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ABSTRACT

We propose a general and unifying framework for causal Imitation Learning (IL)
with hidden confounders that subsumes several existing settings. Our framework
accounts for two types of hidden confounders: (a) those observed by the expert
but not the imitator, and (b) confounding noise hidden to both. By leveraging
trajectory histories as instruments, we reformulate causal IL into Conditional
Moment Restrictions (CMRs). We propose DML-IL, an algorithm that solves these
CMRs via instrumental variable regression, and upper bound its imitation gap.
Empirical evaluation on continuous state-action environments, including Mujoco
tasks, shows that DML-IL outperforms state-of-the-art causal IL methods.

1 INTRODUCTION

Imitation Learning (IL) aims to learn a policy that replicates expert behaviour from demonstrations.
While classical IL theory suggests that, with infinite data, the IL error should vanish (Ross et al., 2011),
practical implementations often yield suboptimal and unsafe behaviours (Lecun et al., 2005, Kuefler
et al., 2017, Bansal et al., 2018). Prior work attributes these failures to various factors, including
spurious correlations (de Haan et al., 2019, Codevilla et al., 2019, Pfrommer et al., 2023), temporal
noise (Swamy et al., 2022b), expert-exclusive knowledge (Choudhury et al., 2017, Chen et al., 2019,
Swamy et al., 2022a, Vuorio et al., 2022), causal delusions (Ortega & Braun, 2008, Ortega et al.,
2021), and covariate shifts (Spencer et al., 2021). However, these studies address individual factors in
isolation, whereas in practice multiple challenges coexist, making partial solutions insufficient. This
calls for a more holistic approach that accounts for multiple confounding factors simultaneously.

We propose a unifying framework for causal imitation learning that models hidden confounders—
variables present in the environment but not recorded in demonstrations. Importantly, we distinguish
between expert-observable confounders, which influence expert decisions but are not accessible to
the imitator, and expert-unobservable confounders, which introduce spurious correlations and remain
hidden from both the imitator and the expert. As a result, our framework generalises prior settings
and enables a broader, more realistic problem formulation.

In this unifying framework, we propose an IL method that leverages trajectory histories as Instru-
mental Variables (IVs) to mitigate spurious correlations caused by expert-unobservable confounders.
Additionally, by learning a history-dependent policy, we can infer information about expert-observable
confounders, which enables us to better imitate the expert despite lacking access to said variables.
We show that IL in our framework can be reformulated as set of Conditional Moment Restrictions
(CMRs)—a well-studied problem in econometrics and causal inference, which allows us to design
practical algorithms with theoretical guarantees on the imitation gap.

Main Contributions. In summary, our main contributions are as follows:

• A unifying framework for causal IL (Section 3) incorporating both expert-observable and expert-
unobservable confounding variables to unify and generalise many of the settings in prior work.

• Reformulation of causal IL in our framework in terms of solving CMRs, by leveraging trajectory
histories as instruments to learn a history-dependent policy (Section 4).
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Figure 1: A causal graph of MDPs with hidden confounders ut = (uo
t , u

ε
t ). The black dotted lines

represent the causal effect of the expert-observable confounder uo
t , which directly affects at because

the expert can observe uo
t . It also directly affects st+1 and rt. The red dotted lines represent the

causal effect of the expert-unobservable uε
t , which acts as confounding noise and directly affects the

states and actions. uε
t does not directly affect rt (following Swamy et al. (2022b)) because the expert

policy does not take uε
t into account, and letting uε

t directly affect rt would only add noise to the
expected return.

• DML-IL, a novel algorithm for causal IL in our general framework, for which we prove an upper
bound on the imitation gap that recovers prior works’ results as special cases (Theorem 4.5).

• Empirical evaluation of our algorithm in challenging instances, where both types of confounders
are present in the environment, demonstrating it outperforms SOTA methods (Section 5).

We discuss additional related work extensively in Appendix A and explain in detail how previously
studied causal IL frameworks are generalised by our proposed unifying framework in Appendix B.

2 INSTRUMENTAL VARIABLES AND CONDITIONAL MOMENT RESTRICTIONS

We first briefly introduce the concept of Instrumental Variables (IVs) and its connection to Conditional
Moment Restrictions (CMRs). Consider a structural model for outcome Y and treatment X:

Y = f(X) + ε(U) with E[ε(U)] = 0, (1)

where U is a hidden confounder that affects both X and Y so that E[ε(U) | X] ̸= 0. Due to the
presence of this hidden confounder, standard regressions (e.g., ordinary least squares) generally fail
to produce consistent estimates of the causal relationship between X on Y , i.e., f(X). If we only
have observational data, a classic technique for learning f is IV regression (Newey & Powell, 2003).
An IV Z is an observable variable that satisfies the following conditions:

• Unconfounded Instrument: Z ⊥⊥ U ;

• Relevance: P(X|Z) is not constant in Z;

• Exclusion: Z does not directly affect Y : Z ⊥⊥ Y | (X,U).

Using IVs, we are able to formulate the problem of learning f into a set of CMRs (Dikkala et al.,
2020), where we aim to solve for f satisfying E[Y − f(X) | Z] = 0. In our work, we show that
trajectory histories can be used as instruments to learn the causal relationship between states and
expert actions by transforming the problem of causal IL into CMRs (Section 4).

3 A UNIFYING FRAMEWORK FOR CAUSAL IMITATION LEARNING

MDPs with Hidden Confounders. We introduce a novel unifying framework for causal IL based
on Markov Decision Processes (MDPs) with hidden confounders: (S,A,U ,P, r, µ0, T ). Here, S is
the state space, A is the action space, and U is the confounder space. Parts of the hidden confounders
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ut may be available to the expert due to imperfect environment logging and expert knowledge.
We model this by segmenting the hidden confounder into two parts ut = (uo

t , u
ε
t ), where uo

t are
observable to the expert and uε

t are not. Intuitively, uo
t are additional information that only the expert

observes and uε
t behave as confounding noise in the environment that affects both the state and

action.1 The transition function P(· | s, a, (uo, uε)) depends on both hidden confounders, while the
reward r(s, a, uo) does not depend on the confounding noise uε as it only directly affects the state
and actions. Finally, µ0 is the initial state distribution and T is the horizon of the problem. A causal
graph illustrating these relationships is provided in Figure 1 and a motivating example of a dynamic
airline ticket pricing environment is provided below.
Example 3.1. Consider an airline ticket pricing scenario Wright (1928), where the goal is to learn a
pricing policy by imitating actual airline pricing based on expert-set profit margins. Suppose that
seasonal patterns and external events are known only to experts, but missing from the dataset, serving
as expert-observable confounders uo

t . Meanwhile, actual airline prices are confounded (additively)
by fluctuating operating costs, which are unknown to the experts when they set the profit margin and
unobserved in the dataset, making them confounding noise uε

t . We conduct experiments on a toy
environment inspired by this in Appendix D.1 and show that IL algorithms that do not distinguish
between uo

t and uε
t fail to correctly imitate the expert.

Causal Imitation Learning. We assume that an expert is demonstrating a task following some
expert policy πE (which we will specify later) and we observe a set of N ≥ 1 expert demonstrations
DE = {d1, d2, ..., dN}. Each demonstration is a state-action trajectory (s1, a1, ..., sT , aT ), where, at
each time step, we observe the state st and the action at taken in the environment, and the trajectory
follows the transition function P( · | st, at, (uo

t , u
ε
t )). Denote ht = (s1, a1, ..., st−1, at−1, st) ∈ H

as the trajectory history at time t, where H ⊆
⋃T−1

i=0 (S ×A)i × S is the set of all possible trajectory
histories at different time steps. Importantly, we do not observe the reward and the sequence of
confounders (uo

t , u
ε
t ). Given the observed trajectories, our goal is to learn a history-dependent policy

πh : H → ∆(A). We assume that our policy class Π is convex and compact. The Q-function of a
policy πh ∈ Π is defined as Qπ(st, at, u

o
t ) = Eτ∼πh

[
∑T

t′=t r(st′ , at′ , u
o
t′)] and the return of a policy

is given by J(π) = Eτ∼πh
[
∑T

t=1 r(st, at, u
o
t )], where τ is the trajectory following πh.

This nuanced distinction between uo
t and uε

t is crucial for determining the appropriate method for IL,
and we begin with a motivating example to illustrate the importance of considering ut = (uo

t , u
ε
t ).

In order to learn a policy πh that matches the performance of πE , we need to break the spurious
correlation between states and expert actions by inferring what the expert would do if we intervened
and placed them in state st when observing uo

t . Unfortunately, the causal inference literature (Shpitser
& Pearl, 2008) tells us that, without further assumptions, it is generally impossible to identify πE . To
determine the minimal assumptions that allow πE to be identifiable, we first observe that uε

t can be
correlated for all time steps t, making it impossible to distinguish between the intended actions of the
expert and the confounding noise. However, in practice, the confounding noise at far-apart time steps
is often independent. For example, the effect of the confounding noise uε

t at time t on future states
and actions often diminishes over time, which is typically the case for random environment noise such
as wind. In addition, when the confounding noise uε

t at time t becomes observable at a future time t′,
e.g., operating costs become observable later on as in Example 3.1, the unobservable confounding
noise at times t and t′ becomes independent. We formalise this intuition as a confounding noise
horizon k:
Assumption 3.2 (Confounding Noise Horizon). For every t, the confounding noise uε

t has a horizon
of k where 1 ≤ k < T . More formally, uε

t ⊥⊥ uε
t−k ∀t > k.

This assumption is essential for decoupling the spurious correlation between the state and action
pairs. We also assume that the confounding noise is additive to the action, which is standard in
causal inference (Pearl, 2000, Shao et al., 2024). Without this assumption, the causal effect becomes
unidentifiable (see, e.g., (Balke & Pearl, 1994)) and the best we can do is to upper/lower bound it.
Assumption 3.3 (Additive Noise). The structural equation that generates the actions in the observed
trajectories is

at = πE(st, u
o
t ) + uε

t , (2)
1In our framework, we allow the actual actions taken in the environment to be affected by the noise. Noise

that only perturbs data records can be considered as a special case of our framework.
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where w.l.o.g. E[uε
t ] = 0 as any non-zero expectation of uε

t can be included as a constant in πE .

4 CAUSAL IL AS CMRS

In this section, we demonstrate that performing causal IL in our framework is possible using trajectory
histories as instruments by reformulating the problem as CMRs.

The typical target for IL would be the expert policy πE itself. However, since the expert has access to
privileged information, namely uo

t , which the imitator does not, the best thing an imitator can do is to
learn a history-dependent policy πh to match the expert behaviour. A natural choice is the conditional
expectation of πE(st, u

o
t ) on the history ht:

πh(ht) := EP(uo
t |ht)[πE(st, u

o
t )] = E[πE(st, u

o
t ) | ht],

because the conditional expectation minimises the least squares criterion (Hastie et al., 2001) and πh

is the best predictor of πE given ht. In πh, the distribution P(uo
t | ht) captures the information about

uo
t that can be inferred from trajectory histories.

Remark 4.1. Learning πh is not trivial. Policies learnt naively using behaviour cloning (i.e.,
E[at | ht]) fail to match πE . In view of Equation (2), we have that

E[at | ht] = E[πE(st, u
o
t ) | ht] + E[u

ε
t | ht] = πh(ht) + E[u

ε
t | ht],

where E[uε
t | ht] ̸= 0 due to the spurious correlation between uε

t and the trajectory history ht. As a
result, E[at | ht] becomes biased, which can lead to arbitrarily worse performance compared to πE .

Derivation of CMRs. Leveraging the confounding horizon from Assumption 3.2, it becomes
possible to break the spurious correlation using the independence of uε

t and uε
t−k. We propose to

use the k-step trajectory history ht−k = (s1, a1, ..., st−k) as an instrument for the current state st.
Taking the expectation of at conditional on ht−k yields

E[at | ht−k] = E [E[at | ht] | ht−k]

= E[πh(ht) | ht−k] + E[u
ε
t | ht−k] = E[πh(ht) | ht−k],

where we used that uε
t ⊥⊥ uε

t−k and E[uε
t ] = 0 by Assumption 3.2. As a result, the problem of

learning πh reduces to solving for πh that satisfies the following identity

E[at − πh(ht) | ht−k] = 0, (3)

which is a CMR problem as defined in Section 2. In this case, both at and ht are observed in the
confounded expert demonstrations, and ht−k acts as the instrument.

To ensure that the instrument ht−k is valid, we verify the three conditions from Section 2: firstly,
uε
t ⊥⊥ ht−k as explained above. Secondly, the environment and expert policy are non-trivial since
P(ht | ht−k) is not constant in ht−k, and, finally, ht−k affects at only through st by the Markov
property. However, the strength of ht−k, representing its correlation with ht, influences how well
πh(ht) can be identified. As the confounding horizon k increases, this correlation weakens, making
ht−k a less effective instrument. This relationship is formally analysed in Proposition 4.3 and
validated through experiments in Section 5.

4.1 PRACTICAL ALGORITHMS FOR SOLVING THE CMRS

There are various techniques (Bennett et al., 2019a, Xu et al., 2020, Shao et al., 2024) for solving the
CMRs E[at|ht−k] = E[πh(ht)|ht−k]. Here, the CMR error that we aim to minimise is given by√

E
[
E[at − π̂h(ht)|ht−k]2

]
= ∥E[at − π̂h(ht)|ht−k]∥2.

In Algorithm 1, we introduce DML-IL, an algorithm adapted from the IV regression algorithm
DML-IV (Shao et al., 2024), which solves our CMRs by minimising the CMR error.2 The first part
of the algorithm (lines 3-7) learns a roll-out model M̂ that generates a trajectory k steps ahead given

2DML stands for double machine learning (Chernozhukov et al., 2018), which is a statistical technique to
ensure fast convergence rate for two-step regression, as is the case in Algorithm 1.
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Algorithm 1 DML-IL

1: input Dataset DE of expert demonstrations, confounding noise horizon k

2: Initialize the roll-out model M̂ as a Gaussian mixture model
3: repeat
4: Sample (ht, at) from data DE

5: Fit the roll-out model (ht, at) ∼ M̂(ht−k) to maximize the log likelihood
6: until convergence
7: Initialize the expert model π̂h as a neural network
8: repeat
9: Sample ht−k from DE

10: Generate ĥt and ât using the roll-out model M̂
11: Update π̂h to minimise the loss ℓ := ∥ât − π̂h(ĥt)∥2
12: until convergence
13: return A history-dependent imitator policy π̂h

ht−k. Then, π̂h takes the generated trajectory ĥt from M̂(ht−k) as input and minimises the mean
square error to the next action (lines 8-13). Using generated trajectories is crucial in breaking the
spurious correlation caused by uε

t , and the trajectory history before ht−k allows the imitator to infer
information about uo

t . We refer to Appendix G for a discussion of the theoretical convergence rate
guarantees of DML-IL and the choice of the confounding noise horizon k as input.

4.2 THEORETICAL ANALYSIS

In this section, we derive theoretical guarantees for our algorithm, focusing on the imitation gap and
its relationship to existing work. All proofs in this section are deferred to Appendix C.

In order to bound the imitation gap of the learnt policy π̂h, i.e., J(πE)− J(π̂h), we need to analyse:

(i) The information about hidden confounders uo
t that can be inferred from trajectory histories;

(ii) The ill-posedness of the CMRs, which intuitively measures the strength of the instrument ht−k;
(iii) The disturbance of the confounding noise to the states and actions at test time.

These factors are all determined by the environment and the expert policy. To control (i), we measure
how much information about uo

t is captured by the trajectory history ht by analysing the Total
Variation (TV) distance between the distribution of uo

t and E[uo
t |ht] along the trajectories of πE . To

control (ii) and (iii), we need to introduce the following two key concepts.
Definition 4.2 (The ill-posedness of CMRs (Dikkala et al., 2020)). Given the derived CMRs in Equa-
tion (3), the ill-posedness ν(Π, k) of the policy space with confounding noise horizon k is

ν(Π, k) = sup
π∈Π

∥πE − π∥2
∥E[at − π(ht)|ht−k]∥2

.

The ill-posedness ν(Π, k) measures the strength of the instrument, where a higher ν(Π, k) indicates a
weaker instrument. As discussed previously, intuitively, the strength of the instrument would decrease
as the confounding horizon k increases. This is confirmed by the following proposition.
Proposition 4.3. ν(Π, k) is monotonically increasing as the confounded horizon k increases.

Next, we introduce the notion of c-TV stability.
Definition 4.4 (c-total variation stability (Bassily et al., 2021, Swamy et al., 2022b)). Let P (X) be
the distribution of a random variable X : Ω → X . P (X) is c-TV stable if for a1, a2 ∈ X and ∆ > 0,

∥a1 − a2∥ ≤ ∆ =⇒ δTV (a1 +X, a2 +X) ≤ c∆

where ∥·∥ is some norm defined on X and δTV is the total variation distance.

A wide range of distributions are c-TV stable. For example, standard normal distributions are 1
2 -TV

stable. We apply this notion to the distribution over uε
t to bound the disturbance it induces in the

trajectory and the expected return.
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With the notion of ill-posedness and c-TV stability, we can now analyse and upper bound the imitation
gap J(πE)− J(π̂h) by controlling the three components (i)− (iii) discussed above.
Theorem 4.5 (Imitation Gap Bound). Let π̂h be the learnt policy with CMR error ε and let ν(Π, k)
be the ill-posedness of the problem. Assume that δTV (u

o
t ,EπE

[uo
t |ht]) ≤ δ for δ ∈ R+, P (uε

t ) is
c-TV stable and πE is deterministic. Then, the imitation gap is upper bounded by

J(πE)− J(π̂h) ≤ T 2
(
cεν(Π, k) + 2δ

)
= O

(
T 2(δ + ε)

)
.

This upper bound scales at the rate of T 2, which aligns with the expected behaviour of imitation
learning without an interactive expert (Ross & Bagnell, 2010). Next, we show that the upper bounds
of the imitation gap from prior work (Swamy et al., 2022b;a) are special cases of Theorem 4.5.
Corollary 4.6. In the special case that uo

t = 0, i.e., there are no expert-observable confounders, or
uo
t = EπE

[uo
t |ht], i.e., uo

t is σ(ht) measurable (all information about uo
t is contained in the history),

the imitation gap is upper bounded by J(πE)− J(π̂h) ≤ T 2
(
cεν(Π, k)

)
, which coincides with the

bound of Theorem 5.1 in Swamy et al. (2022b).
Corollary 4.7. In the special case that uε

t = 0, if the learnt policy has optimisation error ε, the
imitation gap is upper bounded by J(πE)− J(π̂h) ≤ T 2

(
2ε/

√
dim(A) + 2δ

)
, which is a concrete

bound that extends the abstract bound in Theorem 5.4 of Swamy et al. (2022a).
Remark 4.8. If both uε

t and uo
t are zero, we recover the classic setting of IL without confounders (Ross

& Bagnell, 2010), and the imitation gap bound is T 2ε, where ε is the optimisation error of the
algorithm.

5 EXPERIMENTS

We here empirically evaluate the performance of Algorithm 1 (DML-IL) on Mujoco environments:
Ant, Half Cheetah and Hopper. In our experiments, we compare with: Behavioural Cloning (BC),
which learns E[at|st]; BC-SEQ (Swamy et al., 2022a), which learns a history-dependent policy
E[at|ht]; ResiduIL (Swamy et al., 2022b), which we adapt to our setting with ht−k as instruments
to learn a history-independent policy; and the noised expert, which is the maximally achievable
performance.

We train imitators with 20000 samples (40 trajectories of 500 steps each) of the expert trajectory.
The average reward is scaled such that 1 is the expert and 0 is a random policy. We also report the
Mean Squared Error (MSE) between the imitator’s and expert’s actions. When the confounding
noise uε is not specifically accounted for, we should expect to observe a much higher MSE. We
vary the confounding noise horizon k from 1 to 20 in order to observe its effect on the strength of
the instruments ht−k. All results are plotted with one standard deviation as a shaded area. We also
provide additional experiments in different environments in Appendix D. Moreover, we evaluate the
use of other IV regression algorithms as the core CMR solver in Appendix D.2.

5.1 MUJOCO ENVIRONMENTS

Experimental Setup. The original Mujoco environments do not have hidden variables, so we
modify the environments and introduce expert-observable and expert-unobservable confounders.
Specifically, while the original goal in Mujoco environments is to move forward as quickly as possible,
we set the goal of travelling at a target speed uo

t that varies throughout an episode. This varying target
speed is observed by the expert but is not recorded in the dataset and acts as the expert-observable
confounder uo

t . In addition, we introduce additive confounding noise uε
t to states st and actions at

to mimic confounding noise such as wind. Additional details about the modifications made to the
environments are provided in Appendix E.2.

Results. We find that DML-IL consistently outperforms all other methods in terms of both MSE
(Figure 2) and average reward (Figure 3), especially when the confounding horizon is 1. This suggests
that DML-IL is successful in handling both types of confounders uε

t and uo
t . ResiduIL is able to

reduce the confounding effect of uε
t , which is evident by the comparatively low MSE (Figure 2).

However, ResiduIL has no information about uo
t and the best it can do is to assume an average (or

expectation) of uo
t , which nevertheless results in a worse average reward (Figure 3). Both BC and
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(a) Ant (b) Half Cheetah (c) Hopper

Figure 2: MSE in the three Mujoco environments. Lower values are better.

(a) Ant (b) Half Cheetah (c) Hopper

Figure 3: The average reward in Mujoco environments. Higher values are better.

BC-SEQ fail completely in the presence of confounding noise uε
t , with orders of magnitude higher

MSE and average reward close to a random policy. From the similar performance of BC-SEQ and
BC, we see that the use of trajectory histories to infer uo

t is not helpful when the confounding noise
uε
t is not handled explicitly. We also find that, as the confounding noise horizon k increases (x-axis),

the MSE of DML-IL increases (Figure 2) as well as its average reward decreases (Figure 3). This
corroborates the observation that the instrument is weaker and less information about uo

t can be
inferred from ht−k as the confounding horizon k increases (see Proposition 4.3).

6 CONCLUSION

In this paper, we proposed a unifying framework for confounded IL with hidden confounders that
unifies and extends previous confounded IL settings. Specifically, we considered hidden confounders
to be partially observable to the expert, and demonstrated that causal IL under this framework can be
reduced to a set of CMRs with the trajectory histories as instruments. We proposed DML-IL, a novel
algorithm to solve these CMRs and learn an imitator. We provided bounds on the imitation gap for
the learnt imitator. Finally, we empirically evaluated DML-IL on multiple tasks, including Mujoco
environments, and demonstrated state-of-the-art performance against other causal IL algorithms.
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A RELATED WORK

Imitation Learning. Imitation learning considers the problem of learning from demonstra-
tions (Pomerleau, 1988, Lecun et al., 2005). Standard IL methods include Behaviour Cloning (Pomer-
leau, 1988), Inverse RL (Russell, 1998), and adversarial methods (Ho & Ermon, 2016). Interactive
IL (Ross et al., 2011) extends standard IL by allowing the imitator to query an interactive expert,
facilitating recovery from mistakes. However, in this paper, we do not assume query access to an
interactive expert.

Causal Imitation Learning. Recently, it has been shown that IL from offline trajectories can suffer
from the existence of latent variables (Ortega et al., 2021), which cause causal delusion. This can
be resolved by learning an interventional policy. Following this discovery, various methods (Vuorio
et al., 2022, Swamy et al., 2022a) considered IL when the expert has access to the full hidden context
that is fixed throughout each episode, but the imitator does not observe the hidden context. They
aim to learn an interventional policy through on-policy IL algorithms that require an interactive
demonstrator and/or an interactive simulator (e.g., DAgger (Ross et al., 2011)).

Orthogonal to these works, Swamy et al. (2022b) consider latent variables not known to the expert,
which act as confounding noise that affects the expert policy, but not the transition dynamics. To
address this challenge, the problem is then cast into an IV regression problem. Our work combines
and generalises the above works (Vuorio et al., 2022, Swamy et al., 2022a;b) to allow the latent
variables to be only partly known to the expert, evolving through time in each episode and directly
affecting both the expert policy and the transition dynamics. Solving this generalisation implies
solving the above problems simultaneously.

Causal confusion (de Haan et al., 2019, Pfrommer et al., 2023) considers the situation where the
expert’s actions are spuriously correlated with non-causal features of the previous observable states.
While it is implicitly assumed that there are no latent variables present in the environment, we can
still model this spurious correlation as the existence of hidden confounders that affect both previous
states and current expert actions. Slight variations of this setting have been studied in (Wen et al.,
2020, Spencer et al., 2021, Codevilla et al., 2019). In Appendix B, we explain and discuss how these
works can be reduced to special cases of our unifying framework.

From the causal inference perspective (Kumor et al., 2021, Zhang et al., 2020), there have been studies
of the theoretical conditions on the causal graph such that the imitator can exactly match the expert
performance through backdoor adjustments (imitability). Similarly, Ruan et al. (2023) extended
imitation conditions and backdoor adjustments to inverse RL. We instead consider a setting where
exact imitation is not possible and aim to minimise the imitation gap. Beyond backdoor adjustments,
imitability has also been studied theoretically using context-specific independence relations (Jamshidi
et al., 2023).

IV Regression and CMRs. In this paper, we transform our causal IL problem into solving a set of
CMRs through IVs. Therefore, we briefly introduce IV regression and approaches for solving CMRs.
The classic IV regression algorithms mainly consider linear functions (Angrist et al., 1996) and
non-linear basis functions (Newey & Powell, 2003, Chen & Christensen, 2018, Singh et al., 2019).
More recently, DNNs have been used for function estimation and methods such as DeepIV (Hartford
et al., 2017), DeepGMM (Bennett et al., 2019b), AGMM (Dikkala et al., 2020), DFIV (Xu et al.,
2020) and DML-IV (Shao et al., 2024) have been proposed.

More generally, IV regression algorithms can be generalised to solve CMRs (Liao et al., 2020,
Dikkala et al., 2020, Shao et al., 2024), specifically linear CMRs, where the restrictions are linear
functionals of the function of interest. In our paper, the derived CMRs for causal IL are linear, so the
above methods can be adopted.

B REDUCING OUR UNIFYING FRAMEWORK TO RELATED LITERATURE

In this section, we discuss how the various previous works can be obtained as special cases of our
unifying framework.
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B.1 TEMPORALLY CORRELATED NOISE (SWAMY ET AL., 2022B)

The Temporally Correlated Noise (TCN) proposed in (Swamy et al., 2022b) is a special case of
our setting where uo = 0 and only the confounding noise uε is present. Following Equation 14-17
of (Swamy et al., 2022b), their setting can be summarised as

st = T (st−1, at−1)

= T (st−1, πE(st−1) + ut−1 + ut−2)

at = πE(st) + ut + ut−1,

where T is the transition function and ut are the TCN. It can be seen that TCN is the confounding
noise uε since the expert policy doesn’t take it into account and it affects (or confounds) both the
state and action.

It can be seen that this is a special case of our framework when uo
t = 0, where at = πE(st) + ε(uε

t )
from Equation (2), and more specifically when the confounding noise horizon in Theorem 3.2 is 2. In
addition, the theoretical results in (Swamy et al., 2022b) can be deduced from our main results as
shown in Corollary 4.7.

B.2 UNOBSERVED CONTEXTS (SWAMY ET AL., 2022A)

The setting considered by Swamy et al. (2022a) is a special case of our setting when uε = 0 and only
uo are present. Following Section 3 of Swamy et al. (2022a), their setting can be summarised as

T : S ×A× C → D(S)

∇ : S ×A× C → [−1, 1]

at = πE(st, c)

where c ∈ C is the context, which is assumed to be fixed throughout an episode. There are no hidden
confounders in this setting and the context c is included in uo under our framework. Note that in
our setting we also allow uo to be varying throughout an episode. In addition, the theoretical results
in (Swamy et al., 2022a) can be deduced from our main results as shown in Corollary 4.6.

B.3 IMITATION LEARNING WITH LATENT CONFOUNDERS (VUORIO ET AL., 2022)

The setting considered by (Vuorio et al., 2022) is also a special case of our setting when uε = 0 and
only uo are present, which is very similar to (Swamy et al., 2022a). In Section 2.2 of (Vuorio et al.,
2022), they introduced a latent variable θ ∈ Θ that is fixed throughout an episode and at = πE(st, θ).
There are no hidden confounders in this setting and the latent variable θ is included in uo in our
framework. No theoretical imitation gap bounds are provided in Vuorio et al. (2022). However,
Corollary 4.6 can be directly applied to their setting and bound the imitation gap.

B.4 CAUSAL DELUSION AND CONFUSION DE HAAN ET AL. (2019), WEN ET AL. (2020),
ORTEGA ET AL. (2021), SPENCER ET AL. (2021), PFROMMER ET AL. (2023)

The concept of causal delusion (Ortega et al., 2021) and confusion is widely studied in the litera-
ture (de Haan et al., 2019, Wen et al., 2020, Spencer et al., 2021, Pfrommer et al., 2023) from different
perspectives. A classic example of causal confusion is learning to break in an autonomous driving
scenario. The states are images with full view of the dashboard and the road conditions. The break
indicator in this scenario is the confounding variable that correlates with the action of breaking in
subsequent steps, which causes the imitator to learn to break if the break indicator light is already
on. Therefore, another name for this problem is the latching problem, where the imitator latches to
spurious correlations between current action and the trajectory history.

In the setting of Ortega et al. (2021), this is explicitly modelled as latent variables that affect both
the action and state, causing spurious correlation between them and confusing the imitator. In other
settings de Haan et al. (2019), Pfrommer et al. (2023), Spencer et al. (2021), Wen et al. (2020), there
are no explicit unobserved confounders, but the nuisance correlation between the previous states and
actions can be modelled as the existence of hidden confounders uε in our framework. Specifically,
in de Haan et al. (2019), xt−1 and at−1 are considered confounders that affect the state variable
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xt, which causes a spurious correlation between previous state action pairs and at. The spurious
correlation between variables is typically modelled as the existence of a hidden confounder uε that
affects both variables in causal modelling. For example, the actual hazard or event that causes the
expert to break will be the hidden confounder uε that affects both the break and the break indicator.

However, despite the fact that this setting can be considered a special case of our general framework,
we stress that the concrete and practical problems considered in de Haan et al. (2019), Pfrommer
et al. (2023), Spencer et al. (2021), Wen et al. (2020) are different from ours, where they assumed
implicitly that the hidden confounders uε are embedded in the observations or outright observed.

C PROOFS OF MAIN RESULTS

In this section, we provide the proofs for the main results and corollaries in this paper.

C.1 PROOF OF PROPOSITIONS

Proposition 4.3: The ill-posedness ν(Π, k) is monotonically increasing as the confounded horizon k
increases.

Proof. From definition, we have that

ν(Π, k) = sup
π∈Π

∥πE − π∥2
∥E[at − π(ht)|ht−k]∥2

.

We would like to show for each π ∈ Π, ∥πE−π∥2

∥E[at−π(ht)|ht−k]∥2
is increasing as k increases, which

would imply that ν(Π, k) is increasing. For each π ∈ Π, we see that the numerator is constant
w.r.t the horizon k. Therefore, it is enough to check that for each π ∈ Π, the denominator ∥E[at −
π(ht)|ht−k]∥2 decreases as k increases. For any two integer horizon k1 > k2,

E[at − π(ht)|ht−k1
]2 = E[E[at − π(ht)|ht−k2

]|ht−k1
]2 (4)

≤ E[E[at − π(ht)|ht−k2
]2|ht−k1

] (5)

= E[at − π(ht)|ht−k2
]2 (6)

by the tower property of conditional expectation as σ(ht−k1
) ⊆ σ(ht−k2

), Jensen’s inequality for
conditional expectations, and the fact that E[at − π(ht)|ht−k2

]2 is ht−k1
measurable, respectively

for each line. Therefore, we have that E[at − π(ht)|ht−k] is decreasing, which implies ∥E[at −
π(ht)|ht−k]∥2 is decreasing and ν(Π, k) is increasing as k increases, which completes the proof.

C.2 MAIN RESULTS FOR GUARANTEES ON THE IMITATION GAP

Theorem 4.5: Let π̂h be the learnt policy with CMR error ε and let ν(Π, k) be the ill-posedness of
the problem. Assume that δTV (u

o
t ,EπE

[uo
t |ht]) ≤ δ for δ ∈ R+, P (uε

t ) is c-TV stable and πE is
deterministic. Then, the imitation gap is upper bounded by

J(πE)− J(π̂h) ≤ T 2(cεν(Π, k) + 2δ) = O(T 2(δ + ε)).

Proof of Theorem 4.5. We let the Q-function of a policy πh ∈ Π be defined as Qπ(st, at, u
o
t ) =

Eτ∼πh
[
∑T

t′=t r(st′ , at′ , u
o
t′)]. Recall that J(π) is the expected reward following π, and we would

like to bound the performance gap J(πE) − J(π̂h) between the expert policy πE and the learned
history-dependent policy π̂h. Let Qπ̂h

(st, at, u
o
t ) be the Q-function of π̂h. Using the Performance

Difference Lemma (Kakade & Langford, 2002), we have that for any Q-function Q̃(ht, at) that takes
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in the trajectory history ht and action at,

J(πE)− J(π̂h) = Eτ∼πE
[

T∑
t=1

Qπ̂h
(st, at, u

o
t )− Ea∼π̂h

[Qπ̂h
(st, a, u

o
t )]]

=

T∑
t=1

Eτ∼πE
[Qπ̂h

(st, at, u
o
t )− Q̃(ht, at) + Q̃(ht, at)− Ea∼π̂h

[Qπ̂h
− Q̃+ Q̃]]

=

T∑
t=1

Eτ∼πE
[Q̃− Ea∼π̂h

[Q̃]] +

T∑
t=1

Eτ∼πE
[Qπ̂h

− Q̃− Ea∼π̂h
[Qπ̂h

− Q̃]] (7)

We first bound the second part of Equation (7). Denote by δTV the total variation distance. For
two distributions P,Q, recall the property of total variation distance for bounding the difference in
expectations:

|EP [f(x)]− EQ[f(x)]| ≤ ∥f∥∞δTV (P,Q).

In order to bound the second part of Equation (7), for any Q function, consider inferred Q̃ using the
conditional expectation of uo on the history h,

Q̃(ht, at) := Q(st, at,Eτ∼πE
[uo

t |ht]),

where note that st ∈ ht. We have that, when the transition trajectory (st, u
o
t , u

ε
t , rt) ∼ πE follows

the expert policy, for any action ȧ ∼ π following some policy π (in our case, it can be πE or π̂h),

|Eτ∼πE ,ȧ∼π[Q(st, ȧ, ut)− Q̃(ht, ȧ)]| (8)
= |Eτ∼πE ,ȧ∼π[Q(st, ȧ, u

o
t )−Q(st, ȧ,Eτ∼πE

[uo
t |ht]])]|

=
∣∣Euo

t∼πE
[EπE ,π[Q(st, ȧ, u

o
t )|uo

t ]− Euo
t |ht∼πE

[EπE ,π[Q(st, ȧ, u
o
t )|uo

t ]
∣∣ (9)

≤ ∥EπE ,π[Q(st, ȧ, u
o
t )|uo

t ]∥∞δTV (u
o
t ,EπE

[uo
t |ht]) (10)

≤ T · δTV (u
o
t ,EπE

[uo
t |ht]) (11)

≤ Tδ (12)

where Equation (9) uses the tower property of expectations, Equation (10) uses the total variation
distance bound for bounded functions, Equation (11) uses the fact that the Q function is bounded
by T and Equation (12) uses the condition that δTV (u

o
t ,EπE

[uo
t |ht]) ≤ δ in the theorem statement.

Since Equation (7) holds for any choice of Q̃, we choose Q̃π̂h
(ht, at) := Qπ̂h

(st, at,Eτ∼πE
[uo

t |ht])
such that we can apply Equation (12) twice to bound the second part of Equation (7):

Eτ∼πE
[Qπ̂h

−Q̃π̂h
− Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]] (13)

≤ Eτ∼πE
[Qπ̂h

− Q̃π̂h
+ |Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]|]
= Eτ∼πE

[Qπ̂h
− Q̃π̂h

] + |Est,ut∼πE ,a∼π̂h
[Qπ̂h

− Q̃π̂h
]|

≤ |Eτ∼πE
[Qπ̂h

− Q̃π̂h
]|+ Tδ (14)

≤ 2Tδ

where Equation (14) holds by applying Equation (12) because the expectation of the trajectories (and
their transitions) are over πE , and the actions which are used only as arguments into the Q function
are sampled from π̂h.

Next, we bound the first part of Equation (7). Recall that the ill-posedness of the problem for a policy
class Π is

ν(Π, k) = sup
π∈Π

∥πE − π∥2
∥E[at − π(ht)|ht−k]∥2

where ∥πE − π∥2 is the RMSE and ∥E[at − π(st)|st−k]∥2 is the CMR error from our algorithm.
Since the learned policy π̂h have CMR error of ε, we have that

∥πE − π̂h∥2 ≤ ν(Π, k)∥E[at − π̂h(ht)|ht−k]∥2 ≤ ν(Π, k)ε
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Next, recall that c-total variation stability of a distribution P (uε) where uε ∈ A for some space A
implies for two elements a1, a2 ∈ A,

∥a1 − a2∥2 ≤ ∆ =⇒ δTV (a1 + uε, a2 + uε) ≤ c∆.

Since P (uε
t ) is c-TV stable w.r.t the action space A, we have that for all history trajectories ht ∈ H

(note that st ∈ ht)

δTV (πE(st) + uε
t , π̂h(ht) + uε

t ) ≤ c∥πE(st)− π̂h(ht)∥2.

Then, we have that by Jensen’s inequality,

Eht∼πE
[δTV (πE(st) + uε

t , π̂h(ht) + uε
t )]

2 ≤ Eht∼πE
[δTV (πE(st) + uε

t , π̂h(ht) + uε
t )

2]

Consequently, we obtain

Eht∼πE
[δTV (πE(st) + uε

t , π̂h(ht) + uε
t )] ≤

√
Eht∼πE

[δTV (πE(st) + uε
t , π̂h(ht) + uε

t )
2]

≤
√
c2Eht∼πE

[∥πE(st)− π̂h(ht)∥22]

= c∥πE − π̂h∥2 ≤ cεν(Π, k)

Therefore, by applying the total variation distance bound for expectations of Q̃π̂h
over different

distributions of action at, we have that

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] = Eτ∼πE
[Q̃π̂h

(ht, at)− E[Q̃π̂h
(ht, π̂h(ht))]] (15)

= Eht∼πE
[E[Q̃π̂h

(ht, πE(st) + uε
t )]− E[Q̃π̂h

(ht, π̂h(ht) + uε
t )]]
(16)

≤ ∥Q̃π̂h
∥∞Eht∼πE

[δTV (F (πE(st) + uε
t ), F (π̂h(ht) + uε

t ))] (17)
≤ Tcεν(Π, k) (18)

Combining all of above, we see that from Equation (7), by selecting Q̃π̂h
(ht, at) :=

Qπ̂h
(st, at,Eτ∼πE

[uo
t |ht]), the imitation gap can be bounded by

J(πE)− J(π̂h) (19)

=

T∑
t=1

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] +

T∑
t=1

Eτ∼πE
[Qπ̂h

− Q̃π̂h
− Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]] (20)

≤
T∑

t=1

Tcεν(Π, k) +

T∑
t=1

2Tδ (21)

≤ T · (Tcεν(Π, k) + 2Tδ) (22)

= T 2(cεν(Π, k) + 2δ) = O(T 2(ε+ δ)), (23)

which concludes the proof.

C.3 PROOFS OF COROLLARIES

Corollary 4.6: In the special case that uo
t = 0, meaning that there is no confounder observable to the

expert, or uo
t = EπE

[uo
t |ht], meaning that uo

t is σ(ht) measurable (all information regarding uo
t is

represented in the history), the imitation gap bound is T 2(cεν(Π, k)), which coincides with Theorem
5.1 of Swamy et al. (2022b).

Proof. If uo
t = 0, then we have uo

t = EπE
[uo

t |ht] since uo
t is a constant. If uo

t = EπE
[uo

t |ht], we
have that

δTV (u
o
t ,EπE

[uo
t |ht]) = δTV (u

o
t , u

o
t ) ≤ 0

By plugging δ = 0 into Theorem 4.5, we have that J(πE)− J(π̂h) ≤ T 2(cεν(Π, k)), which is the
same as the imitation gap derived in Swamy et al. (2022b) and completes the proof.
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Corollary 4.7: In the special case that uε
t = 0, if the learnt policy via supervised BC have error

ε, then the imitation gap bound is T 2( 2√
dim(A)

ε+ 2δ), which is a concrete bound that extends the

abstract bound in Theorem 5.4 of Swamy et al. (2022a).

Proof. In Theorem 5.4 of Swamy et al. (2022a), for the offline case, which is the setting we are
considering (as opposed to the online settings), they defined the following quantities for bounding the
imitation gap in a very general fashion,

εoff := sup
Q̃

Eτ∼πE
[Q̃− Ea∼π̂h

[Q̃]]

δoff := sup
Q×Q̃

Eτ∼πE
[Qπ̂h

− Q̃− Ea∼π̂h
[Qπ̂h

− Q̃]].

The imitation gap by Theorem 5.4 in Swamy et al. (2022a) under the assumption that uε
t = 0

is T 2(εoff + δoff), which can also be deduced from Equation (7) by naively applying the above
supremum over all possible Q functions. To obtain a concrete bound, we can provide a tighter bound
for Eτ∼πE

[Q̃π̂h
− Ea∼π̂h

[Q̃π̂h
]], which is the first part of Equation (7), given that uε

t = 0.

For two elements a1, a2 ∈ A, we have that by Cauchy–Schwarz,

δTV (a1 + 0, a2 + 0) =
1

2
∥a1− a2∥1 ≤

√
dim(A)

2
∥a1− a2∥2.

Then, we have that

∥a1 − a2∥2 ≤ ∆ =⇒ δTV (a1, a2) ≤
2√

dim(A)
∆

so that by Theorem 4.5,

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] = Eτ∼πE
[Q̃π̂h

(ht, at)− E[Q̃π̂h
(ht, π̂h(ht))]] (24)

= Eht∼πE
[E[Q̃π̂h

(ht, πE(st))]− E[Q̃π̂h
(ht, π̂h(ht))]] (25)

≤ ∥Q̃π̂h
∥∞

2√
dim(A)

∥πE − π∥2 (26)

≤ T
2√

dim(A)
ε, (27)

since when uε
t = 0 the learning error via supervised learning is ε := ∥πE − π∥2. Therefore, the final

imitation bound following Theorem 4.5 is

J(πE)− J(π̂h) (28)

=

T∑
t=1

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] +

T∑
t=1

Eτ∼πE
[Qπ̂h

− Q̃π̂h
− Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]] (29)

≤
T∑

t=1

T
2√

dim(A)
ε+

T∑
t=1

2Tδ (30)

= T 2(
2√

dim(A)
ε+ 2δ). (31)

This bound is a concrete bound, obtained through a detailed analysis of the problem at hand, that
coincides with the abstract bound T 2(εoff + δoff) provided in Theorem 5.4 of Swamy et al. (2022b).
Note that this bound is independent of the ill-posedness ν(Π, k) and the c-TV stability of uε

t , which
are present in the bound of Theorem 4.5, due to the lack of hidden confounders uε

t .
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(a) MSE in log scale, lower is better. (b) Average reward, higher is better.

Figure 4: The MSE and the average reward in the airline ticket environment (Example 3.1).

D ADDITIONAL EXPERIMENTS

Here, we discuss a motivating example to illustrate the importance of considering ut = (uo
t , u

ε
t ).

Example D.1. Consider an airline ticket pricing scenario Wright (1928), where the goal is to learn a
pricing policy by imitating actual airline pricing based on expert-set profit margins. Suppose that
seasonal patterns and external events are known only to experts, but missing from the dataset, serving
as expert-observable confounders uo

t . Meanwhile, actual airline prices are confounded (additively)
by fluctuating operating costs, which are unknown to the experts when they set the profit margin and
unobserved in the dataset, making them confounding noise uε

t . We conduct experiments on a toy
environment inspired by this in Appendix D.1 and show that IL algorithms that do not distinguish
between uo

t and uε
t fail to correctly imitate the expert.

D.1 AIRLINE TICKET PRICING ENVIRONMENT

Experimental Setup. We conducted additional experiments on the airline ticket pricing environ-
ment described in Example 3.1. The confounding noise uε are operation costs and uo

t are seasonal
demand patterns and events. Details on this environment are provided in Appendix E.1.

Results. The results are presented in Figure 4. DML-IL performed the best with the lowest MSE
and the highest average reward that is closest to the expert, especially when the uε

t horizon is 1.
Overall, we observe very similar results to those from the Mujoco evironments in Section 5.

D.2 ADOPTING OTHER IV REGRESSION ALGORITHMS

In this paper, we have transformed causal IL with hidden confounders into a set of CMRs as defined
in Equation (3). Therefore, in principle many IV regression algorithms can be adopted to solve our
CMRs. We also experimented with other IV regression algorithms that have been previously shown
to be practical Shao et al. (2024) for different tasks and high-dimensional input. Specifically, we
experimented with DFIV Xu et al. (2020), which is an iterative algorithm that integrates the training
of two models that depend on each other, and DeepGMM Bennett et al. (2019b), which solves a
minimax game by optimising two models adversarially. Note that DeepIV Hartford et al. (2017) can
be considered a special case of DML-IV Shao et al. (2024), so we did not reimplement it.

The additional results for using DFIV and DeepGMM as the CMRs solver are provided in Figure 5
and Figure 6. It can be seen from Figure 5 that only DFIV achieves good performance in the
airline ticket pricing environment, surpassing the performance of ResiduIL. For the Ant Mujoco task
in Figure 6, both DFIV and DeepGMM fail to learn good policies, with only slightly lower MSE than
BC and BC-SEQ. We think this is mainly due to the high-dimensional state and action spaces and the
inherent instability in the DFIV and DeepGMM algorithms. For DFIV, the interleaving of training of
two models causes highly non-stationary training targets for both models, and, for DeepGMM, the
adversarial training procedure of two models is similar to that of generative adversarial Networks
(GANs), which are known to be unstable and difficult to train. In addition, when the CMR problem is
weakly identifiable, as in the case of a weak instrument, the algorithms may converge to local minima
that are far away from the true solution in the face of instabilities in the algorithm.
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We conclude that solving the CMRs for an imitator policy can be sensitive to the choice of solver as
well as to the choice of hyperparameters. In addition, some IV regression algorithms do not work
well with high-dimension inputs. Our IV algorithm of choice, DML-IV, provides a robust base for
the DML-IL algorithm that demonstrated good performance across all tasks and environments. This
demonstrates the benefit of using double machine learning, which can debias two-stage estimators
and provide good empirical and theoretical convergence.

Figure 5: Additional results for the MSE between learnt policy and expert, and the average reward, in
the airline ticket environment (Example 3.1), with DFIV and DeepGMM as the CMRs solver.

Figure 6: Additional results for the MSE between learnt policy and expert, and the average reward,
Ant Mujoco environment, with DFIV and DeepGMM as the CMRs solver.

E ENVIRONMENTS AND TASKS

E.1 DYNAMIC AIRLINE TICKET PRICING

Here, we provide details regarding the dynamic airline ticket pricing environment introduced in
Example 3.1. The environment and the expert policy are defined as follows:

S := R (32)
A := [−1, 1] (33)
st = sign(s) · uo

t − uε
t (34)

πE = clip(−s/uo
t ,−1, 1) (35)

at = πE + 10 · uε
t (36)

uo
t = mean(pt ∼ Unif[−1, 1], pt−1, ....pt−M ) (37)

uε
t = mean(qt ∼ Normal(0, 0.1 ·

√
k), qt−1, ..., qt−k+1) (38)

where M is the influence horizon of the expert-observable uo, which we set to 30. The states st are
the profits at each time step, and the actions at are the final ticket price. uo

t represent the seasonal
patterns, where the expert πE will try to adjust the price accordingly. uε

t represent the operating
costs, which are additive both to the profit and price. Both uo

t and uε
t are the mean over a set of

i.i.d. samples, qt and pt, and vary across the time steps by updating the elements in the set at each
time step. This construction allows uε

t and uε
t−k to be independent, since all set elements qt will be

resampled from time step t− k to t. We multiply the standard deviation of qt by
√
k to make sure uε

t ,
which is the average over k i.i.d variables, have the same standard deviation for all choices of k.
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E.2 MUJOCO ENVIRONMENTS

We evaluate DML-IL on three Mujoco environments: Ant, Half Cheetah and Hopper. The original
tasks do not contain hidden variables, so we modify the environment to introduce uε and uo. We
use the default transition, state, and action space defined in the Mujoco environment. However, we
changed the task objectives by altering the reward function and added confounding noise to both the
state and the action. Specifically, instead of controlling the ant, half cheetah and hopper, respectively,
to travel as fast as possible, the goal is to control the agent to travel at a target speed that is varying
throughout an episode. This target speed is uo, which is observed by the expert but not recorded in
the dataset. In addition, we add confounding noise uε

t to st and at to mimic the environment noise
such as wind noise. In all cases, the target speed uo

t , confounding noise uε
t and the action at are

generated as follows:

at = πE + 20 · uε
t (39)

uo
t = mean(pt ∼ Unif[−2, 4], pt−1, ....pt−M ) (40)

uε
t = mean(qt ∼ Normal(0, 0.01 ·

√
k), qt−1, ..., qt−k+1) (41)

where M = 30, the state transitions follow the default Mujoco environment and the expert policy
πE is learned online in the environment. uo

t and uε
t follow the airline ticket pricing environment

to be the average over a queue of i.i.d. random variables. The reward is defined as 1healthy −
(current velocity − uo

t )
2 − control loss, where 1healthy gives reward 1 as long as the agent is in

a healthy state as defined in the Mujoco documentation. The second penalty term penalises the
deviation between the velocity of the current agent and the target velocity uo

t . The control loss term
is also as defined in default Mujoco, which is 0.1 ∗

∑
(a2t ) at each step to regularise the size of the

actions.

E.2.1 ANT

In the Ant environment, we follow the gym implementation 3 with 8-dimensional action space and
28-dimensional observable state space, where the agent’s position is also included in the state space.
Since the target speed uo

t is not recorded in the trajectory dataset, we scale the current position of
the agent with respect to the target speed, pos′t = post−1 + post−post−1

uo
t

, and use the new agent
position pos′t in the observed states. This allows the imitator to infer information regarding uo

t from
the trajectory history, namely from the rate of change in the past positions.

E.2.2 HALF CHEETAH

In the Half Cheetah environment, we follow the gym implementation 4 with 6-dimensional action
space and 18-dimensional observable state space, where the agent’s position is also included in
the state space. Similarly to the Ant environment, we scale the current position of the agent to
pos′t = post−1 +

post−post−1

uo
t

such that the imitator can infer information regarding uo
t from the

trajectory history.

E.2.3 HOPPER

In the Hopper environment, we follow the gym implementation 5 with a 3-dimensional action
space and a 12-dimensional observable state space, where the agent’s position is also included
in the state space. Similarly to the Ant environment, we scale the current position of the agent
to pos′t = post−1 + post−post−1

uo
t

such that the imitator can infer information regarding uo
t from

trajectory history.

3Ant environment: https://www.gymlibrary.dev/environments/mujoco/ant/
4Half Cheetah environment: https://www.gymlibrary.dev/environments/mujoco/half_

cheetah/
5Hopper environment: https://www.gymlibrary.dev/environments/mujoco/hopper/
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Table 1: Network architecture for DML-IL. For mixture of Gaussians output, we report the number
of components. No dropout is used.

(a) Roll-out model M̂

Layer Type Configuration
Input state dim × 3

FC + ReLU Out: 256
FC + ReLU Out: 256

MixtureGaussian 5 components; Out: state dim × k
(b) Policy model π̂h

Layer Type Configuration
Input state dim× (k+3)

FC + ReLU Out: 256
FC + ReLU Out: 256

FC Out: action dim

F IMPLEMENTATION DETAILS

F.1 EXPERT TRAINING

The expert in the airline ticket pricing environment is explicitly hand-crafted. For the Mujoco
environments, we used the Stable-Baselines3 Raffin et al. (2021) implementation of soft actor-critic
(SAC) and the default hyperparameters for each task outlined by Stable-Baseline3. The expert policy
is an MLP with two hidden layers of size 256 and ReLU activations, and we train the expert for 107
steps.

F.2 IMITATOR TRAINING

With the expert policy πE , we generate 40 expert trajectories, each of 500 steps, following our
previously defined environments. Specifically, the confounding noise is added to the state and actions
and crucially uo

t is not recorded in the trajectories. The naive BC directly learns E[at | st] through
supervised learning. ResiduIL mainly follows the implementation of Swamy et al. (2022b), where we
adopt it to allow a longer confounding horizon k > 1. For DML-IL and BC-SEQ, a history-dependent
policy is used, where we fixed the look-back length to be k + 3, where k is the confounding horizon.
BC-SEQ then just learnsE[at | ht] via supervised learning, and DML-IL is implemented with K-fold
following Algorithm 2. The policy network architecture for BC, BC-SEQ and ResiduIL are 2 layer
MLPs with 256 hidden size. The policy network π̂h and the mixture of Gaussians roll-out model M̂
for DML-IL have similar architecture, with details provided in Table 1. We use AdamW optimizer
with weight decay of 10−4 and learning rate of 10−4. The batch size is 64 and each model is trained
for 150 epochs, which is sufficient for their convergence.

F.3 IMITATOR EVALUATION

The trained imitator is then evaluated for 50 episodes, each 500 steps in the respective confounded
environments. The average reward and the mean squared error between the imitator’s action and the
expert’s action are recorded.

G DISCUSSION REGARDING DML-IL

DML-IL can also be implemented with K-fold cross-fitting, where the dataset is partitioned into K

folds, with each fold alternately used to train π̂h and the remaining folds to train M̂ . This ensures
unbiased estimation and improves the stability of training. The base IV algorithm DML-IV with K-
fold cross-fitting is theoretically shown to converge at the rate of O(N−1/2) Shao et al. (2024), where
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Algorithm 2 DML-IL with K-fold cross-fitting

Input: Dataset DE of expert demonstrations, Confounding noise horizon k, number of folds K
for cross-fitting
Output: A history-dependent imitator policy π̂h

Get a partition (Ik)
K
k=1 of dataset indices [N ] of trajectories

for k = 1 to K do
Ick := [N ] \ Ik
Initialize the roll-out model M̂i as a mixture of Gaussians model
repeat

Sample (ht, at) from data {(DE,i) : i ∈ Ick}
Fit the roll-out model (ht, at) ∼ M̂i(ht−k) to maximize log likelihood

until convergence
end for
Initialize the expert model π̂h as a neural network
repeat

for k = 1 to K do
Sample ht−k from {(DE,i) : i ∈ Ik}
Generate ĥt and ât using the roll-out model M̂i

Update π̂h to minimise the loss ℓ := ∥ât − π̂h(ĥt)∥2
end for

until convergence

N is the sample size, under regularity conditions. DML-IL with K-fold cross-fitting (see Appendix G
for details) will thus inherit this convergence rate guarantee.

Note that Algorithm 1 requires the confounding noise horizon k as input. Although the exact value of
k can be difficult to obtain in reality, any upper bound k̄ of k is sufficient to guarantee the correctness
of Algorithm 1, since ht−k̄ is also a valid instrument. Ideally, we would like a data-driven approach
to determine k. Unfortunately, it is generally intractable to empirically verify whether ht−k is a valid
instrument from a static dataset, especially the unconfounded instrument condition (i.e., ht−k ⊥⊥ uε

t ).
Therefore, we rely on the user to provide a sensible choice of k̄ based on the environment that does
not substantially overestimate k.

G.1 DML-IL WITH K-FOLD CROSS-FITTING

Here, we outline DML-IL with K-fold cross-fitting, which ensures unbiased estimation and improves
training stability. The algorithm is shown in Algorithm 2. The dataset is partitioned into K folds
based on the trajectory index. For each fold, we use the leave-out data, that is, indices Ick := [N ] \ Ik,
to train separate roll-out models M̂i for i ∈ [1..K]. Then, to train a single expert model π̂h, we sample
the trajectory history ht−k from each fold and use the roll-out model trained with the leave-out data
to complete the trajectory and train π̂h. This technique is very important in Double Machine Learning
(DML) literature Shao et al. (2024), Chernozhukov et al. (2018) for it provides both empirical stability
and theoretical guarantees. The base IV regression algorithm DML-IV with K-fold cross-fitting is
theoretically shown to converge at the rate of O(N−1/2) Shao et al. (2024), where N is the sample
size, under technical regularity and identifiability conditions (see Shao et al. (2024) for the technical
conditions). These conditions are typically assumed for similar theoretical analyses, and DML-IL
with K-fold cross-fitting will thus inherit this convergence rate guarantee if the regularity conditions
are satisfied.
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