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ABSTRACT

We introduce a gradient-based approach for the problem of Bayesian optimal
experimental design to learn causal models in a batch setting — a critical
component for causal discovery from finite data where interventions can be costly
or risky. Existing methods rely on greedy approximations to construct a batch of
experiments while using black-box methods to optimize over a single target-state
pair to intervene with. In this work, we completely dispose of the black-box
optimization techniques and greedy heuristics and instead propose a conceptually
simple end-to-end gradient-based optimization procedure to acquire a set of optimal
intervention target-state pairs. Such a procedure enables parameterization of the de-
sign space to efficiently optimize over a batch of multi-target-state interventions, a
setting which has hitherto not been explored due to its complexity. We demonstrate
that our proposed method outperforms baselines and existing acquisition strategies
in both single-target and multi-target settings across a number of synthetic datasets.

1 INTRODUCTION
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Figure 1: Causal Bayesian Experimental Design opti-
mizes experiments that help disambiguate between com-
peting causal hypotheses.

Imagine a scientist entering a wet lab to conduct
experiments in order to discover the underlying
causal relations within the system of interest.
The scientist first comes up with some hypothe-
ses, based on prior knowledge and past obser-
vations. Then, based on the formed hypotheses,
an experimentation protocol to disambiguate be-
tween the competing hypotheses is devised. Ad-
ditionally, because of the financial and ethical
costs and risks involved in such experimentation
(e.g. CRISPR or economic interventions), it is
in the scientist’s interest to minimize the number
of batches required.

This process is known as experimental design,
and assuming that the question of interest con-
cerns discovering the causal structure of the sys-
tem of interest, the process is known as experi-
mental design for causal discovery. A Bayesian
framework for this process has been proposed
in prior work [55, 40, 8, 2, 53, 54, 56] which
typically consists of updating an approximate
posterior with past experimental data and using this updated posterior to compute experiments that
are maximally informative, as evaluated by expected information gain—the objective of interest in
Bayesian Optimal Experimental Design (BOED) [35, 7].

∗Equal contribution. † Equal advising. Correspondence to :ptigas@robots.ox.ac.uk,
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The problem of Bayesian Optimal Experimental Design for Causal Discovery (BOECD) is hard;
computing the Bayesian posterior over Structural Causal Models (SCM)—a common framework for
capturing causal relationships—is intractable. More importantly, the estimation and optimization of
batch BOED objectives are computationally challenging, which has resulted in heuristics like the
greedy batch strategy [2, 53] and soft-top-k batch strategy [54]. Additionally, in causal discovery,
one is interested not only in identifying the variable (target) to intervene on but also the state to
set the intervention to, resulting in a design space which is a product space of discrete targets and
continuous states, making experimental design even more challenging. Tigas et al. [54] proposed to
use Bayesian Optimization (BO) to optimize over the continuous state-space of the interventions and
a soft-top-k heuristic to select a batch.

In this work, we propose a method for estimating and optimizing the BOED objective in a differ-
entiable end-to-end manner, alleviating the inefficiencies introduced by the heuristics of the batch
selection but also the black-box optimization over the intervening states. Specifically, we use es-
timators of mutual information based on nested estimation considered in Ryan [48], Myung et al.
[41], Huan & Marzouk [23], Foster et al. [13] and extended it to the problem of causal discovery
where the optimization is over both discrete nodes and continuous states. We cast the problem of
batch experiment selection as a policy optimization where the policy uses either the Gumbel-Softmax
or relaxed Bernoulli distribution [25, 37] for single target and multi-target settings respectively. When
combined with the straight-through gradient estimator [5] to optimize over the targets and gradient
ascent over corresponding states, we can explore the space of optimal designs efficiently with power-
ful optimizers [26]. Our proposed method requires very few assumptions about the causal model and
can explore wide range of design settings as compared to prior work (see Table 2), thus opening up
possibilities of experimental design for causal discovery in a broader range of applications.

2 BACKGROUND

2.1 CAUSALITY

Notation. Let V = {1, . . . , d} be the vertex set of any Directed Acyclic Graph (DAG) g = (V, E)
and XV = {X1, . . . ,Xd} ⊆ X be the random variables of interest indexed by V.

Structural Causal Model. To deal with questions related to modelling causal relations between
variables of interest, we employ the framework of Structural Causal Models (SCM) [46]. In many
fields of empirical sciences like network inference in single cell genomics [19], inferring protein-
signalling networks [49] and medicine [51], SCMs provide a framework to model the effects of
interventions [44]– experiments which perturb the state of a variable to a desired state, thereby
allowing to study the mechanisms which affect the downstream variables (for example, CRISPR gene
knockouts [38] in genomics). Under this framework, each variable Xi has an associated structural
equation, and is assigned a value which is a deterministic function of its direct causes Xpa(i) as well
as an exogenous noise variable ϵi with a distribution Pϵi :

Xi := fi(Xpa(i), ϵi) ∀i ∈ V

fi’s are mechanisms that relate how the direct causes affect the variable Xi. If the structural
assignments are assumed to be acyclic, these equations induce a DAG g = (V, E) whose vertices
correspond to the variables and edges indicate direct causes. An intervention on any variable Xi

corresponds to changing the structural equation of that variable to the desired state (value), Xi := si,
where si ∈ Xi. It is denoted by the do-operator [44] as do(Xi = si).

In this work, we assume that the SCM is causally sufficient, i.e. all the variables are measurable, and
the noise variables are mutually independent. Though the mechanisms f can be nonparametric in
the general case, we assume that there exists a parametric approximation to these mechanisms with
parameters γ ∈ Γ. In the case of linear SCMs, γ corresponds to the weights of the edges in E. We
further require that the functions f are differentiable with respect to their parameters. Many classes
of SCMs fall under this category, including the most commonly studied one – the Gaussian additive
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noise models (ANM)1:
Xi := fi(Xpa(i);γi) + ϵi, ϵi ∼ N (0, σ2

i )

Bayesian Causal Discovery. If the SCM for a given set of variables XV is unknown, it has to
be estimated from a combination of observational data (data obtained in an unperturbed state of
a system) and experimental data under an intervention. This problem is called causal induction or
causal discovery [52]. This amounts to learning the parameters of the unknown SCM given by DAG
g, parameters of mechanisms, γ = [γ1, . . . , γd], and variances, σ2 =

[
σ2
1 , . . . , σ

2
d

]
. For notational

brevity, henceforth we denote ϕ = (γ, σ2) and all the parameters of interest with θ = (g,ϕ). In
Bayesian causal discovery [22], the parameters of SCM are treated as random variables whose beliefs
are updated according to the Bayes rule. A Bayesian method for causal discovery is preferable to
model epistemic uncertainty about the model due to finite data as well as characterize equivalence
classes of SCM like Markov Equivalence Class (MEC) in the case of non-identifiability [45]. Inter-
ventions improve identifiability, but they have to be planned carefully. After acquiring interventional
data, Bayesian methods update the posterior distribution to reduce the uncertainty of the SCM.

2.2 BAYESIAN OPTIMAL EXPERIMENTAL DESIGN

Bayesian Optimal Experimental Design (BOED) [35, 7] is an information theoretic approach to the
problem of selecting the optimal experiment to estimate any parameter θ. For BOED, the utility of
the experiment ξ is the mutual information (MI) between the observation y and θ:

UBOED(ξ) ≜ I(Y;Θ | ξ)
= E

p(θ)p(y|θ,ξ)
[log p(y | θ, ξ)− log p(y | ξ)]

This objective is also known as the Expected Information Gain (EIG). The goal of BOED is to select
the experiment that maximizes this objective ξ∗ = argmaxξ UBOED(ξ). Unfortunately, evaluating
and optimizing this objective is challenging because of the nested expectations [47] and several
estimators have been introduced [13, 28], which can be combined with various optimization methods
to select the designs [14, 24, 15, 6].

A common setting, called static, fixed or batch design, is to optimize B designs {ξ1, . . . , ξB} at
the same time. The designs are then executed, and the experimental outcomes are collected for a
Bayesian update of the model parameters.

2.3 CAUSAL BAYESIAN EXPERIMENTAL DESIGN

Causal Bayesian Experimental Design is concerned with designing the most informative experiments
to identify the true SCM so that the number of experiments required is as few as possible. An
experiment in causal discovery corresponds to picking the intervention targets I ∈ P(V) and the
corresponding states SI ∈ ∪

i∈I
Xi to set those targets to. A key component of such methods is

computing a posterior over the parameters of the SCM. However, computing the posterior is a difficult
task since the number of DAGs grows exponentially in the number of variables. Nevertheless, a
plethora of methods exist [16, 3, 36, 9] which can be used with our approach.

Having access to such posterior models, one can estimate the EIG objective. One difficulty that still
remains though is that optimizing the EIG objective over the experiments is a mixed discrete and
continuous optimization problem, for which previous work has proposed to find the optimal state per
node via the use of black-box methods like Bayesian Optimization (BO) [54]. Additionally, for the
construction of the batch of experimental designs, a greedy approximation is used to incrementally
select experiments, a method that is 1− 1

ϵ -approximate to the optimal solution [32].

3 DIFFERENTIABLE BAYESIAN CAUSAL EXPERIMENTAL DESIGN

Let Θ be a random variable that models the uncertainty in the parameters of the true SCM, of
which θ := (g,ϕ) is a realization. An experiment to identify an intervention is denoted by ξ :=

1Note that differentiability of f is the only assumption we require with respect to an SCM. We do not require
that the noise is additive. For clarity of exposition, we restrict our focus to an ANM as they are the most
commonly studied class of SCMs.
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{(I, SI)} := do(XI = SI), where I ∈ P(V) is a set of target indices in the multi-target setting, and
SI are the corresponding states of those targets under intervention. The outcome of the experiment is
denoted by y ∼ P

(
X1 = x1, . . . ,Xd = xd | do

(
XI = SI

))
= p(y | ξ). Here, y is an instance of

the random variable Y ⊆ X distributed according to the interventional distribution2. Due to causal
sufficiency, the likelihood of data for a given θ satisfies the causal Markov condition:

p(y | θ, ξ) =
∏

j∈V\I

p
(
xj |ϕj ,xpag(j),do

(
XI = SI

))
(1)

Along with a prior p(θ), the above equation defines a generative model of the data.

Design setting. As in prior work [54, 53], we are interested in the setting of batch design where
we design B experiments at once before collecting experimental data. In other words, we seek a
multiset of intervention targets and corresponding states which are jointly maximally informative
about the parameters. We denote this multiset as ξ1:B := (I1:B , S

I
1:B). After executing a batch of

experiments and collecting experimental outcomes, an experimenter might wish to design a new
batch of experiments based on collected data (as summarized by the posterior distribution). Let ht

denote experimental history (ξ1,y1), . . . , (ξt,yt) after t batches of acquisition. The BOED objective
for this batch setting at any point t is given by the joint mutual information:

I(Yt
1:B ;Θ | ξt1:B , ht−1) = E

p(θ|ht−1)

p(yt
1:B |θ,ξt1:B)

[
log

p(yt
1:B | θ, ξt1:B)

p(yt
1:B | ξt1:B , ht−1)

]
(2)

where Yt
1:B are the random variables corresponding to experimental outcomes for iteration t, yt

1:B
are the instances of these random variables and ξt1:B is the corresponding multiset of experimental
designs. We drop the superscript t from these variables for simplicity of exposition. Ideally, we
wish to maximize the above objective by obtaining the gradients ∇ξ1:B I and performing gradient
ascent. However, the above objective is doubly intractable [47] and approximations are required.
This usually leads to a two-stage procedure where the above objective is first estimated with respect
to an inference network and then maximized with respect to designs [13], which can be typically
inefficient [14].

3.1 ESTIMATORS OF THE JOINT MUTUAL INFORMATION

NESTED MONTE CARLO

Following [23, 14, 15], we consider an estimator that allows for approximating the EIG objective
while simultaneously optimizing for the experiment ξ that maximizes the objective via gradient-
based methods. This estimator, called Nested Monte Carlo (NMC), is based on contrastive es-
timation of the experimental likelihood and has been extensively used in Bayesian experimen-
tal design [48, 41]. More precisely, assuming some past observational and interventional data
ht−1 = {(ξ1,y1), . . . , (ξt−1,yt−1)}, for every parameter sample from the posterior distribution
θ0 ∼ p(θ | ht−1), a set of contrastive samples θ1:L ∼ p(θ | ht−1) are considered to obtain a unified
objective:

U t
NMC(ξ1:B) = E

p(θ0:L|ht−1)
p(y1:B |θ0,ξ1:B))

[
log

p(y1:B | ξ1:B ,θ0)
1
L

∑L
ℓ=1 p(y1:B | ξ1:B ,θℓ))

]
(3)

This estimator converges to the true mutual information as L → ∞ [47]. If the design space is
continuous, the optimal batch of experiment ξ∗1:B can be found by directly maximizing the NMC
objective (ξ∗1:B ← argmaxξ1:B U

t
NMC(ξ1:B)) with gradient-based techniques [23].

The above objective requires estimating the posterior distribution p(θ | ht−1) after every acquisition.
For causal models, while it is generally hard to estimate this posterior due to DAG space of causal
structures being discrete and super-exponential in the number of variables [55], many approaches
exist in the literature [2, 36, 9]. These approximate posteriors can be nevertheless used for estimating
the NMC objective.

2Note that when I = ∅, it corresponds to an observational/ non-experimental setting. In this case, Y = XV.
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IMPORTANCE WEIGHTED NESTED MONTE CARLO

To establish an alternative path to estimating the mutual information, we begin by utilizing an
observation from Foster et al. [13] that it is possible to draw the contrastive samples from a distribution
other than p(θ | ht−1) and obtain an asymptotically exact estimator, up to a constant C that does not
depend on ξt1:B . Drawing samples from the original prior p(θ) gives the estimator

I(Yt
1:B ;Θ | ξt1:B , ht−1) − C = lim

L→∞
E

p(θ0|ht−1)p(θ1:L)
p(y1:B |θ0,ξ1:B)

[
log

p(y1:B |ξ1:B ,θ0)
1
L

∑L
ℓ=1 p(y1:B |ξ1:B ,θℓ)p(ht−1|θℓ)

]

The remaining wrinkle is that we must sample θ0 from p(θ0|ht−1). We propose the conceptually
simplest approach of applying self-normalized importance sampling (SNIS) to the outer expectation.
The resulting objective, based on efficiently re-using samples in a leave-one-out manner, can optimize
designs by just sampling parameters from the prior, without having to estimate the posterior:

U t
IWNMC(ξ1:B) = E

 L∑
m=1

ωm log
p(ym,1:B |θm, ξ1:B)

1
L−1

∑
ℓ̸=m

p(ym,1:B |θℓ, ξ1:B)p(ht−1|θℓ)

 (4)

where θ1:L ∼ p(θ1:L) are sampled from the original prior, ym,1:B ∼ p(y1:B |θm, ξ1:B) are all the
experimental outcomes in the batch for parameter θm and ωm ∝ p(ht−1|θm) are self-normalized
weights. A full derivation is given in Section A.

As IWNMC does not require any posterior estimation but instead relies entirely on the prior, it
completely sidesteps the causal discovery process for designing experiments. This is a paradigm
change from the NMC estimator which requires causal discovery through the estimation of the
posterior. However, we note that using IWNMC with just the prior (Eq. 4) as opposed to NMC
(Eq. 3) comes with trade-offs. IWNMC typically requires a large L to get a good estimate of the
EIG. In high dimensions, this can be computationally infeasible. Having a small L on the other
hand might result in a failure case if the effective sample size of importance samples becomes 1.
We can alleviate this issue if there is some prior information available which could be leveraged to
design better proposal distributions. This might consist of knowledge of certain causal mechanisms
of the system under study or access to some initial observational data. In such a case, a proposal
distribution which encodes this information (for example with support on graphs which are in the
Markov Equivalence Class (MEC) of the observational distribution) can be used instead of the prior.
If no prior information is available or a good approximate inference technique is at our disposal,
NMC is preferable in high dimensions. Surprisingly, we get good results on variables of size up to
5 with IWNMC from just the prior and up to 40 variables from a proposal distribution which has
support on the MEC of observational distribution (see Sec 4.3).

3.2 OPTIMIZING OVER TARGETS AND STATES (DIFFCBED)

While the NMC estimator provides a unified objective to directly optimize over the designs ξ1:B ,
it requires that the design space is continuous so that the gradients ∂UNMC

∂I1:B
and ∂UNMC

∂SI
1:B

can be computed.
However, in the case of designing experiments for causal models, the challenge still remains that
optimizing over intervention targets I with gradient-based techniques is not possible because it is
a discrete choice.

In order to address this problem, we introduce a design policy πϕ with learnable parameters ϕ that
parameterize a joint distribution over possible intervention targets and corresponding states. Instead
of seeking the gradients ∂UNMC

∂I1:B
and ∂UNMC

∂SI
1:B

, the goal now instead is to estimate UNMC
∂ϕ so that policy

can be updated to be close to optimal. Such a characterization of the design space allows us to use
continuous relaxations of discrete distributions [37, 25] to obtain samples of designs and estimate
NMC gradients.

Let I and S be the random variables which model all possible intervention target combinations and
states for a batch design respectively. While there are many possibilities of instantiating the policy
in practice, we consider the simplest case where πϕ(I,S) ≜ πϕn(I)πϕm(S). As the state space is
continuous3, πϕm

can be either deterministic (a delta Dirac with ϕm ∈ RB×d) or Gaussian with
3If the state space is discrete, optimizing πϕm would be similar to πϕn which involves reparameterized

gradients.
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ϕm ∈ R2×B×d parameterizing its mean and log variance. In this work, we found it sufficient to use a
deterministic policy over the state space. For the interventional targets, ϕn ∈ RB×d parameterizes
the logits of different relaxed versions of discrete distributions depending on the setting, which we
describe below. The diffCBED algorithm is outlined in Algorithm 1.

SINGLE TARGET (q = 1)

0 0 1 0 0 0

0.1 -1.2 2.3 -0.9 0.3 0.9

2.3

x

interventional target one-hot sample

interventional states sample

Figure 2: A design sample is obtained by first sampling
I1:B ∼ πϕn(I), S1:B ∼ πϕm(S) and then setting states
to be SI

1:B = S1:B ⊙ I1:B . To obtain hard samples of
I , we use the straight-through estimator [5]. Illustration
for B = 1.

In this setting, the intervention targets are one-
hot vectors, as demonstrated in Figure 2. To
sample one-hot vectors in a differentiable man-
ner, we parametrize πϕn

as a Gumbel-Softmax
distribution [37, 25] over intervention targets,
which is a continuous relaxation of the categor-
ical distribution (in one-hot form). Additionally,
we use the straight-through (ST) gradient esti-
mator [5].

UNCONSTRAINED MULTI-TARGET (q ≤ d)

If instead of a continuous relaxation of the cat-
egorical distribution, we parametrise the policy
πϕn

as a continuous relaxation of the Bernoulli
distribution (Binary Concrete) [37], we can now
sample multi-target experiments. Notice that
since each interventional target sample will have at most d non-zero entries, this policy is suitable for
multi-target experiments with an unconstrained number of interventions per experiment.

CONSTRAINED MULTI-TARGET (q = k)

Finally, when considering a setting where the number of targets per intervention is exactly k. However,
this is a significantly more challenging case, since the policy needs to select a subset of k from d
nodes. By using a continuous relaxation of subset sampling, as introduced in Xie & Ermon [58],
combined with straight-through gradient estimator, we can efficiently optimize the policy to select a
subset of nodes to intervene on.

Algorithm 1: Differentiable CBED
Input :E SCM Environment, N Initial observational samples, B Batch Size

1 Dobs ← E .sample(N), Dint ← ∅
2 Train q(Θ | Dobs) ≈ p(Θ | Dint) using appropriate algorithm.
3 for batch t = 1 . . . T Batches do
4 Initialize design policy parameters ϕ = {ϕn, ϕm}: trainable logits ϕn for the targets;

trainable parameters ϕm for the states.
5 for update step c = 1 . . . C do

▷ Sample Interventional Targets and States

6 {ξ(o)1:B}Oo=1 ∼ πϕ(I,S)
▷ Gradient ascent with straight-through gradient estimator

7 Update ϕ→ ϕ+ α ∂
∂ϕ

1
O

∑O
o=1

[
U t

NMC(ξ
(o)
1:B)

]
▷ Intervene with learned policy

8 ξ1:B ∼ πϕ

9 Dint ← Dint ∪ E .intervene(ξ1:B)
10 Update the posterior q(Θ | Dobs ∪ Dint).

4 EXPERIMENTS

We evaluate the performance of our method on synthetic graphs and a range of baselines. We aim to
investigate the following aspects empirically: (1) To what extent can we design good experiments
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without performing intermediate causal discovery/ posterior estimation with IWNMC estimator from
the prior? (2) Ability to design good experiments with a proposal distribution with IWNMC (3) the
performance of our policy-based design in combination with the differentiable NMC estimator in
single-target and multi-target settings, as compared to suitable baselines (Section E).

4.1 RESULTS

4.2 EVALUATION OF THE IWNMC ESTIMATOR

random
diffCBED

Figure 3: We test the designs acquired with IWNMC estimator with
just the prior as opposed to the random policy (with random target
and state acquisition) on variables of 5 dimensions. Plots correspond
to unconstrained multi-target setting with B = 2 (shaded area
represents 95% confidence intervals - 60 seeds).

In this section, we consider optimiz-
ing the designs with respect to the
IWNMC estimator entirely from the
prior, introduced in 3.1, sidestepping
the causal discovery procedure. As
noted before, estimating posteriors of
causal models is hard, so it is im-
portant to understand to what extent
IWNMC can be considered a suitable
candidate for designing good exper-
iments in the absence of a posterior.
For this setting, we sample from the
prior distribution over graphs by first
sampling an ordering of nodes at ran-
dom and then sampling edges with

probability p = 0.25 which adhere to this topological order to give a DAG. We sample the mechanism
parameters and noise variances of ANM at random from a Gaussian distribution with mean 0 and
variance 1. Figure 3 demonstrates results for 5 variable unconstrained multi-target setting with batch
size 2. For evaluation, we train DAG Bootstrap [16] with GIES [21] on the data acquired from each
policy. We can see that we can recover the ground truth SCM faster than a random strategy. This
is a surprising, but positive result given that our policy was trained entirely from samples from the
prior. We also tested this approach for 10 nodes (results in Appendix G). While this resulted in
better performance of the policy as opposed to random in terms of downstream metrics, we observed
effective sample size reach 1 indicating that for 10 dimensions or higher, indicating that we might
need a better proposal distribution or a posterior estimate.

4.3 EVALUATION IN HIGHER DIMENSIONS

EVALUATION OF IWNMC WITH PROPOSAL DISTRIBUTION

In this experiment, we consider 40 variables, constrained (q = 5) multi-target and batch size B = 2.
Further, we use the same setup as Sussex et al. [53] to make a fair comparison as well as to construct
a proposal distribution. To construct a proposal distribution, we use 800 observational samples to
train DAG Bootstrap [16, 2] and augment our posterior samples with samples of dags from the
Markov Equivalence Class of the true graph, to make sure that there is support over the graphs
from the MEC of the true graph (see Sussex et al. [53] for details). We then acquire a single batch
of experiments from IWNMC estimator for our approach. For the baseline, we acquire a single batch
of experiments from the estimator defined in [53].

For random and Sussex et al. [53] baseline, we set the interventional state to 5, as explained in [53].
Notice that in contrast to the baselines, our approach doesn’t fix the state to 5 but optimizes over
the state-space to perform the intervention with. In Table 1 we summarize our results. As we can
see, our method outperforms random and SSGb [53] by a great margin, indicating that with a good
proposal distribution, IWNMC can still be a promising candidate in higher dimensions.

RESULTS WITH NMC ESTIMATOR

For the following results, we use DAG-Bootstrap [2] with 20 components, an approximate posterior
method based on GIES causal discovery method [21]. As GIES is not a differentiable method, once
we compute the posterior via the DAG-Bootstrap algorithm, we transfer the weights of the posterior
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Table 1: Results of multi-target experiments on graphs of size 40 (30 seeds ± s.e.). Similarly to [53], we are
using posterior samples trained on observational data and re-weighting them with likelihoods.

Method ESHD ↓ F1 ↑ iMMD ↓
Random 43.78±46.67 0.91±0.08 0.16±0.07
SSGb 15.59±29.66 0.97±0.05 0.10±0.06
diffCBED 0.44±0.21 0.99±0.00 0.07±0.01

samples (the bootstraps) into JAX [1] tensors to allow for the gradients to be computed with respect
to the experiments.

Single-target synthetic graphs: In this experiment, we test against synthetic graphs of 50 nodes
and batch size 5, where the graph is sampled from the class of Erdos-Renyi (a common benchmark
in the literature [54, 56, 50]). In Figure 8 (A,B,C) we summarize the results. We observe that our
method performs significantly better than the baselines.

20 nodes, unconstrained (q ≤ 20), batch size B = 2: In this experiment, we want to evaluate
the performance of our method as compared with the baselines, on sparse graphs over several
acquisitions. Figure 8 (D,E,F) summarizes the results of this setting. We observe strong empirical
performance as compared to all the baselines. Additional results are given in Section I.1.
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(D) (F)

diffCBED SSGb random-randomrandom-fixed softCBED

(E)

Figure 4: (A,B,C) Single target-state design setting results for Erdős–Rényi [12] graphs with d = 50 variables.
(D,E,F) Multi target-state design setting results for Erdős–Rényi [12] graphs with d = 20 variables. Each
experiment was run with 30 random seeds (shaded area represents 95% CIs)

5 DISCUSSION

Limitations: A primary limitation of our method is that it needs to estimate a posterior after every
acquisition. While the proposed IWNMC estimator presents an interesting alternative, the designs
are still non-adaptive. As demonstrated by [15, 24], a promising and exciting direction is to train
a policy to be adaptive and propose new experiments in real-time.

Conclusion: We presented a gradient-based method for differentiable Bayesian Optimal Experimental
for causal discovery. Our method allows not only for single-target but also various multi-target
(constrained and unconstrained) batch acquisition of experiments. While prior work in Causal
Bayesian Experimental Design relies on greedy approximations for the selection of a batch [2, 54] or
black-box methods [56, 54] for optimizing over interventional states, our method utilizes gradient-
based optimization procedures to simultaneously optimize for various design choices. Evaluation on
different benchmarks suggests that our method is competitive with baselines.
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APPENDIX A DERIVATION OF IMPORTANCE WEIGHTED NESTED MONTE
CARLO ESTIMATOR

In this section, we derive the UIWNMC (Eq. 4) estimator. We derive the estimator for a single design
with an experiment denoted by ξ, parameters θ and experimental outcome random variable Y and its
instance y. Since it is a static design, all the steps of the derivation hold if we replace ξ with ξ1:B , Y
with Y1:B and y with y1:B. We begin from the variational NMC (VNMC) estimator, introduced by
Foster et al. [13]

I(Y;Θ | ξ) ≤ UVNMC(ξ) = E
p(θ0|ht−1)
p(y|θ0,ξ)

q(θ1:L|ht−1,y)

log p(y | ξ,θ0)
1
L

∑L
ℓ=1

p(y|ξ,θℓ)p(θℓ|ht−1)

q(θ1:L|ht−1,y)

 . (5)

This can be rewritten as

UVNMC(ξ) = E
p(θ0|ht−1)
p(y|θ0,ξ)

q(θ1:L|ht−1,y)

log p(y | ξ,θ0)
1
L

∑L
ℓ=1

p(y|ξ,θℓ)p(θℓ)p(ht−1|θℓ)

q(θ1:L|ht−1,y)

+ log p(ht−1)

 . (6)

and Foster et al. [13] observed that log p(ht−1) is a constant that does not depend on ξ and so can be
safely neglected when optimizing over designs. If we take the original prior p(θℓ) as our proposal
distribution q, then we arrive at

UVNMC-prior(ξ) = E
p(θ0|ht−1)p(θ1:L)

p(y|θ0,ξ)

[
log

p(y | ξ,θ0)
1
L

∑L
ℓ=1 p(y | ξ,θℓ)p(ht−1 | θℓ)

]
+ C (7)

where C = log p(ht−1). This allows us to sample contrastive samples from any distribution, but
does not account for θ0. If we were to sample θ0 from p(θ0), we can correct using an importance
weight

UVNMC-prior(ξ) = E
p(θ0:L)
p(y|θ0,ξ)

[
p(θ0 | ht−1)

p(θ0)
log

p(y | ξ,θ0)
1
L

∑L
ℓ=1 p(y | ξ,θℓ)p(ht−1 | θℓ)

]
+ C, (8)

but unfortunately, this relies on knowing the density of the posterior or using the fact that p(θ0 |
ht−1)/p(θ0) = p(ht−1 | θ0)/p(ht−1), knowing the marginal likelihood of the data ht−1. Neither
of these is usually tractable. Instead, we can use a self-normalized importance sampling approach,
which amounts to estimating p(ht−1) by a sum over θ0:L, giving the approximation IWNMC:

UIWNMC(ξ) = E
p(θ0:L)
p(y|θ0,ξ)

[
p(ht−1 | θ0)

1
L+1

∑L
k=0 p(ht−1 | θk)

log
p(y | ξ,θ0)

1
L

∑L
ℓ=1 p(y | ξ,θℓ)p(ht−1 | θℓ)

]
+ C. (9)

The form that is given in equation 4 is obtained by first relabelling the θ samples to start from 1

UIWNMC(ξ) = E
p(θ1:L)
p(y|θ1,ξ)

[
p(ht−1 | θ1)

1
L

∑L
k=1 p(ht−1 | θk)

log
p(y | ξ,θ1)

1
L−1

∑L
ℓ=2 p(y | ξ,θℓ)p(ht−1 | θℓ)

]
+ C, (10)

noting that the role of θ1 is arbitrary and can be replaced by any m ∈ {1, . . . , L}

UIWNMC(ξ) = E
p(θ1:L)

p(y|θm,ξ)

[
p(ht−1 | θm)

1
L

∑L
k=1 p(ht−1 | θk)

log
p(y | ξ,θm)

1
L−1

∑L
ℓ̸=m p(y | ξ,θℓ)p(ht−1 | θℓ)

]
+ C, (11)

and finally taking the mean over m, noting that this does not change the expected value due to
linearity

UIWNMC(ξ) = E
p(θ1:L)

p(y|θm,ξ)

[
L∑

m=1

p(ht−1 | θm)∑L
k=1 p(ht−1 | θk)

log
p(y | ξ,θm)

1
L−1

∑L
ℓ ̸=m p(y | ξ,θℓ)p(ht−1 | θℓ)

]
+ C. (12)

We finally drop the constant C as it is independent of ξ and take

ωm =
p(ht−1 | θm)∑L
k=1 p(ht−1 | θk)

. (13)
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APPENDIX B RELATED WORK

Differentiable Bayesian Optimal Experimental Design. Huan & Marzouk [23], Foster et al.
[13; 14], Kleinegesse & Gutmann [27; 29] developed a unified framework for estimating Expected
Information Gain and optimizing the designs with gradient-based methods. In Ivanova et al.
[24], Foster et al. [15], the authors introduced a policy-based method for performing adaptive
experimentation. More recently, work like Blau et al. [6], Lim et al. [33] used Reinforcement
Learning to train policies for adaptive experimental design.

Experimental Design for Causal Discovery. One of the earliest works of experimental design for
causal discovery in a BOED setting was proposed by [40] and [55] in the case of discrete variables
for single target acquisition. Since then, a number of works have attempted to address this problem for
continuous variables in both the BOED framework [2, 57, 56, 8] and other frameworks [30, 17, 11, 34,
39, 18, 43, 50]. In contrast to the setting studied in this paper, of particular note, are the approaches
for experimental design for causal discovery in a non-BOED setting in the presence of cycles [39] and
latent variables [31]. Closer to our BOED setting are the approaches of [54] and [53]. Specifically,
in [54], the authors introduce a method for selecting single target-state pair with stochastic batch
acquisition while [53] introduce a method for selecting a batch of multi-target experiments with a
greedy strategy, based on a gradient-based approximation to mutual information, without selecting
the intervention state. Our presented method in contrast can acquire a batch of multi-target-state pairs.

Bayesian Causal Discovery. While our work is not directly concerned with Bayesian causal
discovery as such, our design procedure method benefits from using the approximate posteriors for
causal models to estimate mutual information and design interventions [16, 3, 36, 9, 10, 42].
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APPENDIX C EXPECTED INFORMATION GAIN FOR 6 NODES AND BATCH SIZE
2

Figure 5: Here we visualize the Expected Information Gain of batch size two, on two nodes over different
interventional values of the range [−10, 10].

APPENDIX D METRICS

.

E-SHD: Defined as the expected structural hamming distance between samples from the posterior
model over graphs and the true graph E-SHD := Eg∼p(G|D)

[
SHD(g, g̃)

]
Expected edges F1: The expected F1 score of the binary classification task of predicting the presence/
absence of all edges. The expectation is taken over multiple posterior samples.

i-MMD: Interventional MMD is defined as MMD distance [20] between the true interventional
distribution and the interventional distribution induced by θ and g (posterior sample). We take an
expectation over different posterior samples, interventional targets and interventional states. For the
kernel choice, we use the median heuristic as described in [20].

15



Published at the MLDD workshop, ICLR 2023

APPENDIX E BASELINES

Before we evaluate the IWNMC estimator with a proposal distribution more informative than the
prior and the NMC estimator with a posterior estimate of SCM, we present the baselines with which
we can also compare the overall performance of our designs.

SINGLE TARGET

Random-Fixed: Uniform random selection of node, fixing the state to a state to 0 (as introduced in
[2, 54]). Random-Random: Uniform selection of node, uniform selection of state (introduced in
[56]). SoftCBED: A stochastic approximation of greedy batch selection as introduced in [54].

MULTI-TARGET

Random-Random: Multitarget version of Uniform selection of node, uniform selection of state
(introduced in [56]). Random-Fixed: Multitarget version of Uniform selection of node, fixed state to
5 [53], as suggested by the authors. SSGb: Finite sample baseline from [53] with fixed state equal
5. We emphasize that in contrast to our method, the baselines cannot select states, but they either
assume a fixed predefined value or select a value at random.

APPENDIX F DAG BOOTSTRAP

The DAG bootstrap bootstraps observations and interventions to infer a different causal structure
per bootstrap. We used GIES as the causal inference algorithm because of the adaptation of GES
on interventional data as well. In our experiments, we used the pcalg R implementation https://
github.com/cran/pcalg/blob/master/R/gies.R to discover 100 graphs. Each graph
can be seen as a posterior sample from p(G | ht−1). For each of the sampled graphs Gi we compute
the appropriate θMLE under linear Gaussian assumption for the conditional distributions.

APPENDIX G IMPORTANCE WEIGHTED NESTED MONTE CARLO FULL
RESULTS

randomdiffCBED

Figure 6: Multi target-state design setting results for Erdős–Rényi [12] graphs with d = 5 variables. Each
experiment was run with 60 random seeds (shaded area represents 95% CIs)
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random
diffCBED

Figure 7: Single target-state design setting results for Erdős–Rényi [12] graphs with d = 10 variables. Each
experiment was run with 60 random seeds (shaded area represents 95% CIs)

APPENDIX H 20 NODES, UNCONSTRAINED (q ≤ 20), BATCH SIZE B = 1:

(A) (B) (C)

diffCBED SSGb random-randomrandom-fixed

Figure 8: Multi target-state design setting results for Erdős–Rényi [12] graphs with d = 50 variables. Each
experiment was run with 30 random seeds (the shaded area represents 95% CIs). We observe that for batch size
1, the difference between the methods becomes more significant.

APPENDIX I DATASETS AND EXPERIMENT DETAILS

I.1 SYNTHETIC GRAPHS EXPERIMENTS

In the synthetic data experiments, we focus on Erdős-Rényi graph model. We used networkx4 and
method fast_gnp_random_graph [4] to generate graphs based on the Erdős-Rényi model. We
set the expected number of edges per vertex to 1.

APPENDIX J TABLE SUMMARIZING PRIOR WORK

Table 2: Comparison of different BOED for Causal Discovery methods based on their design space assumptions.

Design Space Assumptions
Node Acquisition

(Single Target)
Value Acquisition

(Single Target)
Node Acquisition

(Multi-target)
Value Acquisition

(Multi-target)
Batch

Acquisition
Murphy [40] ✓
Tong & Koller [55] ✓
Cho et al. [8] ✓
Agrawal et al. [2] ✓ ✓
Toth et al. [56] ✓ ✓
Tigas et al. [54] ✓ ✓ ✓
Sussex et al. [53] ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓

4https://networkx.org/documentation/networkx-1.10/reference/generated/
networkx.generators.random_graphs.fast_gnp_random_graph.html
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APPENDIX K OPTIMIZER SETTINGS

Table 3: Table indicating the hyperparameters and optimizer settings for different experimental results.

Optimization settings
Single Target

NMC
Multi-Target

NMC
Multi-Target

IWNMC with prior
Multi-Target

IWNMC with proposal
L 30 30 1000 60
Number of outer DAGs No 30 30 1000 60
Batch Size 5 2 2 2
Relaxation temperature 5→ .5 5→ .5 0.1 5→ .5
Optimizer Adam Adam Adam Adam
Learning rate of optimizer 0.1 0.1 0.01 0.1
Number of starting samples (observational) 60 60 2 800
Number of batches 10 10 5 1
Number of DAG Bootstraps 30 30 - 60
Number of training steps per batch 100 100 100 100
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