slots via contrastive learning. Unlike set-
matching approaches, which struggle when scaled to real-world scenes, NSI enhances object dis-
covery compared to ungrounded counterparts. Further, NSI facilitates interpretable grounding in
slot representations. Whereas natural language-grounded embeddings struggle to retrieve granular
object properties, we find that NSI embeddings abstracted from the slot-schema intermodal align-
ment are key representations for such tasks. Finally, we demonstrated the usefulness of NSI as a
grounding-aware visual tokenizer that improves the few-shot visual reasoning abilities of ViTs on
a hard classification task. While annotations can be prohibitively expensive and laborious, we also
demonstrated performative reasoners under practical annotation settings. Slot representations have
traditionally been associated with visual stimuli, but object concepts transcend perception to other
sensorimotor experiences like audio, tactile signals, and motor behaviors. To this end, NSI lays the
groundwork for multimodal object-centric learning. Future work involves adopting NSI to ground
common object-centric concepts into different sensorimotor experiences as a step towards a modular
human-like understanding of the world.
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A PRELIMINARIES

We detail a few essential preliminaries in this section. Readers should refer to the original
manuscripts for further details.

A.1 SLOT ATTENTION

Object-centric learning frameworks decompose scenes by organizing them into semantic object files
called slots. Slot Attention (SA) (Locatello et al., 2020) is a powerful iterative attention mechanism
for learning such slots from perceptual features extracted from vision backbones. At iteration ¢, for
N features H € RE*¢ and K slots S* € RE*?  the slots compete to explain the features as follows:

t\T Mi]’
= KER(SYH)” REXK, 4, = © — (11)
VD Sret
A
S =WtV (S") where W;; = Y (12)

Die(t, Ny Aij
Here, (), K, V are learned query, key, and value matrices, respectively. Note that we present only

the attention operations of SA and refer the reader to the original article by (Locatello et al., 2020)
to understand the complete rollout.

A.2 DINO VISION TRANSFORMER

DINO (Caron et al., 2021) is a self-supervised knowledge distillation technique that leads to emer-
gent objectness biases in Vision Transformers (ViTs). These inductive biases make them excellent
candidates for learning object representations. A recent object-centric learning method (Seitzer

et al., 2023) uses the DINO backbone to scale to complex real-world datasets and reports state-of-
the-art results. Motivated by these findings, we use DINO to extract perceptual features for SA.

B DaAta

This section contains additional information on the datasets, visXML schema space instantiation,
and visXML examples.

B.1 visXML SCHEMA SPACE DESCRIPTION

Table 2 lists the various object properties used to create visXML description of scenes.

Dataset Property Discrete/Continuous ~ Size

Material Discrete 2

Color Discrete 8

CLEVr Hans (Johnson et al., 2016; Stammer et al., 2020) Shape Discrete 3
Size Discrete 2

Object Position Continuous 3
Texture Discrete 60

.. Shape Discrete 4

CLEVrTex (Karazija et al., 2021) Size Discrote 3
Object Position Continuous 3

Object Category Discrete 17

. Object Size Continuous 1
MOVi-C (Greff et al., 2022) Object Position Continuous 2
Bounding Box Continuous 4
. Object Category Discrete 90

MS-COCO 2017 (Lin et al., 2015) Bounding Box Continuous 4

Table 2: visXML schema space across various datasets.
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B.2 DATASET SPLITS

The dataset splits used in this work are detailed in Table 3.

Name Train Split Size  Validation Split Size  Test Split Size
CLEVr-Hans 3 9000 2250 2250
CLEVr-Hans 7 21000 5250 5250

CLEVrTex 37500 2500 10000
MOVi-C 198635 35053 6000
MS COCO 2017 99676 17590 4952

Table 3: Dataset splits used in experiments.

B.3  visXML EXAMPLES
Figs. 8-11 show visXML descriptions of instances from all the datasets.

<element: 0>
<size> small</size>
<shape> cube</shape>
<color> gray</color>
<material> metal</material>
<pos> (-0.76, -0.79, 0.35)</pos>
</element>
<element: 1>
<size> small</size>
<shape> sphere</shape>
<color> yellow</color>
<material> metal</material>
<pos> (-0.14, 1.75, 0.35)</pos>
</element>
<element: 2>
<size> large</size>
<shape> cube</shape>
<color> green</color>
<material> rubber</material>
<pos> (1.24, 2.12, 0.69)</pos>
</element>
<element: 3>
<size> small</size>
<shape> cylinder</shape>
<color> gray</color>
<material> rubber</material>
<pos> (-1.11, 1.79, 0.35)</pos>
</element>
<element: 4>
<size> large</size>
<shape> cube</shape>
<color> red</color>
<material> rubber</material>
<pos> (2.73, -2.23, 0.69)</pos>
</element>

Figure 8: CLEVr-Hans instance with its corresponding visXML description.
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<element : 0><size>medium</size>
<shape> sphere</shape>
<material> whitemarble</material>
<pos> (1.58, -2.81, 0.60) </pos>
</element>
<element :1><size>small</size>
<shape> cylinder</shape>
<material> polyhaven_aerial mud_l</material>
<pos> (-0.23, -2.94, 0.40) </pos>
</element>
<element :2><size>medium</size>
<shape> cylinder</shape>
<material> polyhaven_forrest_ground 0l</material>
<pos> (2.67, 2.78, 0.60) </pos>
</element>
<element :3><size>medium</size>
<shape> monkey</shape>
<material> polyhaven_cracked_concrete_wall</material>
<pos> (-0.63, 1.98, 0.60) </pos>
</element>
<element :4><size>medium</size>
<shape> cube</shape>
<material> polyhaven brick wall 005</material>
<pos> (-2.81, 0.52, 0.42) </pos>
</element>
<element :5><size>large</size>
<shape> sphere</shape>
<material> polyhaven_large_grey tiles</material>
<pos> (-2.66, 2.94, 0.90) </pos>
</element>
<element: 6><size>small</size>
<shape> cylinder</shape>
<material> polyhaven_leaves_forest_ground</material>
<pos> (1.12, 2.49, 0.40) </pos>
</element>
<element : 7><size>small</size>
<shape> monkey</shape>
<material> polyhaven_aerial_rocks_0l</material>
<pos> (1.98, 0.84, 0.40) </pos>
</element>
<element : 8><size>medium</size>
<shape> cube</shape>
<material> polyhaven_wood_planks_grey</material>
<pos> (0.78, -1.23, 0.42) </pos>
</element>

Figure 9: CLEVrTex instance with its corresponding visXML description.
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<element : 0><category>Hat</category>
<scale> 1.93 </scale>
<position> (0.68, 0.80) </position>
<bbox> (0.70, 0.52, 0.98, 0.84) </bbox>
</element>
<element :1><category>Consumer Goods</category>
<scale> 2.25 </scale>
<position> (0.28, 0.28) </position>
<bbox> (0.18, 0.14, 0.39, 0.42) </bbox>
</element>
<element : 2><category>None</category>
<scale> 1.98 </scale>
<position> (0.67, 0.15) </position>
<bbox> (0.02, 0.60, 0.29, 0.77) </bbox>
</element>
<element : 3><category>Consumer Goods</category>
<scale> 1.97 </scale>
<position> (0.50, 0.20) </position>
<bbox> (0.09, 0.41, 0.32, 0.58) </bbox>
</element>
<element :4><category>Toys</category>
<scale> 1.45 </scale>
<position> (0.33, 0.75) </position>
<bbox> (0.63, 0.27, 0.86, 0.39) </bbox>
</element>
<element : 5><category>Media Cases</category>
<scale> 0.80 </scale>
<position> (0.20, 0.25) </position>
<bbox> (0.21, 0.15, 0.29, 0.26) </bbox>
</element>
<element : 6><category>None</category>
<scale> 1.02 </scale>
<position> (0.62, 0.33) </position>
<bbox> (0.28, 0.54, 0.38, 0.66) </bbox>
</element>

Figure 10: MOVi-C instance with its corresponding visXML description.
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<element : 0>

<cat>tv</cat>

<bbox> (0.34, 0.26, 0.18, 0.17) </bbox>
</element>
<element:1>

<cat>chair</cat>

<bbox> (0.03, 0.32, 0.27, 0.33) </bbox>
</element>
<element:2>

<cat>book</cat>

<bbox> (0.70, 0.67, 0.30, 0.24) </bbox>
</element>
<element : 3>

<cat>vase</cat>

<bbox> (0.59, 0.46, 0.10, 0.32) </bbox>
</element>
<element : 4>

<cat>chair</cat>

<bbox> (0.72, 0.27, 0.08, 0.22) </bbox>
</element>

<element:5>

<cat>dining table</cat>

<bbox> (0.79, 0.32, 0.07, 0.22) </bbox>
</element>
<element: 6>

<cat>remote</cat>

<bbox> (0.34, 0.62, 0.06, 0.04) </bbox>
</element>
<element : 7>

<cat>book</cat>

<bbox> (0.71, 0.77, 0.07, 0.09) </bbox>
</element>
<element : 8>

<cat>chair</cat>

<bbox> (0.80, 0.28, 0.09, 0.21) </bbox>
</element>

Figure 11: COCO instance with its corresponding visXML description.
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C NEURAL SLOT INTERPRETER

Next, we present details of NSI training modules and summarize the NSI pseudocode.

C.1 NSI SCENE ENCODER

Fig. 12 shows the DINOSAUR encoder for learning slot representations. Here, the slot attention

mechanism operates on pre-trained DINO ViT embeddings. A spatial broadcast MLP reconstructs
the feature embeddings from the slots.

zezTUSKOL
uyo3ea

4
g 1
- o w
> g
4 2w
o Qo
g Dk
1] o o
a o -
o ®
5 H
5

1: K
Sa:

Lrecon

Figure 12: A DINOSAUR encoder (Seitzer et al., 2023) learns to represent images via slots.

C.2 NSI SCHEMA ENCODER

The NSI schema encoder architecture is shown in Fig. 13. The lower-level primitive encoder repre-
sents individual object attributes via primitives and their property tags. However, objects in scenes
also exist in their relation to other objects. To this end, a higher-level Schema Transformer represents
the primitives jointly.

1 2 3 4

[ Schema Encoder Transformer T7,(.) }
1 2 3 4
me me me
<eler 1<cat>person: </cat> .
<bbos </bbox</element> Primitive Encoder D(.)
<eler
<bbox>. . ... </bbox></element> + * 4
<element:id3><cat>couch</cat> <element:id: 1 i <element: 1 cat>clox
<bbox>..... </bbox></element> <bbox>..... </bbox</element> <bbox>..... </bbox></element> <bbox>..... </bbox></element> <bbox>. .... </bbox></element>
ement: idd><cat>clock</cat> Primitive 1 Primitive 2 Primitive 3 Primitive 4
..... </bbox></element>

Figure 13: A bi-level schema encoder learns a representation of schema primitives. The primitive
encoder embeds the object properties of each schema primitive. Then, a Transformer learns embed-
dings that assimilate the entire schema context.

C.3 NSI PSEUDOCODE

Algorithm 1 contains Python-style pseudocode for the NSI metric and subsequent contrastive learn-
ing objective.

D HYPERPARAMETERS

We list the hyperparameters for NSI and other methods used in our experiments, which were all
performed on Nvidia A100 GPUs.
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Algorithm 1 Neural Slot Interpreter Contrastive Learning Pseudocode

® RN ERN 2

Require: Projection heads Hcene(-); Hschemal(-)

Require: Batch of slot embeddings from the slot encoder {S1%};. 5
Require: Batch of primitive embeddings from the schema encoder {Z;:N B
# Compositional Score Aggregation

{YQ}:K}I:B = Hscene ({SE5}.B) > Project slots
{Y, "N} g = Hchema ({Z5 7 }1:8) > Project primitives
foralli,j € {1,---,B}do > Compute S € RB*E
T
S,ij — Zne{l,---,N} maX;@e{17...7K} )/ik }/jn
end for

# Contrastive Learning

: labels = arange(B)

: Lsehema = CrossEntropyLoss (labels, S)
i Lscene = CrossEntropyLoss (labels, ST)
: Econtrastive - (Lsche'rna + ‘Cscene)/Q

: return £contrastive

D.1

UNGROUNDED AND HMC MATCHING BACKBONE HYPERPARAMETERS

The hyperparameters for ungrounded and HMC matching backbones are given in Table 4.

D.2 NSI HYPERPARAMETERS

The hyperparameters for the NSI alignment model are listed in Table 5. The ablated architectures
follow the same setup without the ablated module.
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Module Hyperparameters CLEVr-Hans CLEViTex MOVi-C MS COCO 2017
Image Size 224 224 224 224
Patch Size 8 8 8 8
Num. Patches 784 784 784 784
DINO Backbone Num. Layers 8 8 8 8
Num. Heads 8 8 8 8
Hidden Dims. 192 192 192 192
Num. Slots 10 10 10 93
Slot Attention Iterations 3 3 3 3
Hidden Dims. 192 192 192 192
Num. MLP Layers 3 3 3 3
Broadcast Decoder MLP Hidden Dims. 1024 1024 1024 1024
Output Dims. 785 785 785 785
MLP Hidden Layers 2 2 2 2
Prediction Head MLP Hidden Dims. 64 64 64 64
Output Size 18 71 25 95
Batch Size 128 128 128 128
LR Warmup steps 10000 10000 10000 30000
Trainine Setu Peak LR 4 %1074 4x107% 4x1074 1x1074
g Setup Dropout 0.1 0.1 0.1 0.1
Gradient Clipping 1.0 1.0 1.0 1.0
Inference Configuration Num. Slots 10 10 10 30
Trainine Cost GPU Usage 40 GB 40 GB 40 GB 40 GB
& Days 1 3 3 5
Num Layers 2 - - -
ViT Hidden Dims 64 - - -
Num Heads 4 - - -

Table 4: Hyperparameters for the ungrounded and HMC matching method used in our experiments.
In the ungrounded case, the backbone and slot attention modules are trained solely on the recon-

struction objective and frozen.
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Module Hyperparameters CLEVrHans CLEVriTex MOVi-C MS COCO 2017
Image Size 224 224 224 224
Patch Size 8 8 8 8
Num. Patches 784 784 784 784
DINO Backbone Num. Layers 8 8 8 8
Num. Heads 8 8 8 8
Hidden Dims. 192 192 192 192
Num. MLP Layers 3 3 3 3
Broadcast Decoder MLP Hidden Dims. 1024 1024 1024 1024
Output Dims. 785 785 785 785
Num. Slots 10 10 10 15
Slot Attention Iterations 3 3 3 3
Hidden Dims. 192 192 192 192
Num. Layers 8 8 8 8
Schema Encoder Num. Heads 8 8 8 8
Hidden Dims. 192 192 192 192
Max. Schema Len. 10 10 10 93
Embedding Dims. 64 64 64 64
Projection Heads MLP Hidden Layers 2 2 2 2
MLP Hidden Dims. 256 256 256 256
Batch Size 128 128 128 128
LR Warmup steps 10000 10000 10000 30000
Trainine Setu Peak LR 4 %1074 4x107% 4x107* 1x1074
g Setup Dropout 0.1 0.1 0.1 0.1
Gradient Clipping 1.0 1.0 1.0 1.0
51, Pa 0.5,0.5 0.5,0.5 0.5,0.5 0.5,0.5
Trainine Cost GPU Usage 40GB 40 GB 40 GB 40 GB
& Days 1 3 3 5
Num Layers 2 - - -
ViT Hidden Dims 64 - - -
Num Heads 4 - - -

Table 5: Hyperparameters for the NSI alignment model instantiation and training setup.
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E EXPERIMENTS

E.1 OBIJECT DISCOVERY

E.1.1 OBIJECT DISCOVERY RESULTS

Dataset Metric Ungrounded HMC Matching NSI
CLEVrTex FG-ARI 87.79+0.12  88.37+0.12  89.89 £ 0.01
mBO 4486 £0.04 4523+0.23  46.60 £ 0.02
MOVi-C FG-ARI 65.53+0.15  65.61 2031 6641 £0.12
mBO 36.79 £0.03  36.79 £0.41  38.52+0.23
FG-ARI 40.12+0.29  32.18 £ 045 4424 +£0.27
COCO mBO* 27.20 £0.31 1832 +£0.51  28.12£0.25
mBO* 26.54 £0.25 19.61 £0.82  32.10 £ 0.31
FG-ARI 20.42 +0.13 15.14 £0.09  21.97 £0.17
PASCAL VOC 2012 (Zero-Shot) mBO? 3597 £0.15  2515£0.08 3698 £0.19
mBO*° 3794 +£0.17  27.02£0.12  39.06 + 0.22

Table 6: Object Discovery results. We use the DINO backbone and an MLP decoder across methods.
The standard deviation was calculated over five random seeds.

Table 6 contains the complete set of object discovery results with the standard deviations. We
also conducted a zero-shot evaluation of the models trained on MS-COCO on Pascal VOC 2012
(Everingham et al., 2015). We observed that the benefits of grounding the model via NSI on one
real-world dataset were transferred to the other for object discovery, with the grounded model also
improving mask segmentation over its ungrounded counterparts for Pascal VOC.

E.1.2 SLoT SWEEP OVER COCO SCENES

Fig. 14 shows the NSI object discovery results on COCO scenes as the number of slots is increased.
We observe that segmentation improves until 15 slots and then slowly tapers off.

Number of Slots
= w5
% - 10
w15

Score

FG-ARI mBO' mBO®

Figure 14: Ablation on the number of slots for COCO object discovery using NSI.

E.1.3 PROPERTY ABLATIONS ON COCO SCENES

In Fig. 15, we ablate the properties used to form schema primitives. Ostensibly, the slots weigh
bounding box coordinates more than categories, as the performance drop is steeper when the former
is ablated as opposed to the meagre loss when the latter is ablated.
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w/o category w/o bounding box full

Figure 15: Ablation on the visXML properties for NSIL.

E.1.4 GROUNDING EXAMPLES ABLATION ON COCO SCENES

Figure 16 shows the results of ablating over the number of grounding examples used for NSI co-
training. We observe that the ARI metric and the class-wise mBO are sensitive to grounding, with
as few as 100 annotations improving object discovery via segmentation masks.

g
8 35.0
(2]
32.5
1,76%}
Y T 2
2754 o __’././.
Ungrounded 100 1000 Full

Number of grounding examples

Figure 16: Ablation on number of grounding examples used to train NSI on MS COCO.

E.1.5 MASK VISUALIZATIONS

Figs. 17, 18, 19, 20 visualize slot masks over scenes from CLEVrTex, MOVi-C, COCO, and Pascal
VOC, respectively.
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Original ~ Ground Truth  Ungrounded HMC Matching NSI

W .

Figure 17: Object discovery results on CLEVrTex scenes.
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Original ~ Ground Truth  Ungrounded HMC Matching NSI

Figure 18: Object discovery results on MOVi-C scenes.
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Original ~ Ground Truth  Ungrounded HMC Matching NSI

-" P *

Figure 19: Object discovery results on COCO scenes.
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Original Ground Truth Ungrounded HMC Matching NSI

Figure 20: Zero-shot object discovery results on Pascal VOC 2012 scenes.
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E.2 GROUNDED COMPOSITIONAL SEMANTICS
E.2.1 Top LEARNED SLOTS

Figs. 21-23 show the top 50 slots learned by the image encoder over each dataset. Each slot is
weighted by the l> norm of its embeddings Y,*. The top slots follow an interesting distribution.
On CLEVrTex (Fig. 21), slots with larger objects and a clean segmentation are assigned a higher
magnitude. Intuitively, these slots are the most discriminative when assigning primitives that contain
shape, texture, and size, and benefit from large, cleanly segmented objects. On the other hand, the
emergent distribution in MOVi-C (Fig. 22) and COCO (Fig. 23) weights edge artifacts more. We
posit that since the object annotations of these datasets contain object positions in the image, edge
objects tend to be more discriminative.
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Figure 21: Top 50 slots (left to right, top to bottom) ranked by magnitude from test split of the
CLEVrTex dataset.
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Figure 22: Top 50 slots (left to right, top to bottom) ranked by magnitude from test split of the
MOVi-C dataset.
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Figure 23: Top 50 slots (left to right, top to bottom) ranked by magnitude from test split of the
COCO dataset.

E.2.2 TopP LEARNED PRIMITIVES

Figs. 24-26 show the t-SNE visualization (van der Maaten & Hinton, 2008) of representations
learned by the schema encoder on the visXML primitives. In each plot, primitives in the test split are
encoded context-free. The learned embeddings exhibit clustering effects on property categories.

® cube ® small
cylinder ® medium
sphere ® large

® monkey

t-SNE 2
t-SNE 2

t-SNE 1

(a) t-SNE scatter plot labeled with object (b) t-SNE scatter plot labeled with object
shapes. sizes.

polyhaven_wood_floor_deck
polyhaven_stone_wall
polyhaven_dark_wood
polyhaven_plank_flooring_02
polyhaven_bark_willow
polyhaven_denim_fabric
polyhaven_aerial_rocks_01
polyhaven_red_sandstone_wall
polyhaven_roof 07
polyhaven_asphalt_02

L XN )

[N X N J

t-SNE 2

(c) t-SNE scatter plot labeled with object materials.

Figure 24: t-SNE scatter plots of the top 10000 CLEVrTex primitives weighted by the [ norm of
their embeddings. The embeddings are clearly clustered by the shape type. Interestingly, when
looking at the object size, only large and medium-sized objects are represented in the top primitives.
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® Action Figures

® Bag
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Bottles and Cans and Cups
Camera

Car Seat
Consumer Goods
Hat

Headphones
Keyboard

Legos

Media Cases
Mouse

None

Shoe

Stuffed Toys
Toys

t-SNE 2

Figure 25: t-SNE scatter plots of the top 10000 MOVi-C primitives weighted by the /> norm of their
embeddings. The scatter points are labeled with the object categories. While there are multiple local
clusters, a larger clustering effect based on object categories are not apparent.
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clock
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Figure 26: t-SNE scatter plots of the top 10000 COCO primitives weighted by the ls norm of their
embeddings. The scatter points are labeled with the object categories. A category-based clustering
pattern is emergent.

E.2.3 SEARCHING OVER SLOTS

We found that the NSI metric, which learns to match entire schemas to entire images, can also be
used zero-shot to reliably retrieve individual slots from primitives. We demonstrate two instances
of slot search in Figs. 27 and 28. A query in the form of a single primitive is embedded using the
schema encoder. The query embedding ranks the slot of a database formed from the test split. In
Figs. 27 and 28, we show the property search and position search results, respectively.

E.2.4 SLOT SWEEP FOR COCO RETRIEVAL TASK

Fig. 29 shows the effect of the number of slots on the recall rates. Recall is highest at 15-20 slots for
COCO scenes and the model overfits as the number of slots increases further.

E.2.5 RETRIEVAL WITH UNDERSPECIFIED ANNOTATIONS
We investigated the efficacy of grounding under the setting where the annotations of scenes were

underspecified. Figs. 30(a) and (b) show the retrieval results under two settings: (a) a maximum
of ten objects annotated in a scene and (b) a maximum of five objects annotated in a scene. First,
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Figure 27: Searching over slots with property queries. The rows represent a shape and the columns
represent an object material. The position is fixed at [0,0,0] and the size is set to ‘Large.” The
alignment model reliably retrieves slots with desired object properties if they exist in the database.
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(a) Position search on cubes. (b) Position search on spheres. (c) Position search on cylinders.

Figure 28: Searching over slots with position queries. We adjust the ‘Pos-X’ for each shape on the
z-axis and ‘Pos-Y’ on the y-axis. The top-ranked slot clearly reflects the position adjustment.

we observed that the drop in recall rates for the ResNet backbone was significant compared to the
full setting. Second, CLIP and NSI were resilient to the limited annotation, with NSI outperforming
other methods. CLIP benefited from the vast training corpora that helped it generalize to the under-
specification. On the other hand, the compositional grounding with strong backbones endows NSI
with string retrieval despite being trained on limited data.

E.2.6 ADDITIONAL QUALITATIVE RESULTS

Fig. 31 shows additional results on the associations inferred by NSI on MOVi-C and MS COCO
2017.
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Figure 29: Ablation on the number of slots for scene-property retrieval task. The standard deviation
over five seeds was < 0.3 across datasets.
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Figure 30: Retrieval results on underspecified scene annotations settings.
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Figure 31: Correspondences inferred by NSI on MOVi-C and COCO scenes.
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E.3 GROUNDED SLOTS AS VISUAL TOKENS
E.3.1 CONFUSION MATRICES

Figs. 32 and 33 show the classification confusion matrices for the CLEVr-Hans 3 and CLEVr-
Hans 7 tasks. In the few-shot setting, the model often predicts scenes into under-specified and
less discriminative classes, like “cyan object in front of two red objects.” Similarly, it also tends
to mispredict into classes containing large objects like “large cube and large cylinder” that contain
reasoning over larger objects and are easier to tokenize.

Predicted Label Predicted Label Predicted Label

1 0.07 0.09
©
Qo
®©
—
g 2 0.03 0.06
=
3 0.02 0.07
100 shot 1000 shot Full
Accuracy: 54.53 Accuracy: 74.44 Accuracy: 94.04
F1 score: 51.49 F1 score: 74.14 F1 score: 94.05

Figure 32: Confusion matrices for NSI prediction on the CLEVr-Hans 3 task.

Predicted Label Predicted Label Predicted Label
1 2 3 4 5 6 7

True Label

003
7 oo 0.01 . 000 0.00 001 7 oo 0.00 000

100 shot 1000 shot Full
Accuracy: 69.73 A .
Accuracy: 30.61 N ccuracy: 86.30
F1 soore. 23,18 F1 score: 68.48 F1 score: 86.08

Figure 33: Confusion matrices for NSI prediction on the CLEVr-Hans 7 task.

E.3.2 VISUAL RATIONALES

Fig. 34 simultaneously visualizes the rationales across data settings and attention layers. On an
average, we observe that rationales tend to get stronger and more accurate as the number of training
examples increases and the ViT depth increases.

Figs. 35 and 36 demonstrate rationales across the grounding continuum for Hans 3 and Hans 7
classification tasks, respectively.

Fig. 37 demonstrates attention maps where the model prediction is correct, but the rationale is not
entirely dispositive.
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Figure 34: NSI visual rationales across different data regimes and attention depth.
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Scene Ungrounded NSI-CLEVrTex NSI-CLEVr
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Figure 35: Visual rationales on Hans 3 across different methods.
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Figure 36: Visual rationales on Hans 7 across different methods.
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Figure 37: Some failure cases where NSI makes the correct prediction, albeit using incorrect or
ambiguous support slots.

39



Under review as a conference paper at ICLR 2025

F OBJECT DETECTION WITH NSI

In this section, we demonstrate an architecture that uses inferred correspondences by NSI to perform
object detection. We run preliminary experiments and explore the use of slots in real-world visual
reasoning systems.

F.1 NSI SCHEMA GENERATOR MODEL

We formulate the NSI schema generator (see Fig. 38) to predict, from each slot, its corresponding
visXML primitives. To this end, we modify an encoder Transformer by interleaving cross-attention
blocks with the self-attention layers to assimilate the context from the encoded slots. The input to
the model is simply learned positional embeddings P*%V that are decoded by L attention-ensemble
stacks to output primitive representations. We call this architecture SETy(.). The Slot Encoder
Transformer (SET) is a stack of L blocks, each computing (a) self-attention over inputs followed by

(b) cross-attention of inputs over the context slot. Let ngf;i :1T71 be the sequence representation at
layer [ — 1 and S denote the slot. Then
dec,1: N :
Zppimr = SETy(PT, ) (13)

The cross-attention implementation of block / is shown in Algorithm 2.

Algorithm 2 Cross-Attention for Block [ of SET

Zdec,l:T

prim,l € RT*4 T primitive embeddings from self-attention of layer /

Require:

Require: S € R?, Context Slot

Get query tokens: QY = M LPQ(ngfg_flT)

Get keys, values of slot S: K,V = M LPkvy(S)
Compute attention values: M = softmax(Q” K /+/d)

Get output: Z4HT — M x Vv

prim,l

Using an encoder-transformer-styled predictor has two advantages: (1) primitives can be generated
in parallel and (2) each primitive representation is aware of the overall prediction context. M LP

property heads predict the object properties from the ngfniiv representations. At each training
iteration, the predicted properties p**V are optimally matched to their ground truth labels p* via an
ordering o (1 : N) obtained from Hungarian matching (HM) (Kuhn, 1955) on the property prediction
loss Lproperties- Note that Lyoperties 1 @ per-primitive loss obtained from the sum of individual
property prediction losses. We use the cross-entropy loss for discrete properties, mean-squared error
for continuous properties, and augment bounding-box regression with the Intersection over Union

(IoU) loss. The training objective L.y (.) is formulated as follows:

U(l : N) =HM (Eproperties (pl:N7ﬁ1:N)) (14)
N
Egen = Zﬁproperties(piaﬁa(i)) (15)

i=1
At training time, we pad the aligned ground-truth instances with no-object labels ¢ to account for
representations without object predictions. In practice, bipartite matching for a single-slot instance
is more computationally feasible than the overall image instance because per-slot object instances
are significantly fewer.

F.2 NSI SCHEMA GENERATOR HYPERPARAMETERS
The hyperparameters for the NSI schema generator are listed in Table 7.
F.3 EXPERIMENTS

The correspondences from the train split are used to learn the NSI schema generator, as outlined in
Appendix F.1. The schema generator decodes " primitives from each slot, including the confidence
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Figure 38: NSI schema generator model: A Slot Encoder Transformer attends to individual slots
via cross attention and, in parallel, decodes tokens into schema primitives. At training time, a
Hungarian set matching procedure assigns predictions to primitives associated with the slot. The
prediction error is aggregated over assignments to compute Lgep,.

Module Hyperparameters MOVi-C  COCO-10 COCO-30
Num. Layers 2 2 2
SET Num. Heads 2 2 2
Hidden Dims. 192 192 192
Predictions per Slot (T") 5 8 8
top-M predictions 10 10 30
Inference .
Non-Max Suppression/Threshold ~ Yes (0.75)  Yes (0.75)  Yes (0.75)
Batch Size 64 64 64
Trainine Setu LR Warmup steps 10000 30000 30000
g Settlp Peak LR 4x107%  1x107% 1x10~*
Dropout 0.1 0.1 0.1
Trainine Cost GPU Usage 40 GB 40 GB 40 GB
& Days 2 4 4

Table 7: Hyperparameters for the NSI schema generator model instantiation and training setup.

level of each object prediction. The overall schema for a single image is obtained as the top M
confident primitives out of predictions from all K slots of that image. The NSI schema generator
enables solving of downstream tasks with slots by making use of predicted properties from primitive
tags. We demonstrate the usefulness of NSI for object detection.
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Object Detection Results: In the context of real-world object detection on images, the visXML
schema properties can be used to identify and locate objects in diverse scenes from the MOVi-C and
COCO datasets. To this end, we extract the (<cat>) category and (<bbox>) bounding box fields
from the generated primitives that depict the object category and location, respectively. For COCO,
we test on two variants of the dataset: (1) COCO-10, a simple subset of the test split containing
ten objects at a maximum, and (2) COCO-30 that contains as many as 30 objects in a scene. We
report the APy, metric across all three benchmarks. It denotes the area under the precision-recall
curve for a certain IoU threshold (in %). We also run comparisons against the methods outlined in
the retrieval experiments. Fig. 39 shows the experimental results and Figs. 40, 41 visualize object
detection across various predictors. Our comparison baselines include:

(a) Vanilla Slot Attention (Locatello et al., 2020): The model is trained from scratch to resolve
slot-object assignments through HMC.

(b) DINOSAUR (Locatello et al., 2020): It uses the DINO ViT backbone to learn slots for un-
supervised object discovery by reconstructing perceptual features. The architecture is frozen
while we train shallow predictors on top to detect objects.

(c) DINOSAUR-FT: We use the DINOSAUR model but fine-tune the architecture end-to-end on
the prediction task.

We make the following observations:

(a) NSI outperforms prior set-matching slot predictors, especially by significant margins (20-
30%) at lower IoU thresholds. Grounding object concepts in slots a priori improves the pre-
dictive power of slots. In comparison, matching the set of slots against the entire set of object
annotations of the image yields poor generalization. In addition, large-scale pre-training and
end-to-end fine-tuning are crucial ingredients, as evidenced by the subpar performance of the
Vanilla and DINOSAUR methods on COCO.

(b) The performance disparity between NSI and DINOSAUR-FT widens as the complexity of
scenes increases from COCO-10 to COCO-30. The inability of DINOSAUR to predict more
than one object per slot necessitates modeling and learning to match up to 30 different slots,
which generalizes poorly on novel scenes.

(c) HMC slots deteriorate for COCO-30 where the backbone is tasked with matching with 30
different objects at a time.

Vanilla
50 === DINOSAUR

DINOSAUR—F'T
- NS

APy AP APz ’ APy APy AP APy APs AP
MOVi-C COCO-10 COCO-30

Figure 39: Object detection performance of various prediction methods on the MOVi-C, COCO-10,
and COCO-30 benchmarks. We report APQIoU (higher is better) for different IoU thresholds.
Standard deviation is reported over five random seeds.

Slot Sweep on COCO Scenes: Next, we investigate the effect of slot count on object detection. The
number of slots is adjusted across a [5-30] range for the NSI schema generator and DINOSAUR-FT
on the COCO-30 task. Fig. 42 presents the results of this experiment. For the DINOSAUR predictor,
the number of slots imposes a strict upper limit on the number of object detections. As a result, the
performance sharply deteriorates as the slot count is lowered. On the other hand, the NSI schema
generator can detect multiple objects over a single slot and the performance drop is more graceful
as the number of slots decreases.
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DINOSAUR DINOSAUR-FT

Figure 40: Object detection results on COCO scenes. NSI schema generator can flexibly detect
multiple objects from the same slot, as evidenced by detections on COCO images. For example, a
single slot predicts multiple ‘donuts,” ‘chair and dining table,” and ‘person and tennis racket’.
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Figure 41: Object detection results on MOVi-C scenes.
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Figure 42: Effect of slot cardinality on object detection performance.
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