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Abstract

We investigate the task of multimodal chart re-001
trieval. Starting from the assumption that im-002
ages of charts are a visual representation of003
an underlying table, we propose TAB-GTR, a004
text retrieval model with table structure embed-005
dings, which achieves state-of-the-art results006
on NQ-TABLES, improving R@1 by 4.4 abso-007
lute points. We then compare three approaches008
for query to chart retrieval: (a) an OCR009
pipeline followed by TAB-GTR text retrieval;010
(b) a chart derendering model, DEPLOT, fol-011
lowed by TAB-GTR table retrieval; (c) a di-012
rect image understanding approach, based on013
PALI-3, a vision language model. We find014
that the DEPLOT + TAB-GTR pipeline outper-015
forms PALI-3 on in-distribution data, and is016
significantly more efficient, with 300M train-017
able parameters compared to 3B of the PALI-3018
encoder. However, the setup fails to generalize019
to out-of-distribution regimes. We conclude020
that there is significant room for improvement021
in the chart derendering space, in particular022
in: (a) chart data diversity (b) richness of the023
text/table representation.024

1 Introduction025

Multimodal retrieval is the task of retrieving a026

relevant piece of information from a multimodal027

dataset, given a query. This task has been ex-028

tensively studied in the context of text and im-029

age retrieval (Yu et al., 2022) or text and table030

retrieval (Herzig et al., 2021; Kostić et al., 2021),031

but has received relatively little attention in the con-032

text of visually grounded images such as charts and033

scientific figures. Charts are an important source034

of information in scientific and technical domains.035

They are often used to summarize complex data,036

communicate insights (Hsu et al., 2021; Obeid and037

Hoque, 2020) as well as for interpreting complex038

domains such as finance data-analysis, news report-039

ing, and scientific domains (Siegel et al., 2016).040
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Figure 1: A graphical overview of the three text to chart
retrieval approaches evaluated in this work. We use the
same architecture for all the three setups (depicted on
the right), that is a symmetric bi-encoder dual tower
setup, with weights sharing. We train the models to
optimize in-batch contrastive loss, without using hard
negatives, and evaluate three different approaches: (a)
OCR→Text Retrieval; (b) Chart DeRendering→Table
Retrieval; (c) VLM Retrieval. The components in yel-
low are used as black-box modules, and are responsi-
ble of converting the image modality (e.g. red circle)
to text (a) or table format (b), (e.g. respectively white
and azureish circle). This is not needed for (c), as the
model can directly handle all the three modalities.

However, finding relevant information can be chal- 041

lenging, especially when the query is not specific 042

or decontextualized (Choi et al., 2021). 043

To the best of our knowledge, this work is the 044

first to investigate multimodal retrieval on chart 045

images, addressing the limited research in this do- 046

main. We begin by establishing a powerful table 047

retrieval model that serves as a backbone for sub- 048

sequent experiments, starting from the assumption 049

that images of charts are a visual representation 050

of an underlying table. To this end, we propose 051

extending text retrieval models with row and col- 052

umn embeddings modeling the table structure, bor- 053

rowing the main ideas from Herzig et al. (2020); 054
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Andrejczuk et al. (2022). Our proposed model,055

TAB-GTR, achieves state-of-the-art results on the056

NQ-TABLES dataset (Herzig et al., 2021), resulting057

in an improvement of 4.4 absolute points in R@1.058

For chart retrieval, we compare three approaches,059

leveraging existing findings in the literature, as also060

graphically summarized in Figure 1:061

(a) OCR→Text Retrieval. An OCR model,062

namely Tesseract (Smith, 2007), converts the063

chart image into a textual representation. The064

text is then processed by a text retrieval model,065

that is TAB-GTR.066

(b) Chart DeRendering→Table Retrieval. A067

chart de-rendering model, namely DE-068

PLOT (Liu et al., 2023a), converts the chart069

image into a table representation. The table is070

then processed by a table retrieval model, that071

is TAB-GTR.072

(c) VLM Retrieval. A vision language model073

(VLM), such as PALI-3 (Chen et al., 2023)074

is used for chart retrieval, directly leveraging075

the content of the chart image.076

We evaluate the three approaches on a dataset077

of charts. Due to the lack of available chart re-078

trieval data, we adapt the CHARTQA, SCICAP, and079

CHART2TEXT datasets for retrieval. Our extensive080

experimentation shows that a chart derendering081

pipeline coupled with a table retrieval model outper-082

forms the VLM setup, when applied in-distribution083

data (e.g. CHARTQA). However, DEPLOT fails to084

generalize to more complicated charts (e.g. SCI-085

CAP), where it falls behind an OCR baseline.086

We conclude analyzing the shortcomings of the087

chart derendering model suggesting that future088

work in this area should focus on developing more089

robust chart derendering pipelines that are able to090

handle a wider range of chart types and annota-091

tions. If realized these improvements can enable092

(a) more efficient resource utilization, as DEPLOT093

+ TAB-GTR pipeline is significantly more efficient,094

with 300M trainable parameters compared to 3B095

of the PALI-3 encoder; (b) flexible applications096

of 0-shot chart derendering with large language097

prompting/retriever models, as done in (Liu et al.,098

2023b).099

2 Related work100

Text / Table Retrieval. Text retrieval has been101

extensively studied in the literature (Karpukhin102

et al., 2020; Ni et al., 2022). In this work, we103

build upon existing work and repurpose a general- 104

izable text retriever model to work on table inputs, 105

following the same ideas of Herzig et al. (2020) 106

and Andrejczuk et al. (2022). By building on top of 107

a pre-trained text retrieval model (Ni et al., 2022) 108

we achieve better performance than (Herzig et al., 109

2021) and (Kostić et al., 2021), without the need for 110

hard-negative mining or more complex tri-encoder 111

setup. Although the task of table retrieval is not 112

new (Liu et al., 2007), to the best of our knowledge, 113

there is no method that adapts the methodology for 114

the task of chart retrieval. 115

Chart Retrieval. Existing academic chart re- 116

trieval approaches only use metadata about figures, 117

such as the caption text or mentions in the body 118

text, to respond to queries (Xu et al., 2008; Choud- 119

hury et al., 2013; Li et al., 2013). Other more recent 120

works, focus on chart to chart retrieval. Xiao et al. 121

(2023) propose a user intent-aware framework for 122

retrieving charts that considers both explicit visual 123

attributes and implicit user intents. However, in this 124

scheme the query is a chart rather than a textual 125

query, limiting the usefulness of the task. Simi- 126

larly, Ye et al. (2022) use neural image embedding 127

to facilitate exploration and retrieval of visualiza- 128

tion collections based on visual appearance. To 129

the best of our knowledge, our work is the first to 130

investigate text query to chart retrieval, focusing on 131

understanding the content of figures. 132

3 Problem setup 133

We consider multimodal retrieval problems where 134

a textual query is used to retrieve a document that 135

can be a table, an image (specifically of a chart) or 136

a combination of both. 137

3.1 Datasets 138

Due to lack of table and chart retrieval datasets we 139

re-purpose datasets meant for question answering 140

(QA), captioning or summarization. We use the fol- 141

lowing datasets, whereas general dataset statistics 142

are summarized in Table 1. 143

NQ-TABLES (Herzig et al., 2021) A table ques- 144

tion answering dataset created by filtering Natural 145

Questions (Kwiatkowski et al., 2019) to only in- 146

clude questions for which the answer is contained 147

in a table. 148

CHARTQA (Masry et al., 2022) A chart ques- 149

tion answering dataset with charts gathered from 150

Statista (statista.com), Pew (pewresearch.org), 151
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Dataset Table data Image data Type Train examples Eval queries Eval candidates

NQ-TABLES X × QA 9594 1068 169 898
CHARTQA (human) X X QA 7398 1228 625
CHARTQA (augmented) X X QA 20 901 1235 987
CHART2TEXT (Statista) X X Summarization 24 368 5222 5222
CHART2TEXT (Pew) × X Summarization 6500 1393 1393
SCICAP × X Captioning 333 442 41 410 41 682

Table 1: Datasets used in the paper. NQ-TABLES is used for assessing the quality of TAB-GTR, whereas the other
datasets are used for benchmarking chart retrieval.

OWID (ourworldindata.org) and OECD (oecd.org).152

This dataset has two splits: “human” with human-153

written question-answer pairs and “augmented”154

with generated question-answer pairs.155

CHART2TEXT (Obeid and Hoque, 2020) A156

chart summarization dataset of charts extracted157

from Statista and Pew with human-annotated tex-158

tual summaries of the chart.159

SCICAP (Hsu et al., 2021) A chart captioning160

dataset consisting of figures and figure captions161

extracted from scientific papers.162

Some datasets (CHARTQA and the Statista sub-163

set of CHART2TEXT) include human-annotated164

gold tables representing the data on the chart. For165

each dataset we use the text (i.e. question, tran-166

script or caption) as the query and the image plus167

when available the table as the retrieval candidate.168

For training we treat each original training set169

example as a positive query-candidate pair. For170

evaluation we need a set of queries, a set of candi-171

dates and an assignment of the gold candidate to172

each query. For all datasets we use the evaluation173

set (dev or test) as the source of queries and gold174

candidates. Queries and candidates are dedupli-175

cated by exact match.176

On NQ-TABLES we use all tables (train, dev and177

test) as evaluation candidates, following (Herzig178

et al., 2021). These tables are deduplicated by179

string similarity as in (Herzig et al., 2021).180

3.2 Evaluation181

We use standard retrieval metrics, reporting recall182

at k (R@k), mean average precision (MAP) and the183

highest F1 score over any classification threshold184

(picked separately for each dataset). We report185

single run numbers as we have not seen significant186

variance between runs. We report the final numbers187

on the test sets, with the exception of NQ-TABLES188

for which we report dev set numbers in accordance189

with previous literature. We have used the dev sets 190

for development and model selection. 191

3.3 Contextual queries. 192

QA datasets may include contextual queries, that 193

is, queries formulated in the context of the chart. 194

These queries are highly ambiguous and including 195

them in the dataset adds noise to the training and 196

evaluation metrics. To overcome this issue in a text 197

passage setup, Choi et al. (2021) propose the use of 198

decontextualizer model. To evaluate the scope of 199

the problem and feasibility of this solution we have 200

we have manually classified 50 examples from each 201

split of CHARTQA into one of a few categories: 202

1. Not contextual, e.g. “How many people from 203

the age group 80 years and above have died 204

due to COVID in Italy as of June 8, 2021?”. 205

2. Decontextualisable from text, e.g. “When 206

does the gap between the two countries reach 207

the smallest?”. These can be decontextualized 208

based on the text appearing on the chart and 209

deplotted table data. 210

3. Decontextualisable visually, e.g. “What’s 211

the peak value of dark brown graph?”. These 212

can be decontextualized but require additional 213

visual information from the chart, i.e. colors. 214

4. Missing context, e.g. “What is the ratio of 215

yes to no?” with a chart that does not include 216

specific labels for the “Yes”/“No” categories. 217

5. Inherently contextual, which include 218

queries that ask for specific visual or mathe- 219

matical reasoning on the chart and cannot be 220

decontextualized, e.g. “What category does 221

the red color indicate?” or “Are there any 222

two bars having the same value?”. 223

The results in Table 2 show that in CHARTQA (hu- 224

man) 70% of queries are contextual and text-only 225

decontextualisation would only partially address 226

this problem, leaving out 42% of all queries. Given 227

the lack of a comprehensive solution, and to avoid 228

further complexity, we have kept the data as-is. 229
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We have not found this to be a problem in the230

other datasets: the CHARTQA (augmented) split231

is mostly non-contextual. NQ-TABLES queries232

are Google search queries from Natural Questions233

(Kwiatkowski et al., 2019), stated without context.234

Captions and summaries are highly informative235

about the content of the chart and do not present236

the same ambiguity problems.237

CHARTQA (h) CHARTQA (a)

Not contextual 30% 94%
Decontextualisable from text 28% 0%
Decontextualisable visually 12% 0%
Missing context 4% 0%
Inherently contextual 26% 6%

Table 2: Analysis of query contextuality on
CHARTQA. We have manually labeled 50 examples
from each dataset. The augmented split queries are
mostly non-contextual. In the human split 30% are non-
contextual, 40% could be decontextualised based on
textual or visual information from the chart and 30%
cannot be decontextualised or are missing necessary
context.

Other datasets. We decided against using238

PlotQA (Methani et al., 2020) because of its239

synthetic/template-based nature and focus on rea-240

soning over a specific chart and high percentage of241

contextual queries (estimated by us to be around242

70%). However the data might still be useful after243

filtering and decontextualisation, or as noisy chart244

retrieval pre-training data.245

4 Table Retrieval with TAB-GTR246

We present TAB-GTR, a multimodal extension of247

the GTR (Ni et al., 2022) model that handles both248

text and tabular data. We extend the T5 encoder ar-249

chitecture following the approach of (Herzig et al.,250

2021; Andrejczuk et al., 2022) by adding two-251

dimensional positional embeddings that encode the252

table structure. The overview of the model archi-253

tecture is shown in Figure 2.254

Given an input text t and input table with n255

columns and m rows and text ci,j in cell at column256

1 ≤ i ≤ n and row 1 ≤ j ≤ m we tokenize each257

piece of text and concatenate them all into a single258

sequence. For each token we add two additional259

discrete features text_col and text_row:260

• For tokens in the text t we set both text_col =261

text_row = 0.262

• For tokens in a table cell ci,j we set text_col = i263

and text_row = j.264

Columns and rows are embedded into feature 265

vectors and the embeddings added to the token 266

embeddings before being fed to the transformer 267

encoder. This provides the network with absolute 268

positional embeddings of the table row and column 269

corresponding to the tokens. We also use relative 270

positional attention bias inherited from the T5 ar- 271

chitecture, which is based on the linearized token 272

sequence and not aware of the table structure. 273

4.1 Model details 274

The only new parameters added to GTR are the 275

column and row embeddings. We set the maximum 276

row and column numbers to be 128, which for the 277

large model results in 2× 128× 768 ' 197K new 278

parameters, which is negligible compared to the 279

total 334M parameters. We initialize these embed- 280

dings from scratch and learn them entirely during 281

fine-tuning on the final task. All the other parame- 282

ters are initialized from a pre-trained GTR check- 283

point. We use a symmetric retrieval model, i.e. the 284

left and right tower share weights. We have not 285

tried an asymmetric setup as the added complexity 286

and memory requirements. 287

4.2 Evaluation on NQ-TABLES 288

We evaluate the performance of the TAB-GTR 289

model, as well as vanilla GTR without the extra 290

table structure embeddings, on the dataset NQ- 291

TABLES. We train the models to optimize in-batch 292

contrastive loss, without using hard negatives. 293

We have tuned the hyperparameters for the GTR 294

model and used the same values for TAB-GTR, 295

as the models are extremely similar. We trained 296

both for 1000 steps with batch size 1024, using 297

the Adafactor optimizer (Shazeer and Stern, 2018) 298

with constant learning rate 0.0003. The dropout 299

rate is set to 0.1 during training. 300

The evaluation results are in Table 3. The TAB- 301

GTR model achieves state of the art results and sig- 302

nificant improvement over GTR, with 89.42% re- 303

call at 10 compared to 87.64% of GTR and 86.40% 304

of the best previously published result Kostić et al. 305

(2021). 306

4.3 Conclusions 307

The addition of table positional embeddings to a 308

text model achieves a significant improvement at a 309

negligible cost, adding only 0.06% extra model pa- 310

rameters, makes no difference on training times and 311

does not require additional pretraining. According 312

to (Herzig et al., 2020) table positional embeddings 313
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Cap #tion C #1 C #2 0 1 2 3

C0 C0 C1 C1 C2 C2 C1 C2 C1 C2

R0 R0 R0 R0 R0 R0 R1 R1 R2 R2

Column Embeddings

Row Embeddings

Token Embeddings

C1 C2
0 1
2 3

Table: Caption Tab-GTR

GTR

Figure 2: TAB-GTR leverages a GTR checkpoint (Ni et al., 2022) as a backbone model (represented in grey)
and adds two dimensional positional embeddings (represented in blue) to represent table structure (i.e. row and
columns), as done by Herzig et al. (2020); Andrejczuk et al. (2022). This is a minimal addition in terms of #params,
on top of GTR, as the structural embeddings represent < 0.06% of the total.

Model
NQ-TABLES (dev)

R@1 R@10 R@50 R@100

TAPAS, large 35.90 75.90 91.40 N/A
+ hard negatives

(Herzig et al., 2020)
44.20 81.80 92.30 N/A

Tri-encoder BERT
(Kostić et al., 2021)

N/A 86.40 N/A 96.7

GTR, large
(Ni et al., 2022)

44.48 87.64 96.63 97.57

TAB-GTR, large 48.88 89.42 97.85 98.60

Table 3: Comparison of table retrieval models on NQ-
TABLES (dev split). TAB-GTR is the simplest and best
performing model.

also improve performance of models specifically314

pretrained on table data. That makes this method an315

obvious inclusion to maximize model performance316

on table data. Given its strongest performance we317

will use TAB-GTR as the base text/table model for318

experiments on chart retrieval.319

5 Chart Retrieval320

5.1 Models321

We compare a direct image understanding approach322

to approaches using an intermediate text or table323

representation.324

5.1.1 Direct image understanding325

For direct image understanding we use PALI-326

3 (Chen et al., 2023), a 5B parameter vision-327

language model. We discard the decoder and only328

use the encoder part of the model, consisting of a329

ViT vision encoder and a text transformer encoder.330

PALI-3 achieves very strong results on chart un-331

derstanding tasks such as CHARTQA (Masry et al.,332

2022), outperforming Matcha (Liu et al., 2023b)333

and state of the art results on the cross-modal re-334

trieval task XM3600 (Thapliyal et al., 2022).335

We use PALI-3 as a symmetric multimodal dual336

encoder model, keeping both the ViT component337

and text encoder. We extend the model with table 338

positional embeddings for table inputs (in the same 339

way we did with GTR). Both towers are able to 340

encode text, table and image data. If a modality is 341

not present we simply do not include any tokens 342

corresponding to that modality. Images are padded 343

to a square shape and resized to resolution 448× 344

448 pixels. 345

5.1.2 Text / Table representation 346

All text/table-based approaches use TAB-GTR as 347

the base retrieval model. We compare different 348

ways of converting the chart to text or table data. 349

DEPLOT (Liu et al., 2023a) is a zero-shot image- 350

to-table model trained to recover tabular data un- 351

derlying a chart. The architecture is based on 352

Pix2Struct (Lee et al., 2023), a ViT model with 353

282M parameters. 354

OCR. We use the Tesseract OCR engine (Smith, 355

2007), which is available as an open source library. 356

We feed model the linearized OCR text output, 357

without any bounding box information. 358

Gold tables. For comparison we use human- 359

annotated table information present in the 360

CHARTQA and CHART2TEXT (Statista) datasets. 361

5.2 Training 362

All models use the AdaFactor optimizer (Shazeer 363

and Stern, 2018) with constant learning rate 0.0003 364

and bidirectional in-batch softmax cross entropy, 365

as in CLIP (Radford et al., 2021). 366

Dual encoder training with in-batch negatives is 367

highly sensitive to batch size as the quality of the 368

approximation depends on the sample size. We use 369

the same batch size of 256 for all experiments, as 370

we have found that increasing it further does not 371

give significant improvements. 372

For each experiment we pick the number of train- 373

ing steps by cross-validation on the dev set: we 374

train the model until the dev set softmax accuracy 375
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(i.e. R@1 when viewed form the retrieval angle)376

stops improving and pick the checkpoint with the377

highest dev set accuracy.378

We start from a single-task setup where we train379

a separate model for each of the tasks. Later we380

introduce a multi-task setup where the model is381

trained on a mixture of data from all the datasets.382

Multi-task training poses additional difficulties:383

1. The loss depends on the mixture in a com-384

plicated way as it changes the distribution of385

negative samples. In the multi-task setup we386

consider negative pairs where the query and387

candidate come from different datasets.388

2. The datasets have different sizes and levels389

of noise and require different early stopping390

schedule to avoid overfitting.391

We propose to design a data mixture by picking392

sampling weights proportional to the best number393

of training steps on a given dataset in the single-394

task setup. To simplify the setup we use only a395

single set of weights: calculated as the average396

between the DEPLOT, OCR and PALI-3 models397

and rounded, shown in Table 4. We note that the398

weights are roughly proportional to dataset size, ex-399

cept for CHARTQA (human) which overfits quickly400

and was assigned a lower weight. We think that401

the overfitting is caused by the high proportion of402

contextual queries in this dataset. Our mixture de-403

sign improves robustness to noisy data by lowering404

their weight in the mixture.405

Mixture dataset Weight Fraction

CHARTQA (human) 0.75 1.3%
CHARTQA (augmented) 4.0 7%
SCICAP 40.0 69.9%
CHART2TEXT (Statista) 7.5 13.1%
CHART2TEXT (Pew) 5.0 8.7%

Table 4: Mixture weights and fraction of the batch sam-
pled from the given dataset.

6 Experiments406

6.1 Chart retrieval approaches407

We compare the results of our chart retrieval ap-408

proaches on the single-task setup in Table 5.409

We observe that when gold tables are available410

TAB-GTR generally outperforms other approaches.411

We treat this model as an oracle as we are interested412

in a setting where only the image is available.413

DEPLOT + TAB-GTR delivers the strongest re-414

sults on CHARTQA and CHART2TEXT (Statista).415

This is confirmed by inspecting the performance of 416

DEPLOT chart to table task in isolation, using Rel- 417

ative Mapping Similarity (RMS) metric proposed 418

in (Liu et al., 2023b). However, the setup is the 419

worst performing for CHART2TEXT (Pew) and SC- 420

ICAP, as also corroborated by manually inspecting 421

the performance of DEPLOT on a small set of 20 422

examples. Analysing the errors on these datasets 423

reveals some patterns: 424

1. Most of Pew charts follow the same format, 425

with a header with title and subtitle and a 426

footer with the data source. This informa- 427

tion very often contains distinct keywords that 428

are directly referenced in the summary, which 429

explain the high performance of an OCR ap- 430

proach. This is also in line with the statistics 431

of Table 6. We can clearly see how Pew is 432

the outlier, being the dataset with the highest 433

Query coverage of 0.86. 434

2. Charts in SCICAP are complex scientific plots, 435

often with multiple subplots. This is a large 436

deviation from the training distribution of 437

DEPLOT which only includes single charts. 438

Some typical error patterns for this dataset 439

can be found in ??. 440

PALI-3 underperforms on CHARTQA and 441

CHART2TEXT (Pew). On CHARTQA (human) the 442

performance is below the OCR baseline. We note 443

that dataset in particular is more prone to overfit- 444

ting and requires more aggressive early stopping; 445

image models generally require more data and so 446

are at a disadvantage here. The low performance 447

on CHART2TEXT (Pew) is surprising given that 448

the pretrained model performs well on OCR tasks. 449

OCR + TAB-GTR is only competitive in 450

CHART2TEXT (Pew) and ranks 2nd for SCICAP. 451

The former is an outlier according to Table 6, 452

whereas SCICAP seems an out-of-distribution 453

setup for DEPLOT. The Statista charts (in con- 454

trast to Pew) contain no title or additional context 455

besides the axis labels and so more reasoning has 456

to be done based on the data represented in the 457

chart. We have also found that the Tesseract OCR 458

can have issues reading small, rotated text. 459

6.2 Multi-task training 460

We investigate the impact of multi-task training on 461

the model performance, showing the results and 462

difference with respect to the single-task setup in 463

Table 7. We have trained these models on the mix- 464

ture described in Section 5.2. 465
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Model
CHARTQA

(human)
CHARTQA

(augmented)
SCICAP

CHART2TEXT

(Statista)
CHART2TEXT

(Pew)
R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 R@10 MAP F1

TAB-GTR (gold table) 64.33 52.09 52.11 97.33 82.82 59.03 N/A N/A N/A 99.10 95.45 78.48 N/A N/A N/A

TAB-GTR + DePlot 62.95 48.77 45.70 96.76 81.25 60.59 56.55 44.48 46.53 98.76 93.88 69.04 95.12 82.85 68.81
TAB-GTR + OCR 60.10 45.86 44.57 84.94 63.27 46.88 61.42 48.64 47.55 88.85 68.78 43.44 98.35 95.84 92.01
PALI-3 58.88 42.90 37.00 95.14 75.36 49.83 76.92 64.06 54.49 98.12 90.40 71.32 99.35 92.17 75.59

Table 5: Comparison of the three different approaches to chart retrieval in the single-task setup (last three rows),
as graphically depicted in Figure 1. The first row is the oracle setup where the gold table is used instead.

QUERY: In 2000/01 there were approximately 1.28
million adults admitted to hospital in England due to an
illness caused by smoking . By 2019/20 the number of

hospital admissions as a result of smoking had increased
to approximately 1.99 million , the largest number during

the provided time period.

QUERY: Health care providers at hospitals and medical
centers around the country are on the front line of care for
those ill with the virus. As Americans take stock of early
efforts to control the outbreak, 71% are very or somewhat
confident that hospitals and medical centers in their local

area can handle patient needs.

Figure 3: Typical Statista (top) and Pew (bottom) exam-
ples from CHART2TEXT. DEPLOT performs well on
data-heavy examples from Statista but underperforms
on text-heavy examples from Pew.

Dataset Query OCR Jaccard Query
(# unique words) index cov.

CHARTQA (h) 11 65 .03 .17
CHARTQA (a) 12 67 .02 .09
SCICAP 31 84 .04 .14
CHART2TEXT (S) 17 69 .03 .15
CHART2TEXT (P) 22 80 .26 .86

Table 6: For each dataset we compute the average num-
ber of unique words for the Query and text outputted by
the OCR model, after a lower case normalization and
using whitespace splitting. We report the Jaccard index
between Query and OCR, and query coverage defined
as percentage of unique words in the query that are cov-
ered by the OCR text.

TAB-GTR + DEPLOT and TAB-GTR + OCR 466

models generally perform worse in the multi-task 467

approach. One possible explanation for this low 468

performance could be the amount of noisy table 469

added to the training mixture, especially for SC- 470

ICAP that has the largest weight in the mixture; 471

another possible cause could be model capacity 472

which is an order of magnitude less for TAB-GTR 473

with respect to PALI-3. 474

PALI-3 shows large benefits on the CHARTQA 475

datasets and mostly neutral results on other 476

datasets, with the exception of a large drop in F1 477

score on the CHART2TEXT (Statista) dataset. We 478

observe that the drop is caused by a drop in preci- 479

sion as R@1 decreased from 85.48% to 81.90%, 480

while the R@10 remains high. 481

We note that the CHARTQA (human) perfor- 482

mance is largely improved for PaLI despite only 483

making up around 3 examples per batch. 484

6.3 Retrieval with PALI-3 + DEPLOT 485

Given the distinct strengths of the two approaches 486

we consider combining them into a single model. 487

We do so by adding the DEPLOT tables as an addi- 488

tional input to PALI-3, encoding them as in Sec- 489

tion 4. Results are summarized in Table 8. 490

The addition is generally an improvement over 491
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Model
CHARTQA

(human)
CHARTQA

(augmented)
SCICAP

CHART2TEXT

(Statista)
CHART2TEXT

(Pew)
R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 R@10 MAP F1

TAB-GTR
+ DePlot

61.24
(-1.71)

47.75
(-1.02)

44.43
(-1.27)

97.73
(+0.97)

81.42
(+0.17)

56.00
(-4.59)

57.01
(+0.46)

44.99
(+0.51)

46.42
(-0.11)

98.66
(-0.10)

92.25
(-1.63)

64.05
(-4.99)

93.83
(-1.29)

79.34
(-3.51)

64.43
(-4.38)

TAB-GTR
+ OCR

59.04
(-1.06)

45.70
(-0.16)

42.78
(-1.79)

86.48
(+1.54)

66.30
(+3.03)

46.77
(-0.11)

61.49
(+0.07)

48.79
(+0.15)

47.89
(+0.34)

87.09
(-1.76)

65.67
(-3.11)

35.63
(-7.81)

98.49
(+0.14)

95.31
(-0.53)

86.98
(-5.03)

PALI-3
63.93

(+5.05)
49.01

(+6.11)
42.95

(+5.95)
97.00

(+1.86)
79.32

(+3.96)
54.27

(+4.44)
77.69

(+0.77)
63.89
(-0.17)

54.12
(-0.37)

98.18
(+0.06)

88.08
(-2.32)

59.86
(-11.46)

99.64
(+0.29)

92.17
(+0.00)

76.53
(+0.94)

Table 7: Results on chart retrieval in the multi-task setup. The numbers in the parentheses show the difference
between the multi-task and single-task results.

Model
CHARTQA

(human)
CHARTQA

(augmented)
SCICAP

CHART2TEXT

(Statista)
CHART2TEXT

(Pew)
R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 R@10 MAP F1 R@10 MAP F1

TAB-GTR + DePlot
(single-task)

62.95 48.77 45.70 96.76 81.25 60.59 56.55 44.48 46.53 98.76 93.88 69.04 95.12 82.85 68.81

PALI-3 + DePlot
(multi-task)

61.97
(-1.96)

48.52
(-0.49)

45.28
(+2.33)

97.65
(+0.65)

82.91
(+3.59)

57.66
(+3.39)

76.96
(-0.73)

63.30
(-0.59)

53.96
(-0.16)

98.77
(+0.59)

93.13
(+5.05)

70.71
(+10.85)

99.78
(+0.14)

93.15
(+0.98)

77.94
(+1.41)

Table 8: Results for a PALI-3 model combining the image input with the DEPLOT table input. Numbers in
parentheses show the difference with respect to a multi-task PALI-3 model that does not use the deplotted tables.
The first model is shown for comparison.

the image-only model, especially on datasets where492

DEPLOT performs well according to Table 9. There493

is a slight consistent decrease in performance on494

SCICAP, which poses the hardest generalization495

challange for DEPLOT. The combined model per-496

forms well across all tasks, showing both high per-497

formance on tasks in DEPLOT’s domain and the498

capability to better generalize to different chart499

data (SCICAP, CHART2TEXT (Pew)). Results are500

generally inline with previous literature research,501

where adding additional information in addition to502

image inputs (e.g. OCR text) provide significant503

improvements (Chen et al., 2022).504

Dataset Precision Recall F1
(DePlot prediction)

CHARTQA (human) 65.24 69.94 67.17
CHARTQA (augmented) 89.09 97.59 92.82
CHART2TEXT (Statista) 87.63 94.55 90.00

Dataset Accuracy† (manually evaluated)

SCICAP 15
CHART2TEXT (Pew) 35

Table 9: DEPLOT performance on the various datasets.
For the datasets that provide gold tables as the tar-
get, we use the Relative Mapping Similarity (RMS)
proposed in (Liu et al., 2023a) to asses the similarity
between tables. As gold tables are not available for
SCICAP and CHART2TEXT (Pew), we instead report
Accuracy† as a proxy metric, manually evaluated on a
randomly sampled set of 20 examples.

7 Conclusions 505

In this paper, we tackle the problem of chart re- 506

trieval, which, to the best of our knowledge, has not 507

been explored before, at least in the context of text 508

query to chart retrieval. From the assumption that 509

chart images are visual representations of an un- 510

derlying table, we establish a SOTA table retrieval 511

backbone, TAB-GTR, combining the findings of 512

Ni et al. (2022); Herzig et al. (2020); Andrejczuk 513

et al. (2022). We then benchmark two table setups 514

for TAB-GTR, with an oracle gold table setup and 515

a table derived by a deplotter model (Liu et al., 516

2023a). The same deplotted table is also used as 517

inputs along with the chart image through a strong 518

VLM, PALI-3 (Chen et al., 2023). Our experimen- 519

tation on 5 datasets shows that if we have access 520

to the underlying table representation, TAB-GTR 521

is the most economical and higher quality option, 522

with a 10× saving in parameter count. With no 523

access to the underlying table the best approach is: 524

1. Use de-plotting and table retrieval if a high 525

quality deplotter is available. This yields the 526

best results with a small model size. 527

2. If the data is out of distribution, a VLM de- 528

livers better generalization capability, at a 529

much higher computational cost and likely 530

lower performance than if the deplotter was 531

expanded to cover the new domain. 532

We show that the two approaches provide com- 533

plementary benefits: a VLM can be extended with 534

deplotter input to achieve both high performance 535

on in-distribution data and better flexibility. 536
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Limitations537

The following are the shortcomings of our work,538

which are presented in a transparent manner to539

encourage future research.540

First, the chart retrieval datasets were not orig-541

inally created for the retrieval task. Instead, they542

were adapted for this purpose. Additionally, the543

chart domains we tested were limited to a few do-544

mains (e.g. scientific figures and general statistics).545

This limitation is inherited from the existing aca-546

demic chart QA datasets, which only cover a lim-547

ited number of domains. Therefore, in order to548

fully assess retrieval performance, it may be ben-549

eficial to expand the scope of the work to include550

other domains (e.g. finance, news, etc.).551

Related to the limitation above, we used a deplot-552

ter model, specifically DEPLOT (Liu et al., 2023a),553

which, as we see in Table 5, does not seem to gener-554

alize to other domains. Indeed, OCR baselines, for555

very out-of-domain datasets, seem to generally per-556

form better. This suggests that future work could557

focus on improving the robustness of the deplotter558

module.559

Third, we only focused on the English language.560

We believe that this is an interesting area for future561

exploration. Datasets such as TATA (Gehrmann562

et al., 2023), could be used for follow-up work563

(unfortunately images are not part of the dataset564

release).565

Despite these limitations, our work represents566

the first work to explore the problem of chart re-567

trieval. We hope that future research will be able568

to build upon this foundation.569

Ethics Statement570

All the data we use is publicly available on the web571

with appropriate permissive licenses. The chart572

data has been obtained from publicly available,573

curated data sources and contains no personally574

identifiable information (PII) or offensive content.575

User query data in NQ-TABLES has been properly576

anonymized in (Kwiatkowski et al., 2019). Queries577

for other datasets have been either written by hu-578

man annotators or automatically generated and con-579

tain no PII or offensive content. The risk is very580

low as retrieval models have no capability to out-581

put novel content, however it might reflect biases582

present in the datasets.583
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Model Training steps
CHARTQA (h) CHARTQA (a) SCICAP CHART2TEXT (S) CHART2TEXT (P)

TAB-GTR (gold table) 200 4500 N/A 4000 N/A
TAB-GTR + DePlot 900 7500 40 000 1500 5000
TAB-GTR + OCR 300 2500 40 000 7000 7000
PALI-3 1000 2500 40 000 15 000 2000

Table 10: Number of training steps selected by cross validation for single-task training. We stopped SCICAP at
40k steps because the progress become extremely slow. For model selection we used in-batch accuracy on the dev
set.

Model Batch size # of TPU chips TPU-h per 1k steps

TAB-GTR 1024 64 15.20
TAB-GTR 256 16 3.80
PALI-3 256 64 19.00
PALI-3 + DEPLOT 256 128 23.18

Table 11: Model computational requirements. We train our models on the Google Cloud TPU v4. Batch size
1024 is only used for NQ-TABLES and all other experiments use batch size 256. All TAB-GTR models (gold,
+DEPLOT, + OCR) use the same sequence length and have the same memory requirements.

Model Training steps

TAB-GTR + DePlot 76 000
TAB-GTR + OCR 64 000
PALI-3 68 000
PALI-3 + DePlot 64 000

Table 12: Number of training steps selected by cross
validation for multi-task training. For model selection
we used in-batch accuracy on the dev sets aggregated
by the mixture weights.

Model # of weights

DePlot 282M
TAB-GTR 335M
PALI-3 3 289M

Table 13: Model size. Note that we only use the en-
coder of PALI-3 which is why the number of parame-
ters is not 5B.

B Error examples 785

In this section we show examples to illustrate the 786

kind of errors the models make. We compare two 787

models side-by-side and show examples where one 788

model returns the correct answer in top k results 789

and the other does not. We use k = 5 through 790

this section. A limitation of this method is that it 791

often finds spurious win/loss examples caused by 792

model training stochasticity. To work around that 793

we have manually chosen examples that we think 794

show some error patterns. 795

B.1 TAB-GTR + DEPLOT vs TAB-GTR + 796

gold tables 797

We look at examples where TAB-GTR + DEPLOT 798

loses to TAB-GTR + gold tables. For this section 799

we only consider datasets with gold tables available. 800

We have found that the two models are very close 801

in performance, however one consistent pattern 802

shown in Figure 4 is that DEPLOT sometimes omits 803

the title or axis labels. 804

B.2 PALI-3 vs TAB-GTR + DEPLOT 805

We have found following error patterns for DE- 806

PLOT (shown in Figures 5 to 7): 807

1. Failing to capture text on the chart, such as 808

plot titles or axis labels. This is the same 809

pattern as found in appendix B.1. Examples 810

shown in figs. 5a and 6a. 811
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Query
Which subject has the highest male-to-female

ratio of High School Courses?
Which place shows the lowest value of

Tuberculosis rate?

Chart

Gold
Table

Country Male-to-Female Ratio of
High School Courses in
Math and Science, United-
States, 1982

Chemistry 1.1
Science 1.08
Maths 1.06

Country Tuberculosis incidence per
100,000 people, 2000

Ghana 216
Vietnam 197
Nepal 163

DePlot
Table

Characteristic Value
Chemistry 1.1
Science 1.08
Maths 1.06

Characteristic Value
Ghana 216
Vietnam 197
Nepal 163

Figure 4: Select examples from CHARTQA (human) where DEPLOT underperforms with respect to the gold
tables. DEPLOT fails to capture the title of the plot.

2. Not capturing visual elements of the chart. On812

CHARTQA these are usually plot type (e.g.813

bar, pie) and line colors and we note that these814

wins are not relevant for retrieval because the815

queries are highly contextual (fig. 5b). How-816

ever on SCICAP (figs. 6b, 7a and 7b) PALI-3817

is able to recognise more interesting visual818

information such as semantic content of the819

chart (e.g. "sigmoid function", "geodesic tri-820

angle") or visual placement of the subplots821

("left: ..., right: ...").822

3. Failing on complex charts with multiple sub-823

plots (figs. 6b and 7b). This is a limitation of824

the training data which only includes single-825

plot charts.826

4. Failures on charts with a very large amount827

of data points (7b) where DEPLOT tries to828

capture all individual data points instead of829

more semantically relevant summary of the830

chart.831

We have not found any specific error patterns832

for PALI-3. Rather we see that on data that does833

not trigger the above failure modes TAB-GTR + 834

DEPLOT generally outperforms PALI-3. 835
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Query Which place has the highest ratio of tourists ? Is there a value 30 in the dark blue line?

Chart

Gold
Table

Country Ratio of inbound-to-
outbound tourists, 2018

Belarus 13.76
Mauritius 4.73
Hungary 2.03
Papua New Guinea 0.59
Luxembourg 0.51

Year Control gun
ownership

Protect the right
of Americans to
own guns

1993 0 0
1999 0 0
2003 0 0
2008 58 0
2011 50 49

DePlot
Table

Characteristic Value
Belarus 13.76
Mauritius 4.73
Hungary 2.03
Papua New Guinea 0.59
Luxembourg 0.51

Year Control gun
ownership

Protect the right
of Americans to
own guns

1993 0 0
1999 0 0
2003 0 0
2008 58 0
2011 49 50

(a) DEPLOT fails to capture the title of the plot.
(b) The query references the color of the bar,
which is not captured by the table. However the
query is highly contextual.

Figure 5: Select examples from CHARTQA (human) where DEPLOT underperforms with respect to PALI-3.
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Query
change of cumulative regret with respect to

number of turns where EQUAT-TK,
EQUAT-TK, EQUAT-TK.

step function and sigmoid function.

Chart

DePlot
Table

TITLE
Number of Turns OPTIMAL

CYCLE
(µ = µ2)

OPTIMAL
CYCLE
(µ = µ2)

0 0 0
2000 435 520
4000 490 590
6000 500 600
8000 500 600
10000 500 600

TITLE
<>

0 0.5
1 1.0
2 1.0
3 1.0
4 0.5
5 0.9
6 1.0

(a) DEPLOT fails to capture the label of the y
axis. Here EQUAT-TK is a special token used in
SCICAP to replace equations in the caption.

(b) PALI-3 visually recognises the step and sig-
moid functions. DEPLOT fails to handle multiple
subplots and outputs a numerical representation
that loses the semantic information.

Figure 6: Select examples from SCICAP where DEPLOT underperforms with respect to PALI-3.
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Query

a geodesic triangle ∆ (with internal
points mx, my, mz and c labelled as in

the proof of theorem NUM dashed
lines indicate a distance ≤ δ and the

red line indicates the upper estimate for
d).

illustration of the training process on celeba. left: mean
squared errors of the input images and the reconstructions
conditioned on different latent codes. right: the fid scores

of random generations after each training epoch.

Chart

DePlot
Table

TITLE
m3 ma me me me me

ma 0 0 0 0 0
ma 0 0 0 0 0
ma 0 0 0 0 0
x 0 0 0 0 0
ma 0 0 0 0 0
last row repeating 19 times...

TITLE Visualization
Iterations MSE_h0 MSE_hnorm MSE_huni
2000 0.04 0.134 0.113
2000 0.036 0.155 0.096
2000 0.032 0.129 0.09
2000 0.031 0.126 0.101
15 more rows with continuing pattern...

(a) PALI-3 recognises a geodesic trian-
gle. DEPLOT fails to output anything
useful as the chart has no underlying
table data.

(b) PALI-3 correctly answers a query that refers to vi-
sual placement of subplots (left: MSE, right: FID). DE-
PLOT misses the second subplot completely and spends its
output token budget on irrelevant datapoints for the first
subplot.

Figure 7: Select examples from SCICAP where DEPLOT underperforms with respect to PALI-3.
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