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Abstract

Protein engineering has the potential to create optimized protein variants with1

improved properties and function. An initial step in the protein optimization pro-2

cess typically consists of a search among natural (wildtype) sequences to find3

the naturally occurring proteins with the most desirable properties. Promising4

candidates from this initial discovery phase then form the basis of the second step:5

a more local optimization procedure, exploring the space of variants separated6

from this candidate by a number of mutations. While considerable progress has7

been made on evaluating machine learning methods on single protein datasets,8

benchmarks of data-driven approaches for global fitness landscape exploration are9

still lacking. In this paper, we have carefully curated a representative benchmark10

dataset, which reflects industrially relevant scenarios for the initial wildtype discov-11

ery phase of protein engineering. We focus on exploration within a protein family,12

and investigate the downstream predictive power of various protein representation13

paradigms, i.e., protein language model-based representations, structure-based14

representations, and evolution-based representations. Our benchmark highlights15

the importance of coherent split strategies, and how we can be misled into overly16

optimistic estimates of the state of the field. The codebase and data can be accessed17

via https://github.com/petergroth/FLOP.18

1 Introduction19

The goal of protein engineering is to optimize proteins towards a particular trait of interest. This has20

applications both for industrial purposes and drug design. There is clear potential for machine learning21

to aid in this process. By predicting which protein sequences are most promising for experimental22

characterization, we can accelerate the exploration of the “fitness landscape” of the protein in question23

[1]. Regression of functional landscapes is challenging for multiple reasons. Typically a data-scarce24

problem, careful considerations of the experimental setup are required to avoid inadvertent data25

leakage. Concerning the functional landscapes of naturally occurring (also known as wildtype)26

proteins, the pairwise amino acid sequence identities can often vary significantly with some proteins27

differing by only a single amino acid while others might be less than ten percent similar. High-28

throughput experimental techniques are improving the data scarcity issue, while underlying structure29

typically exists in the datasets allowing for supervised learning despite the intrinsic challenges.30
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Figure 1: Schematic over dataset splitting, representations, and cross-validation process. A: A dataset
with sequences from a single protein family and corresponding assay values is curated. B: A stratified
sequence identity splitting procedure generates partitions A, B, and C, which are (1) homologically
different from each other, (2) contain similar number of sequences, and (3) match the full dataset’s
target distribution. C: Eight types of protein representations are computed. D: Cross-validation using
a random forest regressor is applied to obtain mean values and standard errors on the test partitions.

The optimization process of proteins and enzymes can typically be divided into multiple stages. An31

often employed initial step is to search for promising candidates among wildtype proteins, resulting32

in a set of proteins with desirable properties. We will refer to this as the wildtype discovery phase [2].33

Since we are typically optimizing for a specific trait, we may often limit this initial exploration to a34

particular protein family, where the members share an evolutionary history which has resulted in a35

similar function. The selected set of wildtype proteins will then form the basis for a second phase36

in the engineering process: localized optimization, where novel variants of the wildtype proteins37

are examined through various assays [3]. Sometimes, the wildtype discovery phase is not only38

carried out once as several rounds might be required before an initial suitable candidate is found.39

Additionally, the resulting candidate might prove insufficient at a later stage of protein engineering,40

where conditions such as temperature are altered or where stress-factors are introduced.41

In recent years, we have seen considerable efforts in defining benchmarks to help the machine learning42

community make progress in this field. However, these efforts have primarily focused on the second43

stage, i.e., variant effect prediction, where a dataset consist of thousands of variants from a single44

wildtype. In this paper, we argue for the importance of establishing well-defined benchmark tasks for45

the first stage as well. We present three challenging tasks and a careful analysis of the experimental46

design, demonstrating how poor choices can lead to dramatic overestimation of performance.47

We conduct our experiments using a variety of fixed-size protein representations: sequence-based48

embeddings obtained through protein language models, structure-based representations from fold-49

ing and inverse folding models, evolution-based representations obtained from multiple sequence50

alignments, as well as simple biologically-motivated sequence descriptors. In addition to the su-51

pervised approach, we include four zero-shot predictors to showcase a simpler approach to the task52

of identifying promising candidates. We show that the choice of representation can greatly affect53

the downstream predictive performance, and we therefore argue that more progress can be made by54

constructing meaningful representations and not solely in the construction of complex prediction55

models. Given the oftentimes limited dataset sizes, we therefore rely on a random forest regressor.56

2 Related work57

Benchmarks play an important role in driving progress in protein-related prediction tasks. The58

most well-known is perhaps the rolling CASP benchmark, which is arguably responsible for the59

recent breakthroughs in protein structure prediction [4–6]. For the prediction of protein stability and60

function, several studies have curated relevant experimental datasets for use as benchmarks. The61

TAPE benchmark was an early such example designed to test protein sequence representations on a62
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set of diverse downstream tasks [7]. Two of these tasks were related to protein engineering: stability63

prediction on variants of a set of 12 designed proteins [8] and characterization of the functional64

landscape of green fluorescent protein [9]. The PEER benchmark [10] expanded on the TAPE65

benchmark with many additional tasks. This included prediction of β-lactamase activity [11], and a66

binary solubility classification task on a diverse set of proteins. Focusing entirely on variant effects,67

the recent ProteinGym benchmark has assembled a large set of Deep Mutational Scanning (DMS)68

assays and made them available as substitution and insertion-deletion prediction tasks [12]. While69

the above all consider protein sequence inputs, the recent Atom3D benchmark [13] presents various70

prediction tasks using 3D structure as input, including predicting amino acid identity from structural71

environments (for general proteins), and mutation effects on protein binding, using data originating72

from the SKEMPI database [14, 15].73

Most closely related to this current paper is the FLIP benchmark, which dedicates itself to the74

prediction of functional fitness landscapes of proteins for protein engineering [16]. FLIP introduces75

three tasks: one on the prediction of protein stability of wildtype proteins (distributed over many76

families) using data from the Meltome Atlas [17], and two tasks focused on mutations at specific77

sites of proteins GB1 [18] and AAV [19]. While the FLIP benchmark is of great value for protein78

engineering, there are key characteristics which make it unsuitable for wildtype discovery, e.g.,79

the use of the Meltome Atlas, which consists of thousands of sequences from different organisms80

spanning many different protein families. The sequences in the GB1 dataset only have mutations at81

four fixed positions while the sequences in the AAV dataset only contain 39 mutation sites, both of82

which corresponds to mutations at less than 10% of the full-length proteins. Such datasets with very83

local fitness landscapes are not generalizable enough for wildtype discovery.84

Most functional tasks in current benchmarks are thus concerned with protein sequences that are85

derived from a single wildtype sequence by one or more mutations. Characterizing the functional86

effects of such variants is critical for protein engineering. However, before engaging in the optimiza-87

tion process itself, it is important to select meaningful starting points. As a natural complement to the88

FLIP benchmark, we therefore present a novel benchmark titled FLOP. The tasks we present are the89

characterization of functional landscapes of wildtype proteins.90

Our curated datasets all consist of functionally characterized wildtype sequences. For each dataset, we91

limit ourselves to a single family, and define our tasks as regression problems on the functional assay92

values. While mutational fitness landscape datasets are relatively abundant, few published datasets93

exist where the global fitness landscapes of wildtype proteins from single families are examined. This94

imposes limitations in the number and sizes of available datasets which are suitable for our considered95

problem. Given the low-data regime, the focus of our benchmark is thus to find representations of the96

protein input that makes few-shot or even zero-shot learning feasible. As a point of departure, we97

provide a set of state-of-the-art embeddings, reflecting different protein modalities.98

3 Experimental setup99

The domain we explore in this work is characterized by data scarcity, requiring special care in the100

design of the experimental setup. Figure 1 shows an overall schematic of the benchmarking process.101

3.1 Dataset splitting102

With the proliferation of large datasets and computationally demanding models, a common learning103

paradigm in machine learning is to rely on hold-out validation, whereby fixed training, validation,104

and testing sets are randomly generated. This method has several serious limitations when applied to105

biological datasets of limited sizes. Firstly, randomly splitting a dataset assumes that the data points106

are independent and identically distributed (i.i.d.). This is however not the case for members of a107

protein family which share common ancestors, leading to potential data leakage if protein sequences108

that are close in evolutionary space are placed in separate splits. Secondly, when splitting small109

datasets for a hold-out validation approach for supervised learning, the target values might not be110

well-balanced, resulting in dissimilar target distributions thus leading to bias and poor generalizability.111
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Figure 2: The same segment of a phylogenetic tree for the PPAT dataset. Branch color corresponds to
its CV partition, while the outermost ring shows the target values (black indicates high and white
indicates low values). The segments highlight the diversity found in wildtype protein families. Left:
entries are colored according to the prescribed dataset splitting procedure which allows learning
across subfamilies (indicated by the mix of colors). Middle: entries are colored by a clustering
approach leading to wide regions, inhibiting learning across subfamilies. Right: entries are randomly
assigned a color. While similar to the leftmost scheme, the random coloring allows near identical
sequences to be placed in separate partitions leading to excessive data-leakage.

To handle these potential issues, we rely on a sequence identity-based, stratified cross-validation112

procedure ensuring that (1) partitions are generated such that any two proteins occurring in different113

partitions are guaranteed to be different at a pre-set homology cut-off, (2) cross-validation (CV)114

minimizes the potential bias which might occur during hold-out validation, (3) the target distribution115

is reflected by the generated partitions via stratification on discretized target values, and (4) the116

number of sequences in each partition is similar to reduce the variance.117

To generate these high-quality data partitions, we use the four-phase procedure described in [20]118

and implemented in the GraphPart framework [21] to create three label-balanced partitions for119

each dataset. We begin the procedure from an initial sequence identity threshold, and increase the120

threshold until the generated partitions are of sufficient sizes (i.e., at least 25 % of sequences in all121

three partitions). The stratification is achieved by creating a binary label which indicates whether a122

protein has low or high target value, e.g., by fitting a two-component Gaussian mixture model. For123

the dataset-specific stratification boundaries, see Section A in the supplementary materials.124

Figure 2 shows the same segment of a phylogenetic tree of the curated PPAT dataset, showing the125

evolutionary relationship between sequences. Large versions of the trees can be found in Section E.126

The colors indicate which CV partition each sequence belongs to while the black and white squares127

in the outer ring indicate the stratification labels. The segments show the diversity encountered in128

wildtype protein families. The left segment is colored by our splitting procedure and shows that it129

manages to create diverse partitions spanning the entire evolutionary tree to allow learning across130

protein subfamilies. The middle segment is colored by an MMseqs [22] clustering approach, leading131

to contiguous areas inhibiting learning across subfamilies. The entries in the rightmost segment are132

randomly assigned a color, corresponding to random splitting. While similar to the leftmost scheme,133

the random coloring allows near-identical sequences to be placed in separate partitions leading to134

excessive data-leakage.135

3.2 Representations136

To accurately reflect the current paradigms of state-of-the-art protein representations, we choose137

representatives from three main categories, the dimensionalities of which can be found in Section G138

in the supplementary materials.139

Protein language models (pLMs) that are trained on hundreds of millions of protein sequences in an140

unsupervised fashion have been proven to be competitive for a multitude of tasks including supervised141

prediction of protein properties, residue contact prediction, variant effect prediction [16, 23–26],142

etc. We here choose the popular ESM-1B [24] and the more recent ESM-2 models [27]. To fix the143
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dimensionality for proteins of different lengths, we perform mean-pooling over the residue dimension.144

This operation is likely to filter out information encoded along the protein sequence and more optimal145

approaches will likely yield more informative representations and thus higher predictive performance146

(see Table 2 in [28]). Constructing fixed-size embeddings from sequences of variable lengths is147

however nontrivial and considered out of the scope of this study.148

The second category we include is structure-based. We extract embeddings from the Evoformer-149

modules while folding proteins with AlphaFold2 [29] via ColabFold [30], which have been shown150

to perform well for structure-related prediction tasks [31]. Using the predicted structures, we then151

extract embeddings from the inverse-folding model ESM-IF1 (also known as the GVP-GNN) [32]152

which incorporates a pLM and graph neural network architecture. We similarly use embeddings from153

the MIF-ST model, which is an inverse folding model leveraging a pretrained convolutional pLM154

[33]. As with the pLMs, we apply mean pooling to achieve sequence-level embeddings.155

The third category is evolution-based. As a baseline, we will use a one-hot encoded multiple156

sequence alignment (MSA) over the proteins of interest [34–36]. Since the MSA is independent157

of labels, we enrich the unaligned sequence pools with additional members from the respective158

protein families using UniProt [37] and InterPro [38]. Given MSAs, models can be designed which159

leverage the evolutionary history of the protein family (e.g., EVE and related models [12, 39–42]).160

For each curated dataset, we train EVE [39] on the corresponding protein family and extract the latent161

representations. Technical details on the training procedure can be found in Section H.162

In addition to these groups of advanced representations, we include compositional and transitional163

(CT) physicochemical descriptors for each protein sequence as a simple baseline, which relate to164

overall polarizability, charge, hydrophobicity, polarity, secondary structure, solvent accessibility, and165

van der Waals volume of each sequence as predicted using the PyBioMed library [43].166

With the exception of the physicochemical descriptors, all included representations rely on models167

which have been pretrained on thousands to hundreds of millions of proteins. While it is possible that168

a number of the sequences in the curated datasets also belong to the training sets of these models169

(which by design is the case for the evolution-based approaches), we do not consider this to be a170

fatal form of data leakage as it purely pertains to the un- or self-supervised pretraining phases and is171

independent of the sequence labels.172

3.3 Regression173

The purpose of this benchmark is to provide a structured procedure to evaluate the predictive174

performance on downstream regression tasks given protein representations. We believe that larger175

prediction improvements can be achieved by focusing on developing novel protein representations176

rather than more complex regression models. Due to the low-N setting in which we operate, the177

training of large, complex models is practically inhibited, which is why we have chosen to rely178

on a random forest regressor. For each combination of the generated CV partitions, we perform a179

hyperparameter optimization on the current validation partition and evaluate the best-performing180

predictor on the current test partition. The experiments were also carried out using alternate regressors.181

See Sections N.1 and K for these results and all hyperparameter grids, respectively.182

3.4 Zero-shot predictors183

To investigate the efficacy of unsupervised learning on the curated datasets, we evaluate four zero-shot184

predictors. Using EVE, we evaluate the evidence lower bound (ELBO) by sampling and obtain a185

proxy for sequence fitness, analogous to the evolutionary index in [39]. Second and third proxies are186

obtained by evaluating the log-likelihood of a sequence conditioned on its structure using the inverse187

folding models ESM-IF1 [32] and ProteinMPNN [44]. The fourth zero-shot estimator is obtained188

by using Tranception [45] to evaluate the log-likelihood of each sequence. Details for the use of189

ProteinMPNN and Tranception can be found in Sections I and J in the supplementary materials.190

5



Table 1: Summary of datasets and splits.

Ntot NA NB NC Split %ID Target Median %ID Avg. length
GH114 55 20 18 17 0.55 Activity 0.46 268.8
CM 855 341 259 255 0.40 Activity 0.40 91.1
PPAT 615 182 234 199 0.55 Fitness 0.51 161.6

4 Datasets191

The three curated datasets and the corresponding fitness landscapes are here motivated and described.192

Despite the scarcity of available datasets described in Section 2, the curated datasets are representative193

examples of wildtype discovery campaigns in terms of size and diversity. For additional curation194

details on each dataset including specific thresholds for stratified splitting, see Section A.195

4.1 GH114196

Motivation. Accurately identifying enzymes with the highest activities towards a specific substrate197

is of central importance during enzyme engineering. To achieve this, it is essential to ensure that assay198

observations are directly comparable [46]. This includes maintaining identical experimental assay199

conditions, including evaluating enzymes at the same concentrations and purity levels. However,200

purifying enzymes requires significant work and resources, often resulting in assays composed of201

fewer sequences, which are in turn of higher experimental quality.202

Landscape. This dataset includes purified and concentration normalized natural glycoside hydro-203

lase 114 (GH114) alpha-1,4-polygalactosaminidase enzymes and corresponding catalytic activity204

values [47] which will act as the target of interest. GH114 enzymes degrade the exopolysaccharide205

PEL, which provides structure and protection in some biofilms [48]. Having measurements of pu-206

rified enzymes avoids issues with background effects from other enzymes in the recombinant host207

background. We provide a curated version of the GH114 dataset which, to our knowledge, has not208

been used in previous work for function prediction purposes.209

4.2 CM210

Motivation. Identification of enzymes with high catalytic activities is essential for enzyme engi-211

neering campaigns. However, predicting the activity level of enzymes using physics-based methods212

remains a great challenge [49]. Recent progress in high throughput screening allows the measurement213

of enzyme activity of sequences with high diversity, but with low experimental cost.214

Landscape. This dataset contains the catalytic activity of chorismate mutase (CM) homologous215

proteins, as well as artificial sequences which follow the same pattern of variations (e.g., conservation216

and co-evolution) [50]. The artificial sequences generated by Monte Carlo simulations at low and217

medium temperatures match the empirical first-, second-, and higher-order statistics of the natural218

homologs, while also exhibiting comparable catalytic levels when experimentally synthesized. These219

sequence have therefore been included given the similarity in both sequence and fitness landscape.220

See Section A.3 for further details. We perform an additional filtering of the dataset prior to the221

splitting procedure by removing sequences with target values less than 0.42, corresponding to inactive222

proteins [50]. This task thereby assumes that a preceding classification procedure has been carried223

out. For completeness, we include benchmark results for the CM dataset when only the natural224

homologs were used (see Section N.4) and classification results before the filtering step (see Section225

M), which supports this last assumption.226
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Figure 3: Average Spearman’s rank correlation (and standard error) between predictions and targets
over test partitions. Higher is better. †: Zero-shot correlations.

4.3 PPAT227

Motivation. PPAT (phosphopantetheine adenylyltransferase) is an essential enzyme that catalyzes228

the second-to-last step in the CoA biosynthetic pathway. The target value for this prediction task229

is the fitness score, which reflects the ability of PPAT homologs to complement a knockout E. coli230

strain. The fitness of homologs can be affected by factors such as protein misfolding, mismatched231

metabolic flux, or environmental mismatches etc. [51].232

Landscape. This dataset contains fitness scores of 615 different PPAT homologs obtained by a233

novel DNA synthesis/assembly technology, DropSynth, followed by a multiplexed functional assay234

to measure how well each PPAT homolog can rescue a knockout phenotype [51].235

4.4 Summary236

A summary of the curated datasets including their total sizes, partition sizes, between-partition237

sequence identity threshold (Split %ID), regression target, median pairwise sequence identity, and238

average sequence length can be seen in Table 1. Additional curation details are found in the239

supplementary materials (see Section A), while histograms of the regression targets for the three240

datasets as well as partition histograms can be seen in Sections C and D, respectively.241

The low median sequence identity observed in Table 1 highlights the diversity – and difficulty –242

of wildtype datasets. Deep mutational scanning (DMS) datasets commonly used for variant effect243

prediction on average have median sequence identities greater than 0.99. For comparison, Section F244

shows both median, mean, and standard deviation for the curated datasets (see Table A1) contrasted245

to 48 tasks from the ProteinGym benchmark (see Table A2). A visual example highlighting the246

sequence diversity for a protein family compared to a DMS dataset can be seen in Figure 4 in [40].247

The DMS data is localized to a small section of the protein family as it is composed of all single248

mutations of a single wildtype. Similarly, a DMS of a protein belonging to the PPAT family would all249

be positioned on a single branch of the phylogenetic tree in Figure 2.250

5 Results251

Spearman’s rank correlation between the predictions and targets over the three datasets can be seen in252

Figure 3 and Table 2. The highest performing proteins are of interest making it the ranking and not253

the absolute predictions that indicate the performance, despite the regressors being optimized using254

the mean squared error. The RMSE can found in Table A4 in the supplementary materials.255

GH114 The performance on the GH114 dataset highlights some of the peculiarities encountered256

with small wildtype protein datasets. The collection of physicochemical descriptors (CT), which is257

simpler than its competitors, achieves the highest score. Slightly below it are the structure-informed258

MIF-ST and Evoformer representations, indicating a structural signal which is however not picked259
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Table 2: Benchmark results. Mean Spearman correlation and standard error using cross-validation.
†: Zero-shot correlation on full datasets. Highest value and values within 1 SE are bold.

GH114 CM PPAT
ESM-1B 0.52± 0.06 0.30 ± 0.03 0.16 ± 0.03
ESM-2 0.58 ± 0.06 0.31 ± 0.04 0.16 ± 0.02
ESM-IF1 0.52± 0.05 0.30 ± 0.04 0.13± 0.01
MIF-ST 0.61 ± 0.03 0.32 ± 0.03 0.14± 0.02
Evoformer (AF2) 0.60 ± 0.06 0.25± 0.03 0.19 ± 0.04
EVE 0.53± 0.04 0.30 ± 0.02 0.08± 0.01
MSA (1-HOT) 0.52± 0.08 0.31 ± 0.04 0.07± 0.02
CT 0.63 ± 0.03 0.24± 0.05 0.02± 0.02

ESM-IF1† 0.39 0.20 0.06
EVE† 0.06 0.11 −0.01
ProteinMPNN† 0.47 0.22 0.04
Tranception† 0.42 −0.05 0.02

up by the ESM-IF1 embeddings. While the CT representation achieves the highest mean value,260

several others are within one standard error, giving no clear advantage to neither complex nor simple261

models. While all supervised approaches beat the zero-shot predictors, ProteinMPNN, Tranception262

and ESM-IF1 likelihoods correlate well with the targets.263

CM The second prediction task can be considered more challenging given the results, despite the264

comparatively large size of the CM dataset. While similar to the first task, an abundance of data is265

not sufficient to increase the downstream capabilities if it comes at the cost of potentially noisier266

measurements, as compared to the concentration normalized GH114 dataset. Most representations267

fall within one standard error of the top performer such that, once again, no representation paradigm268

has a clear advantage.269

PPAT The most challenging task of the datasets, the results on the PPAT task show different270

behaviour. The evolutionary signal, i.e., the amount of information which can be learned from271

evolutionary homologs, is weak as indicated by the low correlations from the one-hot encoded272

MSA and from EVE (both in the supervised and zero-shot settings as per Table 2). Furthermore,273

the physicochemical descriptors fail to correlate – as do the remanining zero-shot predictors. The274

pLM and structure-based representations achieve the highest scores with the Evoformer embeddings275

coming out slightly ahead.276

6 Ablation study277

The dataset splitting procedure and benchmark tasks have been carefully constructed to ensure reliable278

estimates of model performance. In this section we show three ablation studies – one for each dataset279

– whereby different choices of task-structuring might lead to great over-estimations of performance.280

The results can be seen in Table 3 and in Figure A8. The ∆ columns in the table indicate differences281

to the benchmark results, where a positive/green value indicates better performance during ablation,282

i.e., over-estimation.283

Hold-out validation For GH114, we perform hold-out validation by arbitrarily designating the284

three generated partitions as training, validation, and test sets and running the experiment only once.285

The correlations are significantly different to the benchmark results, with the ESM-2 correlation286

decreasing by 50 %. With no systematic pattern and decreased nuance given the lack of errorbars, it287

is easy to draw incorrect conclusions.288

As the data-leakage between partitions has been controlled via the splitting procedure, the partitions289

are different from each other up to the sequence identity threshold. This implies that a model might290
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Table 3: Ablation results. Spearman correlation. *: Hold-out validation, **: Regression on both
active and inactive proteins, ***: Repeated random splitting. ∆ shows difference to benchmark
results. Highest value and values within 1 SE are bold.

GH114* ∆ CM** ∆ PPAT*** ∆

ESM-1B 0.36 −0.16 0.64± 0.01 +0.33 0.23 ± 0.05 +0.07
ESM-2 0.39 −0.20 0.66 ± 0.01 +0.35 0.18± 0.02 +0.02
ESM-IF1 0.46 −0.06 0.58± 0.01 +0.28 0.19± 0.01 +0.06
MIF-ST 0.62 +0.01 0.60± 0.02 +0.28 0.24 ± 0.04 +0.09
Evoformer (AF2) 0.64 +0.04 0.57± 0.01 +0.33 0.24 ± 0.02 +0.04
EVE 0.38± 0.04 −0.15 0.62± 0.00 +0.31 0.16± 0.01 +0.08
MSA (1-HOT) 0.50 −0.02 0.61± 0.01 +0.30 0.06± 0.06 −0.01
CT 0.65 +0.03 0.52± 0.01 +0.28 0.13± 0.01 +0.11

perform well on, e.g., only a subset of the partitions. Choosing which partitions to use for training,291

validation, and testing is (in this case) arbitrary and can thereby lead to misleading results. To292

avoid this pitfall, cross-validation is needed such that the average predictive performance on all293

combinations of partitions can be estimated. An analogue ablation study for the CM and PPAT294

datasets can be found in Section L.1, where similar conclusions can be drawn.295

Disregarding distinct target modalities For the CM dataset, we only included the active sequences296

in the benchmark. To demonstrate why, we have included the results of performing regression on297

both active and inactive sequences in the center of Table 3. These results are greatly overinflated298

compared to the benchmark results, with some representations more than doubling the correlation299

scores.300

Regression performed on a dataset with a distinctly bimodal target distribution (such as the full301

CM dataset, see Figure C in the supplementary materials) can inflate the results significantly. The302

regressor is able to distinguish between the two target modalities, i.e., between the inactive cluster303

around 0 and the active cluster around 1, driving the ranking correlation to overly-optimistic values.304

The caveat to this preprocessing step is that it requires knowing the whether the proteins are active305

or not a priori, which assumes that a preceding classification-screening has been performed. The306

classification results of such a process can be seen in Section M.307

Random partitioning for cross-validation To illustrate why random splitting of wildtype protein308

datasets is ill-advised, we applied repeated random splitting to the PPAT dataset. This was done by309

randomly assigning sequences to training, validation, and testing partitions without any consideration310

of sequence similarity. Given the randomized partitions, the predictive performance using the selected311

representations was evaluated using cross validation. This was repeated a total of three times with312

different seeds. While the results look similar to the benchmark results, we do see an increase in313

performance across the board.314

With random sampling, we risk placing very similar sequences in separate partitions, thereby allowing315

extensive data-leakage, where we are essentially testing on training/validation data, thus overestimat-316

ing the predictive performance [52]. The results for this ablation study carried out on the GH114 and317

CM datasets can be found in Section L.2, where we can once again draw similar conclusions.318

7 Discussion319

The choice of representation greatly affects the downstream predictive capabilities, with no consistent,320

clear edge given by any of the three representation paradigms. For CM, a one-hot encoded MSA acts as321

an impressive baseline proving difficult to convincingly beat. For GH114, physicochemical descriptors322

are sufficient to achieve top performance, while the PPAT dataset benefits from the complex, structure-323

informed Evoformer embeddings. While the specific top-scoring representation fluctuates, the324

ESM-2 embeddings are consistently within one standard error and can thus be considered a relatively325
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consistent baseline for future experiments, where others occasionally underperform. For the three326

tasks, we see supervised learning outperforming zero-shot predictions, while the inverse-folding327

estimators however offer decent zero-shot approaches for two of three tasks.328

Despite similar overall patterns, some results stand out, e.g., the comparatively high performance329

on the GH114 dataset and the low performance on the PPAT dataset. Variations in experimental330

conditions and techniques can introduce different levels of noise. The CM and PPAT datasets are331

derived from tests on supernatants with complex backgrounds with potential side-activities from332

impurities, whereas the GH114 dataset uses purified samples with less expected noise. This can be a333

potential reason for the comparatively high performance of the latter. As for the low performance on334

the PPAT dataset, the reason might lie in the target values: the GH114 and CM datasets both measure335

enzymatic activities while the PPAT dataset measures fitness. The overall performance disparities336

suggest that enzyme activities, rather than a more complex and assay-specific fitness value, are easier337

to model given the available protein representation paradigms. The stark contrast in performance338

between the concentration normalized GH114 dataset and both the CM and PPAT datasets indicates339

that higher quality datasets are of central importance to learn accurate fitness landscapes – more so340

than the number of labelled sequences.341

8 Conclusion342

In this work we have presented a novel benchmark which investigates an unexplored domain of343

machine learning-driven protein engineering: the navigation of global fitness landscapes for single344

protein families. Wildtype exploration can be viewed as a predominantly explorative phase of345

protein optimization, which precedes the exploitation phase comprised of the subsequent protein346

engineering. Often, limited resources are allocated to wildtype exploration since it is inherently347

costly and considered wasteful as it tends to produce many poor candidates. This is unlikely to348

change unless we find ways to improve our wildtype search strategy, which will require better349

predictions. We therefore consider the limited dataset sizes as an inherent condition and limitation in350

this domain. This makes the collection and curation of relevant labelled datasets challenging and also351

necessitates the design of careful learning schemes and model evaluation to ensure reliable estimates352

of generalizability while avoiding inadvertently overestimating the results. We anticipate that the353

creation of this new set of comprehensive family-wide datasets will facilitate and improve future354

model development and applicability in this domain.355

Given the limited dataset sizes, our focus has been on transfer learning and zero-shot prediction. Our356

results show that the supervised approaches outperform the zero-shot approaches, but that no one357

representation or representation paradigm consistently outperforms the others. This could suggest358

that the employed representations are not sufficiently informative. A key limitation for a number359

of the included representations is that we obtained protein-level representations as averages over360

the protein length to arrive at fixed-length embeddings, which is known to be suboptimal [28]. We361

encourage the community to experiment with novel aggregation strategies and new representation362

designs to improve performance on our benchmark. It is also conceivable that general-purpose363

protein representation models might not by themselves be sufficient to convincingly improve on the364

proposed tasks. One can imagine that further improvements can be obtained using pretrained models365

fine-tuned on a protein family of interest – or by developing weakly-supervised representation models366

incorporating relevant properties that correlate with the function of interest (e.g., thermostability).367

Although the performance of current baselines on some of our test-cases is fairly low in absolute368

terms, even low correlations can provide useful guidance on selecting wildtype protein starting points369

and can have measurable real-world impacts. Any further improvements will enhance the importance370

of wildtype exploration relative to the subsequent local optimization step. In silico screenings of371

potential wildtype candidates can be scaled efficiently compared to expensive, time-consuming in372

vitro assays, significantly reducing the early costs of future protein engineering campaigns. We hope373

that FLOP will pave the way for these developments.374
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