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ABSTRACT

Uncertainty quantification is a critical aspect of reinforcement learning and deep
learning, with numerous applications ranging from efficient exploration and stable
offline reinforcement learning to outlier detection in medical diagnostics. The
scale of modern neural networks, however, complicates the use of many theoret-
ically well-motivated approaches such as full Bayesian inference. Approximate
methods like deep ensembles can provide reliable uncertainty estimates but still
remain computationally expensive. In this work, we propose contextual similarity
distillation, a novel approach that explicitly estimates the variance of an ensemble
of deep neural networks with a single model, without ever learning or evaluating
such an ensemble in the first place. Our method builds on the predictable learning
dynamics of wide neural networks, governed by the neural tangent kernel, to de-
rive an efficient approximation of the predictive variance of an infinite ensemble.
Specifically, we reinterpret the computation of ensemble variance as a supervised
regression problem with kernel similarities as regression targets. The resulting
model can estimate predictive variance at inference time with a single forward pass,
and can make use of unlabeled target-domain data or data augmentations to refine
its uncertainty estimates. We empirically validate our method across a variety of
out-of-distribution detection benchmarks and sparse-reward reinforcement learning
environments. We find that our single-model method performs competitively and
sometimes superior to ensemble-based baselines and serves as a reliable signal
for efficient exploration. These results, we believe, position contextual similarity
distillation as a principled and scalable alternative for uncertainty quantification in
reinforcement learning and general deep learning.

1 INTRODUCTION

With the deployment of increasingly large deep learning systems to real-world applications, efficient
uncertainty quantification has become an essential challenge of modern deep learning. Assessing the
reliability in predictions is crucial in applications ranging from out-of-distribution (OOD) detection to
deep reinforcement learning (RL), where uncertainty estimation is used to drive exploration, stabilize
offline learning, increase data efficiency, or to design cautious, safety-aware agents. A necessary
condition for designing and deploying such agents is their ability to quantify uncertainty reliably and
efficiently.

Bayesian methods for deep neural networks address this challenge with a solid theoretical footing
(Goan and Fookes, 2020; Pearce et al., 2020; Izmailov et al., 2021) but often require coarse approx-
imations or costly sampling from a complex posterior. To this end, deep ensembles from random
initializations Lakshminarayanan et al. (2017); Osband et al. (2016); Qin et al. (2022) have emerged
as a simple but reliable method for estimating predictive uncertainty in neural networks. While
usually more efficient than full Bayesian inference, the computational cost of training several models
remains a burden, particularly with increasing parameter spaces.

In this paper, we introduce contextual similarity distillation (CSD), a novel single-model approach
that directly estimates the variance of a random initialization ensemble of deep NNs without ever
training or evaluating such an ensemble in the first place. The theoretical motivation for our approach
is derived from recent work characterizing the learning dynamics of wide neural networks through the
Neural Tangent Kernel (NTK, Jacot et al., 2018; Lee et al., 2020). Under some conditions, this setting

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

allows us to describe deep ensembles and in particular their predictive variance by the NTK Gaussian
Process (NTK GP, He et al., 2020), providing an analytical expression for ensemble uncertainties.
Although one can in principle solve these analytical expressions explicitly without requiring training
of an ensemble of models, these computations quickly become infeasible when considering large
models or datasets, as frequently encountered in the field of RL.

In contrast, we devise a novel method called contextual similarity distillation (CSD) that is amenable
to regular training pipelines based on gradient descent and approximates predictive ensemble variance
with a single forward pass. We derive our method from the insight that ensemble variance can be
obtained as the result of a structured supervised regression problem, where labels correspond to kernel
similarities between training points and a test point xt. As a result, one can obtain the predictive
variance of a deep ensemble for a known query point xt by training a single NN on a regression task
using gradient descent and a carefully designed label function dependent on xt. We then extend this
“single-query” approach to work efficiently for arbitrary queries xt by formulating a contextualized
regression model that involves regression tasks with a family of context-dependent label functions.
This formulation moreover enables CSD to refine its uncertainty estimates by leveraging unlabeled
data, for example from a target domain of interest or from data augmentation techniques, an approach
that has proven extraordinarily successful in the field of self-supervised and representation learning
(Chen et al., 2020; Guo et al., 2022; Caron et al., 2021).

We analyze the practical effectiveness of CSD through an empirical evaluation on a variety of distribu-
tion shift detection tasks (Van Amersfoort et al., 2020) using the FashionMNIST, MNIST, KMNIST,
and NOTMNIST datasets (Xiao et al., 2017; Deng, 2012; Clanuwat et al., 2018). We moreover use
CSD to generate an exploration signal on sparse-reward reinforcement learning problems from the
visual RL benchmark VizDOOM (Kempka et al., 2016). Empirically, CSD consistently achieves
competitive and sometimes superior uncertainty estimation to finite deep ensembles and other baseline
methods while maintaining lower computational cost. We believe these results establish CSD as a
both principled and scalable alternative to ensemble-based uncertainty quantification and exploration
methods.

2 BACKGROUND

For our default framework, we consider a finite Markov Decision Process (MDP, Bellman, 1957)
of the tuple (S,A,R, γ, P, µ), with state space S, action space A, immediate reward distribution
R : S ×A →P(R), discount γ ∈ [0, 1], transition kernel P : S ×A →P(S), and the start state
distribution µ ∈ P(S). Here, P(Z) indicates the space of probability distributions over some
space Z and random variables are denoted with uppercase letters. Given a state St at time t, agents
choose an action At from a stochastic policy π : S →P(A) and subsequently receive the immediate
reward Rt ∼ R(·|St, At) and observe next state St+1 ∼ P (·|St, At). The expected discounted sum
of future rewards, conditioned on a particular state s and action a is known as the state-action value
and is given by Qπ(s, a) = EP,π[

∑∞
t=0 γ

tRt|S0 = s,A0 = a]. This value function adheres to a
temporal consistency condition described by the Bellman equation (Bellman, 1957)

Qπ(s, a) = EP,π[R0 + γQπ(S1, A1)|S0 = s,A0 = a] , (1)

where EP,π[·] indicates that S1 and A1 are drawn from P and π respectively. The expected return of a
policy π can compactly be expressed through the state-action value and the starting state distribution
through

J(π) = ES0∼µ,A0∼π[Q
π(S0, A0)] . (2)

The objective of reinforcement learning is to find an optimal policy π∗ that maximizes the above
equation π∗ = argmax J(π).

2.1 EXPLORATION IN REINFORCEMENT LEARNING

A fundamental challenge in attaining an optimal policy π∗ lies in the exploration-exploitation tradeoff:
an agent must decide whether to exploit its current knowledge to maximize returns or whether to
explore novel actions in order to discover better strategies. Efficient exploration is particularly crucial
in high-dimensional or sparse-reward settings, where naive strategies such as random exploration
require prohibitive amounts of interactions.
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A widely used approach to exploration is optimism in the face of uncertainty (Auer et al., 2008; Auer,
2002), where agents prioritize actions with high epistemic uncertainty in value estimates. In the
context of model-free RL, provably efficient algorithms often rely on the construction of an upper
confidence bound (UCB) that overestimates the true optimal value Qπ∗

(s, a) with high probability
(Jin et al., 2018; 2020; Neustroev and de Weerdt, 2020). This may be implemented by adding a
well-chosen exploration bonus b(s, a) to value estimates according to

Qopt(s, a) = Qπ(s, a) + b(s, a). (3)

In small state-action spaces, such bonuses can be derived from count-based concentration inequal-
ities (Bellemare et al., 2016; Jin et al., 2020), whereas high-dimensional, continuous domains
usually require function approximation, significantly complicating efficient uncertainty estimation
(Ghavamzadeh et al., 2015; Osband et al., 2016; Lakshminarayanan et al., 2017; Burda et al., 2019).

With the widespread use of deep neural networks, deep ensembles (Lakshminarayanan et al., 2017)
based on random initialization have become a dominant tool for quantifying epistemic uncertainty in
high-dimensional continuous spaces (Chen et al., 2017; Osband et al., 2019; He et al., 2020). An
informal intuition behind the effectiveness of ensembles is the tendency of randomly initialized NNs
to converge to diverse minima in the training loss landscape (Fort et al., 2020), leading to higher
prediction diversity for unseen inputs. The variance among ensemble members can then be used to
measure the model’s uncertainty for a specific input.

2.2 NEURAL TANGENT KERNEL GAUSSIAN PROCESSES

In order to better understand the properties of deep ensembles and to design better exploration
algorithms, an analytical description of deep neural networks and their learning dynamics is desirable.
While a general framework remains elusive, significant progress has been made in the field of deep
learning theory. In particular, seminal works by Jacot et al. (2018) and Lee et al. (2020) have shown
that wide neural networks trained by gradient descent are well-described by their linearized training
dynamics and thus predictable.

For this, let neural networks be parametrized functions f(x, θt) : Rn −→ R and denote training data
X = {xi ∈ Rn|i ∈ {1, ..., ND}} and training labels Y = {yi ∈ R|i ∈ {1, ..., ND}}. We assume
training is performed using gradient descent with infinitesimal step sizes, also referred to as gradient
flow. The initialization weights θ0 are drawn i.i.d. from a normal distribution θ0 ∼ N , and deep
ensembles are formed by training multiple independently initialized neural network functions. We
furthermore assume so-called NTK-parametrization, which scales forward and backward passes in
proportion to layer widths (see Jacot et al., 2018; Lee et al., 2020, for details).

A key result by Lee et al. (2020) is that in the limit of infinite layer widths, the training dynamics of
deep networks are described exactly by a Taylor expansion around the parameter initialization θ0. In
this setting, the NTK Θ(x, x′) : Rn×n −→ R, first described by Jacot et al. (2018), emerges as the
defining function governing learning dynamics:

Θ0(x, x
′) = ∇θf(x, θ0)

⊤∇θf(x
′, θ0). (4)

The NTK can be interpreted as a similarity measure between inputs based on gradient representations
of the inputs x and x′. Crucially, Jacot et al. (2018) find that in the limit of infinite layer width,
Θ(x, x′) becomes deterministic despite random weight initialization Θ0(x, x

′) = Θ(x, x′) and
remains constant throughout training, inducing analytically solvable training dynamics. As a result,
the post-training NN function f(x, θ∞) can be characterized as a deterministic function of the random
initialization f(x, θ0) through

f(x, θ∞) = f(x, θ0) + Θ(x,X )Θ(X ,X )−1(Y − f(X , θ0)) . (5)

Here, we have overloaded notation to indicate the vectorization Θ(x,X ) ∈ R1×ND , Θ(X ,X ) ∈
RND×ND , and so forth. The matrix Θ(X ,X ) is also known as the training Gram matrix, as we will
refer to it. Further extending this framework, He et al. (2020) demonstrate that by introducing suitable
function priors on f(x, θ0), akin to the well-known randomized prior functions by Osband et al.
(2019), the post-training function is described by a Gaussian Process (GP, Rasmussen and Williams,
2006):

f(Xt, θ∞) ∼ N
(
Θ(Xt,X )Θ(X ,X )−1Y︸ ︷︷ ︸

E[f(Xt,θ∞)]

, Θ(Xt,Xt)−Θ(Xt,X )Θ(X ,X )−1Θ(X ,Xt)︸ ︷︷ ︸
Cov[f(Xt,θ∞)]

)
, (6)
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where Xt is an arbitrary test data set. An outline of the derivation of Equations 5 and 6 is provided in
Appendix A. Consequently, the variance of an ensemble over infinite random initializations is given
by

V[f(x, θ∞)] = Θ(x, x)−Θ(x,X )Θ(X ,X )−1Θ(X , x) . (7)

The above expression provides us with a theoretical footing for understanding the behavior and
uncertainty estimates of deep ensembles. In the following sections we will describe our approach
for estimating Eq. 7 not as the result of training several random models but deterministically with a
single model.

3 CONTEXTUAL SIMILARITY DISTILLATION

We now proceed to describe our approach, contextual similarity distillation (CSD). The main objective
of our method is to approximate the variance of an infinite deep ensemble, as described by Eq. 7,
directly with a single model.

3.1 ENSEMBLE VARIANCE PREDICTIONS FOR A PRIORI QUERIES

We introduce the underlying idea of CSD in the simplified setting of a priori known test points.
Given a test query point xt, it is our goal to estimate the variance V[f(xt, θ∞)] of an ensemble
of independently initialized NNs, trained on a dataset X . It is important to note that one could in
principle obtain this variance via the NTK GP by solving Eq. 7. This, however, requires inversion
of the potentially very large Gram matrix Θ(X ,X ), which becomes computationally prohibitive for
most datasets and models of interest, including RL applications where sample sizes can go into the
billions.

Instead of solving Eq. 7 directly, we leverage an alternative perspective that arises naturally from the
learning dynamics of wide neural networks. Specifically, we begin with the simple observation that
the variance of a wide ensemble at a test point xt can be computed efficiently as the solution to a
regular supervised regression problem of a single model with a particular label function. For this,
let g(x, θ̃t) be a NN such that its NTK is equal to f with Θg(x, x

′) = Θ(x, x′) (i.e., with the same
architecture and initial weight distribution). Recall that the post-training NN function g(x, θ̃∞) with
squared loss on Y is given by

g(x, θ̃∞) = g(x, θ̃0) + Θg(x,X )Θg(X ,X )−1(Y − g(X , θ̃0)) . (8)

It is straightforward to see that for small function initialization1 g(x, θ̃0) ≈ 0, ∀x the r.h.s. of this
expression, when choosing the label function Yxt(X ) = Θ(X , xt), simplifies to

gxt
(x, θ̃∞) = Θ(x,X )Θ(X ,X )−1Θ(X , xt), (9)

where we used the subscript xt to indicate the function’s dependence on the label function Yxt
. This

identity now recovers exactly the problematic right term of Eq. 7 containing the Gram inversion
Θ(X ,X )−1. Note that gxt(x, θ̃∞) is obtained “naturally” as the result of gradient-based regression,
without requiring explicit inversion of Θ(X ,X ) or training of a large ensemble at any point. The
ensemble variance in a query point xt can be obtained as

V[f(xt, θ∞)] = Θ(xt, xt)− gxt
(xt, θ̃∞), (10)

which can be computed efficiently. Fig. 1 illustrates the above-described process of obtaining
expression 10 geometrically. While simple, we believe this formulation provides a crucial insight:
uncertainty estimation for a NN can be phrased as a singular prediction problem of kernel similarities.

3.2 ENSEMBLE VARIANCE ESTIMATION FOR ARBITRARY QUERY POINTS

In the above derivation, we outlined an efficient method for obtaining ensemble variances at a specific
test query point xt known a priori. An obvious limitation of this approach, however, is that the

1For example, small function initialization can simply be obtained by redefining f̂(x, θt) := f(x, θt) −
f(x, θ0).
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xt xt

Training Data

NTK-GP Variance V[(f (x, θ∞))

Kernel Prior Θ(x, x)

xt

Similarity Regression gxt(x, θ̃∞)

Similarity-Relabeled Data

Figure 1: Illustration of regression tasks with query-dependent NTK similarities as labels. The
difference between the kernel prior function Θ(x, x) (dotted line) and the post-training regression
function gxt(x, θ̃∞) matches exactly ensemble variance in xt (note that we shifted curves in black by
a constant offset for each subplot to illustrate this equality). Plots from left to right depict the same
principle, but for different query points xt.

used labeling function Yxt
(X ) = Θ(X , xt) and by extension the model gxt

(x, θ̃∞) is inherently
dependent on the test point xt and not usable for arbitrary queries.

To overcome this limitation, we now formulate a contextualized regression model g(x, c, θ̃t), where c
serves as a context variable that determines the label function used during training of the function
g(x, c, θ̃t). Specifically, instead of defining a label function that depends on a single fixed test query
xt, we construct a family of label functions parameterized by the context c, Yc(X ) = Θ(X , c).
This means that for a set of context data C = {ci ∈ Rn|i ∈ {1, ..., NC}}, the model g(x, c, θ̃t) is
optimized to solve a supervised regression problem associated with labels Yc(X ).
Intuitively, this approach can be interpreted as an attempt to interpolate between multiple regression
solutions that were trained on the same dataset X but with different label functions Yc(X ). Geomet-
rically, this corresponds to conjoining the functions gxt in Fig. 1 along a new dimension c. So long as
g(x, c, θ̃∞) maintains the approximate dynamics of gc(x, θ̃∞), this model can be evaluated quickly
for arbitrary test points by setting c = xt in

g(x, c, θ̃∞) ≈ Θ(x,X )Θ(X ,X )−1Θ(X , c). (11)
This generalization accordingly enables ensemble variance estimation across arbitrary points x
without requiring a separate regression solution for each individual query by computing

V[f(x, θ∞)] ≈ Θ(x, x)− g(x, x, θ̃∞). (12)

An intuitive interpretation of the function g(x, x, θ̃∞) is that it captures an ensemble’s confidence
gained through observing the training data X , weighted by its similarity to x. The resulting variance
of Eq. 12 can then be understood as the difference between a prior uncertainty term Θ(x, x) and
the confidence term g(x, x, θ̃∞). One should note at this point, that the evaluation of g(x, c, θ̃∞)
for contexts c /∈ C not used during training requires g to generalize to novel c. Furthermore, the
introduction of the context variable c may influence the training dynamics of g, putting this approach
into the realm of approximate algorithms. We have added a section to Appendix B.1 that discusses
and summarizes used approximations and their implications for practical settings.

Finetuning Variance Estimates with Context Data. Before proceeding to describe our practical
setup, we outline a property of contextualized similarity distillation that emerges through the above-
described modeling choices. Our theoretical motivation highlights that exact ensemble variances
(in the NTK regime) can be obtained when the test point xt is known a priori. The implication
of the subsequent formulation as a contextualized regression problem is that, when available, one
can include unlabeled context data C during training to obtain better uncertainty estimates in the
domain of interest, as we will show later in the experimental section. This property also opens up the
possibility of using unlabeled data augmentations to improve uncertainty estimation, an approach
that has proven extraordinarily successful in the field of self-supervised and representation learning
(Chen et al., 2020; Guo et al., 2022; Caron et al., 2021) and not easily incorporated with standard
approaches for uncertainty estimation (Lakshminarayanan et al., 2017; Gal and Ghahramani, 2016;
Burda et al., 2019).
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Figure 2: Top Row: Variance of an ensemble of 100 randomly initialized neural networks on a 2D
toy regression task. Red dots are training points. Bottom Row: Variance prediction by contextual
similarity distillation (CSD) with a single model on the same regression task.

3.3 CONTEXTUALIZED SIMILARITY DISTILLATION WITH DEEP NEURAL NETWORKS

Building on this theoretical basis, we proceed to describe a setting for contextualized similarity
distillation with deep neural networks. This section outlines algorithmic design choices we found to
be computationally efficient while maintaining the approach’s theoretical motivation.

First, we parameterize the contextualized regression model g(x, c, θ̃∞) as an inner product between a
feature vector ϕ(x, θ̃feat) and a context vector ψ(c, θ̃ctxt) as

g(x, c, θ̃∞) = ϕ(x, θ̃feat)
⊤ψ(c, θ̃ctxt) . (13)

Conceptually, this parametrization can be thought of as introducing a context-dependent final layer of
weights, represented by ψ(c, θ̃ctxt), to the regression model g. Computationally, this inner product
parametrization bears the advantage that g(X , C, θ̃∞) ∈ RND×NC can be evaluated quickly without
requiring explicit forward passes for each pairing (xi ∈ X , cj ∈ C).
Second, we approximate the NTK prior Θ(x, x′) with partial gradients. Given that Θ(x, x′) is not
involved in backward gradient computations, computing the full analytical or empirical prior kernel
functions Θ(x, x′) is often not computationally prohibitive, but can pose a burden for models with
large parameter spaces. We find that gradients with respect to only the last layer weights θL0 are
sufficient in practice and further accelerate computation. Assuming, the last layer of f is a dense
layer such that f(x, θ0) = φ(x, θ1:L−1

0 )⊤θL0 , we have

ΘL(x, x′) = ∇θL
0
f(x, θ0)

⊤∇θL
0
f(x′, θ0) = φ(x, θ1:L−1

0 )⊤φf (x
′, θ1:L−1

0 ). (14)

The resulting training pipeline for g(x, c, θ̃t) involves a simple supervised regression task with
minimization of the squared loss, where (xi, ci) are sampled randomly from X and C

L(θ̃t) =
1

N

N∑
i

1

2

(
g(xi, ci, θ̃t)−ΘL(xi, ci)

)2
. (15)

Lastly, we propose several choices for the context data C. We find that the arguably simplest choice,
that is to reuse the training set ci ∼ X , works well in practice and is easily implemented. In addition,
it is possible to apply data augmentations to the training samples X when using as context data. For
this, we employ the well-established set of augmentations from the contrastive learning literature
(Chen et al., 2020). We note here, that designing novel data augmentation techniques for the purpose
of uncertainty quantification is a promising avenue (see for example works by Wen et al. (2020) and
Wu and Williamson (2024)). Unlike contrastive learning and many other self-supervised methods,
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Table 1: Distribution Shift Detection. Test accuracy and average OOD detection metrics across
MNIST, FashionMNIST, KMNIST, NotMNIST. OOD metrics are evaluated for each ID dataset
against the remaining OOD datasets and a perturbed version of the ID dataset.

Method Acc. AUROC AUPR-IN AUPR-OUT
MCD 94.39± 0.10 85.67± 0.21 81.73± 0.34 86.44± 0.20
BNN-MCMC 87.70± 0.38 83.17± 0.60 82.65± 0.66 82.28± 0.71
BNN-Laplace 90.86± 0.62 81.38± 0.73 79.43± 0.84 81.84± 0.66
RND 96.18± 0.05 94.40± 0.41 94.17± 0.63 94.01± 0.31
ENS(3) 96.91± 0.04 92.30± 0.09 92.83± 0.10 91.37± 0.11
ENS(15) 97.18± 0.03 94.00± 0.07 94.70± 0.07 92.99± 0.06

CSD 96.29± 0.07 96.63± 0.35 96.94± 0.39 96.19± 0.32
CSD-Aug. 96.28± 0.06 98.22± 0.14 98.51± 0.13 97.80± 0.17
CSD-OOD. 96.30± 0.06 98.57± 0.14 98.86± 0.12 98.19± 0.15

our approach does not require data augmentations to preserve the nature of the original label and can
in principle use any unlabeled data. Finally, when available, unlabeled data from the test distribution
of interest can be used and often provides an additional improvement in uncertainty estimation, as we
will show empirically.

4 EMPIRICAL EVALUATION

Our empirical evaluation aims to provide us with a better understanding of contextual similarity
distillation in practice. Given that our approach introduces approximations beyond the theoretical
framework, we investigate whether CSD maintains its theoretically motivated properties in practice
with high-dimensional problem and parameter spaces. Specifically, we aim to assess whether CSD
provides a scalable alternative to deep ensembles and other established methods in uncertainty
quantification, including Monte Carlo dropout (Gal and Ghahramani, 2016), a Bayesian NN based
on Markov chain Monte Carlo sampling (BNN - MCMC, Garriga-Alonso and Fortuin, 2021), a
Laplace approximated Bayesian NN (BNN - Laplace, Immer et al., 2021), deep ensembles of sizes 3
and 15 (ENS, Lakshminarayanan et al., 2017) and random network distillation (RND, Burda et al.,
2019). Furthermore, we analyze how algorithmic design choices, such as the choice of context data,
influence uncertainty estimates. Lastly, we seek to evaluate our approach’s efficacy as an exploration
signal for deep reinforcement learning agents on sparse-reward visual exploration tasks from the
VizDoom (Kempka et al., 2016) suite.

4.1 DISTRIBUTION SHIFT DETECTION

Following prior work (Van Amersfoort et al., 2020; Immer et al., 2021; Rudner et al., 2022), we
evaluate uncertainty estimates in image classification under distribution shift, where a model trained
on an in-distribution dataset is evaluated on inputs from a shifted distribution.

In particular, we train models on one of the FashionMNIST, MNIST, KMNIST, NotMNIST datasets
and evaluate uncertainty estimates on the other, shifted datasets and a perturbed version of the
in-distribution dataset. Well-calibrated epistemic uncertainty estimates will correlate with dataset
shift, such that out-of-distribution samples are likely to be rated more uncertain than in-distribution
samples. To compare methods quantitatively, we use the threshold-independent area under the
receiver operating characteristic curve (AUROC) metric, as well as the area under the precision-recall
curve for in-distribution (AUPR-IN) and out-of-distribution (AUPR-OUT) samples. The AUROC
metric can be interpreted as the likelihood of an OOD sample receiving higher uncertainty than an ID
sample, while AUPR-IN and AUPR-OUT provide additional sensitivity to dataset size and the choice
of the positive class. For these metrics, Table 1 reports the average and standard deviation over 10
seeds, averaged over all permutations of ID and OOD datasets, along with average test accuracy. Full
detailed results are provided in the supplementary material.

To analyze the role of the used context data, we evaluate three versions of CSD: a baseline that only
uses training data (CSD), a variant incorporating data augmentations to training samples (CSD-Aug.),
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Figure 3: (Left): Visual observation in the VizDoom environment (Kempka et al., 2016). (From
Second Left to Right): Mean learning curves in variations of VizDoom MyWayHome. Shaded regions
are 90% Student’s t confidence intervals from 10 seeds.

and a model using context data from the evaluation distribution (CSD-OOD). Even in the basic
version, CSD demonstrates highly effective distribution shift detection, surpassing baseline methods
on a variety of datasets while requiring only a single model. Our results furthermore suggest that
incorporating data augmentations and target-distribution context data indeed significantly improves
performance.

4.2 EXPLORATION IN VIZDOOM

We now evaluate CSD in a reinforcement learning task with high-dimensional observation spaces
and sparse rewards. For this, we consider visual navigation tasks in the VizDOOM environment,
where agents explore a 3D maze-like environment with ego-perspective image observations. The
agent is tasked with reaching a goal while receiving a minimal constant negative reward except upon
successful completion, where a reward of 1 is given. We consider three variations of the task, where
agents are initialized at increasing distances from the goal, defining progressively harder exploration
tasks (details provided in Appendix C.2).

We use a DQN agent (Mnih et al., 2015) as a base algorithm and include uncertainty estimates by
CSD as an intrinsic reward (full details provided in Appendix C). For a comparative evaluation, we
compare the performance of CSD-based exploration with several baseline algorithms, including
deep Q networks (DQN, Mnih et al., 2015), random network distillation (RND, Burda et al., 2019),
bootstrapped Q-networks (BDQN+P, Osband et al., 2019), and information-directed sampling (IDS,
Nikolov et al., 2019). Fig. 3 shows mean learning curves across 10 random seeds. Interestingly, the
sparse version of the environment appears to be the hardest, a circumstance we believe is due to the
spawning point lying in a sidearm of the maze map. Of the tested methods, only CSD was able to
find the goal across all seeds and environments, with RND performing most competitively.

5 RELATED WORK

Our work builds on the extensive body of literature in the field of uncertainty quantification in deep
learning and reinforcement learning. Ensemble learning (Dietterich, 2000) has emerged as on the
most effective and reliable approaches to uncertainty estimation (Lakshminarayanan et al., 2017)
and has been widely adopted in the deep reinforcement learning literature. In particular, ensembles
can be used for efficient exploration by sampling random models (Osband et al., 2016; Qin et al.,
2022; Osband and Van Roy, 2017), by constructing upper confidence bounds for exploration bonuses
(Chen et al., 2017; O’Donoghue et al., 2018) or by estimating information gain (Nikolov et al., 2019).
Several works moreover rely on deep ensembles to reduce overestimation and improve learning
stability (Fujimoto et al., 2018; Haarnoja et al., 2018; Chen et al., 2021), extending to the challenging
offline setting (An et al., 2021; Agarwal et al., 2020; Smit et al., 2021).

A number of previous works have focused on reducing ensemble size, notably by disaligning the
Jacobian of networks (An et al., 2021), adding repulsive loss terms (Sheikh et al., 2022), or through
architectural diversification (Osband et al., 2019; Zanger et al., 2024). Notably, various works aim to
quantify epistemic uncertainty with a single model (Pathak et al., 2017; Burda et al., 2019; Filos et al.,

8
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2021; Guo et al., 2022; Lahlou et al., 2021), often by measuring prediction errors. To the best of our
knowledge, few single-model methods in the field offer an interpretation as ensemble or posterior
uncertainty.

In a broader sense, ensembles have been studied extensively from a Bayesian perspective (Hoffmann
and Elster, 2021; D’Angelo and Fortuin, 2021). In particular, some of our work relies on the NTK GP
characterization of deep ensembles by He et al. (2020), who, in turn, rely on seminal work by seminal
work on the NTK by Jacot et al. (2018) and Lee et al. (2020). Subsequent analysis has used the NTK
to disentangle ensemble variance (Kobayashi et al., 2022). Recent works Wilson et al. (2025) rely
on NTK theory to derive a sampling-based uncertainty estimator, while Calvo-Ordoñez et al. (2024)
construct uncertainty estimates using several regression models. In contrast to the latter, our method
uses a contextualized regression model that allows for single-model uncertainty estimates in a deep
learning setting.

6 CONCLUSION

This work introduced contextual similarity distillation (CSD), a novel single-model approach for
uncertainty quantification that estimates the predictive variance of an ensemble with a single model
and forward pass. By reframing ensemble variance estimation as a structured regression problem,
CSD enables efficient uncertainty estimation without requiring the training of multiple models,
stochastic forward passes, or explicit kernel matrix inversion. Instead, phrasing predictive variance
estimation as a contextualized regression problem is amenable to standard training pipelines with
deep NNs and gradient descent.

We implemented CSD in a deep learning setting and performed a comparative evaluation on a variety
of distribution shift detection and reinforcement learning tasks. Empirically, we found that CSD
provides uncertainty estimates competitive and sometimes superior to deep ensembles and other
alternatives on all tasks. This makes CSD an attractive option for guiding exploration in RL, as our
experiments on high-dimensional exploration tasks confirmed. Our results furthermore confirmed
that our approach can leverage unlabeled target domain data and data augmentations to further refine
uncertainty estimates. We believe our work opens up several avenues for future research. Due to
its conceptual similarity to contrastive learning approaches, we believe refining the generation and
incorporation of contextual data through augmentation is an exciting avenue for research that is
currently not commonplace in the context of uncertainty quantification. Moreover, a natural extension
of our approach could aim to include an explicit quantification of aleatoric uncertainty so as to provide
a complete separation of aleatoric and epistemic uncertainties within one model. Although our current
derivations to not consider the learning dynamics of such probabilistic models, we believe such an
extension to be feasible and valuable. Lastly, our approach could be leveraged to drive exploration in
various hard exploration tasks or to drive stability in offline RL.

Our findings, we believe, position CSD as a scalable alternative to deep ensembles, offering a
principled and computationally efficient method for uncertainty quantification in deep learning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

R. Agarwal, D. Schuurmans, and M. Norouzi. An optimistic perspective on offline reinforcement
learning. In International conference on machine learning, pages 104–114. PMLR, 2020.

G. An, S. Moon, J.-H. Kim, and H. O. Song. Uncertainty-based offline reinforcement learning with
diversified q-ensemble. Advances in neural information processing systems, 34:7436–7447, 2021.

P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of machine learning
research, 3, 2002.

P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for reinforcement learning. Advances
in neural information processing systems, 21, 2008.

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying count-based
exploration and intrinsic motivation. Advances in neural information processing systems, 29, 2016.

R. Bellman. A Markovian decision process. Journal of mathematics and mechanics, 6, 1957.

Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov. Exploration by random network distillation. In
International conference on learning representations, ICLR, 2019.

S. Calvo-Ordoñez, K. Palla, and K. Ciosek. Epistemic uncertainty and observation noise with the
neural tangent kernel. arXiv preprint arXiv:2409.03953, 2024.

M. Caprio, S. Dutta, K. J. Jang, V. Lin, R. Ivanov, O. Sokolsky, and I. Lee. Credal bayesian
deep learning. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=4NHF9AC5ui.

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 9650–9660, 2021.

R. Y. Chen, S. Sidor, P. Abbeel, and J. Schulman. UCB exploration via Q-ensembles. arXiv preprint
arXiv:1706.01502, 2017.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of
visual representations. In International conference on machine learning, pages 1597–1607. PMLR,
2020.

X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized ensembled double Q-learning: Learning fast
without a model. arXiv preprint arXiv:2101.05982, 2021.

T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha. Deep learning for
classical japanese literature. CoRR, abs/1812.01718, 2018.

J. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. Gradient descent on neural networks typically
occurs at the edge of stability. In International conference on learning representations, 2021. URL
https://openreview.net/forum?id=jh-rTtvkGeM.

F. Cuzzolin. The Geometry of Uncertainty: The Geometry of Imprecise Probabilities. Artificial
Intelligence: Foundations, Theory, and Algorithms. Springer International Publishing, Cham,
2021.

F. D’Angelo and V. Fortuin. Repulsive deep ensembles are bayesian. Advances in Neural Information
Processing Systems, 34:3451–3465, 2021.

A. Daniely, R. Frostig, and Y. Singer. Toward deeper understanding of neural networks: The power of
initialization and a dual view on expressivity. Advances in neural information processing systems,
29, 2016.

L. Deng. The MNIST database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

10

https://openreview.net/forum?id=4NHF9AC5ui
https://openreview.net/forum?id=jh-rTtvkGeM


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

T. G. Dietterich. Ensemble methods in machine learning. In Multiple classifier systems: First
international workshop, MCS. Springer, 2000.

P. D’Oro, M. Schwarzer, E. Nikishin, P.-L. Bacon, M. G. Bellemare, and A. Courville. Sample-
efficient reinforcement learning by breaking the replay ratio barrier. In International Conference
on Learning Representations, ICLR, 2023.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. Impala: Scalable distributed deep-RL with importance weighted actor-learner
architectures. In International conference on machine learning. PMLR, 2018.

A. Filos, E. Vértes, Z. Marinho, G. Farquhar, D. Borsa, A. Friesen, F. Behbahani, T. Schaul, A. Barreto,
and S. Osindero. Model-value inconsistency as a signal for epistemic uncertainty. arXiv preprint
arXiv:2112.04153, 2021.

S. Fort, H. Hu, and B. Lakshminarayanan. Deep Ensembles: A Loss Landscape Perspective.
arXiv:1912.02757 [cs, stat], June 2020.

S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic methods.
In International conference on machine learning. PMLR, 2018.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in
deep learning. In International conference on machine learning, pages 1050–1059. PMLR, 2016.

A. Garriga-Alonso and V. Fortuin. Exact langevin dynamics with stochastic gradients. arXiv preprint
arXiv:2102.01691, 2021.

M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar. Bayesian reinforcement learning: A survey.
Foundations and trends in machine learning, 8, 2015.

E. Goan and C. Fookes. Bayesian neural networks: An introduction and survey. Case studies in
applied Bayesian data science: CIRM Jean-Morlet chair, Fall 2018, pages 45–87, 2020.

F. Gogianu, T. Berariu, M. C. Rosca, C. Clopath, L. Busoniu, and R. Pascanu. Spectral normalisation
for deep reinforcement learning: an optimisation perspective. In International conference on
machine learning, pages 3734–3744. PMLR, 2021.

Z. Guo, S. Thakoor, M. Pîslar, B. Avila Pires, F. Altché, C. Tallec, A. Saade, D. Calandriello, J.-B.
Grill, Y. Tang, et al. BYOL-Explore: Exploration by bootstrapped prediction. Advances in neural
information processing systems, 35:31855–31870, 2022.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In International conference on machine learning,
pages 1861–1870. PMLR, 2018.

B. Hanin and M. Nica. Finite depth and width corrections to the neural tangent kernel. arXiv preprint
arXiv:1909.05989, 2019.

H. Hasselt. Double Q-learning. Advances in neural information processing systems, 23, 2010.

B. He, B. Lakshminarayanan, and Y. W. Teh. Bayesian deep ensembles via the neural tangent kernel.
Advances in neural information processing systems, 33, 2020.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level per-
formance on Imagenet classification. In Proceedings of the IEEE international conference on
computer vision, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

L. Hoffmann and C. Elster. Deep ensembles from a bayesian perspective. arXiv preprint
arXiv:2105.13283, 2021.

E. Hüllermeier and W. Waegeman. Aleatoric and Epistemic Uncertainty in Machine Learning: An
Introduction to Concepts and Methods. arXiv:1910.09457 [cs, stat], Sept. 2020.

A. Immer, M. Korzepa, and M. Bauer. Improving predictions of Bayesian neural nets via local
linearization. In International conference on artificial intelligence and statistics, pages 703–711.
PMLR, 2021.

P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. G. Wilson. What are Bayesian neural network
posteriors really like? In International conference on machine learning, pages 4629–4640. PMLR,
2021.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. Advances in neural information processing systems, 31, 2018.

C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is Q-learning provably efficient? Advances in
neural information processing systems, 31, 2018.

C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning with linear
function approximation. In Proceedings of Thirty Third Conference on Learning Theory, volume
125. PMLR, 2020.

M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski. ViZDoom: A Doom-based
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A LINEARIZED NEURAL NETWORK LEARNING DYNAMICS

For completeness, we briefly outline a sketch for how the GP interpretation of wide neural networks
governed by NTK dynamics described in Expression 6 can be obtained. This section largely follows
the seminal works by Jacot et al. (2018), Lee et al. (2020) and He et al. (2020), to whom we refer
readers interested in further details.

We begin by constructing a first-order Taylor expansion of the neural network function f(x, θ0)
around its initialization parameters θ0:

flin(x, θt) = f(x, θ0) +∇θf(x, θ0)
⊤(θt − θ0). (16)

When trained on X and Y with the squared error loss L = 1
2∥flin(X ; θt)−Y∥2, gradient flow with a

learning rate α induces an evolution of θt according to

d

dt
θt = −α∇θL = −α∇θflin(X , θt)∇flin(X ,θt)L . (17)

In function space, this evolution translates to the expression

d

dt
flin(x; θt) = ∇θflin(x, θt)

⊤ d

dt
θt = −αΘ0(x,X )(flin(X ; θt)− Y) , (18)

where Θ0(x, x
′) = ∇θf(x, θ0)

⊤∇θf(x
′, θ0) is the (empirical) tangent kernel of flin(x, θt). Since

this linearization has constant gradients ∇θf(x, θ0), the resulting differential equation is linear
and solvable. For the substitution vt = (flin(X ; θt) − Y), we obtain the training error dynamics
d
dtvt = −αΘ0(X ,X )vt to which an exponential ansatz yields the solution

flin(X ; θt)− Y = e−αtΘ0(X ,X )(f(X ; θ0)− Y) , (19)

where the matrix exponential e−αtΘ0(X ,X ) was used. Plugging Eq. 19 back into Eq. 18, one arrives
at the identity

d

dt
flin(x; θt) = −αΘ0(x,X )e−αtΘ0(X ,X )(f(X ; θ0)− Y) . (20)

This differential expression is explicit in its terms such that we can obtain a solution by integration
through

flin(x; θt) = f(x, θ0) +

∫ t

0

d

dt′
flin(x, θt′)dt

′ (21)

= f(x, θ0) + Θ0(x,X )Θ0(X ,X )−1(e−αtΘ(X ,X ) − I)(f(X , θ0)− Y) , (22)

which recovers Eq. 5 for t −→∞. A central result by Jacot et al. (2018) and extended in the linearized
setting by Lee et al. (2020) is that, as layer widths of the neural network go to infinity, the NTK
Θ0(x, x

′) becomes deterministic and constant and the linear approximation flin(x; θt) becomes exact
w.r.t. the original function limwidth−→∞ flin(x; θt) = f(x, θt).

Rewriting the (infinite width) post-training test and training functions as an affine transformation of
the initialization yields(

f(Xt, θ∞)
f(X , θ∞)

)
=

(
I −Θ(Xt,X )Θ(X ,X )−1

0 0

)(
f(Xt, θ0)
f(X , θ0)

)
+

(
Θ(Xt,X )Θ(X ,X )−1Y

Y

)
.

(23)

For the earlier described parametrization of f , the set of initial predictions is known to follow a
multivariate Gaussian distribution (Lee et al., 2018) described by the neural network Gaussian process
(NNGP) f(X , θ0) ∼ N (0, κ(X ,X )) (and analogously for Xt), where

κ(Xt,Xt) = Eθ0

[
f(Xt, θ0)f(Xt, θ0)

⊤] . (24)

Affine transformations of multivariate Gaussian random variables X ∼ N (µX ,ΣX) with Y =
a + BX are, in turn, multivariate Gaussian random variables with distribution Y ∼ N (a +
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BµX , BΣXB
⊤). We here omit explicit derivations and rearrangements for brevity. As a con-

sequence, Eq. 23 with initialization covariance from Eq. 24 is also described by a multivariate
Gaussian with mean and covariance given by

Eθ0 [f(Xt, θ∞)] = Θ(Xt,X )Θ(X,X )−1Y ,
Cov(f(Xt, θ∞)) = κ(Xt,Xt)−Θ(Xt,X )Θ(X ,X )−1κ(X ,X )Θ(X ,X )−1Θ(X ,Xt) (25)

− (Θ(Xt,X )Θ(X ,X )−1κ(X ,Xt) + h.c.) ,

where h.c. refers to the Hermitian conjugate of the preceding term. He et al. (2020) then introduce
constant “correction” terms to the function initialization described in Eq. 24, in particular such that
κ(x, x′) = Θ(x, x′). This simplifies Expression 25 significantly and now permits a Gaussian process
interpretation with the final expression given by Eq. 6.

B FURTHER DISCUSSIONS

Below, we further discuss the approximate nature of our method and provide a more general discussion
of the terminology used in the context of this paper and the broader field of uncertainty quantification.

B.1 DISCUSSION ON APPROXIMATIONS

As our method relies on several approximations, we include a discussion that aims to provide an
overview of the approximate nature of our method and in which settings it is exact or where deviations
may be more likely.

The first central approximation we make is to model neural networks with dynamics governed by a
deterministic and constant NTK. Jacot et al. (2018) show that this is the case for fully connected NNs
with NTK parametrization trained on a squared loss. The implied dynamics are solved assuming
gradient flow, that is with infinitesimal step sizes and full-batch gradients. Jacot et al. (2018) and
Lee et al. (2020) moreover show that convergence and final generalization behavior is empirically
well-described by wide but finite architectures including fully connected NNs, convolutional NNs and
residual architectures, trained with stochastic gradient descent. The function initialization scheme
proposed by He et al. (2020) allows for a Gaussian process interpretation of NNs from random
initialization and largely relies on the same assumptions as the above-described works.

Our theoretical motivation, outlined in Sections 3.1 and 3.2, relies on the GP description of deep
ensembles and the implied assumptions. Given this setting, that is assuming NTK parametrization
with infinite widths, function initialization according to He et al. (2020), and gradient flow with
squared loss, the derivation for single-query ensemble variances in Section 3.1 is exact. In our
contextualized model described in Section 3.2, we introduce an additional approximation through
the introduction of an explicit context variable c, which may interfere with the training dynamics
of g(x, c, θ̃). Let training tuples be xc = (x, c) and X c = {xc1, xc2, ..., xcNT

} and let the NTK of g
be Θg((x, c), (x

′, c′)) = ∇θ̃g(x, c, θ̃0)
⊤∇θ̃g(x

′, c′, θ̃0). The analogous regression solution to the
function g(x, c, θ̃) by minimizing the loss in Eq. 15 becomes

g(x, c, θ̃∞) = Θg(x
c,X c)Θg(X c,X c)−1Θ(X c). (26)

A natural setting in which these training dynamics recover Eq. 11 is when gradients are independent
between context, that is Θg((x, c), (x, c

′)) = 0 if c ̸= c′ and maintain the gradient structure of
Θ(x, x′) with Θg((x, c), (x

′, c)) = Θ(x, x′), ∀c ∈ C. However, this setting would hardly permit
meaningful interpolations and extrapolations between different contexts c, such that one engages in a
trade off between generalization capability towards general contexts c and interference in the training
dynamics.

Beyond this, our practical setting approximates the NTK prior function with partial gradients as
outlined in Eq. 14 of Section 3.3. The influence of this approximation choice generally depends
on architecture, but we found it to perform well in our experiments using deep convolutional and
residual architectures. Lastly, the RL exploration setting involves data streams rather than fixed
datasets X , further deviating from the earlier delineated dynamics. Understanding the influence of
this non stationarity on training dynamics is an open problem, and we believe countermeasures like
periodic resets (D’Oro et al., 2023) are a promising avenue for future research.
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While alleviating and quantifying the assumption stated above are largely open problems in deep
learning theory (Hanin and Nica, 2019; Seleznova and Kutyniok, 2022; Yang and Hu, 2021; Cohen
et al., 2021; Lewkowycz et al., 2020), various approaches exist that aim to quantify errors w.r.t. more
realistic NN behavior, e.g. in the finite-width regime or with discrete gradient descent. We outline
one such direction, following work by Lee et al. (2020), to quantify approximation errors of the
linearized NN dynamics by assuming

1. NNs of depth L to have equivalent layer-widths n1 = n2 = . . . = nL = n

2. a full-rank analytical NTK, i.e. λmin(Θ(X c,X c)) > 0, λmax(Θ(X c,X c)) <∞
3. a maximum learning rate of α0 ≤ αcrit =

2
λmin+λmax

4. the contextualized training set X c is contained in the unit ball, i.e., ∥xc∥2 ≤ 1 for all
xc ∈ X c, with distinct elements.

5. nonlinearities σ(x) to satisfy

|σ(0)|, ∥σ′∥∞, sup
x̸=x′

|σ′(x)− σ′(x′)|
|x− x′| <∞ (27)

6. block diagonality of the contextualized NTK as stated in Eq. (26) such that the infinite-width
limit recovers g(x, c, θ̃∞) = Θ(x,X c)Θ(X c,X c)−1Θ(X c, c).

Under these conditions, we have that the infinite-width NN g(x, c, θ̃∞) behaves as g(x, c, θ̃∞) =
Θ(x,X c)Θ(X c,X c)−1Θ(X c, c) and one can show that (Lee et al., 2020), with high probability
over random initialization, a linearized NN glin(x, c, θ̃∞) solution approximates a finite-width NN
greal(x, c, θ̃∞) trained with gradient descent with (non-critical) step size α0 with ∥glin(x, c, θ̃∞) −
greal(x, c, θ̃∞)∥2 = O( 1√

n
). Daniely et al. (2016) furthermore show that the empirical tangent kernel

at initialization Θ0 concentrates at the same 1√
n

rate, such that we have ∥Θ0(x
c, xc)−Θ(xc, xc)∥2 =

O( 1√
n
). Taken together, we can conclude that the finite-width approximation error as occurring in

Eq. (12), under the stated conditions, scales as

∥V(f(x, θ∞))−
(
Θ0(x, x)− greal(x, x, θ̃∞)

)
∥2 = O( 1√

n
). (28)

We refer interested readers to Lee et al. (2020), Daniely et al. (2016), and Hanin and Nica (2019) for
detailed derivations and further results going beyond strict NTK-regimes.

B.2 DISCUSSION ON TERMINOLOGY

While there is broad agreement that it is important to distinguish different sources of uncertainty
in machine learning, there remains debate about how these notions should be formally captured
and which terminology is appropriate in different contexts. A widely used conceptual distinction
is between epistemic uncertainty — uncertainty arising from limited knowledge about the true or
optimal model parameters — and aleatoric uncertainty — uncertainty inherent to the stochasticity
in the data-generating process (Hüllermeier and Waegeman, 2020). Together, these sources of
uncertainty are considered to constitute total uncertainty, though alternative frameworks exist that
depart from such an additive decomposition (Shafer, 1976; Cuzzolin, 2021). Several mathematical
frameworks aim to formalize these notions: Bayesian inference, arguably the most prominent,
capture epistemic uncertainty in the form a posterior distribution over plausible models, given a
prior distribution (Neal, 1996). However, alternative frameworks (e.g., frequentist statistics (Le Cam,
2012) or imprecise probability (Shafer, 1976; Walley, 1991; Caprio et al., 2024)) provide alternative
perspectives, in part to alleviate the often restrictive requirement of well-specified priors. Our work
is situated within the Bayesian viewpoint in the sense that we use the term epistemic uncertainty to
refer to variability induced by the posterior distribution over functions compatible with the observed
data. Within this framework, Gaussian processes offer a nonparametric model class that enables
analytical Bayesian inference, and we use the variance of the GP posterior predictive distribution as
our measure of epistemic uncertainty. It is important to note, however, that for probabilistic models
that explicitly model observation noise (i.e., aleatoric uncertainty), the posterior predictive variance
conflates epistemic and aleatoric components and therefore reflects total predictive uncertainty rather
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than epistemic uncertainty alone (Hüllermeier and Waegeman, 2020). In our setting, however, we
assume a deterministic GP model without an observation-noise term, and thus interpret the posterior
predictive variance as epistemic uncertainty.

C EXPERIMENTAL DETAILS

In the following, we outline details on our experimental setup. This includes hyperparameter settings,
hyperparameter search procedures, algorithmic and experimental details, and dataprocessing details.

C.1 HYPERPARAMETER SETTINGS

In order to facilitate comparable results, our experiments are conducted using a central codebase and
follow similar modeling choices such as architectures, optimizer, etc. where sensible. All experiments
use a resnet-based model (He et al., 2016) following the IMPALA architecture by Espeholt et al.
(2018). We optimized essential and algorithm-specific hyperparameters through a search on a selected
subset of experiments.

Distribution shift detection. In the supervised distribution shift detection, we use the IMPALA
architecture with 2 residual blocks and channels widths 32 and 64. Hyperparameters were searched on
the FashionMNIST dataset as the in-distribution set and the remaining datasets as out-of-distribution
sets. Each dataset is normalized to zero-mean and standard deviation 1 using the training set statistics.
For the main classifier we apply random horizontal flips (p=0.5), random vertical flips (p=0.5) and
random sized crops (zoom range between 1.0 and 1.3) to training data in all experiments. Learning rate
and algorithm-specific hyperparameters were optimized independently, meaning we first performed a
search for learning rates, which we used in the (if applicable) subsequent algorithm-specific parameter
searches. Table 2 contains lists of all searched parameters, with parenthesis indicating algorithm-
specific parameters and italics indicating the parameter used during the learning rate search. The final
hyperparameters were chosen based on the average AUROC metric and are reported in Table 4.

VizDoom. In the RL experiments, we conducted a full grid search on the MyWayHomeSparse
variation of the environment and chose parameters based on performance after 5 · 106 steps. Our
basic network architecture is based on the rainbow (Hessel et al., 2018) network proposed by Schmidt
and Schmied (2021) who in turn base their architecture on IMPALA (Espeholt et al., 2018) (see
also Fig. 4). We use 3 residual blocks with channel widths according to Table 6. Detailed final
hyperparameter settings are given in Table 5. We use the same network architecture for value
functions and RND/CSD networks (up to output dimensions). All agents furthermore use a data
preprocessing pipeline as outlined in Table 6.

C.2 IMPLEMENTATION DETAILS

In this section, we briefly outline implementation details concerning CSD and the tested baselines.

Data augmentations For both the distribution shift detection experiments (CSD-Aug.) and the
VizDoom experiments, we add data augmentation to obtain additional context variables in CSD. In
both experiments, we apply augmentations with a probability of p = 0.25 and specific augmentations
are listed in Table 7.

Data and context sampling. To compute the loss 15, we sample minibatches Xmb from a buffer
or data set. Context minibatches Cmb either simply reuse Xmb, are generated by applying data
augmentations as outlines above, or by sampling from a context data set. We compute inner products
over all pairings of the two batches with ϕ(Xmb, θ̃feat)

⊤ψ(Cmb, θ̃ctxt) ∈ RNmb×Nmb and compute
loss 15 elementwise. Finally, we sum the average diagonal loss and the average off-diagonal loss.

Normalization. During training, we normalize prior features φ̄(x, θ1:L−1
0 ) =

φ(x, θ1:L−1
0 )/∥φ(x, θ1:L−1

0 )∥2, feature vectors ϕ̄(x, θ̃feat) = ϕ(x, θ̃feat)/∥ϕ(x, θ̃feat)∥2, and
context vectors ψ̄(c, θ̃ctxt) = ψ(c, θ̃ctxt)/∥ψ(c, θ̃ctxt)∥2. When computing predictive variances at
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Table 2: Searched hyperparameters for distribution shift experiments.

Hyperparameter Values

Learning rate (All) [10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2, 3 · 10−2, 10−1]
Dropout probability (MCD) [0.05, 0.1, 0 .15 , 0.25, 0.5]
RND Learning rate (RND) [10−4, 3 · 10−4, 10−3 , 3 · 10−3, 10−2, 3 · 10−2, 10−1]
CSD Learning rate (CSD) [10−4, 3 · 10−4, 10−3 , 3 · 10−3, 10−2, 3 · 10−2, 10−1]

Table 3: Searched hyperparameters for VizDoom

Hyperparameter Values

Learning rate (all) [1.25 · 10−4, 2.5 · 10−4, 3.75 · 10−4,
5 · 10−4, 6.25 · 10−4, 7.5 · 10−4]

Loss (all) [Huber,C51]
Prior function scale (BDQN+P, IDS) [1.0, 3.0, 5.0]
Initial bonus β (RND, CSD) [0.05, 0.1, 0.5, 1.0, 5.0, 10.0]
RND Learning rate (RND) [1.25 · 10−4, 2.5 · 10−4, 3.75 · 10−4,

5 · 10−4, 6.25 · 10−4, 7.5 · 10−4]
CSD Learning rate (CSD) [1.25 · 10−4, 2.5 · 10−4, 3.75 · 10−4,

5 · 10−4, 6.25 · 10−4, 7.5 · 10−4]

Table 4: Hyperparameter settings for distribution shift experiments.

Hyperparameter MCMC Laplace MCD ENS RND CSD

Main Classifier Network

Learning rate 10−3 10−3 3 · 10−4 10−3 10−3 10−3

MLP hidden layers 2
MLP layer width 256
Channel Widths 32, 64

RND/CSD Network

Learning rate n/a 3 · 10−3 10−2

MLP hidden layers n/a 2 2
MLP layer width n/a 256 256
Channel Widths n/a 16 32
Target hidden layers n/a 1 1
Output dimensions n/a 256 256

Ensemble size n/a n/a n/a 3, 15 n/a n/a
Dropout rate n/a n/a 0.1 n/a
Prior Precision n/a 100 n/a n/a
Posterior Temperature 1.0 1.0 n/a n/a
Posterior Samples 30 30 100 n/a
Epochs per sample 2 n/a n/a n/a
Burn-In Epochs 10 n/a n/a n/a
Adam epsilon n/a 10−5 10−5 10−5

Learning rate anneal Linear
Batch size 256
Initialization Orthogonal (Saxe et al., 2013)
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Figure 4: Illustration of the architecture for VizDoom environments. Based on the architecture used
by Espeholt et al. (2018).

Figure 5: Map for the VizDoom MyWayHome environment. Agents are spawned in the sparse and
very sparse locations to vary the exploration difficulty.
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Table 5: Hyperparameter settings for VizDoom experiments.

Hyperparameter DQN BDQN+P RND IDS CSD

Adam Learning rate 2.5 · 10−4 2.5 · 10−4 6.25 · 10−4 2.5 · 10−4 6.25 · 10−4

Prior function scale n/a 1.0 n/a 1.0 n/a
Heads K 1 1 101 1 / 101 101/101
Ensemble size n/a 10 n/a 10/1 n/a
Initial bonus βinit n/a n/a 1.0 0.1 0.1
Final bonus βfinal n/a n/a 0.01 0.01 0.01
Bonus decay frames n/a n/a 3.3 · 106 3.3 · 106 3.3 · 106
Loss function Huber Huber C51 Huber/C51 C51
Channel Widths 32, 32, 64
MLP hidden layers 1
MLP layer width 256

RND / CSD Network Parameters

Adam Learning rate n/a n/a 2.5 · 10−4 n/a 2.5 · 10−4

Channel Widths n/a n/a 16, 16, 32 n/a 16, 16, 32
MLP hidden layers
(main) n/a n/a 3 n/a 3

MLP hidden layers
(context) n/a n/a n/a n/a 1

MLP hidden layers
(prior) n/a n/a 1 n/a 1

MLP layer width n/a n/a 256 n/a 256
Target hidden layers n/a n/a 1 n/a 1
Output dimensions n/a n/a 256 n/a 256

Initial ϵ in ϵ-greedy 1.0
Final ϵ in ϵ-greedy 0.01
ϵ decay frames 500, 000
Training starts 100, 000
Discount 0.997
Buffer size 1, 000, 000
Batch size 256
Parallel Envs 16

Adam epsilon 0.005/batch size
Initialization He uniform (He et al., 2015)
Gradient clip norm 10
Regularization spectral normalization (Gogianu et al., 2021)
Double DQN Yes (Hasselt, 2010)
Update frequency 1
Target lambda 1.0
Target frequency 8000
PER β0 0.45 (Schaul et al., 2016)
n-step returns 10

Table 6: VizDoom Preprocessing

Parameter Value

Grayscale Yes
Frame-skipping No
Frame-stacking 6
Resolution 42× 42
Max. Episode Length 2100
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Table 7: Data augmentations for context data.

Distribution Shift VizDoom

RandomHorizontalFlip(p = 0.25) RandomPerspective(p = 0.5)
RandomVerticallFlip(p = 0.25) RandomHorizontalFlip(p = 0.5)
Rotate(p = 0.25) RandomResizedCrop(r = [0.75, 1.0])
GaussianBlur(σ = 1.0, p = 0.25)
RandomResizedCrop(r = [0.75, 1.0])
RandomBrightness(r = [−1.0, 1.0], p = 0.5)
RandomContrast(r = [−1.0, 1.0], p = 0.5)

inference time, we rescale by

V[f(x, θ∞)] ≈ ∥φ(x, θ1:L−1
0 )∥22

(
φ̄(x, θ1:L−1

0 )⊤φ̄(x, θ1:L−1
0 )− ϕ̄(x, θ̃feat)

⊤ψ̄(c, θ̃ctxt)
)
, (29)

to obtain predictions in the original scale again.

Small function initialization. While our theoretical suggests using small function initialization with
g(x, θ̃0) ≈ 0, ∀x, preliminary experiments with a reparametrization ĝ(x, θ̃t) := g(x, θ̃t)− g(x, θ̃0)
showed no significant differences. In our main implementation we thus refrain from using this
reparametrization in favor of simplicity.

Environment Details. We conduct experiments on three variations of the VizDoom VizDoom
environment MyWayHome. A top-down view of environment map is shown in Fig. 5. In the dense
setting, at the beginning of each episode agents are spawned in random positions of the map, such
that the goal position is encountered stochastically without requiring coordinated exploration. The
sparsity of the problem is increased by changing the agents spawning location deterministically to
a room further from the goal position, that is Room 13 for the sparse setting and Room 17 for the
very sparse setting. As described in Section 4, the reward function is sparse. A constant reward of
−1 ∗ 10−4 is given every timestep and a reward of 1 is given for reaching the goal. Episodes are
limited to a length of 2100 timesteps.

Reinforcement Learning Implementation. We outline the basic implementation of our DQN-
based RL agent. The agent follows the same algorithmic flow as the established DQN-algorithm
(Mnih et al., 2015) and subsequent variations (Hessel et al., 2018; Schmidt and Schmied, 2021).
The agent maintains a replay buffer of transitions, from which we sample minibatches of transition
Xmb = {si, ai, ri, s′i, Ti}Nmb

i=1 , where Ti are terminations. Q-networks are then updated at a fixed
frequency using the sampled minibatch. As is established, we use target networks with slow-moving
parameters for value learning.

We provide intrinsic rewards as generated by CSD to the DQN agent to incentivize exploration. For all
our experiments including intrinsic rewards (CSD and RND), we use separate value functions for the
intrinsic reward and employ intrinsic reward priors, a mechanism suggested by Zanger et al. (2024)
which includes intrinsic rewards to the forward pass of the value network. This addresses a common
issue with intrinsic reward learning as described previously by Rashid et al. (2020) by preventing
underestimation of unseen actions. Specifically, intrinsic reward priors redefine the forward pass of
the intrinsic Q-function according to

Q̂in(s, a, θ, θin) = Qin(s, a, θ) +
1
2rin(s, a, θin) ,

where rin(s, a, θin) denotes an intrinsic reward term, in our experiments generated by either RND or
CSD with parameters θin. The altered function Q̂in(s, a, θ, θin) is then used as a drop-in replacement
for the Q-function in the used algorithm.

Pseudocode for Reinforcement Learning Experiments. We provide pseudocode for a DQN agent
with CSD in Algorithm 1. For clarity, we omit standard algorithmic details such as double Q-learning,
distributional value functions, prioritized experience replay, separate value functions for intrinsic
reward, and intrinsic reward priors.
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Algorithm 1 CSD-DQN

1: initialize CSD model g(s, a, sc, ac, θ̃t) = ϕ(s, a, θ̃t)
⊤ψ(sc, ac, θ̃t) with θ̃0.

2: initialize CSD prior ΘL(s, a, sc, ac, c, θp) = φ(s, a, θp)
⊤φ(sc, ac, θp) with θ̃p.

3: initialize Q-function Q(s, a, θt) with θ0 and target parameters θ̄0.
4: sample initial state s0 from the environment.
5: for t = 1, . . . , T do
6: take action a←− argmaxa′∈A{Q(s, a′)}
7: obtain observations (st, rt, Tt) from the environment.
8: store samples (st−1, at−1, rt, st, Tt).
9: sample transition tuple {si, ai, ri, s′i, Ti}Nmb

i=1 ∼ B from buffer
10: sample context tuple {ŝi, âi, r̂i, ŝ′i, T̂i}Nmb

i=1 ∼ B from buffer
11: generate intrinsic reward rin := ΘL(si, ai, si, ai, θ̃p)− g(si, ai, si, ai, θ̃t).
12: generate next action a′i := argmaxa′∈A{Q(s′i, a

′, θt)}.
13: update Q-function θt ←− θt −∇θtL(θt) with

L(θt) = 1
2Nmb

Nmb∑
i

(
ri + β rin +Q(si, ai, θ̄t)−Q(s′i, a

′
i, θt)

)2
.

14: update CSD model θ̃t ←− θ̃t −∇θ̃t
L(θ̃t) with

L(θ̃t) = 1
2Nmb

Nmb∑
i

(
g(si, ai, ŝi, âi, θ̃t)−ΘL(si, ai, ŝi, âi, θ̃p)

)2
.

15: if t % freq == 0 then
16: update target parameters θ̄t ←− λθt + (1− λ)θ̄t
17: end if
18: end for

Figure 6: Left: Original Image. Right: Perturbed OOD Image.

C.3 ADDITIONAL EXPERIMENTAL RESULTS

We report the detailed results of our distribution shift detection tasks. Tables 8 to 11 show OOD
detection metrics for the datasets FashionMNIST, MNIST, NotMNIST, and KMNIST. Each table
shows the test accuracy and average AUROC, AUPR-IN and AUPR-OUT scores against the remaining
three training datasets and an additional perturbed dataset. The perturbed dataset is constructed by
applying data augmentations to the ID dataset. In our experiments, we use random brightness changes
(p = 1.0, r = [−1.0, 1.0]), random contrast changes(p = 1.0, r = [−1.0, 1.0]), and randomly set
patches of an image to zero (p = 1.0, r = [−1.0, 1.0]). Fig. 6 shows an example of this.

Runtime analysis We report runtime comparisons for all algorithms used in the distribution shift
detection tasks in Fig. 7. All efficient uncertainty estimation methods, including ours, run faster than
the smallest ensemble tested (ENS(3)), while incurring some overhead compared to a single-model
baseline (ENS(1)), which does not come with built-in uncertainty quantification capability. Among
these, CSD has slightly higher runtime, which is consistent with the algorithmic structure of our
method that comprises a separate feature and context model. We note that this runtime comparison is
not entirely one-to-one: different methods vary in their application mechanism, with Laplace and
MCD being mainly post-hoc methods, while others devise dedicated learning algorithms.
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Table 8: Distribution Shift Detection. FashionMNIST as ID dataset.

Method Acc. AUROC AUPR-IN AUPR-OUT
MCD 89.24± 0.36 82.23± 0.48 79.88± 0.75 83.01± 0.34
BNN-MCMC 85.73± 0.24 85.01± 0.62 85.16± 0.68 83.38± 0.62
BNN-Laplace 88.57± 0.80 86.50± 0.67 86.32± 0.75 85.95± 0.75
RND 91.90± 0.15 93.93± 0.73 93.45± 1.12 93.64± 0.52
ENS(3) 92.90± 0.09 88.90± 0.20 89.63± 0.19 88.16± 0.20
ENS(15) 93.33± 0.06 91.93± 0.12 92.83± 0.11 91.09± 0.12

CSD 91.93± 0.17 96.18± 0.67 96.49± 0.74 95.74± 0.62
CSD-Aug. 91.92± 0.16 97.84± 0.30 98.24± 0.27 97.34± 0.31
CSD-OOD. 91.96± 0.13 97.35± 0.50 97.87± 0.45 96.72± 0.56

Table 9: Distribution Shift Detection. MNIST as ID dataset.

Method Acc. AUROC AUPR-IN AUPR-OUT
MCD 98.97± 0.06 90.03± 0.23 87.70± 0.38 89.01± 0.32
BNN-MCMC 94.29± 0.39 80.24± 2.19 80.20± 2.05 77.33± 2.56
BNN-Laplace 94.17± 1.01 74.05± 1.70 72.24± 1.90 74.39± 1.73
RND 99.85± 0.02 94.66± 0.52 93.83± 0.95 94.25± 0.35
ENS(3) 99.95± 0.01 94.03± 0.24 95.09± 0.22 92.32± 0.31
ENS(15) 99.97± 0.00 95.33± 0.06 96.31± 0.06 93.79± 0.10

CSD 99.88± 0.01 96.78± 0.58 96.96± 0.72 96.25± 0.57
CSD-Aug. 99.87± 0.02 98.39± 0.17 98.63± 0.20 97.94± 0.19
CSD-OOD. 99.87± 0.02 99.37± 0.08 99.51± 0.07 99.14± 0.11

Table 10: Distribution Shift Detection. NotMNIST as ID dataset.

Method Acc. AUROC AUPR-IN AUPR-OUT
MCD 95.17± 0.14 83.21± 0.45 75.86± 0.89 85.73± 0.18
BNN-MCMC 90.20± 0.44 87.05± 0.80 85.93± 1.10 87.68± 0.63
BNN-Laplace 95.29± 0.52 86.38± 1.46 82.99± 2.36 87.55± 1.04
RND 96.25± 0.12 95.49± 0.82 95.81± 0.97 95.23± 0.74
ENS(3) 97.12± 0.08 92.37± 0.26 92.11± 0.30 91.93± 0.27
ENS(15) 97.47± 0.05 94.04± 0.16 94.26± 0.17 93.29± 0.17

CSD 96.48± 0.08 96.98± 0.41 97.26± 0.44 96.86± 0.36
CSD-Aug. 96.45± 0.09 98.51± 0.22 98.70± 0.24 98.31± 0.21
CSD-OOD. 96.49± 0.10 98.49± 0.35 98.78± 0.29 98.21± 0.42

Table 11: Distribution Shift Detection. KMNIST as ID dataset.

Method Acc. AUROC AUPR-IN AUPR-OUT
MCD 94.18± 0.26 87.22± 0.75 83.48± 0.74 88.00± 0.77
BNN-MCMC 80.57± 1.29 80.40± 1.46 79.31± 1.93 80.75± 1.31
BNN-Laplace 85.39± 1.79 78.58± 2.66 76.18± 3.11 79.47± 2.49
RND 96.73± 0.21 93.50± 1.17 93.58± 1.45 92.93± 1.05
ENS(3) 97.68± 0.10 93.88± 0.24 94.49± 0.26 93.05± 0.24
ENS(15) 97.96± 0.06 94.68± 0.11 95.39± 0.12 93.81± 0.11

CSD 96.89± 0.13 96.57± 0.73 97.05± 0.74 95.90± 0.74
CSD-Aug. 96.90± 0.19 98.12± 0.46 98.45± 0.41 97.61± 0.53
CSD-OOD. 96.86± 0.12 99.06± 0.19 99.30± 0.14 98.71± 0.25
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Runtime Analysis - Distribution Shift Detection

Figure 7: Runtime of all algorithms on the Distribution Shift Detection task. Runtimes are reported
in seconds for one seed completion on a single Nvidia RTX 3060 GPU.

USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used to assist in the preparation of this paper. Their usage
was limited to refining sentence structure and verifying grammar, punctuation, and general language
usage. No content or substantive research contributions were generated by LLMs.
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