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ABSTRACT

The widespread deployment of large language models (LLMs) has led to impres-
sive advancements, yet information about their training data, a critical factor in
their performance, remains undisclosed. Membership inference attacks (MIAs)
aim to determine whether a specific instance was part of a target model’s train-
ing data. MIAs can offer insights into LLM outputs and help detect and address
concerns such as data contamination and compliance with privacy and copyright
standards. However, applying MIAs to LLMs presents unique challenges due
to the massive scale of pre-training data and the ambiguous nature of member-
ship. Additionally, creating appropriate benchmarks to evaluate MIA methods is
not straightforward, as training and test data distributions are often unknown. In
this paper, we introduce EM-MIA, a novel MIA method for LLMs that iteratively
refines membership scores and prefix scores via an expectation-maximization al-
gorithm, leveraging the duality that the estimates of these scores can be improved
by each other. Membership scores and prefix scores assess how each instance is
likely to be a member and discriminative as a prefix, respectively. Our method
achieves state-of-the-art results on the WikiMIA dataset. To further evaluate EM-
MIA, we present OLMoMIA, a benchmark built from OLMo resources, which
allows us to control the difficulty of MIA tasks with varying degrees of overlap
between training and test data distributions. We believe that EM-MIA serves as a
robust MIA method for LLMs and that OLMoMIA provides a valuable resource
for comprehensively evaluating MIA approaches, thereby driving future research
in this critical area.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023b) have recently emerged
as a groundbreaking development and have had a transformative impact in many fields. The vast
and diverse training data are central to their success, which enables LLMs to understand and gener-
ate languages to perform complex tasks. Given that training data directly shape LLMs’ behaviors,
knowing the composition of training data allows researchers and practitioners to assess the strengths
and limitations of LLMs (Gebru et al., 2021), address ethical concerns, and mitigate potential bi-
ases (Bender et al., 2021; Feng et al., 2023) and other risks (Bommasani et al., 2021). However, the
exact composition of training data is often a secret ingredient of LLMs.

Since LLMs are trained on large-scale corpora from diverse sources, including web content, the
inclusion of undesirable data into training data such as test datasets (Sainz et al., 2023; Oren et al.,
2023; Sainz et al., 2024), proprietary contents (Chang et al., 2023; Meeus et al., 2024c), or person-
ally identifiable information (Mozes et al., 2023) might prevalently happen unconsciously, raising
serious concerns when deploying LLMs. Membership inference attack (MIA) determines whether a
particular data point has been seen during training a target model (Shokri et al., 2017). Using MIA
to uncover those potential instances can serve as an effective mechanism in detecting data contam-
ination (Magar & Schwartz, 2022) for the reliable evaluation of LLMs’ ability (Zhou et al., 2023)
and auditing copyright infringement (Duarte et al., 2024) and privacy leakage (Staab et al., 2023;
Kandpal et al., 2023; Kim et al., 2024) to ensure compliance with regulations such as GDPR (Voigt
& Von dem Bussche, 2017) and CCPA (Legislature, 2018). Therefore, MIA has gained huge interest
in the LLM community.
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Despite increasing demands, MIA for LLMs is challenging (Duan et al., 2024) largely due to the
large scale of training data and intrinsic ambiguity of membership from the nature of languages.
Furthermore, designing a proper evaluation benchmark on MIAs for LLMs that emulates a realistic
test case scenario is complicated. While training data distribution is a mixture of diverse sources
and unknown, target test data at inference time could be from any distribution. This circumstance
motivates us to develop a robust MIA method that can work well across different conditions on the
distribution of members and non-members with minimal benchmark information.

In this paper, we propose a novel MIA framework, EM-MIA, which iteratively refines membership
scores and prefix scores using an expectation-maximization algorithm. A membership score indi-
cates how likely each data point is to be a member. A prefix score indicates how discriminative
each data point is in distinguishing members and non-members when used as a prefix. We empiri-
cally observe a duality between these scores, where better estimates of one can improve estimates of
another. By starting from a reasonable initialization, our iterative approach progressively enhances
score prediction until convergence, leading to more accurate membership scores for MIA.

To comprehensively evaluate our method and different MIA approaches, we introduce a new bench-
mark called OLMoMIA by utilizing OLMo (Groeneveld et al., 2024) resources. We vary degrees
of distribution overlaps and control difficulty levels based on clustering. Throughout the extensive
experiments, we have shown that EM-MIA is a versatile MIA method and significantly outperforms
previous strong baselines, though all methods including ours still struggle to surpass random guess-
ing in the most challenging random split setting.

Our novelty and main contributions are summarized as follows:

• To the best of our knowledge, EM-MIA is the first approach that progressively enhances mem-
bership scores (and prefix scores) with an iterative refinement for improved MIA for LLMs.

• We demonstrate that ReCaLL (Xie et al., 2024) has an over-reliance on prefix selection. In
contrast, we design EM-MIA without requiring any labeled data or prior information on bench-
marks.

• EM-MIA remarkably outperforms all existing strong MIA baselines for LLMs, and achieves
state-of-the-art results on WikiMIA (Shi et al., 2023), the most popular benchmark for detecting
pre-training data of LLMs.

• Experiments on our OLMoMIA benchmark with varying degrees of overlap between member
and non-member distributions shows the robustness of EM-MIA and the utility of evaluating
on diverse conditions when developing a new MIA method.

2 BACKGROUND

2.1 MEMBERSHIP INFERENCE ATTACK FOR LLMS

Membership inference attack (MIA) (Shokri et al., 2017; Carlini et al., 2022) is a binary classifi-
cation task that identifies whether or not a given data point has been seen during model training:
member vs non-member. Given a target language model M trained on an unknown Dtrain, MIA
predicts a membership label of each instance x in a test dataset Dtest whether x in Dtrain or not,
by computing a membership score f(x;M) and thresholding this score. By adjusting a threshold,
MIA can control the trade-off between the true positive rate and the false positive rate. The MIA
performance is typically evaluated with two metrics: AUC-ROC and TPR@low FPR (Carlini et al.,
2022; Mireshghallah et al., 2022).

Most existing MIA methods are based on the assumption that the target model memorizes (or over-
fits) training data. In general, members will have a lower loss (Yeom et al., 2018), which is the
average log-likelihood (or perplexity) of target text with respect to a target LLM, compared to non-
members. Likelihood Ratio Attacks (LiRAs) (Ye et al., 2022) perform difficulty calibration using
a reference model (Carlini et al., 2022), a compression method (Carlini et al., 2021), or the aver-
age loss from neighbors (Mattern et al., 2023). Min-K% (Shi et al., 2023) calculates the average
log-likelihood for tokens with the lowest likelihoods. Min-K%++ (Zhang et al., 2024) improves
Min-K% by normalizing each token’s log probability. ReCaLL (Xie et al., 2024) uses the ratio of
the conditional log-likelihood to the unconditional log-likelihood as the membership score. ReCaLL
is described in detail in §2.4.
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2.2 WHY MIA FOR LLMS IS CHALLENGING

Although MIA has been studied in machine learning for several years, it remains especially chal-
lenging for LLMs (Duan et al., 2024; Meeus et al., 2024b). Due to the massive training dataset
size, each instance is used in training only a few times, often just once (Lee et al., 2021), making
it difficult to leave a footprint on the model. Moreover, there is inherent ambiguity in the defini-
tion of membership because texts are often repeated and partially overlap each other in the original
form or with a minor difference even after the rigorous preprocessing of decontamination and dedu-
plication (Kandpal et al., 2022; Tirumala et al., 2024). The membership boundary becomes even
fuzzier (Shilov et al., 2024) if semantically similar paraphrases (Mattern et al., 2023; Mozaffari
& Marathe, 2024) beyond lexical matching based on n-gram are considered. Traditional MIA ap-
proaches in machine learning literature (Shokri et al., 2017; Ye et al., 2022; Carlini et al., 2022)
based on training shadow models on non-overlapping data from the same data distribution, model
architecture, and training algorithm as the target model are infeasible for LLMs considering high
computational costs and unknown training specifications.

2.3 EVALUATION OF MIAS FOR LLMS

Common MIA benchmarks such as WikiMIA (Shi et al., 2023) use a time cutoff based on model
release dates and time information of documents (Shi et al., 2023; Meeus et al., 2024a) to ensure
somewhat membership labels. Besides, recent studies (Duan et al., 2024; Das et al., 2024; Meeus
et al., 2024b; Maini et al., 2024) question whether several MIAs that perform well on these bench-
marks are truly conducting membership inference, as detecting distributional (often temporal) shifts
alone may be sufficient to achieve high benchmark performance. Thus, they advocate for the use
of datasets with a random train-test split such as MIMIR (Duan et al., 2024), which is derived from
the PILE dataset (Gao et al., 2020), for MIA evaluation. However, none of the existing methods
significantly outperforms random guessing in this setting. Although this setting seems theoreti-
cally appropriate for evaluating MIA, there is no truly held-out in-distribution dataset in reality
because LLMs are usually trained with all available data sources. In other words, it is difficult to
find in-distribution non-member examples, and it is nearly impossible to completely eliminate the
distribution shift between training and test data at inference time.

Once an MIA benchmark, a pair of models and datasets, is released, it becomes difficult to prevent
MIAs from exploiting information about the benchmark settings, such as how the dataset has been
constructed. MIAs may exploit existing biases on datasets regardless of their intended purpose. To
evaluate the true generalizability of MIAs in real-world scenarios, we should consider situations
where we have minimal knowledge about the target language model, training data, and test data.
Several ongoing attempts (Meeus et al., 2024b; Eichler et al., 2024) aim to reproduce setups that
closely resemble practical MIA scenarios. Our work is an additional effort in this direction. We pro-
pose a robust MIA method and evaluate it on our benchmark, which simulates various combinations
of training and test data distribution.

2.4 RECALL: ASSUMPTIONS AND LIMITATIONS

ReCaLL (Xie et al., 2024) uses the ratio between the conditional log-likelihood of a target data point
x given a non-member prefix p as a context and the unconditional log-likelihood of x by an LLM
M as a membership score, based on the observation that the distribution of ReCaLL scores for
members and non-members diverges when p is a non-member prefix: formally, ReCaLLp(x;M) =
LL(x|p;M)
LL(x;M) (we may omitM later, for brevity), where LL is the average log-likelihood over tokens

and the prefix p1 is a concatenation of non-member data points pi: p = p1 ⊕ p2 ⊕ · · · ⊕ pn. The
intuition is that the log-likelihood of members drops a lot when conditioned with non-members as
a in-context learning point of view Akyürek et al. (2022), while the log-likelihood of non-members
does not change much.

ReCaLL significantly outperforms other MIA approaches by a large margin. For instance, ReCaLL
exceeds 90% AUC-ROC on WikiMIA (Shi et al., 2023) beating previous state-of-the-art AUC-ROC

1As an extension from using a single prefix p, averaging the ReCaLL scores on a set of multiple prefixes is
possible for an ensemble.
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of about 75% from Min-K%++ (Zhang et al., 2024). However, there is no theoretical analysis of
why and when ReCaLL works well.

In Xie et al. (2024), non-members pi are randomly selected among non-members in a test dataset and
excluded from the test dataset without validation, based on strong assumptions that (1) the ground
truth non-members are available and (2) all of them are equally effective as a prefix. However, the
held-out ground truth non-members, especially from the same distribution of the test set, may not
always be available at inference time. This aligns with the discussion in the previous section §2.3.
Indeed, finding non-members could be difficult (Villalobos et al., 2022; Muennighoff et al., 2024)
since training data of LLMs are ever-growing by gathering all crawlable data. The solution to secure
non-members in Xie et al. (2024) is generating a synthetic prefix using GPT-4o. However, according
to their implementation, this method still relies on non-member test data as seed data.

Selecting non-members from the test dataset makes ReCaLL preferable and unfair compared to other
MIAs that do not utilize any non-member test data. It partially explains why simple random selection
reasonably works well. The ablation study from Xie et al. (2024) to demonstrate the robustness of
the random prefix selection ironically reveals that ReCaLL’s performance can be damaged when we
do not have known non-member data points from the test dataset distribution. Using non-members
from a different domain (e.g., GitHub vs. Wikipedia) significantly degrades ReCaLL’s performance,
sometimes even worse than Min-K%++. In other words, ReCaLL would not generalize well to test
data from a distribution different from that of the prefix. The similarity between the prefix and test
data also matters. Another ablation study shows a variance between different random selections, im-
plying that random prefix selection is not consistent and that all data points are not equally effective
for the prefix.

3 OBSERVATION: FINDING A BETTER PREFIX

In this section, we rigorously investigate how much ReCaLL’s performance is sensitive to the choice
of a prefix and particularly how much it can be compromised without given non-member data.
We define a prefix score r(p) as the effectiveness of p as a prefix in discriminating memberships,
particularly when using this prefix for ReCaLL. In the Oracle setting where ground truth labels of
all examples in a test dataset Dtest are available, we can calculate a prefix score by measuring the
performance of ReCaLL with a prefix p on a test dataset Dtest using ground truth labels and a MIA
evaluation metric such as AUC-ROC. While a prefix could be any text, we calculate prefix scores
for all examples in a test dataset Dtest by using each data point as a standalone prefix.

As an initial analysis, we conduct experiments using the WikiMIA (Shi et al., 2023) dataset with a
length of 128 as a target dataset and Pythia-6.9B (Biderman et al., 2023) as a target LM. Figure 1(a)
displays the distribution of prefix scores measured by AUC-ROC for members and non-members.
Consistent with the results from Xie et al. (2024), ReCaLL works well if a prefix is a non-member
and does not work well if a prefix is a member. Prefix scores of members are smaller than 0.7, and
most of them are close to 0.5, which is the score of random guessing. Prefix scores of non-members
are larger than 0.5, and most of them are larger than 0.7. This clear distinguishability suggests using
a negative prefix score as a membership score.

Figure 1(b) displays ROC curves of MIA when negative prefix scores measured by different met-
rics are used as membership scores. We use AUC-ROC, Accuracy, and TRP@k%FPR with
k ∈ {0.1, 1, 5, 10, 20} as metrics. Using AUC-ROC-based prefix scores as membership scores
achieves 98.6% AUC-ROC, which is almost perfect and the highest among other metrics.

Without access to non-members (or data points with high prefix scores), ReCaLL’s performance
could be significantly lower. Given the wide spectrum of prefix scores for even non-members, the
effectiveness of each data point varies, and the choice of data points for a prefix can be crucial,
although using a concatenation of multiple data points as a prefix reduces variance. In other words,
we can expect better MIA performance by carefully selecting the prefix. Ultimately, it is desirable
to find an optimal prefix p without any information or access to given ground truth non-member data
points on the test set.

Contrary to the Oracle setting, labels which are what should be predicted are unknown at inference
time, meaning that we cannot directly use labels to calculate prefix scores. In the next section §4,
we describe how our method addresses this problem by iteratively updating membership scores and
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(a) (b)

Figure 1: Experiments in the Oracle setting on the WikiMIA dataset (Shi et al., 2023) with a length
of 128 and Pythia-6.9B (Biderman et al., 2023) model. (a) Histogram of prefix scores for members
and non-members measured by AUC-ROC. (b) ROC curves of MIA when using the negative prefix
score with varying metrics as a membership score.

prefix scores based on one another. We propose a new MIA framework that is designed to work
robustly on any test dataset with minimal information.

4 PROPOSED METHOD: EM-MIA

We target the realistic MIA scenario where test data labels are unavailable. We measure a prefix
score by how ReCaLLp on a test dataset Dtest aligns well with the current estimates of membership
scores f on Dtest denoted as S(ReCaLLp, f,Dtest). More accurate membership scores can help
compute more accurate prefix scores. Conversely, more accurate prefix scores can help compute
more accurate membership scores. Based on this duality, we propose an iterative algorithm to refine
membership scores and prefix scores via an Expectation-Maximization algorithm, called EM-MIA,
to perform MIA with minimal assumptions on test data (§2.4).

Algorithm 1 summarizes the overall procedure of EM-MIA. We begin with an initial assignment of
membership scores using any existing off-the-shelf MIA method such as Loss (Yeom et al., 2018) or
Min-K%++ (Zhang et al., 2024) (Line 1). We calculate prefix scores r(p) using membership scores
and then update membership scores f(x) using prefix scores. The update rule of prefix scores (Line
3) and membership scores (Line 4) is a design choice. We repeat this process iteratively until con-
vergence (Line 5). Since EM-MIA is a general framework, all components, including initialization,
score update rules, and stopping criteria, are subject to modification for further improvement.

Algorithm 1 EM-MIA
Input: Target LLMM, Test dataset Dtest

Output: Membership scores f(x) for x ∈ Dtest

1: Initialize f(x) with an existing off-the-shelf MIA method
2: repeat
3: Update prefix scores r(p) = S(ReCaLLp, f,Dtest) for p ∈ Dtest

4: Update membership scores f(x) = −r(x) for x ∈ Dtest

5: until Convergence (no significant difference in f )

Update Rule for Prefix Scores Our observation in §3 shows that AUC-ROC is an effective func-
tion S to calculate prefix scores given ground truth labels. Because we do not have labels, we can
assign membership labels using the current membership scores f and a threshold τ to use them as
approximate labels to calculate prefix scores: AUC-ROC({(ReCaLLp(x),1f(x)>τ |x ∈ Dtest)}).
The value of τ could be chosen as a specific percentile in the score distributions to decide the por-
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tion of members and non-members. Using a median (50% percentile) is a simple and practical
choice because a test dataset is usually balanced. Instead of approximating hard labels, we can com-
pare the ranks of ReCaLLp(x) and the ranks of f(x) on Dtest because the relative order among
other data matters rather than the absolute values. We can use the average difference in ranks as∑

x∈Dtest
∥rank(ReCaLLp(x)) − rank(f(x))∥ or rank correlation coefficients such as Kendall’s

tau (Kendall, 1938) and Spearman’s rho (Spearman, 1961).

Update Rule for Membership Scores Our observation in §3 shows that a negative prefix score
can be used as a good membership score. Alternatively, we can choose candidates with top-k prefix
scores to construct a prefix and calculate membership scores using ReCaLL with this prefix: f(x) =
ReCaLLp(x) where p = p1 ⊕ p2 ⊕ · · · ⊕ pn and pi ∈ argtopkx∈Dtest

r(x). How to order pi in p is
also a design choice. Intuitively, we can place them in reverse order of the prefix score since a data
point closer to the target text will have a larger impact on the likelihood.

External data We may extend the test datasetDtest by utilizing external data to provide additional
signals. Suppose we have a dataset of known members (Dm), a dataset of known non-members
(Dnm), and a dataset of instances without any membership information (Dunk). For example, Dm

could be old Wikipedia documents, sharing the common assumption that LLMs are usually trained
with Wikipedia. As discussed above, we target the case of Dnm = ϕ, or at least Dnm ∩ Dtest =
ϕ. However, we can construct it with completely unnatural texts (e.g., “*b9qx84;5zln”). Dunk is
desirably drawn from the same distribution of Dtest but could be from any corpus when we do not
know the test dataset distribution. Finally, we can incorporate all available data for better prediction
of membership scores and prefix scores: Dtest ← Dtest ∪Dm ∪Dnm ∪Dunk. We have not explored
the effect of exploiting additional data in our experiments but have left it to future work.

5 NEW BENCHMARK: OLMOMIA

EM-MIA works well and even performs almost perfectly on some benchmarks such as
WikiMIA (Shi et al., 2023) (§7.1), while it does not work well on other datasets such as
MIMIR (Duan et al., 2024) similar to other methods. We want to know why this is the case and
what are the conditions for success. To answer these questions, we develop a new benchmark using
OLMo (Groeneveld et al., 2024), which is a series of fully open language models pre-trained with
Dolma (Soldaini et al., 2024) dataset. OLMo provides intermediate model checkpoints and an index
to get which data has been used for each training step, which are valuable resources to construct
an MIA benchmark. We will share our implementation and resulting benchmark datasets. Like us,
anyone can create their own benchmark on their purpose by modifying our implementation.

Figure 2 illustrates the basic setup of the OLMoMIA benchmark. Specifically, we use checkpoints
of OLMo-7B trained with 100k, 200k, 300k, and 400k steps as target models (c.f., one epoch is
slightly larger than 450k steps). Then, we consider any training data before 100k steps as members
and any training data between 400k and 450k steps as non-members. However, we should keep in
mind that there could still be some ambiguity in membership despite the effort of deduplication, as
discussed in §2.2. Based on this setup, we have multiple settings with different samplings.

Figure 2: The basic setup of the OLMoMIA benchmark. The horizontal line indicates a training
step. For any intermediate checkpoint at a specific step, we can consider training data before and
after that step as members and non-members, respectively.

The most straightforward setting is Random, where we randomly select members and non-members
from each interval. This setting is similar to MIMIR (Duan et al., 2024), where members and non-
members are from the training split and test split of the Pile dataset (Gao et al., 2020), respectively.
MIMIR is much more challenging than WikiMIA since the training set and test set are randomly
split and thus have minimal distribution shifts.
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Based on clustering, we control the degree of overlap between the distribution of members and
non-members, resulting in different difficulties. First, we sample enough numbers of members and
non-members (in our case, 50k each). Next, we map sampled data into embedding vectors. We use
NV-Embed-v2 model (Lee et al., 2024), which was the first rank on the MTEB leaderboard (Muen-
nighoff et al., 2022) as of Aug 30, 2024, for the embedding model. Then, we perform K-means
clustering (Lloyd, 1982) for members and non-members separately (in our case, we use K = 50).

To prevent datasets from degeneration that have duplicates with a very minor difference, we remove
data points closer than a certain distance threshold with other points within a cluster in a greedy
manner to guarantee all data points in the same cluster are not too close to each other. Empirically,
we observed that most pair distances measured by cosine distance range from 0.8 to 1.2, so we set
0.6 as the minimum inter-distance for deduplication.

For the Easy setting, we pick the farthest pair of a member cluster and a non-member cluster and
pick instances farthest from the opposite cluster. For the Hard setting, we pick the closest pair of
a member cluster and a non-member cluster and pick instances closest to the opposite cluster. For
the Medium setting, we pick the pair of a member cluster and a non-member cluster with a median
distance and randomly sampled instances within each cluster.

Additionally, we have two additional settings derived from Random and Hard: we merge members
from Random and non-members from Hard to create the Mix-1 setting, and we merge members
from Hard and non-members from Random to create the Mix-2 setting. Mix-1 aims to simulate the
case where test data come from a single cluster. Thus, any cluster might be fine, but we choose Hard
with no specific reason. These settings cover almost all possible inclusion relationships between
members and non-members.

We provide formal equations of the above descriptions in Appendix E. For each difficulty level, we
have two splits based on the maximum sequence length of 64 and 128. For each dataset, we balance
the number of members and non-members to 500 each to make the total size 1000.

6 EXPERIMENTAL SETUP

6.1 DATASETS AND MODELS

We evaluate EM-MIA and compare it with baselines (§6.2) on WikiMIA benchmark (Shi et al.,
2023) (§7.1) and OLMoMIA benchmark (§7.2) using AUC-ROC as a main MIA evaluation metric.
We also report TPR@1%FPR in Appendix B. For WikiMIA, we use the original setting with length
splits of 32, 64, and 128 as test datasets and use Mamba 1.4B (Gu & Dao, 2023), Pythia 6.9B (Bider-
man et al., 2023), GPT-NeoX 20B (Black et al., 2022), LLaMA 13B/30B (Touvron et al., 2023a),
and OPT 66B (Zhang et al., 2022) as target models, following Xie et al. (2024) and Zhang et al.
(2024). For OLMoMIA (§5), we use six settings of Easy, Medium, Hard, Random, Mix-1, and
Mix-2 as test datasets and use checkpoints after 100k, 200k, 300k, and 400k training steps as tar-
get models. Although EM-MIA requires a baseline sufficiently better than random guessing as an
initialization, there is currently no such method for MIMIR (Duan et al., 2024). Therefore, we skip
experiments on MIMIR, though this is one of the widely used benchmarks on MIA for LLMs.

6.2 BASELINES

We compare our method against the following baselines explained in §2.1: Loss (Yeom et al.,
2018), Ref (Carlini et al., 2022), Zlib (Carlini et al., 2021), Min-K% (Shi et al., 2023), and Min-
K%++ (Zhang et al., 2024). We use Pythia-70m for WikiMIA and StableLM-Base-Alpha-3B-v2
model (Tow, 2023) for OLMoMIA as the reference model of the Ref method, following Shi et al.
(2023) and Duan et al. (2024). For Min-K% and Min-K%++, we set K = 20. Among the com-
monly used baselines, we omit Neighbor (Mattern et al., 2023) because it is not the best in most
cases though it requires LLM inference multiple times for neighborhood texts, so it is much more
expensive.
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6.2.1 RECALL-BASED BASELINES

As explained in §2.4, the original ReCaLL (Xie et al., 2024) uses labeled data from the test dataset,
which is unfair to compare with the above baselines and ours. More precisely, pi in the prefix
p = p1 ⊕ p2 ⊕ · · · ⊕ pn are known non-members from the test set Dtest, and they are excluded
from the test dataset for evaluation, i.e., Dtest

′ = Dtest \ {p1, p2, · · · , pn}. However, we measure
the performance of ReCaLL with different prefix selection methods to understand how ReCaLL is
sensitive to the prefix choice and use it as a reference instead of a direct fair comparison.

Since changing the test dataset every time for different prefixes does not make sense and makes the
comparison even more complicated, we keep them in the test dataset. A language model tends to
repeat, so LL(pi|p;M) ≃ 0. Because LL(pi|p;M) ≪ 0, ReCaLLp(pi;M) ≃ 0. It is likely to
ReCaLLp(pi;M) ≪ ReCaLLp(x;M) for x ∈ Dtest \ {p1, p2, · · · , pn}, meaning that ReCaLL
will classify pi as a non-member. The effect would be marginal if |Dtest| ≫ n. Otherwise, we
should consider this when we read numbers in the result table.

We have four options for choosing pi: Rand, RandM, RandNM, and TopPref. Rand randomly se-
lects any data from Dtest. RandM randomly selects member data from Dtest. RandNM randomly
selects non-member data from Dtest. TopPref selects data from Dtest with the highest prefix scores
calculated with ground truth labels the same as §3. All options except Rand partially or entirely use
labels in the test dataset. For all methods using a random selection (Rand, RandM, and, RandNM),
we execute five times with different random seeds and report the average.

The original ReCaLL (Xie et al., 2024) is similar to RandNM, except they report the best score
after trying all different n values, which is again unfair. The number of shots n is an important
hyper-parameter determining performance. A larger n generally leads to a better MIA performance
but increases computational cost with a longer p. We fix n = 12 since it provides a reasonable
performance while not too expensive.

Other simple baselines without using any labels are Avg and AvgP, which average ReCaLL
scores over all data points in Dtest: Avg(x) = 1

|Dtest|
∑

p∈Dtest
ReCaLLp(x) and AvgP(p) =

1
|Dtest|

∑
x∈Dtest

ReCaLLp(x). The intuition is that averaging will smooth out ReCaLL scores with
a non-discriminative prefix while keeping ReCaLL scores with a discriminative prefix without ex-
actly knowing discriminative prefixes.

6.3 EM-MIA

As explained in §4, EM-MIA is a general framework where each component can be tuned for im-
provement, but we use the following options as defaults based on results from preliminary experi-
ments. Overall, Min-K%++ performs best among baselines without ReCaLL-based approaches, so
we use it as a default choice for initialization. Alternatively, we may use ReCaLL-based methods
that do not rely on any labels like Avg, AvgP, or Rand. For the update rule for prefix scores, we
use AUC-ROC as a default scoring function S. For the update rule for membership scores, we use
negative prefix scores as new membership scores. For the stopping criterion, we repeat ten iterations
and stop without thresholding by the score difference since we observed that membership scores and
prefix scores converge quickly after a few iterations. We also observed that EM-MIA is not sensitive
to the choice of the initialization method and the scoring function S and converges to similar results.
Ablation study on different initializations and scoring functions can be found in Appendix A.

7 RESULTS AND DISCUSSION

7.1 WIKIMIA

Table 1 and Table 3 show the experimental results on WikiMIA, with the metric of AUC-ROC
and TPR@1%FPR respectively. EM-MIA achieves state-of-the-art performance on WikiMIA for
all different models and length splits, significantly outperforming all baselines, including ReCaLL,
even without any given non-member test data. EM-MIA exceeds 96% AUC-ROC in all cases.
For the largest model OPT-66B, EM-MIA gets 99% AUC-ROC for length splits 32 and 64, while
ReCaLL’s performance is lower than 86% AUC-ROC.
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Table 1: AUC-ROC results on WikiMIA benchmark. The second block (grey) is ReCaLL-based
baselines. RandM, RandNM, ReCaLL, and TopPref use labels in the test dataset, so comparing
them with others is unfair. We report their scores for reference. We borrow the original ReCaLL
results from Xie et al. (2024) which is also unfair to be compared with ours and other baselines.

Method Mamba-1.4B Pythia-6.9B LLaMA-13B NeoX-20B LLaMA-30B OPT-66B Average

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

Loss 61.0 58.2 63.3 63.8 60.8 65.1 67.5 63.6 67.7 69.1 66.6 70.8 69.4 66.1 70.3 65.7 62.3 65.5 66.1 62.9 67.1
Ref 60.3 59.7 59.7 63.2 62.3 63.0 64.0 62.5 64.1 68.2 67.8 68.9 65.1 64.8 66.8 63.9 62.9 62.7 64.1 63.3 64.2
Zlib 61.9 60.4 65.6 64.3 62.6 67.6 67.8 65.3 69.7 69.3 68.1 72.4 69.8 67.4 71.8 65.8 63.9 67.4 66.5 64.6 69.1
Min-K% 63.3 61.7 66.7 66.3 65.0 69.5 66.8 66.0 71.5 72.1 72.1 75.7 69.3 68.4 73.7 67.5 66.5 70.6 67.5 66.6 71.3
Min-K%++ 66.4 67.2 67.7 70.2 71.8 69.8 84.4 84.3 83.8 75.1 76.4 75.5 84.3 84.2 82.8 69.7 69.8 71.1 75.0 75.6 75.1

Avg 70.2 68.3 65.6 69.3 68.2 66.7 77.2 77.3 74.6 71.4 72.0 68.7 79.8 81.0 79.6 64.6 65.6 60.0 72.1 72.1 69.2
AvgP 64.0 61.8 56.7 62.1 61.0 59.0 63.1 60.3 56.4 63.9 61.8 61.1 60.3 60.0 55.4 86.9 94.3 95.1 66.7 66.5 63.9
RandM 25.4 25.1 26.2 24.9 26.2 24.6 21.0 14.9 68.6 25.3 28.3 29.8 14.0 15.1 70.4 33.9 40.9 42.9 24.1 25.1 43.8
Rand 72.7 78.2 64.2 67.0 73.4 68.7 73.9 75.4 68.5 68.2 74.5 67.5 66.9 71.7 70.2 64.5 67.8 58.6 68.9 73.5 66.3
RandNM 90.7 90.6 88.4 87.3 90.0 88.9 92.1 93.4 68.8 85.9 89.9 86.3 90.6 92.1 71.8 78.7 77.6 67.8 87.5 88.9 78.7
TopPref 90.6 91.2 88.0 91.3 92.9 90.1 93.5 94.2 71.8 88.4 92.0 90.2 92.9 93.8 74.8 83.6 79.6 72.1 90.0 90.6 81.2
Xie et al. (2024) 90.2 91.4 91.2 91.6 93.0 92.6 92.2 95.2 92.5 90.5 93.2 91.7 90.7 94.9 91.2 85.1 79.9 81.0 90.1 91.3 90.0

EM-MIA 97.1 97.6 96.8 97.5 97.5 96.4 98.1 98.8 97.0 96.1 97.6 96.3 98.5 98.8 98.5 99.0 99.0 96.7 97.7 98.2 96.9

All baselines without ReCaLL-based approaches achieve lower than 76% AUC-ROC on average
across different models. The relative order between ReCaLL-based baselines is consistent over
different settings: RandM < Avg,AvgP < Rand < RandNM < TopPref. This trend clearly shows
that ReCaLL is sensitive to the choice of the prefix. Particularly, the large gap between RandMand
Rand versus RandNM shows that ReCaLL is highly dependent on the availability of given non-
members. RandNM is similar to the original ReCaLL (Xie et al., 2024) in most cases except for the
OPT-66B model and LLaMA models with sequence length 128, probably because n = 12 is not
optimal for these cases. Among these, Rand does not use any labels, so it is fair to compare with
other baselines, and it performs worse than Min-K%++ on average. This result again shows that
ReCaLL is not strong enough without given non-members.

TopPref consistently outperforms RandNM, indicating that random prefix selection is definitely not
sufficiently good and there is room for better MIA performance by prefix optimization (Shin et al.,
2020; Deng et al., 2022; Guo et al., 2023). Although the search space of the prefix is exponentially
large and the calculation of prefix scores without labels is nontrivial, a prefix score could be a good
measure to choose data points to construct the prefix. EM-MIA approximates prefix scores and uses
them to refine membership scores.

7.2 OLMOMIA

Table 2 and Table 4 show the experimental results on the OLMoMIA benchmark2, with the metric of
AUC-ROC and TPR@1%FPR respectively. EM-MIA achieves almost perfect scores on Easy and
Medium similar to WikiMIA, gets performance comparable to random guessing performance on
Hard and Random similar to MIMIR, and gets reasonably good scores on Mix-1 and Mix-2, though
not perfect as on Easy and Medium. EM-MIA significantly outperforms all baselines in all settings
except Hard and Random, where distributions of members and non-members heavily overlap to each
other and all methods are not sufficiently better than random guessing.

None of the baselines without ReCaLL-based approaches are successful in all settings, which im-
plies that OLMoMIA is a challenging benchmark. The relative order between ReCaLL-based base-
lines is again consistent over different settings: RandM < Avg,AvgP,Rand < RandNM < TopPref,
though all methods that do not use any labels fail to be successful. Interestingly, RandNM works
reasonably well on Mix-1 but does not work well on Mix-2. This is because non-members from
Mix-1 are from the same cluster while non-members from Mix-1 are randomly sampled from the

2We expect earlier training data will be harder to detect. However, we could not find a significant difference
in the MIA performance for checkpoints at different numbers of training steps. Therefore, we report average
scores over four intermediate OLMo checkpoints.
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Table 2: AUC-ROC results on OLMoMIA benchmark. The second block (grey) is ReCaLL-based
baselines. RandM, RandNM, ReCaLL, and TopPref use labels in the test dataset, so comparing them
with others is unfair. We report their scores for reference.

Method Easy Medium Hard Random Mix-1 Mix-2

64 128 64 128 64 128 64 128 64 128 64 128

Loss 32.5 63.3 58.9 49.0 43.3 51.5 51.2 52.3 65.7 49.0 30.8 54.7
Ref 56.8 26.8 61.4 47.2 49.1 50.7 49.7 49.9 59.9 49.7 38.9 50.9
Zlib 24.0 51.8 44.8 50.7 40.5 51.1 52.3 50.5 63.2 47.2 31.5 54.3
Min-K% 32.4 50.0 54.0 51.9 43.0 51.2 51.7 51.0 60.8 50.4 34.9 51.7
Min-K%++ 45.2 59.4 56.4 45.7 46.4 51.4 51.0 51.9 57.9 50.0 39.8 53.2

Avg 61.9 53.9 52.3 57.0 47.6 51.5 50.3 48.6 63.3 56.4 35.5 44.4
AvgP 79.2 39.9 53.9 61.7 50.2 51.4 49.0 50.1 55.7 63.0 42.7 41.8
RandM 32.3 22.7 39.2 30.3 45.8 50.5 48.1 48.2 49.7 48.0 29.1 28.7
Rand 63.7 46.3 56.0 59.4 48.9 52.1 49.7 49.1 60.6 68.0 38.0 38.6
RandNM 87.1 75.5 71.8 81.2 50.5 53.2 50.4 50.0 66.5 73.7 49.1 48.0
TopPref 88.9 88.5 79.7 64.4 55.7 54.5 52.3 52.7 79.9 80.2 55.3 62.1

EM-MIA 99.8 97.4 98.3 99.8 47.2 50.2 51.4 50.9 88.3 80.8 88.4 77.1

entire distribution. On the other hand, TopPref notably outperforms RandNM, implying that the
effectiveness of non-member prefixes for MIA differs.

As discussed in §2.3, we reemphasize that benchmarking MIAs for LLMs is tricky because predict-
ing where real-world test data for MIA at inference time will come from is difficult. Therefore,
at least, simulating different scenarios is beneficial and necessary, like what we did using OL-
MoMIA instead of a fixed existing benchmark. In this regard, we encourage MIA developers or
practitioners to evaluate their methods on diverse conditions like OLMoMIA. We do not claim that
OLMoMIA is closer to real scenarios than other benchmarks. However, OLMoMIA could be sim-
ilar to some possible real-world scenarios even if it still does not cover all possible scenarios. The
results on OLMoMIA demonstrate that EM-MIA is a robust MIA method on the varying overlap
between distributions of members and non-members in a test dataset.

7.3 COMPUTATIONAL COSTS

MIAs for LLMs only do inference without any additional training, so they are usually not too ex-
pensive. Therefore, MIA accuracy is typically prioritized over computational costs as long as it
is reasonably feasible. Nevertheless, maintaining MIAs’ computational costs within a reasonable
range is important. Computations on all our experiments with the used datasets (WikiMIA and OL-
MoMIA) were manageable even in an academic setting. We compare computational complexity
between EM-MIA and other baselines (mainly, ReCaLL) and describe how computational costs of
EM-MIA can be further reduced in Appendix C.

8 CONCLUSION

We introduce a novel MIA method for LLMs called EM-MIA that iteratively updates membership
scores and prefix scores via an Expectation-Maximization algorithm for better membership inference
based on the observation of their duality. EM-MIA significantly outperforms ReCaLL even without
strong assumptions that ReCaLL relies on and achieves state-of-the-art performance on WikiMIA.
EM-MIA is easily tunable with several design choices, including initialization, score update rules,
and stopping criteria, allowing the application to MIA in different conditions and providing room for
further improvement. We create a new benchmark for detecting pre-training data of LLMs named
OLMoMIA to better understand the conditions under which EM-MIA works with a comprehensive
evaluation. It turns out that EM-MIA robustly performs well for all settings except when the distri-
butions of members and non-members are almost identical, resulting in none of the existing methods
being better than random guessing. We provide our thoughts on promising future research directions
in Appendix D.
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Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
conference on fairness, accountability, and transparency, pp. 610–623, 2021.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autore-
gressive language model. arXiv preprint arXiv:2204.06745, 2022.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pp. 1877–1901, 2020.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
bership inference attacks from first principles. In 2022 IEEE Symposium on Security and Privacy
(SP), pp. 1897–1914. IEEE, 2022.

Kent K Chang, Mackenzie Cramer, Sandeep Soni, and David Bamman. Speak, memory: An archae-
ology of books known to chatgpt/gpt-4. arXiv preprint arXiv:2305.00118, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1–53, 2024.
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Robin Staab, Mark Vero, Mislav Balunović, and Martin Vechev. Beyond memorization: Violating
privacy via inference with large language models. arXiv preprint arXiv:2310.07298, 2023.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm pretrain-
ing via document de-duplication and diversification. Advances in Neural Information Processing
Systems, 36, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Jonathan Tow. Stablelm alpha v2 models, 2023. URL https://huggingface.co/
stabilityai/stablelm-base-alpha-3b-v2.

Shangqing Tu, Kejian Zhu, Yushi Bai, Zijun Yao, Lei Hou, and Juanzi Li. Dice: Detecting
in-distribution contamination in llm’s fine-tuning phase for math reasoning. arXiv preprint
arXiv:2406.04197, 2024.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson Ho.
Will we run out of data? an analysis of the limits of scaling datasets in machine learning. arXiv
preprint arXiv:2211.04325, 2022.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical
Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Roy Xie, Junlin Wang, Ruomin Huang, Minxing Zhang, Rong Ge, Jian Pei, Neil Zhenqiang Gong,
and Bhuwan Dhingra. Recall: Membership inference via relative conditional log-likelihoods.
arXiv preprint arXiv:2406.15968, 2024.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri. En-
hanced membership inference attacks against machine learning models. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 3093–3106,
2022.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations
symposium (CSF), pp. 268–282. IEEE, 2018.

14

https://huggingface.co/stabilityai/stablelm-base-alpha-3b-v2
https://huggingface.co/stabilityai/stablelm-base-alpha-3b-v2


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Yang,
and Hai Li. Min-k%++: Improved baseline for detecting pre-training data from large language
models. arXiv preprint arXiv:2404.02936, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Baohang Zhou, Zezhong Wang, Lingzhi Wang, Hongru Wang, Ying Zhang, Kehui Song, Xuhui Sui,
and Kam-Fai Wong. Dpdllm: A black-box framework for detecting pre-training data from large
language models. In Findings of the Association for Computational Linguistics ACL 2024, pp.
644–653, 2024.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin,
Ji-Rong Wen, and Jiawei Han. Don’t make your llm an evaluation benchmark cheater. arXiv
preprint arXiv:2311.01964, 2023.

A ABLATION STUDY ON INITIALIZATIONS AND SCORING FUNCTIONS

Figure 3 displays the ablation study of EM-MIA with different combinations of the initialization
(Loss, Ref, Zlib, Min-K%, and Min-K%++) and the scoring function S () using the WikiMIA dataset
with a length of 128 and Pythia-6.9B model. Each curve indicates the change of AUC-ROC calcu-
lated from the estimates of membership scores at each iteration during the expectation-maximization
algorithm. In most combinations, the algorithm converges to a similar accuracy after 4-5 iterations.
In this figure, there is only one case in which AUC-ROC decreases quickly and reaches a value close
to 0. It is difficult to know when this happens, but it predicts members and non-members oppositely,
meaning that using negative membership scores gives a good AUC-ROC.

Figure 3: Performance of EM-MIA for each iteration with varying baselines for initialization and
scoring functions S on the WikiMIA dataset with a length of 128 and Pythia-6.9B model.

B TPR@1%FPR RESULTS

TPR@low FPR is a useful MIA evaluation metric (Carlini et al., 2022) in addition to AUC-ROC
(§ 2.1), especially when developing a new MIA and comparing it with other MIAs. Due to the
space limitation in the main text, we put TPR@low FPR here: Table 3 for WikiMIA and Table 4 for
OLMoMIA.
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Table 3: TPR@1%FPR results on WikiMIA benchmark. The second block (grey) is ReCaLL-based
baselines. RandM, RandNM, ReCaLL, and TopPref use labels in the test dataset, so comparing them
with others is unfair. We report their scores for reference. We borrow the original ReCaLL results
from Xie et al. (2024) which is also unfair to be compared with ours and other baselines.

Method Mamba-1.4B Pythia-6.9B LLaMA-13B NeoX-20B LLaMA-30B OPT-66B Average

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

Loss 4.7 2.1 1.4 6.2 2.8 3.6 4.7 4.2 7.9 10.3 3.5 4.3 4.1 5.3 7.2 6.5 3.5 3.6 6.1 3.6 4.7
Ref 0.5 0.7 0.7 1.6 1.1 1.4 2.3 3.9 2.9 3.1 2.5 1.4 1.3 2.5 3.6 1.8 1.8 0.7 1.8 2.1 1.8
Zlib 4.1 4.9 7.2 4.9 6.0 11.5 5.7 8.1 12.9 9.3 6.3 5.0 4.9 9.5 10.1 5.7 7.0 11.5 5.8 7.0 9.7
Min-K% 7.0 4.2 5.8 8.8 3.9 7.2 5.2 6.0 15.1 10.6 3.9 7.2 4.7 7.0 5.8 9.0 7.7 8.6 7.5 5.5 8.3
Min-K%++ 4.1 7.0 1.4 5.9 10.6 10.1 10.3 12.0 25.2 6.2 9.5 1.4 8.3 6.7 9.4 3.6 12.0 13.7 6.4 9.6 10.2

Avg 3.9 0.4 5.0 8.0 1.1 7.9 3.1 7.0 6.5 6.2 2.1 8.6 2.8 6.7 8.6 2.6 2.1 4.3 4.4 3.2 6.8
AvgP 0.5 0.4 0.7 1.8 0.4 0.0 0.0 0.7 0.0 1.3 0.7 0.0 0.0 0.0 2.9 2.1 12.3 24.5 0.9 2.4 4.7
RandM 0.8 0.1 0.6 0.9 0.0 1.9 0.2 0.4 7.6 0.5 0.3 1.6 0.4 0.6 8.1 0.7 0.1 0.9 0.6 0.2 3.4
Rand 3.7 3.9 2.4 2.3 3.2 7.6 1.6 2.7 7.3 4.4 5.0 4.7 1.6 3.2 7.9 2.1 3.2 3.2 2.6 3.5 5.5
RandNM 19.2 8.3 15.4 12.6 10.5 18.7 18.5 17.2 7.5 12.9 11.6 12.5 13.8 18.7 8.1 5.0 5.0 6.6 13.7 11.9 11.5
TopPref 12.7 4.2 25.2 16.0 1.4 29.5 14.2 9.2 7.9 13.4 13.7 20.9 27.1 29.9 8.6 3.9 5.6 9.4 14.6 10.7 16.9
Xie et al. (2024) 11.2 11.0 4.0 28.5 20.7 33.3 13.3 30.1 26.3 25.3 6.9 30.3 18.4 18.3 1.0 8.3 5.3 6.1 17.5 15.4 16.9

EM-MIA 54.0 47.9 51.8 50.4 56.0 47.5 66.4 75.7 58.3 51.4 64.1 59.0 61.5 66.2 71.9 83.5 73.2 39.6 61.2 63.8 54.7

Table 4: AUC-ROC results on OLMoMIA benchmark. The second block (grey) is ReCaLL-based
baselines. RandM, RandNM, ReCaLL, and TopPref use labels in the test dataset, so comparing them
with others is unfair. We report their scores for reference.

Method Easy Medium Hard Random Mix-1 Mix-2

64 128 64 128 64 128 64 128 64 128 64 128

Loss 2.8 12.8 7.2 1.4 0.1 1.2 1.3 0.7 7.2 1.7 0.0 0.7
Ref 6.2 4.0 4.9 0.6 1.0 0.9 1.2 1.2 8.4 0.5 0.2 1.6
Zlib 2.0 9.8 6.7 1.1 0.2 1.6 0.9 0.7 6.4 1.7 0.0 0.7
Min-K% 1.3 6.5 5.8 1.4 0.1 1.3 1.1 0.7 6.1 2.0 0.0 0.7
Min-K%++ 1.4 8.0 5.0 0.7 0.4 1.0 1.0 0.4 5.0 0.9 0.0 0.5

Avg 4.1 11.5 4.0 1.7 0.2 2.2 1.2 0.6 6.1 2.2 0.0 0.9
AvgP 11.7 0.1 2.6 7.2 0.7 1.6 0.7 1.4 4.8 12.1 0.1 0.0
RandM 3.0 4.9 2.4 1.1 0.4 2.2 0.9 0.8 7.6 1.3 0.0 0.4
Rand 4.3 7.8 3.7 1.7 0.4 2.7 1.0 0.8 10.6 3.0 0.0 0.7
RandNM 16.9 14.2 5.2 1.8 0.3 1.9 1.0 0.8 9.2 2.9 0.0 1.1
TopPref 22.0 16.6 6.3 1.9 0.4 2.2 1.1 1.4 8.1 5.1 0.0 0.5

EM-MIA 95.0 52.1 79.8 96.7 1.8 1.0 1.1 1.4 12.2 3.8 14.8 4.3

C COMPUTATIONAL COMPLEXITY

EM-MIA is a general framework in that the update rules for prefix scores and membership scores
can be designed differently (as described in §4), and they determine the trade-off between MIA ac-
curacy and computational costs. For the design choice described in Algorithm 1 that was used in
our experiments, EM-MIA requires a pairwise computation LLp(x) for all pairs (x, p) once, where
x, p ∈ Dtest. These values are reused to calculate the prefix scores in each iteration without recom-
putation. The iterative process does not require additional LLM inferences. The time complexity of
EM-MIA is O(D2L2), where D = |Dtest| and L is an average token length of each data on Dtest,
by assuming LLM inference cost is quadratic to the input sequence length due to the Transformer
architecture. In this case, EM-MIA does not have other tuning hyperparameters, while Min-K% and
Min-K%++ have K and or ReCaLL has n. This is more reasonable since validation data to tune
them is not given.

Of course, the baselines other than ReCaLL (Loss, Ref, Zlib, Min-K%, and Min-K%++) only
compute a log-likelihood of each target text without computing a conditional log-likelihood with
a prefix, so they are the most efficient: O(DL2) time complexity. Since ReCaLL uses a long pre-
fix consisting of n non-member data points, its time complexity is O(D(nL)2) = O(n2DL2).
According to the ReCaLL paper, they sweep n from 1 to 12 to find the best n, which means
O((12 + 22 + · · · + n2)DL2) = O(n3DL2). Also, in some cases (Figure 3 and Table 7 in their
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paper), they used n = 28 to achieve a better result. In theory, it may seem EM-MIA does not
scale well with respect to D. Nevertheless, the amount of computation and time for EM-MIA with
D ∼ 1000 is not significantly larger than ReCaLL, considering the n factor.

Moreover, ReCaLL requires O(n2) times larger memory than others including EM-MIA, so it may
not be feasible for hardware with a small memory. In this sense, EM-MIA is more parallelizable,
and we make EM-MIA faster with batching. Lastly, there is room to improve the time complexity
of our method. We have not explored this yet, but for example, we may compute ReCaLL scores on
a subset of the test dataset to calculate prefix scores as an approximation of our algorithm. We left
improving the efficiency of EM-MIA as future work.

D FUTURE DIRECTIONS

While our paper focuses on detecting pre-training data with the gray-box access of LLMs where
computing the probability of a text from output logits is possible, many proprietary LLMs are usu-
ally further fine-tuned (Ouyang et al., 2022; Chung et al., 2024), and they only provide generation
outputs, which is the black-box setting. We left the extension of our approach to MIAs for fine-tuned
LLMs (Song & Shmatikov, 2019; Jagannatha et al., 2021; Mahloujifar et al., 2021; Shejwalkar et al.,
2021; Mireshghallah et al., 2022; Tu et al., 2024; Feng et al., 2024) or for LLMs with black-box ac-
cess (Dong et al., 2024; Zhou et al., 2024; Kaneko et al., 2024) as future work.

E FORMULATION OF OLMOMIA SETTINGS

After the filtering of removing close points, let member clusters as Cm
i for i ∈ [1,K] and non-

member clusters as Cnm
j for j ∈ [1,K]. These clusters satisfy d(x, y) > 0.6 for all x, y ∈ Cm

i and
d(x, y) > 0.6 for all x, y ∈ Cnm

j . The following equations formalize how we construct different
settings of OLMoMIA:

• Random: Drandom = Dm
random ∪ Dnm

random
• Easy: Deasy = Dm

easy ∪ Dnm
easy, where ieasy, jeasy = argmax(i,j) Ex∈Ci,y∈Cj

d(x, y), Dm
easy =

arg topkx Ey∈Cnm
jeasy

d(x, y), and Dnm
easy = arg topky Ex∈Cimeasy

d(x, y)

• Hard: Dhard = Dm
hard∪Dnm

hard, where ihard, jhard = argmin(i,j) Ex∈Ci,y∈Cj
d(x, y),Dm

hard =

arg topkx−Ey∈Cnm
jhard

d(x, y), and Dnm
hard = arg topky −Ex∈Cim

hard
d(x, y)

• Medium: Dmedium = Dm
medium ∪ Dnm

medium, where imedium, jmedium =
median(i,j) Ex∈Ci,y∈Cjd(x, y), Dm

medium ⊂ Cm
imedium

, and Dnm
medium ⊂ Cnm

jmedium

• Mix-1: Dmix−1 = Dm
random ∪ Dnm

hard
• Mix-2: Dmix−2 = Dm

hard ∪ Dnm
random
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