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Abstract
Magnetic confinement fusion may one day pro-
vide reliable, carbon-free energy, but the field
currently faces technical hurdles. In this position
paper, we highlight six key research challenges in
the field of fusion energy that we believe should
be research priorities for the Machine Learning
(ML) community because they are especially ripe
for ML applications: (1) disruption prediction, (2)
simulation and dynamics modeling (3) resolving
partially observed data, (4) improving controls,
(5) guiding experiments with optimal design, and
(6) enhancing materials discovery. For each prob-
lem, we give background, review past ML work,
suggest features of future models, and list chal-
lenges and idiosyncrasies facing ML development.
We also discuss ongoing efforts to update the fu-
sion data ecosystem and identify opportunities
further down the line that will be enabled as fu-
sion and its data infrastructure advance. It is our
position that fusion energy offers especially excit-
ing opportunities for ML practitioners to impact
decarbonization and the future of energy.

1. Introduction: Magnetic Confinement Fusion
Eras of human history are defined by their energy sources,
from the charcoal that forged the iron age to the fossil fu-
els that shape our modern world. Today, our planet faces
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the looming consequences of climate change, and energy
insecurity continues to catalyze conflicts around the globe.
Humanity must urgently tackle the challenge of scaling
cheap, clean, and carbon-free energy.

Fusion energy, the nuclear process that powers the stars, has
long been sought as a practical energy source (Harms et al.,
2000). Fusion uses abundant fuel, emits no carbon, and
uses minimal land1. For these reasons, fusion is an alluring
possibility as a component of future energy grids.

We focus in this paper on the most technically mature
magnetic fusion device: the “tokamak.” A tokamak is
a doughnut-shaped machine that confines a steady-state
plasma at fusion-relevant temperatures by applying external
magnetic fields and inducing a current in the plasma that
circulates around the torus, creating a helical magnetic field
that confines the plasma (Wesson & Campbell, 2011; Taylor,
1997).

Fusion entered a new era in the 2020s because of three
factors: technical innovation, a growing awareness of the
climate crisis, and big bets by venture capital. The devel-
opment of high temperature superconductors, for example,
put previously infeasible fusion concepts within the grasp
of commercial-scale labs. At the same time, the cost of
climate change and rapid decarbonization is coming into
view. These factors brought in billions from established ven-
ture capital firms to the nascent fusion start-up landscape
(Fusion Industry Association, 2023; Parisi & Ball, 2019).

However, several “showstopping” challenges remain; it
is our position that Machine Learning (ML, see common
acronyms in Appendix A) may be key to addressing several
critical issues for tokamak fusion. Tokamaks can generate
massive amounts of data and require fairly sophisticated
control schemes. Furthermore, the field has been generating
data across an array of modalities for decades. It is our
observation that there are low-hanging fruit abound for ML
practitioners in fusion, and we strongly believe that collabo-
ration between the two fields will be important and mutually
beneficial.

1Nuclear fusion should not be confused with nuclear fission,
which is a fundamentally different process. No fusion power plants
exist today, but fission reactions are responsible for nuclear power
plants (Kulcinski et al., 1979).
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In this position paper, we lay out the main open problems
in fusion that are relevant to ML, and future opportunities
that will emerge as fusion data infrastructure is upgrade for
the era of ML. Few others have written on the broader role
of ML in fusion, and all have address fusion practitioners
(Kamal, 2020; Humphreys et al., 2019) or covered narrow
areas of ML and fusion (Pavone et al., 2023). Ours is the
first to attempt a comprehensive overview of ML in tokamak
fusion and to address the ML community directly. It is the
position of this paper that there are several avenues of
exciting collaborative research directions, and that the
future success of fusion may well hinge on support from
the ML community.

2. Open Problems Relevant to ML
The fusion community has shown an increasing interest in
ML-accelerated research. A notable example is the recent
creation of a 5-year coordinated research project (CRP)
sponsored by the International Atomic Energy Agency
(IAEA) to foster a multi-institutional network focused on
ML-applied fusion research (AI for Fusion, 2023).

In this section, we will discuss the main open problems
in magnetic fusion relevant to ML today; i.e., the tasks on
which interested researchers can immediately begin collabo-
ration with domain experts. For each modeling challenge,
we will frame the problem, describe existing work, and dis-
cuss opportunities for further progress. Since we write for
ML practitioners, we put further details on the physics of
fusion in Appendix B.

2.1. Disruption Prediction

2.1.1. BACKGROUND OF PROBLEM

A “disruption” is a rapid, total loss of plasma confinement
in a tokamak. These events can be prompted by a range of
factors from human error to internal plasma instabilities, and
result in the plasma suddenly colliding with the inside of the
confinement chamber. While disruptions in today’s experi-
ments are manageable, future power plant-scale tokamaks
could face major thermal loads and mechanical stresses
during disruptions that jeopardize the machine health and
plant’s viability (Maris et al., 2023).

Disruptions are extremely challenging to predict in practice.
A plasma can become unstable on millisecond timescales,
and many contributing factors to disruptions are not well-
understood. The lack of first-principle models combined
with abundant experimental data across decades of opera-
tions lends itself to ML solutions. ML disruption predictors
can be integrated into a tokamak’s control system to help
steer the plasma towards a more stable operating regime, or
attempt to preemptively mitigate an upcoming disruption by
launching a large amount of cold matter into the tokamak.

ML disruption predictors can also supplement or integrate
with physics-based models for disruption prediction, such
as the DECAF suite of codes (Sabbagh et al., 2023).

2.1.2. PRIOR AND CURRENT WORK

Disruption prediction through statistical modeling and ma-
chine learning was first explored through in the 2000’s
(Windsor et al., 2005), though the body of literature has ex-
panded rapidly in recent years (Cannas et al., 2007; Murari
et al., 2008; 2009; Rattá et al., 2010; De Vries et al., 2011;
Vega et al., 2013; Cannas et al., 2014; Rattá et al., 2014;
Aledda et al., 2015; Montes et al., 2019; Murari et al., 2018;
Rea & Granetz, 2018). Notable recent applications include
more advanced architectures such as temporal (Churchill
et al., 2020; Zhu et al., 2021) and spatial (Aymerich et al.,
2022) convolutional neural nets (CNNs) and variational
autoencoders (VAEs) (Wei et al., 2021). Other example
applications span from tree-based models (Zhong et al.,
2021; Rea et al., 2018; 2019) to recurrent networks (Kates-
Harbeck et al., 2019), manifold learning and generative
mapping (Pau et al., 2019), and survival analysis (Tinguely
et al., 2019; Keith et al., submitted). Potential future models
may incorporate explicit autoregression, attention or long-
range convolutions for historic patterns, continuous state
space dynamics, and implicit taxonomization of the range
of physically possible instability pathways.

2.1.3. CHALLENGES

While many promising advances have been made in disrup-
tion prediction, two key challenges stand out.

Low failure requirement: Classical ML shines in “51/49”
problems, i.e. those in which one needs only be correct
slightly more often than they are incorrect, such as stock
sales (Ginsberg, 2012; Ginsberg, 2021). Disruption predic-
tion for a tokamak power plant will be a “99/01” problem,
i.e. one in which as high an accuracy as possible (>99%) is
important because even a few failures may be catastrophic to
the machine. Disruption prediction work should be closely
aware of advances in fields of ML safety and robustness.
Also, the severity of a disruption may be information in-
corporated into the training of a model; for example, one
may weight the training loss by a measure of observed dis-
ruption severity, ensuring the model is more attuned to the
especially dangerous cases.

Explainability: “Black-box” ML disruption prediction
models often show strong performance, however they have
generally been unable to meaningfully improve our under-
standing of disruption physics. Additionally, deep models
that cannot be easily validated for safety have limited appli-
cability for future control systems that must reliably drive
the plasma away from disruptive boundaries. Promising
solutions need to include a level of explainability, either
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Figure 1. An overview of the types of data tokamaks can generate, and the modeling problems that this contributes to. Profile graphs
taken from (Kwak et al., 2021), time series data taken from (Lao et al., 2022), and the tokamak image reproduced with permission from
CFS/MIT-PSFC — CAD Rendering by T. Henderson.

through post-hoc models (Rea et al., 2019) or via algorithms
that are interpretable by design. Finally, another promising
direction follows a shift in paradigm to assess the disrup-
tion risk as a function of the plasma survival time (Tinguely
et al., 2019; Keith et al., submitted).

2.2. Simulation and Dynamics Modeling

2.2.1. BACKGROUND OF PROBLEM

Simulation is crucial for realizing the robust and economi-
cal design, operations, and control of a power plant. While
the fusion community has made massive strides in develop-
ing simulation tools for reactor design, such tools typically
require massive computational resources to simulate just
one time-step of the plasma (Rodriguez-Fernandez et al.,
2022b). Considerable advances in time-varying simulation
are needed to advance both the planning of operational tra-
jectories and training of control policies. Regardless of
the exact control techniques utilized, which may include
anything from classical feedback control to contemporary
policy optimization methods, advances in control-oriented
simulation and dynamics modelling are needed. Arguably,
the first demonstration of reinforcement learning (RL) for
plasma control (Degrave et al., 2022) succeeded because the
physics relevant to the particular control task, “shape con-
trol”, are the most well-understood of tokamak physics, with
simulations that work well in practice (Carpanese, 2021).

The domain of robotics has blazed a path to follow, with

efforts to build simulators explicitly for the purpose of ad-
vanced control, such as MuJoCo (Todorov et al., 2012)
and Isaac Gym/Sim (Makoviychuk et al., 2021), making a
large impact on real-world learning-based control via fea-
tures including but not limited to: speed, physics fidelity,
modularity, an easy-to-use API, automatic differentiation,
and GPU parallelization. While plasma simulation faces
a considerable set of challenges beyond those of robotics
simulation, it is worthwhile to transfer relevant learnings
from robotic simulation to plasma simulation.

2.2.2. PRIOR AND CURRENT WORK

Simulating tokamak plasmas faces a considerable set of
challenges. Physics based approaches suffer from the chal-
lenges of incomplete models and extreme computational
requirements. Purely data driven sequence-to-sequence ap-
proaches have been explored (Abbate et al., 2021; Kolemen
et al., 2023; Char et al., 2023), but they face the challenges
of data paucity and distributional drift of fusion machines.
We elaborate on promising approaches for future work after
each relevant section in the Challenges below.

2.2.3. CHALLENGES

Incomplete physics-based models: Important physical phe-
nomena relevant to plasma control are not well-understood
from first principles, forcing the use of empirical models in
otherwise first-principles based simulations. One notable
example is the phenomenon of the H-mode confinement
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Figure 2. Here we reproduce with permission (Rodriguez-Fernandez et al., 2020) an example of the types of plasma simulation output that
ML may enhance. Note that R (m) implies linear distance from tokamak center, Z (m) the vertical height, ρN the normalized minor
radial coordinate, Te and Ti the electron and ion temperatures respectively, q the safety factor (a measure of rotational transform of the
magnetic field), and J the toroidal current density. Subfigures: (a) a plasma boundary is used as input to a simulation code (TRANSP,
(Hawryluk & Coppi, 1981)) and internal flux surfaces as calculated by the fixed-boundary equilibrium solver. (b) Electron and ion
temperature and electron density profiles. (c) Several plasma current-relevant profiles such as the safety factor (q), the total toroidal
current density (j), and toroidal current component from bootstrap current (jB).

regime, which typically doubles a key performance metric
(Martin et al., 2008). On this front, considerable opportuni-
ties exist both for learning subsets of plasma dynamics from
empirical data to use inside physics-based simulators and
for developing hybrid physics-ML models that assimilate
both physics-based principles and empirical data. Such tech-
niques have already proven crucial in robotics for enabling
ML based control; (Hwangbo et al., 2019), for example,
learned an actuator dynamics model from robot data to aug-
ment a physics-based RL training environment.

Extreme computational requirements: Another consider-
able challenge is the extreme computational cost of simulat-
ing certain subsets of plasma dynamics from first-principles.
For example, properly simulating the dynamics in the
plasma core from first principles currently takes millions
of CPU-hours for a single time slice, as it involves solv-
ing a complex set of partial differential equations (PDEs)
(Rodriguez-Fernandez et al., 2022b). On this front, ML-
based surrogate models (also referred to as emulations) have
already made an impact in enabling simulations at a level
of fidelity previously considered intractable (Rodriguez-
Fernandez et al., 2022b; Di Siena et al., 2022; van de Plass-
che et al., 2020). However, even surrogate model acceler-
ated simulations of plasma models, such as nonlinear gy-
rokinetics, still requires millions of CPU-hours (Rodriguez-
Fernandez et al., 2022b). Thus, many orders of magnitude
of improvement are still needed. Real-time simulations are
another area that will benefit from surrogate modelling (Fe-
lici et al., 2018); for example, real-time reconstruction is
typically restricted to the 2D case as the 3D case, which
exist for offline codes (Hoelzl et al., 2020), are intractable
in realtime. Surrogate modelling may also be a point of

synergy between plasma simulation and materials design
(Sec 2.6).

Stochasticity: There are certain aspects of the plasma dy-
namics that are important, but seem difficult or impossible
to model deterministically. Some examples include the in-
troduction of impurities and the onset of certain instabilities.
To address these issues, approaches from uncertainty quan-
tification, generative modelling, and stochastic differential
equations should be explored to augment simulations to
enable the training of controllers that are robust to these
sources of uncertainty.

Data paucity and distributional drift: The primary chal-
lenges of applying ML to learn plasma dynamics on empiri-
cal data are the relative paucity of data and the distributional
drift of machines over time. Both are discussed further in
Section 3, but here we reiterate the necessity of sample effi-
ciency for upcoming net energy experiments which need to
succeed with as little trial and error as possible.

2.3. Partial Observability

2.3.1. BACKGROUND OF PROBLEM

Sensing the state of the plasma is a difficult task, consti-
tuting its own field of work. Observations of the plasma
state are typically incomplete, motivating the application of
specialized techniques to infer the underlying plasma state.
This section describes the following three problems:

Undetermined feature set: Certain key quantities in fusion
plasmas are spatially varying, but are measured by sensors
that cannot physical resolve their spatial distribution. For ex-
ample, measuring magnetic fields inside the plasma would
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require inserting sensors into the plasma. Thus the typi-
cal technique, known as equilibrium reconstruction, uses
measurements from magnetic field sensors at the edge in
conjunction with a physics-based model to infer magnetic
fields inside the plasma (Moret et al., 2015; Lao et al., 1985;
Li et al., 2013). Such reconstructions can be computation-
ally demanding or inaccurate.

Data assimilation across machines and sensors: Differ-
ent machines can have varying numbers and types of sen-
sors, and each sensor itself can produce outputs of vary-
ing sampling rates and spatial distributions. For example,
interferometers measure the electron density at high fre-
quency along a sight line while Thomson Scattering mea-
sures plasma density and temperature at individual points
in space with low frequency, motivating the application of
methods to combine information from both sensor modal-
ities (Pastore et al., 2023). In addition, sensors are often
modified or shut off based on the needs of the individual
principle investigator responsible for the sensor.

Noisy and missing measurements: Sensors may uninten-
tionally add different types of noise to measurements. Also,
quantities of interest may be difficult to measure, resulting
in dropped measurements. For example, we cannot easily
measure the ion temperature and density, and so the output
is generally noisy. To make matters worse, it can be difficult
to tell whether those quantities were noisy or missing: in
many tokamak monitoring sytems, sensors that fail simply
report white noise. Thus, robustness to measurement error
is essential for an array of modeling tasks (Shousha et al.,
2023).

2.3.2. PRIOR AND CURRENT WORK

Much work in feature extraction has focused on physics-
informed NN’s (PINNs) (Mathews, 2022; Aymerich et al.,
2023; Mathews et al., 2020b) primarily through loss func-
tion curtailing (Huang & Wang, 2023); more work is needed.
Variational Information Bottlenecks have been used for equi-
librium reconstruction emulation (Lao et al., 2022; Kruger
et al., 2022), as have transformers (Wan et al., 2022) and
PINNs (Mathews et al., 2020a). Diffusion models, LSTMs,
multi-adaptive auto-regressive splines (MARS) (Rasul et al.,
2021) and masked VAEs (Variational Autoencoders) have
been used for data reconstruction and denoising (He et al.,
2021; Lei et al., 2016). State-space and S4-type (Structured
State Space for Sequence) models have been used for data
assimilation tasks (Arnold et al., 2023). We expect future
models to feature continuous state spaces and increased
physics hybridization.

2.3.3. CHALLENGES

In addition to the challenges that partial observability shares
with other problems (see Section 3), we expect models ad-

dressing to gnenerally require especially low latencies and
be robust to an array of boundary conditions. Any model
that reconstructs an underdetermined state space should be
undertaken with “physicists in the loop”: windows into func-
tioning and reconstructed variables are essential to make
sure that it is recreating known and expected physics.

2.4. Control

2.4.1. BACKGROUND OF PROBLEM

This section provides an abbreviated description of plasma
control challenges and opportunities, some of which are
highlighted in Figure 3. The reader is referred to (Walker
et al., 2020) for a more in-depth introduction to tokamak
plasma control. Plasma operation in a fusion device requires
active control. During the entire evolution of a plasma dis-
charge, the control system must ensure the desired condi-
tions, defined by physics and machine operators, are met
while maintaining plasma stability. A considerable chal-
lenge is that many, sometimes conflicting, control objectives
and tasks must be met simultaneously to ensure the plasma
dynamics evolution is desirable. Net-energy experiments
introduce stringent requirements on the robust handling of
off-normal events, such as the onset of instabilities, and
simultaneous control of multiple plasma quantities, mak-
ing the development of advanced plasma control systems
increasingly urgent.

2.4.2. PRIOR AND CURRENT WORK

The most basic operation mode of a tokamak only requires
control of the position and current of the plasma, often
described as “RZIP” control (i.e. Radial position, Z position,
and Ip control). Magnetic control typically refers to RZIP
control with the addition of control of the plasma shape.
While magnetic control is typically done with techniques
from classical linear control (De Tommasi, 2019), it has also
recently been demonstrated with RL in the TCV (Degrave
et al., 2022), KSTAR (Seo et al., 2021), and EAST tokamaks
(Wan et al., 2022) (see table of tokamaks, Appendix A).
However, a number of outstanding challenges remain for the
RL approach to be realized in routine tokamak operations
(Tracey et al., 2024). Future works may investigate model
features such as planning (Spangher et al., 2020), action-
space constraints (Arnold et al., 2021), offline imitation
(Jang et al., 2021), and autocurricula generation (Jang et al.,
2023).

2.4.3. CHALLENGES IN CONTROL

While RZIP control enables basic operations, robust high
performance control of net energy tokamaks faces many
more challenges. All of these control challenges share the
common challenge of accurate simulation and dynamics
modelling, a topic addressed at length in Sec 2.2. For
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Figure 3. Diagram showing important goals for advanced control research to address along with key relevant components. Inspiration
for the diagram was taken from (Humphreys et al., 2019). Credit for embedded figures, from left to right: (Gunn, 2022), (IPP, 2017),
(Igochine), (Hayashi et al., 2021).

one, active avoidance of potentially unstable portions of
the plasma state space remains an open problem (Boyer
et al., 2021). Certain instabilities also degrade plasma per-
formance; a recent work demonstrated the application of
RL to avoiding one such instability to increase plasma per-
formance (Kolemen et al., 2023). When off-normal events
happen, the control system also needs to make intelligent de-
cisions about how to handle the off-normal event (Vu et al.,
2021). Net energy devices such as the SPARC and ITER
tokamaks have to contend with excessive heat damaging
the wall; techniques such as detachment (Leonard, 2018)
and strikepoint control (Kolemen et al., 2010) have been
developed to tackle this problem, but it remains far from
solved.

2.5. Optimal Design of Experiments

2.5.1. BACKGROUND OF PROBLEM

In the context of fusion, there are potentially many applica-
tions for optimal experiment design due to the expense of
large-scale experiments; for example, at the DIII-D tokamak,
experiments are allocated through an annual process award-
ing blocks of 10-20 experiments. For upcoming experiments
attempting net-energy, machine damage is a major concern
(Lehnen et al., 2016), making each trial a risk. Since future
experiments will be heavily trial-limited, each trial must
maximally inform models used for planning, trajectory, and
control design to reliably control the plasma.

2.5.2. PRIOR AND CURRENT WORK

In fusion research, scientists often conduct ‘scans’ in order
to understand how quantities, such as the level of heat trans-

port in the plasma, change in response to a given operating
scenario of interest. In these scans, scientists typically vary
a design variable in a linearly spaced manner. This is likely
a sub-optimal usage of experimental resources. Though
there are many works (Chaloner & Verdinelli, 1995; Gevers
& Ljung, 1986) addressing this problem in general and with
progressively weakening assumptions (Foster et al., 2019),
there has been minimal work applying these ideas to the
practical process of running fusion experiments, though it
has been discussed in Murari et al. (2021). One notable
example is a stochastic perturbation method, which was
applied to a magneto-inertial fusion experiment to assist in
designing experimental settings (Baltz et al., 2017). Another
notable example is the development of a statistical model
to correct simulations that was successfully used to signif-
icantly increase fusion gain in inertial confinement fusion
(Baltz et al., 2017).

Another common experimental goal is to find parameter
settings or control trajectories that maximize some objective
function, a setting appropriate for Bayesian Optimization
(Frazier, 2018; Shahriari et al., 2015). Here, typical ap-
proaches involve choosing trials which maximize informa-
tion gain (Hennig & Schuler, 2012; Hernández-Lobato et al.,
2014) among expected improvement in the best observed
function value (Frazier, 2018), with several proposed alter-
natives. Recent work (Mehta et al., 2021) generalizes these
ideas to design experiments for efficiently identifying an
optimal trajectory. One early work in this direction (Mehta
et al., 2024) addresses the problem of experimental design
of trajectories for the “ramp-down” phase, where the plasma
needs to be carefully de-energized. We believe that there
could be many applications of similar techniques to improve
other control solutions on tokamaks.
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2.5.3. CHALLENGES

Modeling and time constraints: There are substantial chal-
lenges in optimal experiment design. The ingestion and
processing of the results from a particular trial needs to
happen in a matter of minutes. As with other problems
discussed here, there are substantial difficulties in model-
ing. With all that said, we believe that this is a fruitful area
for research and that it is one which complements existing
research processes well in that often, machine operation
proceeds as usual.

2.6. Materials Design

2.6.1. BACKGROUND OF THE PROBLEM

Materials in fusion power plants must survive extreme con-
ditions: high temperatures, large mechanical loads, contact
with corrosive media, and/or exposure to high energy neu-
trons (Cohen-Tanugi et al., 2023). Today, it is experimen-
tally challenging – or impossible – to match the conditions
of fusion power plants (Wirth, 2023). As such, modeling
techniques based on density functional theory (DFT) and
molecular dynamics (MD) play a key role in studying ra-
diation damage (Yip & Short, 2013). Unfortunately, these
atomistic models are computationally intractable to apply
on macroscopic scales (meters and years).

2.6.2. PRIOR AND CURRENT WORK

Machine learning interatomic potentials (MLIPs) have been
successful in achieving close to DFT accuracy with 3-4 or-
ders of magnitude speed up, using approaches such as Graph
Neural Networks (GNNs) (Chen & Ong, 2022; Deng et al.,
2023; Duval et al., 2023b; Bihani et al., 2024), Message
Passing Neural Networks (MPNNs) (Musaelian et al., 2022),
Transformers (Hedelius et al., 2024; Thölke & De Fab-
ritiis, 2022), Gaussian Approximation Potentials (GAP)
(Byggmästar et al., 2019), and Atomic Cluster Expansion
(Batatia et al., 2022). Optimal experiment design and active
learning add ML to the experimental loop, maximizing the
value of each experiment (Damewood et al., 2023; Choud-
hary et al., 2020). Techniques such Gaussian Processes
(GPs) and Bayesian optimization methods approaches show
promise in automated lab setups (Ren et al., 2023a;b; Couet,
2022; Vecchio et al., 2021; Szymanski et al., 2023), and we
expect future work may build on these advances (Lee et al.,
2023). Similarly, GPs, Bayesian Uncertainty Sampling, and
Transformers have been used for active learning (Morgan
et al., 2022; Ren et al., 2023a).

2.6.3. CHALLENGES

Representing radiation damage in an expressive and
efficient manner: GNNs and MPNNs have successfully
predicted the energies, forces, and stresses of tens to thou-

sands of atoms (Duval et al., 2023a; Merchant et al., 2023),
but struggle (MPNNs less so) to scale to hundreds of thou-
sands of atoms (Zhang et al., 2021; Musaelian et al., 2022).
Unfortunately hundreds of thousands to millions of atoms
are needed to ensure radiation damage effects are contained
in a “representative bulk”, i.e. too small of a cell will cause
moving atoms to escape the box and travel back in through
periodic boundary conditions (for additional detail and ref-
erences, refer to Appendix C.2). Therefore new MLIPs
that can combine the universality of GNNs and the speed
of GAPs are needed to enable quantum accurate modeling
of systems large enough to learn radiation effects using
molecular dynamics.

Fusion-relevant training data for MLIPs: Current
datasets (Chanussot et al., 2021) for MLIPs are often in-
sufficient for fusion-relevant materials with non-equilibrium
structures due to radiation damage (Hamedani et al., 2021;
Jin et al., 2018; Ko & Ong, 2023). Generating all possible
defect clusters interacting with all possible elements in a
system is computationally infeasible because defect struc-
tures and local chemical environments come in many forms
(Byggmästar et al., 2019). That being said, more effort can
be put into capturing these structures in MLIP training data.
Additionally, active learning can guide the direction of DFT
calculations to more efficiently compile training datasets (Qi
et al., 2023). Additional information about active learning
in automated labs is in Appendix C.2.

3. Shared Challenges
Transfer to out of domain distributions: Many ML mod-
els are based on categorically different tokamaks. Today’s
fusion devices operate in certain subsets of the power, tem-
perature, size, magnetic field strength, and plasma discharge
duration domains, yet models of disruption prediction will
necessarily be implemented by hotter, more powerful ma-
chines. Models with weak inductive biases may face chal-
lenges extrapolating to the new domains of higher energy
devices. Even if ML solutions objectively demonstrate su-
perior performance, “black-box” solutions may face chal-
lenges with acceptance. Careful consideration should be
paid to inductive bias selection and interpretability. Sym-
bolic regression (Dubčáková, 2011; Udrescu & Tegmark,
2020; Cranmer, 2023), by contrast, could potentially be
used to find closed-form expressions for stability limits that
can be validated via known physical laws and relationships.
More robustness to domain shift could also come from multi-
task approaches and utilizing simulations.

Distributional drift Another major challenge facing fusion
devices is distributional drift across time. This is in part due
to hardware upgrades, changes, and recalibrations of sensors
and actuators. One notable challenge is the effect of material
desorption or ablation off the tokamak wall, which affects
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plasma dynamics and is sensitive to the maintenance cycle
of the wall (Shimada & Pitts, 2011). On this front, studies
need to examine the impact of including historical time as an
input into learned models. Advances in metadata curation
are also needed to better account for machine changes.

Narrow and/or incongruous datasets: Given the expense
and labor-intensity of fusion experiments, it is common for
datasets in the field to be small and bespoke; certain sensors
may not always be running or calibrated correctly, making
it challenging to assemble large database with consistent
settings data availability. Also, the pressure to publish en-
courages narrow, poorly documented, and closed datasets.
Finally, dataset size and scope can be limited by the need for
expert labeling. Many important events are hard to label au-
tomatically with thresholds, and so studies often rely on the
individual scientist conducting the study to parse through
and manually pick out the time and duration of events. Due
to these factors, the data landscape in fusion (and in mate-
rials science for fusion, see Section 2.6) often looks more
like an archipelago than a continent.

Despite these challenges, there are growing efforts in the
unification of disparate datasets, of which the Open/FAIR
data grant (National Science Foundation, 2022; Almada
et al., 2020) and the DOE’s PuRE grant (D.O.E, 2021) are
examples of better practices; for examples in fusion see
(Montes et al., 2020). While tearing down the walls between
the narrow and incongruous datasets often found in fusion
will take significant effort, it will open many doors for ML-
based analysis.

The problem of data scarcity is particularly pertinent as
it is desirable for upcoming net-energy tokamaks such as
SPARC (Creely et al., 2020) and ITER (Aymar et al., 2002)
to work with as few trial runs as possible. To address the
relative paucity of data, a range of data-efficient approaches
to dynamics modelling should be explored. Works in other
data scarce domains offer some promising starting points.
Some examples include GNNs for weather forecasting (Lam
et al., 2022), neural differential equations and differentiable
simulation in several domains (Djeumou et al., 2023; Kidger,
2022; Wang et al., 2023), and development of a custom
architecture like AlphaFold (Jumper et al., 2021).

4. Fusion Data Ecosystems in the Age of ML
Since the 1950s, tokamak experiments have generated in-
creasingly large amounts of data. While Alcator C-mod
in 1991 produced around 5 megabytes per day, the ITER
tokamak, when it comes online, will produce 2 petabytes of
data per day of experiments (ITER Team, 2020).

A significant volume of fusion data is stored in MDSplus
(Stillerman et al., 1997; Lane-Walsh et al., 2021), a hierar-
chical database and data access system. While MDSplus

has provided a significant service to the fusion community,
it was developed prior to the current era of ML and big data,
and is thus currently not optimized for ML-scale workflows.
For one, it encounters bottlenecks when retrieving data from
multiple experiments (also called “plasma discharges” or
“shots”) as it is designed for single discharge retrieval. There
also lacks a consistent data schema, with each device having
its own data structure that evolves over time. On this front,
the closed-source ITER Integrated Modeling and Analysis
System (IMAS) is working to standardize a data schema
(Romanelli et al., 2020).

There are also administrative and legal barriers to fusion
data access. Currently, individuals, not institutions, need
to request access and sign written agreements with each
institution operating the tokamak to access data. While
it is therefore not impossible to gain data access to many
tokamaks, these restrictions have prevented sharing of multi-
machine datasets between researchers, and stand as a major
barrier to entry for members of the ML community.

There is ongoing work to provide tools to smoothly aggre-
gate fusion datasets at scale. These tools have several goals
in mind (DOE, 2023): (1) organize data retrieval systems
around a cache structure for signals relevant to ML-type
scale (2) provide a comprehensive mapping between ma-
chines for retrieval of similar nodes (3) ease a one-stop-shop
between multiple tokamaks for researcher’s use, and (4)
parsing of stored logbook records with AI (Mehta et al.,
2023). Input from ML communities will be invaluable for
steering and accelerating this process.

5. Future ML Opportunities on the Horizon
Here, we will speculate on future fusion ML work possible
once the presence of other systemic advances are in place.

5.1. ML with ML-Scale Data

As data gathering infrastructure grows, so too will the scale
of ML. Models trained across multi-device datasets will
become the norm, with care taken to account for data dis-
tribution drift that will occur throughout a device’s lifetime.
We expect models to be sampling rate independent, as sam-
pling rates will be different across machines and sensors.

A future capability enabled by data scale may be foundation-
type models for fusion applications. Evidence suggests
that multi-task training can benefit individual goals in fu-
sion; prior work has shown that next state prediction pre-
training boosts the accuracy of disruption prediction in
transformer-like models (Spangher et al., 2023), and other
work has shown that multi-headed multi-task transformers
have higher disruption prediction capabilities (Wan et al.,
2022).
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Figure 4. The Archipelago of Magnetic Fusion Data. This illustration highlights key challenges in fusion data: (1) lack of integrated
datasets within tokamaks, (2) asynchronous diagnostics and data types, (3) inconsistencies across different operational eras, (4) difficult
data sharing agreements, and (5) proprietary nature of upcoming large-scale commercial datasets. Please note that the illustration is
symbolic and not intended to critique any specific tokamak.

Other future work may seek to address data privacy and
access restriction by implementing types of federated learn-
ing to gain information from multi-machines while keeping
data on national servers. Such an endeavor would likely
require coordination beyond the development of a new data
aggregation framework.

5.2. ML with Advanced Multi-Modalities

The ML community is beginning to investigate and incorpo-
rate multi-modality in models (Gao et al., 2020; Lahat et al.,
2015), also called “data fusion”. This advance happens as
multi-modal benchmarks are built (Ge et al., 2023; Fu et al.,
2023; Liang et al., 2021), multi-modal datasets grow (Gadre
et al., 2023), and desire for multi-modal capabilities in large
language model (LLM) grow (Yin et al., 2023).

Fusion datasets naturally feature many data modalities. In
addition to photos, 2D profiles, time-series of global state
variables, static metaparameters, reconstructed data from
equilibrium models, fusion datasets also feature detailed
text logbook entries about shots, known physics insights,
and even audio waves from the tokamak hall. Successfully
incorporating multi-modality may make fusion ML far more
robust to noise in any one modality, aware of different phys-
ical events, and generalizable to new operating regimes of
temperature and pressure.

5.3. ML for Grid Integration and Plant Operation

ML work on energy systems writ large has helped address
economic dispatch of generators (Chahar et al., 2021), pre-
dict grid demand (Chow, 2021), and siting resources (Sun
et al., 2023; Petrov & Wessling, 2015).

As fusion plants approach commercial deployment, ML may
similarly play a role in hour-by-hour operational decisions
(i.e. hourly energy dispatch) as well as actions taken once
over a plant’s lifetime (i.e. siting, scaling, and messaging to
host communities.) AI has been used for automation, opti-
mization, and analysis of various operations of in nuclear
power plants under the support of the IAEA (IAEA, 2022),
and many applications may transfer well to fusion.

6. Conclusion
We believe the future of nuclear fusion is bright, with the
potential to play a significant role in de-carbonization and
grid stabilization. Many problems remain on the path to
commercial fusion energy, several of which lend themselves
naturally to ML solutions, motivating cross-community col-
laboration. While the barrier to entry into fusion research is
currently high, ongoing efforts are working to reduce said
barriers to entry; further cross-community collaborations
will only help to accelerate this process. We hope this posi-
tion paper provided a useful starting point to help the ML
practitioner understand the landscape of problems and iden-
tify opportunities to make an impact on fusion, and thus the
future of energy.
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A. Common acronyms and tokamak names

Acronym Definition
CFS Commonwealth Fusion Systems
CRP Coordinated research project

DECAF Disruption Event Characterization And
Forecasting

DFT Density Functional Theory
EAM Embedded Atom Model
GAP Gaussian approximation potentials
GNN Graph neural network
GP Gaussian processes

IAEA International Atomic Energy Agency
IMAS Integrated Modeling and Analysis System
LLM Large language model

LSTM Long short-term memory network
MARS Multi-adaptive auto-regressive splines

MD Molecular dynamics
ML Machine Learning

MLIP Machine learning interatomic potentials
MPNN Message passing neural networks
PDE Partial differential equations
PINN Physics-informed neural network

RL Reinforcement learning
RZIP Control of plasma radial (r) position, ver-

tical (z) position, and current (Ip)
S4 Structured state space for sequence mod-

eling
TRIP Transformer Interatomic Potential
VAE Variational Autoencoders

Table 1. Common acronyms used in this paper.

B. Fusion Physics
This appendix section provides a brief introduction to fusion
physics. We refer the curious reader to (Freidberg, 2008) for
a deeper introduction targeted towards a first year graduate
student audience. For an accessible introduction targeted
towards a general audience, we recommend (Parisi & Ball,
2019).

Fusion occurs when light nuclei, such as hydrogen isotopes,
get close enough that the attractive strong force overcomes
the repulsive electric force. The fusion of the nuclei pro-
duces an enormous amount of energy per unit mass; for
reference, a typical American’s lifetime energy consump-
tion could be fueled by the deuterium (hydrogen isotope
with one neutron) in a bathtub of water and the lithium
content of two lithium-ion laptop batteries.

A number of fuel combinations can be utilized. However,
deuterium - tritium fusion, involving two isotopes of Hy-
drogen, has by far the easiest physical requirements for
achieving energy gain. To achieve net energy gain, the
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https://www.nature.com/articles/nmat3746
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http://arxiv.org/abs/2110.09524
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Tokamak Description
Alcator C-mod High magnetic-field tokamak decommis-

sioned in 2016, formerly operated by MIT
(Marmar, 2018)

DIII-D Largest tokamak in the United States, op-
erated by General Atomics (Buttery et al.,
2019)

EAST Superconducting tokamak, operated by
the Chinese Academy of Sciences Insti-
tute of Plasma Physics (Wu et al., 2007)

ITER Burning plasma tokamak experiment, un-
der construction by international consor-
tium (Ikeda, 2007)

KSTAR Superconducting tokamak, operated by
the Korea Institute of Fusion Energy
(Kwak et al., 2013)

SPARC Compact, high magnetic field tokamak,
under construction by CFS (Rodriguez-
Fernandez et al., 2022a)

TCV Small tokamak with flexible shape con-
trol, operated by the Swiss Plasma Center
(Coda et al., 2017)

Table 2. Tokamaks referenced in this paper.

triple product of density n, temperature T , and confinement
time τ , nTτ , must exceed a certain threshold. While more
advanced fusion reactions such as deuterium-deuterium,
proton-boron-11, and helium-3 fusion have potential ad-
vantages over deuterium-tritium, they require substantially
higher values of nTτ .

Achieving break-even conditions with deuterium-tritium fu-
sion requires plasmas ten times hotter than the core of the
sun, requiring creative solutions to confine and control the
plasma. Many approaches to fusion have been conceptu-
alized and attempted, with most falling massively short of
break-even conditions. Only laser-based inertial confine-
ment fusion (ICF) and the tokamak approach to magnetic
confinement fusion (MCF) have approached break-even
conditions. Recent work systematically documented the
performance of a wide array of fusion concepts attempted
(Wurzel & Hsu, 2022).

While many important phenomena of plasma physics can be
understood quite readily from first principles, many other
phenomena are emergent from the complex interaction of
many particles. For example, the dominant mode of heat
loss from the plasma is due to micro-turbulence which
emerges from a kinetic description of plasmas, which is
extremely computationally intensive (Rodrı́guez Fernández
et al., 2019). The extreme computational requirements of
a kinetic treatment, coupled with an extreme separation of
scales in both time and space necessitating a hierarchy of

models from quantum mechanics to single particle to kinetic,
to multi-fluid to single fluid to empirical. As noted in Sec
2.2.3, even today, a number of important plasma phenomena
are still not well-understood from first principles. All of
this makes the problem of plasma modelling and simulation
extremely challenging.

C. Extended Literature reviews
C.1. Equilibrium reconstruction

The fusion community has spent a large effort in recon-
structing equilibrium profiles, yet there is still room for im-
provement. For example, Svennson uses Gaussian Process
emulation for tomography (Li et al., 2013), and the EFIT-
AI team at the DIII-D tokamak has published notably on
an ML-enhanced Bayesian 2D magnetic profile framework,
a Model-Order-Reduction version of the two-dimensional
Grad-Shafranov equation solver using a neural network, and
a three-dimensional perturbed equilibrium reconstruction
solver. (Lao et al., 2022; Kruger et al., 2022).

C.2. Machine Learning for Material Design

Graph Neural Networks (GNN), Equivariant Message Pass-
ing Networks (MPNN), and more recently Transformers
have all been successfully trained from ab initio Density
Functional Theory data (Chen & Ong, 2022; Batzner et al.,
2022; Hedelius et al., 2024). Graph Neural Networks have
been successful at predicting properties of materials, with
DFT level accuracy, using tens to hundreds of atoms. Unfor-
tunately, due to the O(N2) scaling of edges with numbers
of atoms, using GNNs on a system with hundreds of thou-
sand or millions of atoms is intractable (Zhang et al., 2021).
Only the Equivariant Message Passing Network, Allegro, a
speed optimized variant of Nequip has achieved scaling up
to 421,824 atoms, but required 64 V100 GPUs to generate
10 ns/day in LAMMPS (Musaelian et al., 2022). For com-
parison, using a simple Embedded Atom Model Potential
for tungsten on a MacBook Pro can also achieve 10 ns/day.
On the other spectrum of MLIPs, tabulated Gaussian Ap-
proximation Potentials (tabGAP) have shown to scale to
over 250,000 atoms, and scale similarly to embedded atom
model (EAM) potentials (Byggmästar et al., 2021). Un-
fortunately the tabGAP potential struggles to handle more
than 4 atoms, and long-range effects like defects and dis-
locations are not properly represented. The Transformer
interatomic potential (TRIP) also showed improved accu-
racy compared to MPNNs, but their scalability was not
demonstrated past 312 atoms (Hedelius et al., 2024). The
bottom line is while GNNs can most accurately capture
complex, long-range interactions for 1000s of atoms, they
struggle to scale. MPNNs and TRIPs have the potential to
scale, but still are expensive to run in MD simulations, and
are about a factor of 5-10 less accurate compared to GNNs
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(TRIPs are more accurate than MPNNs like MACE and
NeQUIP, but their speed have not been validated). tabGAP
potentials can easily scale past hundreds of thousands of
atoms, but only remain expressive for simple systems, and
struggle to handle long range effects. There is a need for an
improved representation of atoms allowing for DFT level
accuracy for hundreds of thousands to millions of atoms, in
1000x less time.

Automated labs with active learning to develop nuclear struc-
tural materials have also been demonstrated, but the compo-
sition control (i.e ±15% errors in the composition, which
is about 2 orders of magnitude worse than humans) of the
additive-manufacturing based sample synthesis system was
1-2 orders of magnitude off what is needed for a fusion
relevant alloy (Couet, 2022; Vecchio et al., 2021). Addition-
ally, other efforts to setup automated labs have struggled
with the repeatability and reliability of sample handling and
characterization (Szymanski et al., 2023).

D. An extended discussion on realtime fusion
device computation

Computer systems for fusion devices are optimized for man-
aging controls and diagnostics, and have changed substan-
tially throughout the years. Throughout Alcator C-Mod’s
operational lifetime, there was a single computer without an
OS, running just a single program. In order to enable speed
of reading, there was no network to act as a middle message
passer to translate network readings, and thus data transfer
was as fast as the CPU possibly could transfer it.

It is very likely that current and future fusion devices, like
South Korea’s KSTAR, are no different (Lee et al., 2001).
Using a network in passing data between device and com-
puter is new and relatively unproven, and there is reason
to think that it could be bad: latency is on the order of mil-
liseconds in network message passing, whereas it is on the
order of picoseconds for a specialized FPGA (Matteis et al.,
2019). However, the benefits of networking the data stor-
age would be increases in networked, failover, flexibility,
scalability, reduncancy, etc. For this reason, the SPARC
tokamak is being constructed to enable multiple machines
to be networked together (Creely et al., 2020).

Realtime model deployment has certain hard limits in the
amount of ML development that can be done. Thus, testing
of possible online learning, or even of production model
performance is limited. Once the realtime system ports
data over to offline systems, it’s done, and though the data
quality itself is mostly the same, there are some differences.
For example, NaNs are flagged, created, and filled while
ported to the system. Realtime systems do not produce
any NaNs, but rather fill their would-be NaN values with
white noise. Thus, while we can approximate a realtime test

environment fairly closely, we cannot simulate it entirely.
Realtime applications being explored, with highly optimized
network cards at a certain speed (Spangher, 2024).


