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Abstract

Transformers excel at discovering patterns in se-
quential data, yet their fundamental limitations
and learning mechanisms remain crucial topics
of investigation. In this paper, we study the abil-
ity of Transformers to learn pseudo-random num-
ber sequences from linear congruential genera-
tors (LCGs), defined by the recurrence relation
Ti41 = axy + ¢ mod m. We find that with
sufficient architectural capacity and training data
variety, Transformers can perform in-context pre-
diction of LCG sequences with unseen moduli
(m) and parameters (a, c¢). By analyzing the em-
bedding layers and attention patterns, we uncover
how Transformers develop algorithmic structures
to learn these sequences in two scenarios of in-
creasing complexity. First, we investigate how
Transformers learn LCG sequences with unseen
(a, c¢) but fixed modulus; and demonstrate suc-
cessful learning up to m = 232, We find that
models learn to factorize m and utilize digit-wise
number representations to make sequential predic-
tions. In the second, more challenging scenario
of unseen moduli, we show that Transformers can
generalize to unseen moduli up to Mmyey = 216,
In this case, the model employs a two-step strat-
egy: first estimating the unknown modulus from
the context, then utilizing prime factorizations to
generate predictions. For this task, we observe a
sharp transition in the accuracy at a critical depth
d = 3. We also find that the number of in-context
sequence elements needed to reach high accuracy
scales sublinearly with the modulus.?
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1. Introduction

Transformer-based language models have proven to be ex-
tremely powerful sequence generative models. With copi-
ous amounts of training data and computational resources,
they can identify and learn complex patterns from train-
ing corpora, resulting in numerous remarkable capabilities
(Vaswani et al., 2017; Dosovitskiy et al., 2021). Recent re-
search has demonstrated that these models, when provided
with sufficient context and inference compute, can acquire
new patterns and capabilities without additional training
through techniques such as in-context learning (Radford
et al., 2019) and chain-of-thought reasoning (Wei et al.,
2023). While these models have achieved unprecedented
success, understanding what underlying patterns are learned
and how they learn them remains a significant challenge.
Pseudo-Random Number Generators (PRNGs) represent an
interesting test case for exploring these challenges. These
algorithms, which are fundamental to modern cryptography
and computer science, are designed to produce outputs that
pass statistical tests for randomness, but nevertheless arise
from mathematical patterns that could potentially be learned
by sufficiently powerful sequence models.

This intersection between Transformer models’ pattern-
learning capabilities and the structured yet obfuscated nature
of PRNG outputs raises intriguing questions about both the
capabilities and limitations of these models. Can Transform-
ers learn to predict PRNG outputs given sufficient training
data, model capacity, and context? If so, what implications
does this have for our understanding of both Transformer
architectures and PRNGs? Do the Transformers learn the
underlying generating algorithm or merely detect shortcuts
and spurious patterns? What effect do model capacity, data
variety, training methodologies, and context length have on
the capabilities of Transformers?

This work aims to answer these questions by focusing on
learning sequences obtained from linear congruential gen-
erators (LCGs) using GPT-style autoregressive Transform-
ers. We demonstrate how Transformers can successfully
learn LCGs with moduli up to m = 232. We perform in-
terpretability analyses, uncovering emergent structures in
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the embedding layers, attention heads, and underlying algo-
rithms that the Transformer uses to learn the sequences. We
also perform several systematic scaling analyses to under-
stand the effect of architecture and sequence complexity on
model performance and in-context learning ability.

1.1. Related works

Our study on the learnability of PRNGs for Transformers
touches on several modern and classic topics.

Interpretability and Modular Arithmetic: A growing
body of work examines the circuits, algorithms and struc-
tures learned by Transformers (Sharkey et al., 2025; Olsson
et al., 2022; Ahn et al., 2023; von Oswald et al., 2023;
Akyiirek et al., 2023; Hendel et al., 2023; Liu et al., 2024).
A notably fruitful setting involves simple modular arithmetic
problems (Power et al., 2022; Gromov, 2023; Nanda et al.,
2023; Zhong et al., 2023; Doshi et al., 2024a;b; He et al.,
2024). Our work adds to this by reverse-engineering the
underlying algorithms and uncovering emergent structures
in learning pseudo-random number sequences.

Cracking PRNGs: There is a classic duality between cryp-
tography and learning theory (Rivest, 1991), and cracking
PRNGs is an important topic in cryptography. Nevertheless,
deep learning-based attacks have received limited attention
in the post-Transformer era. Amigo et al. (2021) demon-
strated that a fully-connected neural network can predict the
outputs of a modified LCG with fixed (irrational) parame-
ters (a,c,m) = (1,7, 1). In comparison, we systematically
analyze the harder cases of unseen parameters using Trans-
formers, reverse-engineer the learned algorithms, and study
effects of scale and complexity.

Formal Grammars: LCG can also be viewed as a for-
mal language (Type-3 regular grammar) lying within the
Chomsky hierarchy (Chomsky, 1956). Formal languages
provide an interesting setting for synthetic datasets that can
be used to understand the properties of neural networks in
controlled settings (Delétang et al., 2023; Allen-Zhu & Li,
2024; Cagnetta et al., 2024; Cagnetta & Wyart, 2024).

Chaotic time-series: A major application of neural net-
works is predicting time-series for chaotic dynamics, such
as weather prediction (Lam et al., 2023) and financial mod-
eling. PRNGs provide an analog of such dynamics in the
discrete setting.

1.2. Linear Congruential Generators
LCG is a simple PRNG that generates the next number in a
sequence (g, 1, .. ., ;) according to the map:

2441 = (axy +¢) mod m, )

where m > 0 is the modulus, 0 < a < m is the multiplier
and 0 < ¢ < mis referred to as the increment. An LCG map

is uniquely defined by the choice of m, a, ¢ and the initial
seed x¢. An important quantity that determines the complex-
ity of an LCG sequence is its period: 1 < T, (a,c) < m.
As we will show in the following sections, the period of a
sequence plays a major role in the difficulty of prediction
with Transformers. According to the Hull-Dobell Theorem
(Hull & Dobell, 1962), the period 7, (a, c) = m if and only
if the values of a and c satisfy the following criteria: (i) m
and c are coprime, (ii) a — 1 is divisible by all prime factors
of m, (iii) @ — 1 is divisible by 4 if m is divisible by 4. We
evaluate (test) all our models exclusively on sequences that
obey the criteria of this theorem.

LCGs are widely utilized for their speed and simplicity,
often forming the core of more complex PRNGs like PCG-
64, which is used in NumPy. LCGs perform poorly at small
bit sizes but improve rapidly with larger state sizes. For
instance, an LCG with 88 bits of state can pass the stringent
BigCrush randomness test (O’Neill, 2014).

2. Training Setup

We train decoder-only Transformers to autoregressively pre-
dict the next number in LCG sequences. This means it
takes as input an LCG sequence (xq, - - ,x1—1), outputs a
sequence (Yo, - ,YL—1), and trained so y; matches x; .

To predict an unknown LCG sequence, the Transformer
needs to infer m, a, and c¢ in-context. We test the model’s
generalization ability in two distinct paradigms of increasing
difficulty: FM: The model is trained and tested on sequences
with a fixed modulus m. UM: Model is trained on varying
moduli, and tested on unseen moduli Myes; = {Mgest - We
highlight the key details of our experimental setups here and
provide an extensive discussion in Appendix A.

2.1. Dataset Generation and Evaluation

The settings below are used in Sections 3 and 4. In order
to achieve better performance, we used a larger and higher-
quality dataset in Section 5, which we detail later.

Fixed Modulus (FM): Given a modulus m, we apply the
Hull-Dobell Theorem to determine the possible values of
(a, c) that maximize the period. We then randomly select 64
values of a and c to generate the test dataset. To generate
the training dataset, we exlude these test choices of (a, ¢)
and uniformly sample N = 100,000 LCG sequences of
length L + 1 (where L is the context length), with n,, values
of multipliers and n. values of increments. For each set
of parameters (a, c), we sample an LCG sequence with a
randomly selected initial seed xy. Note that the training
dataset includes sequences with varying periods, while the
test data only contains sequences that maximize the period.

Generalization to Unseen Modulus (UM): In this more
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challenging paradigm, we first select a set of test moduli
Miest = {Muest} that would be reserved exclusively for eval-
uation. For each test modulus myeq € Mies, We determine
the values of (a, c) that maximize the period. We then ran-
domly select 64 values of a and c each to generate the test
dataset. These 642 (a,c) pairs are not considered while
generating the training dataset.

For the training dataset generation, we sample n,, mod-
ulus values from the range [L,Mmax], With mmy =
[ 1.2 max(Mes)]|, while excluding all the values in M.
For each modulus value m, we uniformly select n, multi-
pliers and n. increments, excluding the ones reserved for
testing. For each triplet (a, c, m), we generate a sequence of
length L + 1 using a randomly selected initial seed x. This
results in a total of N = n,,, X n, X n. training sequences.

We found that n,, 2 myey/4 yields good generalization
performance. Based on this relationship and our target
total number of training examples N, we sample n, =

N
Migest /4

less explicitly specified, we use this setting as the default
configuration for all experiments.

Ne = values of multipliers and increments. Un-

In both paradigms, test accuracy is averaged over all (a, ¢)
test pairs and multiple initial seeds x( per pair. Accuracies
are tracked at all sequence positions 1 < ¢ < L.

2.2. Tokenization, Architecture, and Optimizer

In Sections 3 and 4, each number is tokenized as a unique
token, using a dictionary of size m (FM) or Mmax (UM). We
employ GPT-style Transformers with learnable positional
embeddings and weight tying (Press & Wolf, 2017).

When we scale up to larger moduli in Section 5, we restrict
the dictionary size to b by tokenizing each number in the se-
quence in base-b (e.g. b = 28, 3°). This results in [log; m/]
tokens for each number. We also apply (modified) abacus
positional embeddings (McLeish et al., 2024).

The model architecture is characterized by the number of
blocks (depth), embedding dimension (d,oqe1), number of
attention heads (nneads). Models are trained with AdamW
(Loshchilov & Hutter, 2019) and CrossEntropy loss.

3. Training Results

We begin by investigating the minimal model that can solve
the two tasks in consideration. Surprisingly, we found that
Transformers only require one layer and one attention head
to learn the FM task, as shown in Figure 2 (a) (for further
results, see Appendix B). Conversely, the UM task requires
a stronger architecture and careful hyperparameter tuning.
Appendix C shows that model performance depends on the
modulus, with prime moduli being challenging in the FM
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Figure 1. Accuracy of predicting the last number (token) in the
sequence: phase diagrams w.r.t. various depths and npeads values.
(a) miest = 2048, constant width: diodel = 768. (b) Mitest =
4096, width scaled proportionally: dmodel = 128 X Nheads-

setting but not in the UM setting.

In Figure 1 we show how the performance varies with model
depth and the number of attention heads. In Figure 1(a)
we keep the embedding dimension fixed to dyogel = 768,
whereas in Figure 1(b) we scale it proportionally to the num-
ber of heads (dmodel = 128 X Npeads.)- In both cases, we find
that a minimum of three layers are required for effective
generalization, with performance degrading sharply below
this threshold. Further analysis across multiple myes; values
(see Appendix D) confirms that this minimal depth require-
ment is universal. We also observe that additional attention
heads improve model performance, with substantial gain
occurring when increasing from one to two heads.

Several prior studies have also observed sharp changes in
model capabilities as a function of model depth. This in-
cludes induction head formation (Olsson et al., 2022), in-
context learning of modular addition (He et al., 2024) and
various in-context generalization tasks (Chen & Zou, 2024).
In general it is unclear to what extent these sharp depth-
dependences are due to jumps in expressivity or trainability.

The UM task shows strong sensitivity to hyperparameters.
As we increase my.s While keeping the model size fixed,
we observe two key phenomena: the optimal learning rate
(n) and weight decay strength () shift significantly, and
simultaneously, the range of hyperparameter resulting in
effective performance narrows (see Appendix A.5).

We then carefully examine the training dynamics in both
FM and UM settings (Figure 2). We categorize the train-
ing sequences into two groups: i) sequences with periods
shorter than the context length, which can be solved through
simple copying, and ii) sequences with periods longer than
the context length, which require the model to deduce un-
derlying rules for prediction. Our analysis reveals that the
model first acquires copying ability for group i) in the early
stages of training, and later “groks” the solution for group
ii) (Power et al., 2022). Notably, the model’s ability to gen-
eralize to test modulus my.s; emerges simultaneously with
this grokking phenomenon. These results demonstrate that
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Figure 2. Training/test accuracy curves for predicting last number
(token). (a) FM: (m = 2048, depth = 1, nneads = 1, dmodel =
768) Test accuracy “groks” when training accuracy reaches near-
100% (b) UM: (mtest:20487depth = 67 Nheads = 47 dmodel =
768) Test accuracy “groks” simultaneously with training accuracy
on sequences with period longer than context length (7,,, > L =
256), indicating delayed discovery of underlying rules.

the model develops different capabilities at distinct stages
of training, with generalization ability emerging only after
the model learns the underlying rules through solving the
more challenging sequences. In Appendix E, we present
an ablation study where models are trained exclusively on
either short-period or long-period sequences. Our findings
indicate that training exclusively on long-period sequences
enables model generalization.

4. Interpreting How Transformers Predict
PRNGs

In this section, we uncover the underlying algorithms im-
plemented by the models for both FM and UM cases. While
certain details of the algorithms differ in the two cases,
they share common properties originating from the under-
lying LCG structure. We first discuss properties of LCG se-
quences that will be useful in interpreting model behaviors.

4.1. Residual Number System Representations

Consider an LCG sequence with modulus m = 2048 = 21,
Each number in this sequence can be represented as an
11-digit binary number:

xm0d211:a020+a121+-~-+0¢102107 )

where {ayp, ..., a10} are the binary-valued digits (bits).

A useful property of LCGs with modulus m = 2() is that
each digit in the binary representation has a fixed period
along the sequence. As shown in Figure 3, for a sequence of
period 7,,, = m = 2'1, the w" lowest digit has a period of
2" (Knuth, 1997). Thus, lower (higher) digits have smaller
(larger) periods along LCG sequences. (See Appendix F.1
for a detailed derivation.) We will see later that trained
Transformers have emergent structures that find these bi-
nary representations and utilize them to make systematic
predictions from the context. Notably, the per-digit period
plays and important role in the prediction accuracy of that
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Figure 3. Bit-wise periods in an example LCG sequence generated
with m = 2048,a = 293,c¢ = 1033, which follows the Hull-
Dobell theorem. In binary representation w-th lowest bit has a
period of 2, for w € {1,...11}. Writing a new sequence by
skipping every 2nd step (r = 2) reduces the periods of all the bits
by a factor of 2, rendering the lowest bit constant. © = 2* reduces
bit-wise periods by a factor of 2¥, with last k digits constant.

digit. To understand this, consider the r-step iteration of
Equation (1):

-
Tigpr = a Ty + Z a~t¢ mod m. 3)
i=1

In this new sequence wherein we skip 7 steps, the period of
each digit «,,—1 reduces from 2% to 2%/ ged(r, 2*). Con-
sequently, the higher digits become relatively simpler to
predict due to reduced periods while some lower digits be-
come trivial to predict due to being constant along this new
sequence. We demonstrate this for m = 2048 in Figure 3
(top panel). The digit-wise periods in the new sequence with
r = 2 are reduced by a factor of 2, while the last digit is
simply constant. Higher values of 7 = 2* will lead to even
further simplifications of the sequence. Transformers can
simplify the task of predicting LCG sequences by utilizing
r-step iterations from the in-context examples — with longer
contexts leading to larger values of . Consequently, the
per-digit and overall accuracies improve substantially with
context (see Figure 4).

While moduli of the form m = 2() lead Transformers
to find binary representations, similar simplifications in
composite moduli require more general representations of
the Residual Number System (RNS) (Garner, 1959). RNS
represents numbers by their values modulo pairwise co-
prime factorizations of m. Specifically, consider sequences
with a composite modulus m, which has a prime factoriza-
tion m = py'py?---pg?. In this case, we can uniquely
represent each number (x modm) as the tuple of resid-
uals (zmod p}’*, x mod p42, ...,z mod py*). Analogous
to Equation (2), we can further decompose each residual,
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w. 0 L w.—
rmod p;’ = ajop; +aj1pj+ -+ G, —1D;”

“

where o ., € {0,1,...,p; — 1} are base-p; digits. We re-
fer to {c; ., } as the “RNS representation” in the remainder
of the text. When 7,,, = m, each digit «; ,, has a period
of p’ (derivation in Appendix F.2). The r step iteration
Equation (3) reduces the period of each digit «; ,, from p}’
to p}f’/ ged(r, p}’). This results in simplification of the pre-

diction task whenever r = p’fl pgz .- ~p];“. We will see that
identifying the RNS representations is a key simplification
that the Transformer discovers in learning LCG sequences.

4.2. Interpretability: Fixed Modulus

e D

Qualitative Algorithm (fixed modulus):

i. Find RNS representations of inputs from the
learned prime factorization of m

ii. Look back r = p;? steps in the context and
copy the lowest k digits, for different prime
factors (p;) of m

iii. Using these r-step iterations, predict the higher
digits of the simplified sequence

J

We now discuss the algorithm implemented by Transform-
ers trained on LCG with a fixed modulus. We will show
that, despite being provided integers as inputs, the model
develops emergent structures that create and leverage the
RNS representation of the inputs. We will focus on the
setup with a 1-layer, single-head Transformer trained on
LCG with m = 2048. Similar results for composite moduli
(e.g. m = 7776) and different model sizes are presented in
Appendix G. We emphasize that this algorithm works for
arbitrary a, c, o for a given m.

(a)s‘m (b) ;7 - 1.0
8 3 -0.8
Q 4
o =
Sos a 54 06
@ £ 6
2 <
° 0.4 > g: 04
® o2 9-

-0.2
% 10+
0.0 .
" -in—— ' -00
24 8 16 32 24 8 16 32
token position token position

Figure 4. FM: Test accuracy for m = 2048, depth = 1, nheads =
1, dmodel = 768, averaged over a, ¢, and seeds. (a) Test accuracy
w.r.t. token positions. Ladder-like structure appears, with jumps
occurring at 2F-th positions. (b) We represent numbers as an
eleven-digit binary number (2048 = 2'') and compute the per-
digit test accuracy of model predictions.

We begin by analyzing the average accuracy of a trained

Transformer model as a function of token position along the
context, shown in Figure 4 (a). (Recall that in this section a
token corresponds to an integer of the LCG sequence). The
accuracy exhibits a ladder-like structure, with each jump oc-
curring exactly at the 2¥-th token position. These successive
transitions can be explained using binary representations
and r-step recurrence (Equation (3)). Specifically, to predict
the token at position ¢ > 2*, the model can look back in
the context at position ¢ — 2¥ and implement » = 2"-step
iteration. This allows the model to (i) copy the lowest k bits
since they remain unchanged; and (ii) simplify the higher
bits, since their periods get reduced by a factor 2¥. We note
that the accuracy trend remains unchanged across different
choices of a and x( (see Figure 21).

Next, in Figure 4(b), we compute the per-digit accuracy by
converting both model predictions and ground truth labels to
their binary representations according to Equation (2). We
observe that the model can predict more digits correctly with
more context, with sharp transitions occurring at 2*-th token
positions. This is a direct result of the sequences becoming
increasingly more simplified as the model can look farther
back in the context and utilize (r = 2F)-step iterations.
Since these simplifications occur in the form of digit-wise
periods, Figure 4(b) serves as direct evidence that the model
is internally developing and utilizing binary representations.
The sequential learning of digits also explains the ladder-
like structure of the accuracy in Figure 4(a). We find that
the overall average accuracy (Figure 4(a)) multiplicatively
depends on the per-digit accuracies (Figure 4(b)) (empirical
proof in Figure 22(b)) !

ACCoverall = (ACCigit 1) (aCCdigit2) - - (accdigit11) - (5)

Next, we investigate how various components of the model
implement the algorithm outlined earlier this section.

(a1) 0.025 First PCA co.rnponent (b)  Cosine similarity of embedding vectors
.o
2 0.000 -0.20+
> .
00255 ¢ e asu e e :
0 5 10 15%es |
number 512 0.15
(a2) _
é 0.02- 43 3 -0.10
5
g & 4k E 256
8 0.00- _
s 4k+2 “ 0.05
T -0.02-
> ® 4k

‘ ; ‘ 0 -0.00
-0.02 000 002 0
2nd PCA component

256 512 ..
number (x)

Figure 5. FM: (a = 1589, c = 629) Embedding layer. (al) 1st
principal component groups the numbers mod 2. (a2) 2nd and
3rd principal components group numbers mod 4. (b) Embedding
vectors of different numbers exhibit high cosine similarity when
they are spaced 2" apart, with the similarity increasing with k.

'This holds if the per-digit accuracies are independent, which
we confirm empirically.
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Figure 6. FM: (m = 2!, a = 1589, ¢ = 629) (a) Attention weights: each query attends most strongly to the tokens 2* and 2¥ ! distance
backward, for the highest possible value of k, enabling copying of lowest k bits. The other faint lines facilitate the prediction of higher
bits. (b) Post-ReLU hidden layer MLP activations at token position ¢ = 129 (extracted using sequences with different () as a function of
the target number x130 which it is supposed to predict. Each neuron gets activated only while predicting a specific £130, exhibiting a
sparse, periodic pattern. (c) Output of the MLP block projected onto the (un)embedding matrix; after masking out all but a single given
hidden-layer neuron. The green dot denotes the value at the target number. Each neuron resolves the correct prediction up to a periodic
structure. (d) Output of the MLP block projected onto the (un)embedding matrix; after combining the signal from multiple neurons (i.e.
gradually un-masking the neurons). The per-neuron periodic patterns constructively interfere at the correct output.

Step i: We begin by conducting Principal Components Anal-
ysis (PCA) of the embedding matrix, which shows how the
model performs prime factorization to develop the binary
representations (RNS for general m). Figure 5(al) shows
the projections of all numbers = € {0, ...2047} along the
first principal component of the embedding. We observe that
the model groups the numbers into modulo 2 clusters along
the first principal component. Similarly, the 2nd and 3rd
principal components group the numbers into modulo 4 clus-
ters (Figure 5(a2)). In general, we find principal directions
that group the numbers into modulo 2() (see Figure 24).
By clustering the numbers according to their remainder
modulo different prime-powers, these principal directions
naturally encode the digit-wise representations of the inputs.
In Figure 5(b), we check the cosine similarity between the
embedding vectors of different numbers. We see that the
more digits two numbers share in the binary representation,
the higher the cosine similarity of their embedding. This is
a consequence of these numbers having similar components
along principal directions corresponding to those digits. For
composite moduli, we find similar clustering according to
different prime factors of m (see Figures 25, 26).

and find that to predict the number at position ¢, the model
attends most strongly to the position ¢ — 2% for the highest
possible value of k s.t. t > 2% (i.e. kK = [log,t|). This
corresponds to the brightest line in Figure 6(a). Using the
binary representation of the (¢t — 2¥)-th token, the model
can copy the lowest k bits and simplify the prediction of
higher bits. Additionally, the second brightest line appeares
at the position ¢ — 2=, along with other faint lines at
intermediate distances (multiples of ¢t — oF for k' < k — 1).
The information obtained from all these lines are utilized by

the model in predicting the higher bits.

To verify that the brightestes line enables the copying of
lower bits and that the second brightest line facilitates the
prediction of higher bits, we performed the following two
experiments. (i) For each query in the attention head, we
mask out all keys except for the one at position ¢ — 2%.
We then measure the performance of this ablated model,
shown in Figure 20(a). We observe that the model retains
the ability to copy the k lowest bits, but loses the ability
to predict the higher bits. (ii) Next, we repeat the above
ablation experiment while masking out all keys except the
ones at positions ¢ — 2¥ and t — 2*~1, shown in Figure 20(b).
This results in a drastic improvement in the prediction of
the higher bits compared to (i), confirming our assertions.

After the attention layer collects information about previous
tokens, the MLP block 2 processes the information to make
predictions. We find that each hidden neuron (post-ReLU) in
the MLP exhibits a periodic response with a distinct period,
as a function of the target prediction. Consider the MLP at
token position ¢. The input to the transformer at this position
is x4 and the output y;, should match the next number in
the sequence x;11. In Figure 6(b) we show the activation
value of selected neurons at token position ¢ = 129 as
a function of the target x50, for m different sequences
obtained by changing the seed z for a given LCG sequence.
We observe that only a sparse set of neurons are activated for
a given target 2130 and that there is a strong spiked periodic
structure in the response of each neuron as a function of
130, With neuron-specific frequencies.

The subsequent fully connected layer in the MLP block ag-
gregates the contributions from all the activated neurons to

2MLP block: fully connected — ReLU — fully connected.
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make the correct prediction (McCracken et al., 2025). To
visualize the contributions from an individual neuron, we
mask out the contribution from all other neurons and extract
the MLP output for a fixed input sequence. We then project
this output onto the (un)embedding matrix, which shows
us the contribution of that single neuron in making the cor-
rect prediction.? In Figure 6(c) we show that each neuron
resolves the target number z13¢ up to a distinct periodic
pattern. The periodic patterns from different neurons con-
structively interfere at the target. In Figure 6(d), we observe
that gradually adding contributions from multiple neurons
resolves the correct output with increasing accuracy.

4.3. Interpretability: Generalization to Unseen Modulus

N

Qualitative Algorithm (unseen modulus):

i. Encode information about various possible
prime factorizations

ii. Estimate the modulus via the largest number
in context

iii. Combine steps i and ii to construct correct RN'S
representations, then implement steps ii and iii
from the fixed modulus algorithm

Unlike the FM case, the training set for UM is generated
using many different moduli m, unseen at test time. Since
each modulus has its own RNS representation incompatible
with other moduli, the model must implement a different,
more general algorithm to solve UM tasks.

We analyze how the embedding layer and attention heads
of a 4-layer Transformer model help implement the above
algorithm to solve the UM task. The model is trained on
a dataset generated with n,, = n, = n. = 128, where
Mmax = 2457. To avoid leakage between training and test
sets, we specifically exclude the moduli myes; € {1800 =
23.32.52,2048 = 21,2352 = 24.3. 72} from the training
set. Note that the choice M. = [1.2 - 2048] is made to
maintain consistency with the setting in Figure 1(a).
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Figure 7. UM: PCA analysis of the embedding layer.

3We read-out MLP outputs instead of network outputs to avoid
distortion from the skip connection.

Step i: We first analyze the embedding layer. In Figure 7(a),
PCA shows a semi-circular structure along the first principal
component, with the second principal component separating
even and odd numbers. This semi-circle resembles the
circular patterns seen in modular arithmetic tasks (Power
et al., 2022; Zhong et al., 2023), but since our model is
trained on multiple moduli, it cannot form a closed circle
by identifying a unique O value. Figure 7(b) further shows
that the 2nd and 3rd principal components group numbers
by their remainders modulo 2 and 3, which likely reflects
their prevalence as prime factors in the training set.

Note with varying moduli, the model need not form a bi-
nary encoding as before. Instead, we find attention heads in
first layer group embedded numbers by remainders modulo
different primes, each head specializing in a particular fac-
tor. This specialization allows the model to construct RNS
representations with various prime bases.

To investigate head specialization, we analyze afformen-
tioned first-layer attention heads in Figure 8, presenting
PCA results for selected heads in panels (al, bl, c1). For
each, we input sequences using the corresponding myest and
randomly selected (a, ¢) pairs (per the Hull-Dobell Theo-
rem), then isolate the output H () for each head by zeroing
out all other heads. We perform PCA at token position ¢ = 0
(PCA(H™:,0,:])), then projecting each number’s feature
vector H(") [x, t, :] onto the top two principal components
and labeling each point with its corresponding x.

The analysis shows that each head groups numbers by their
remainder modulo different prime factors, enabling the
model to select suitable representations in later layers. The
prominence of small primes in the top principal components
likely reflects their frequency in the training data. Further-
more, we believe the performance gains observed in Fig-
ure 1 with more heads can be partly attributed to the model’s
improved capacity to capture additional prime factors for
constructing RNS representations. More examples of spe-
cialization across various (a, ¢, Mgest, To, t) are provided in
Figure 27 (Appendix H.1).

To further demonstrate that these heads directly influence
the model’s performance, we measured per-digit accuracy
before and after pruning each specialized head, as shown
in panels (a2, b2, c2) and (a3, b3, c3). For pruning, we
replace the head’s output with its mean value mean (H "|:
, 5 :]) € R across all positions (using 10% of randomly
selected training sequences), which preserves signal scale
and avoids catastrophic model degradation. The results
show that pruning a head responsible for a particular prime
factor significantly impairs performance on corresponding
digits, while other digits are less affected. For instance,
in panel (a3), the model’s ability to compute 7' and 72
digits is lost, while base-2 and base-3 digits remain above
chance. Similarly, in (b3), removing the modulo-2 head
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Figure 8. UM: PCA analysis of attention heads specialized for dif-
ferent prime factors and their impact on per-digit accuracy. (al,
b1, c1) PCA of outputs from specific heads; the first two principal
components group numbers by remainder modulo 14, 4, and 3,
respectively. (a2, b2, c¢2) Test accuracy for individual digits with
representations from Equation (4) for each myest. (a3, b3, ¢3) Per-
digit test accuracy after pruning these heads, showing substantial
performance degradation on the affected digits.

erases all corresponding digit accuracy, and in (c3), pruning
the modulo-3 head greatly reduces base-3 digit performance,
but leaves base-2 and base-5 largely intact.

Finally, we further validate the link between head special-
ization and digit-wise accuracy by pruning irrelevant heads.
For myesy = 2048, pruning heads responsible for modulo 7
or 3 (as in panels (al) or (c1)) yields the results in Figure 28.
Interestingly, removing the modulo-3 head sometimes im-
proves performance for specific token positions, while oth-
ers show minimal degradation. These findings reinforce
the connection between head specialization and digit-wise
computation; further details can be found in Appendix H.2.

Step ii: The performance variations observed above suggest
that the model is internally uncertain about which RNS
representation to use, likely due to difficulty in determining
Myest- As we discuss below, the model appears to estimate
Miest greedily via in-context learning.

In Figure 9(a), using a sequence withxg = 1,a = 5, ¢ = 31,
and myest = 2048, we observe a first-layer attention head
that attends primarily to the largest numbers, as seen by the
vertical lines in the attention weights. To analyze this further,
in panel (b), we extract the output H(®) ¢ R1*L*dmodel
from this head for the same sequence and compute its co-
sine similarity with token embeddings for all x < Myegt,
producing a RE>"test matrix for the heatmap. This reveals
that the head’s output consistently has the highest similar-
ity with the largest numbers that has been seen in context,
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Figure 9. UM: Attention head (layer 1, head 6) specialized in esti-
mating meest. (a) Queries attend to largest keys; (b) the head pro-
duces features with the highest cosine similarity to myest; (¢) patch-
ing this head with features from sequences with mpatcn = 1024
(same a, c) steers the model to predict numbers 7 < Mmpatch-

indicating a greedy estimation of Mmest-

To further verify that this head estimates mys for later lay-
ers, we conduct a patching experiment (Zhang & Nanda,
2024), as shown in Figure 9(c). We generate a new sequence
with the same a, ¢, and xg, but with mpa¢cn = 1024, and ex-
tract H ™ patch € RI*Lxdmodel from this head. We then
overwrite the output H™ in a forward pass for the origi-
nal sequence (Mmyest = 2048) with H (h)patch. The model
now frequently predicts numbers smaller than mpatch. As
shown in Figure 30 (Appendix H.3), patching other heads
disrupts predictions but never induces a similar qualitative
shift, confirming this head’s unique role in estimating mest.

One might expect that even a small error in estimating Myest
would invalidate predictions, but this is not necessarily the
case. As shown in Section 4.2, if the correct representation
is chosen, the lower bits maintain a strong periodic signal.
Since the model can prepare multiple RNS representations
(as demonstrated in step i), a sufficiently close estimate of
Miest allows these lower bits to guide the model toward the
correct representation. Further discussion is provided in
Appendix H.4 and step iii.

Step iii: Once the necessary features are prepared, subse-
quent layers implement the rest of the algorithm. As in the
FM case, we observe a ladder pattern in digit-wise accuracy
for lower digits at early token positions. This pattern, which
demonstrates the copying bias, is visible in Figure 8(b2).

More careful inspection of Figure 8(b2) shows the model
copies the lowest 5 digits. Interestingly, given the estimated
Miest = 2033 from step ii, the model effectively reduces it
to 2033/2° ~ 63.53. Futhermore, since the model operates
on integers, it could round it to 64, yielding 64 - 2° =
2048 = myest. Thus, the model in principle, can predict
higher digits accurately without the exact value of myegy.
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While some algorithmic transition from lower to higher
digits clearly occurs, the exact mechanism remains unclear.
The sharp transition in per-digit performance at the 2° digit
in Figure 8(b2) supports this argument. Nevertheless, we
believe the model applies an algorithm similar to FM for
higher bits, which we will elaborate on in Appendix H.5.

5. Scaling Up the Modulus

In this section, we investigate training upon scaling up the
LCG modulus, with the following modifications:

Base-b tokenization: To avoid massive dictionary sizes
for large m, we implement a base-b tokenization scheme.
Each integer is decomposed into a sequence of base-b digits,
beginning with the least significant digit; resulting in a
vocabulary size of b for any m (for details see Appendix I.1).
Based on the discussion in Section 4.1, it is beneficial to
choose b such that ged(b, m) = b.

Abacus Embeddings: We encode positional information
using a variant of the Abacus embedding (McLeish et al.,
2024), as a sum of two learnable vectors. One vector en-
codes the position of the integer within the sequence, while
the other encodes the position of each digit within the integer
(for details, see Appendix 1.2).

Fixed Modulus: For each modulus m = 2F, where k is
an integer in the range 16 < k < 32, we train a 2-layer
model with dyo4e1 = 1024 and a vocabulary size of 256.
We select training sequences via the Hull-Dobell theorem,
setting n, = n. = 1024 (See Appendix 1.3 for training
details). For the test dataset, we choose 512 values of a and
64 values of c that differ from those in the training set.

The quality of an LCG largely depends on its multiplier, tra-
ditionally evaluated via the spectral test (Knuth, 1997). In
Figure 10(a), we test our model on both spectrally optimal
Steele multipliers (Steele & Vigna, 2021) and arbitrary mul-
tipliers for m = 232, While achieving 100% test accuracy
with equal in-context sequence lengths, the model performs
consistently worse on Steele-generated sequences compared
to those from arbitrary multipliers.

In Figure 10(b), a log-log plot reveals that the number of in-
context sequence elements needed for 100% test accuracy
scales sublinearly with modulus m as m?, where v = 1/4.

Unseen modulus: For the UM case, we train a 6-layer Trans-
former on a dataset with n,,, = 32,768, n, = 128, n. = 1,
with 1024 < myain < 65,536. Sequences are length 512,
each integer tokenized as two bytes (context length 1023).
As before, test data uses unseen my.s; and (a, ¢), focusing
on meest = 2%, ,3%. Figure 11 shows that the number of
in-context sequence elements needed to reach 60% test ac-
curacy scales as m{, (0.24 < v < 0.33). The averaged
test accuracy of each number in the sequence is shown in
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Figure 10. FM: (a) Average test accuracy (m = 232y vs number
of in-context sequence elements. (b) The number of in-context
sequence elements required to achieve 100% test accuracy (mini-
mum of 5 runs). (See Appendix 1.3 for details)

Appendix 1.4. Test performance is influenced by the tok-
enization base, since the tokenization base highlights the
periodic structure of LCGs making it more apparent and
easier for the model to leverage during training and predic-
tion. To confirm this, we train a model with tokenization
base 243. In Figure 11, myest = 2k (3F) sequences scale
better when the tokenization base is 256 = 28 (243 = 3°).
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Figure 11. UM: The number of in-context sequence elements
needed for 60% test accuracy grows sublinearly with modulus
m, depending on compatibility between m and tokenization. (a)
Base-2® tokenization; (b) base-3° tokenization.

6. Conclusion

We have investigated Transformer training on LCG se-
quences, focusing on fixed modulus training as well as
generalization to unseen moduli. In both cases, we have
uncovered the algorithm used by the model to solve these
tasks and highlighted the model components that implement
the steps of the algorithm. We have found that the model
finds and utilizes prime factorizations of m and RNS repre-
sentations of numbers to simplify the sequences and make
predictions. We have provided the modified training recipe
for scaling up the modulus in both FM and UM settings, and
shown their scaling behaviors.

Limitations and future work: The results of this paper
were limited to scales m < 232, It would be interesting to
test our results on much larger moduli as well. We leave
the exploration of PRNGs that are built upon LCGs, such as
PCGs and truncated LCGs for future works. It would also
be interesting to make the training even more unbiased, by
training on general classes of arithmetic sequences.
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(How) Can Transformers Predict Pseudo-Random Numbers?

A. Experimental Details

This section provides further details about model architecture, dataset construction, and optimization.

A.1. Dataset Construction

Fixed Modulus (FM): Given a modulus m, we apply the Hull-Dobell Theorem to determine the possible values of (a, c) that
maximize the period. We then randomly select 64 values of a and c to generate the test dataset. To generate the training
dataset, we exlude these test choices of (a, ¢) and uniformly sample N = 100, 000 LCG sequences of length L (context
length) with n, values of multipliers and n. values of increments. For each set of parameters (a, ¢), we sample an LCG
sequence with a randomly selected initial seed xo. Note that the training dataset includes sequences with varying periods,
while the test data only contains sequences that maximize the period.
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Figure 12. The impact of training dataset parameters (1, , 1q, 1c) on unseen modulus task performance.

Generalization to Unseen Modulus (UM): For the test dataset, we first select a set of test moduli Mesr = {Myes} that would
be reserved exclusively for evaluation. For each test modulus myest € Miest, We apply the Hull-Dobell Theorem to determine
the values of (a, c) that maximize the period. We then randomly select 64 values of a and c to generate the test dataset.
These 64 (a, c) values are not considered while generating the training dataset.

For the training dataset generation, we sample the n,,, modulus values from the range [L, | 1.2 max (M) |] while excluding
all the values in M. For each modulus value m, we uniformly select n, multipliers (0 < a < m) and n. increments
(0 £ ¢ < m), excluding the ones reserved for testing. For each parameter (a, ¢, m), we generate a sequence of length L
using a randomly selected initial seed x(. This results in a total of N = n,,, X n, X n, training sequences. We report that
N =400, 000 served sufficient from the modulus values considered in this work.

Next, we examine the effect of training dataset composition (1, 74, n.) on the performance. Figure 12 shows the test
accuracy primarily depends on n, and marginally on n, and n.. Furthermore, we found that n,,, 2 myes/4 yields good
generalization performance (result not shown here). Based on this relationship and our target total number of training

examples N, we sample n, = n. = m‘g 71 values of multipliers and increments. Unless explicitly specified, we use these

parameter settings as the default configuration for all experiments.

A.2. Model Architecture Details

We consider GPT-style Transformers (Radford et al., 2019) with learnable positional embeddings and weight tying (Press &
Wolf, 2017). The model architecture is characterized by the number of blocks (depth), embedding dimension (dpoger), and
number of attention heads (npeaqs). For most experiments, we use GELU activations, except in Section 4, where we use
ReLU activations for better interpretability.

A.3. Training Details

We train the models with Cross-entropy loss using AdamW optimizer (Loshchilov & Hutter, 2019) with momentum
hyperparameters 51 = 0.9 and 52 = 0.99. We implement a linear learning rate warmup over the first 2048 steps with an
initial learning rate of zero and the target learning rate ). By default, all experiments employ a batch size of 256. Weight
decay is only applied to non-bias parameters.

In the unseen modulus case, we observed that both the optimal target learning rate 7 and weight decay strength A

12



(How) Can Transformers Predict Pseudo-Random Numbers?
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Figure 13. Heatmap of test accuracy of a 6 layer Transformer with learning rate and weight decay as the axes. As the modulus is increased
from 1024 to 16, 384 the range of hyperparameters resulting in reasonable accuracy becomes narrow.

are highly sensitive to minute changes in training dataset properties (modulus ms, number of LCG parameters n,,,
ng, Ne and total number of examples V) and architectural changes (depth and embedding dimension). To determine
the optimal hyperpamraters, we scan the learning rates n € {3e-05, 1e-04, 3e-04, 1e-03} and weight decay strengths
A € {0.01,0.1,1.0, 3.0}.

A 4. Training Cost

In Figure 10, the training of the m = 232 model was conducted using four NVIDIA A100 GPUs, requiring a total of 21.82
hours. The m = 2'6 model completed training in 4.83 hours under the same hardware setup. Despite having the same
model size, the increased context length in the m = 232 model led to a significantly higher computational cost.

In Figure 11, both models were trained on a single NVIDIA H100 GPU for 22 hours.

A.5. Hyperparameter Space Shrinking with increasing modulus

We also report a surprising phenomenon in the unseen modulus case, which we refer to. as the ‘hyperparameter space
shrinking.” As we increase the test modulus ms while keeping the model architecture fixed, we observe that the optimal
learning rate (1) and weight decay strength (\) shift significantly. Moreover, the range of these hyperparameter values that
yield reasonable performance becomes increasingly narrow. Figure 13 shows this result for a 6 layer Transformer.

B. Fixed Modules Training Results

For the FM case, we find that a single attention head in one layer is sufficient to solve the task when the modulus is not a
prime number. In Figure 14, we present the model’s training loss and performance across training steps for m = 2048.
Notably, panels (c, f) reveal a significant disparity between training and test loss, indicating a grokking transition during the
training process. Similarly, we plot in Figure 15 for similar curves for m = 7776, where all curves are qualitatively the
same.

C. Prime Moduli

In the FM setting, when m is a prime number, the task becomes much harder. Since there are no digit-wise periodic patterns,
the model cannot perform the algorithm described in Section 4.2. In Figure 16, we trained two identical models to learn
m = 2039 and m = 2048, and we observe that the task with m = 2039 cannot be learned within the same number of
training steps. Note that to rule out potential constraints from model capability, we used depth 2 models (as oppposed to
depth 1 in the main text) in both cases.

In the UM setting, the model exhibits similar test performance on sequences with prime m and sequences with m as a power
of two, as shown in Figure 17. We hypothesize that training on a diverse set of moduli helps the model rely less on the digit
patterns and instead focus on more generalizable structure.
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D. Critical Depth for the Unseen Modulus Task

This section analyzes the depth and embedding dimension requirements for successfully training a Transformer on the
unseen modulus task. The experimental details are the same as described in Appendix A.

We varied depths € {2, 3,4, 6,8} and embedding dimensions in dyegel € {512, 768, 1024, 1280}, with the head dimension
fixed to dheag = 128. For each depth and width, we scanned learning rates 1 € {3e-05, le-04, 3e-04, 1e-03} and weight
decay strengths A € {0.01,0.1, 1.0, 3.0} to identify the optimal hyperparameters. We report that the optimal learning rate
and weight decay strength heavily vary with depth, embedding dimension, and training dataset. For mey, = {1024,4096},
the models were trained for 7" = 100, 000 steps, while for me,, = 16,384, the models required a longer training for
T = 200, 000 steps.

Figure 18 shows the test accuracy heatmaps with depth and embedding dimensions as the two axes. These results demonstrate
that a minimum depth of 3 is required to learn the LCG sequence prediction task, with a marginal dependence on embedding
dimension. This suggests the unseen modulus task requires a minimal computational depth of three to capture the underlying
structure of LCGs.

14



(How) Can Transformers Predict Pseudo-Random Numbers?

Test Acc vs Number Index Train Acc vs Number Index Training Loss Over Time
1.0 1.0 81
a \
0.8 0.8 o 61
o) 0.61 3 § 51
[ —— m = 2039 (T=2038) © 0.6 — m = 2039 o4 ] —— m = 2039
3 3 =
o | m = 2048 (T=2048) 2 m = 2048 < —— m = 2048
g 0.4 &, 0.4 @ 34
=24
0.2 0.2 1
0.0 0.01 01
0 50 100 150 200 250 0 50 100 150 200 250 0 10000 20000 30000 40000 50000
Number Index Number Index Training Steps
(a) Test Accuracy (b) Training Accuracy (c) Training Loss

Figure 16. FM: Comparison between m = 2039 (prime) and m = 2048 (power-of-two), with both models trained for 50,000 steps. Each
model has depth 2 and dmodel = 1024. The test set consists of sequences with the same periods, while the training set includes arbitrary
multipliers not present in the test set.
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was trained for 100,000 steps on a dataset consisting of 262,144 sequences with 512 distinct training moduli not present in the test set.
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Figure 18. Test accuracy heatmaps of with depth and embedding dimensions as the two axes.

E. Training Time Interpretability

In this section, we examine the order in which training sequences with different periods are learned during training. For this
experiment, we consider a six-layer Transformer with 4 heads and an embedding dimension of 768. For this experiment, we
generate sequences of length 512 using 128 unseen moduli and 128 values of a and ¢ each. The model is trained with Adam
hyperparameters: 7 = 3 x 1074 8; = 0.9, 2 = 0.99 and weight decay strength A = 1.0.

Figure 19(left) compares the training accuracy of sequences with different periods relative to the context length 512. We
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Figure 19. (left) Comparison of the training accuracy of sequences with different periods relative to the context length 512, (center)
Accuracy when the model is only trained on sequences with period < 512, (right) Accuracy when the model is trained on sequences with
period > 512.

observe that sequences with period < 512 are memorized early in training, while the accuracy of long-period sequences
coincides with the test accuracy. Next, we perform two more experiments by training the model on datasets consisting of
(1) sequences with period < 256, and (2) sequences with period > 512. Figure 19(center, right) show the results of these
experiments. The model fails to generalize when trained only on low-period sequences while training only on long-period
sequences eliminates grokking.

F. LCG Properties
F.1. The period of the lower k-th bit when m is power of 2

In this section, we show that for a sequence of period 7,,, = m = 2X, the k-th lowest digit has a period of 2* along the
sequence. Consider an LCG sequence:

ri41 = (axy +¢) mod m, (6)

where m is a power of 2, m and c are coprime and a — 1 is divisible by 4. The period of sequence z; is m (Hull & Dobell,
1962). The lower k-th bits of x; is given by:

2tk — Rtk—1
bt,k = T’ @)

where 2, ;, = x; mod 2k Therefore, if 2zt has a period of 2k then the lower k bits also have a period of 2k Below, we
show that z; ; has a period of 2.

For an integer M;, we can can re-write x; as:
k
Tt = 2tk + Mt2 . (8)

Next, we substitute Equation (6) into the definition of z;41 j:

k
Zt+1,k = Tr41  mod 27,

= [(az; + ¢) mod m] mod 2*.. )

As m is divisble by 2, this simplifies to:

Zev1k = (azep +¢) mod 2F,
= (azy +aM;2¥ +¢) mod 2,
= (azp +¢) mod 2% (10)

Therefore, z; 3, follows its own LCG recurrence with the same a and c but with a reduced modulus 2k Because 2* and ¢ are
coprime and a — 1 is divisible by 4, the period of z,, is 2¥. Thus, the period of the lower  bits is 2%.
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Since zy, ; has period 2k and Zn,k—1 has period 2k=1 the period of by, 1, is 2k,

F.2. Derivation of Equation (4)

We now derive Equation (4) of the main text:

w 0 1 wi—1
remodp, ! = 0 0sP; + Q1D F ot Qw—1,6 D s

where a; 1 € {0,1,...,p; — 1} are base-p; digits. When the period of z; is m, each digit 4, has a period of pi’.
Consider an LCG sequence:
Zir1 = (axy +¢) mod m, (11)

where m has a prime factorization m = p{"'py? - - - pg?, m and c are coprime, a — 1 is divisible by all prime factors of m

and a — 1 is divisible by 4 if m is divisible by 4 (Hull & Dobell, 1962).

Consider the residulas R; ; = x; mod p;"*, where i € {1...¢}. We have:
xy = Ry + Mz‘,tp;ui» (12)
where M, ; is an integer.
Substituting Equations (11) and (12) into the definition of R; ;4 1:
Rii41 = x4y mod p;”,
= [(az; +¢) mod m] mod p;™,
= (ax¢ +¢) mod p'f‘“
= (aR;¢ + aM;p;” +c) mod p;",
= (aR;; +¢) mod p;". (13)

Next we consider z; j ;, which is the lower k base-p; digits of R; ;:
Zike = Riz mod pf. (14)
Similarly, the recurrence of z; i, can be simplied as:
Zikit1 = Rigy1 mod pF,
=[(aRi¢ +c) mod p¥] mod pf,
= (aR;;+¢) mod Pk,
= (azi k¢t +c¢) mod pr. (15)

2; .+ follows an LCG recurrence with the same @ and c and a reduced modulus p?. Because p? and c are coprime and a — 1
is divisible by p;, the period of z; i, ; is p¥.

@ 1.+, which is the lower k-th base-p; digits of y; ¢, can be written as:

Zikt — Rik—1,t
ai,k,t = k—1 . (16)
p;

Since z; ¢ has period p¥, the period of a; . ; is p¥.

G. Fixed Modulus Interpretability

In this subsection, we show additional results on the model’s behavior on the FM task.
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Figure 20. (m = 2048,] = 1, nhead = 1, dmodel = 768) Per-digit test accuracies in binary representation, with attention masking (at
inference time). m = 2048 = 21, depth=1, nneads = 1, dmodel = 768, averaged over a, c and initial seeds. (a) For each query, only the
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Figure 24. Projections along Top 6 principal components of the embedding matrix, for m = 512, depth=1, nheads = 1, dmodel = 768.
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Figure 25. Projections along Top 6 principal components of the embedding matrix, for m = 7776, depth=1, heads = 1, dmoder = 768.
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H. Unseen Modulus Interpretability
H.1. Extra PCA plots for first layer heads

We present additional PCA analyses of attention heads shown in Figure 8, examining PCA (H ")[:, ¢, :]) for each head h
across various combinations of a, ¢, g, Mtest, and position ¢. The results are depicted in Figure 27, where we include two
additional first-layer heads (heads 2 and 3) that are responsible for performing operations related to modulo 5. Notably, with
different choices of a, ¢, myes¢ and ¢ compared to Figure 8 (al, bl, cl), the clustering behavior remains unchanged.

Note the emergence of attention heads dedicated to processing modulo 2, 3, 5, and 7 can likely be attributed to the prevalence
of these prime factors in the training set.
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Figure 27. PCA analysis of first-layer heads. Although the ordering of numbers varies, the grouping behavior discussed in Section 4.3
remains invariant to changes in a, ¢, m, xo, and ¢. Note that the last head is the head that appears in Figure 9, which does not exhibit a
strong grouping bias.

H.2. Pruning heads corresponding to irrelevant prime factors

To further validate our findings from Figure 8 in Section 4.3 regarding the correlation between attention heads and digit-wise
accuracy, we conduct additional pruning experiments. The results of these experiments are presented in Figures 28 and 29.
H.3. Patching other heads

In Figure 30, we present patching experiments for heads not previously shown in Figure 9. We focus only on selected
heads where patching significantly affects predictions. Notably, none of these cases exhibit qualitative changes stemming
from modulus alterations, further supporting our assertion that the head shown in Figure 9 is specifically responsible for
estimating Mmyes.
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Figure 28. Per-digit accuracy for mest = 2048 after pruning specific attention heads. (a) Results from the same model used in Section 4.3,
identical to Figure 8 (b2); (b) Performance after pruning the attention head responsible for grouping numbers by their values modulo 3,
which is irrelevant for solving sequences with myest (containing only the prime factor 2). After pruning, the model’s performance shows
marginal improvement for specific early bits at lower token positions; (c) Performance after pruning the attention head responsible for
grouping numbers by their values modulo 14. The model’s performance on my.st decreases significantly, as this head partially contributes

to processing relevant prime factors. However, since the primary head responsible for binary representation remains intact, the model
maintains partial functionality.
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Figure 29. Per-digit accuracy for myesy = 2352 after pruning specific attention heads. (a) Results from the same model used in Section 4.3,
identical to Figure 8 (b2); (b) Performance after pruning the attention head responsible for grouping numbers by their values modulo 3,
which is relevant for one specific digit in this case. After pruning, the model’s performance shows a clear degradation, with the strongest
one happening exactly at the digit corresponding to modulo 3 (c) Performance after pruning the attention head responsible for grouping
numbers by their values modulo 2. The model’s performance on mtcs; got obliterated, as there are many base-2 digits in the RNS
representation of Mmyest in this case.

H.4. In-accurate estimation of m; .

From the cosine-similarity panel in Figure 9, we observe that the model’s estimation approximates the target myes; = 2048.
However, detailed analysis reveals that the highest cosine-similarity occurs at mes; = 2033 = 19 - 107, with neighboring
values exhibiting similarly high cosine-similarity values. If we assume mest represents the model’s internal belief, then
the prime representation would consist solely of powers of 19 and 107. Such a representation can only produce periodic
structures for the k-th bit of a binary number when r = lem(19, 2F). Consequently, patterns before reaching that period
would appear random in this representation, providing a weaker signal compared to the correct representation. This explains
why the model preferentially selects binary representation for lower bits when myes; = 2048.

For higher bits, the low-bit representation can be determined up to 2¥ bits through copying. If the model utilizes this
information in later stages, the precision of meg; can be drastically improved. Specifically, when | ms;/ 2’“] = | Mtest/ 2’“| s
the model can identify the correct representation as long as [Myest — Mest| < 2k This argument can be extended to any
other composite myes;. Note that this argument is hypothetical; further proof of this mechanism remains in future work.
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Figure 30. Patching experiments following the setting of Figure 9 in the main text. None of these heads, after patching, make the model
believe that the modulus is close to mpatch-

H.S. Evidence for Step iii

In Figure 31, we present attention patterns and token distance statistics for a selected attention head in later layers, with
the same model as the one used in Section 4.3. The token distances are measured by the spacing between keys with top-4
attention weights for a given query. Our analysis reveals that the model develops a head capable of dynamically adjusting
their lookback distance for computations based on myes;, Which we interpret as evidence for step iii of the algorithm
proposed in Section 4.3.
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Figure 31. Attention patterns and token distance statistics for layer 2, head 3 of the model analyzed in Section 4.3. (al, bl) Results for
a sequence with mest = 2048, a = 5, and ¢ = 31. The statistics reveal that the model consistently looks back at distances that are
multiples of 4, which divides m¢es¢ and enables the correct copy behavior. (a2, b2) Results for a sequence with myest = 2352, a = 85,
and ¢ = 5. In contrast to panels (al, b1), the same attention head now consistently looks back at distances that are multiples of 14, which
allows the model to copy lower digits from the context. This adaptive behavior demonstrates that the model has acquired the ability
to dynamically adjust its lookback distance by r iterations to copy the lower digits and leave the higher digits to the later layers for
computation.
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I. Scaling Up the Modulus
I.1. Base-b tokenization

To convert an integer x to base b with the least significant digit (LSD) first, repeatedly divide x by b, storing remainders:

dp =2 modb, x=|z/b]. (17)

Stop when x = 0. The sequence (do, ds, . . . ) is the base-b representation in LSD-first order.

Example: Converting x = 3, 214, 748, 365 to base 256:

3,214,748, 365 + 256 = 12,557,610 remainder 205, dy = 205,
12,557,610 + 256 = 49,053 remainder 42, dy = 42,
49,053 + 256 = 191 remainder 157, dy = 157,
191 + 256 = 0 remainder 191, d3 = 191.

The final LSD-first representation consists of four tokens:

(205,42,157,191)256.
Each token is then one-hot encoded into a b-dimensional vector, where only the index corresponding to the token value is set
to 1. These one-hot vectors are then fed into a token embedding layer with an embedding dimension of d,,,oqe; = 1024.
I.2. Abacas Embeddings

The positional embedding for the j-th lower digit of the i-th number in the sequence is defined as:

PosEmbed(T} ;) = Fing (i) + Baigit (j) (18)

where T; ; represents the token corresponding to the j-th digit of the i-th integer.

* Eine(i), Eaigit(J) € Rmodl are Jearnable embeddings.
* Ein(7) encodes the integer’s position in the sequence.

* Edigit(j) encodes the digit’s relative position within the integer.

This embedding scheme ensures that each token captures both the integer’s global position and the byte’s local position.
Figure 32 provides a visualization of base-b tokenization and abacus embedding.

1.3. Fixed Modulus

For each modulus m = 2%, where k € [16, 32], we train a 2-layer GPT model with an embedding dimension of 1024 and a
vocabulary size 256. The train set consists of n, = 1024 multipliers and n. = 1024 increments, selected via the Hull-Dobell
theorem. One LCG sequence of length 512 is included in the train set for each (a, ¢) pair, resulting in a total training set size
of ng, x n. = 1,048, 576. For each modulus, the model is trained for 200,000 steps with a batch size of 512. The context
length is 512x the digit length of m in the byte representation —1. For m = 232, the digit length in byte representation is 4;
therefore, the context length is 2047. Training was performed using 4 A100 GPUs over a total duration of 21.82 hours. For
m = 65536, the digit length in byte representation is 2, resulting in a context length of 1023, with training taking 4.83 hours.
For each modulus, the test set includes 512 unseen a values and 64 unseen c values selected via the Hull-Dobell theorem.

The model may converge to different solutions depending on two random seeds: one for model initialization and batch
shuffling, and another for dataset generation. Figure 35 shows the median performance across five runs, with the shaded
region representing the range between the minimum and maximum values. For larger moduli, not all models successfully
find a solution that achieves 100% test accuracy.
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Figure 32. Visualization of base-b tokenization and abacus embeddings. Abacus embedding 1 is shared by all the digits within the integer,
while Abacus embedding 2 varies within the digit but is shared by all integers.
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Figure 33. Test accuracy vs. Number index for m = 22°. First Row: Three models trained on the same dataset, each using a unique
PyTorch random seed that controls model initialization and batch shuffling. Second Row: Three models trained on different datasets, with
each dataset generated using a unique random seed controlling NumPy randomness for sampling a, ¢, and xo. All models converged
to solutions that achieved and sustained 100% test accuracy, but differed in the number of in-context examples required to reach this
performance.
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Figure 34. Test accuracy vs Number index for m = 232, First Row: Three models trained on the same dataset, each using a unique
PyTorch random seed that controls model initialization and batch shuffling. Second Row: Three models trained on different datasets, with

each generated using a unique random seed controlling NumPy randomness for sampling a, ¢, and xo. Only one of the five models found

a solution that achieved and sustained 100% test accuracy.
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Figure 35. Median number of in-context sequence elements required to achieve 100% test accuracy across five runs. The shaded region
represents the min-max range.

1.4. Unseen Modulus

We train a 6-layer GPT model on a dataset that comprises n,, = 32, 768 moduli, with n, = 128 training a values and
n. = 1 training c values per modulus. This results in a total of n,, X n, X n. = 4,194, 304 sequences, each of length
512 in the training set. In Figure 36a, where the tokenization base is 256, 1024 < myyin < 65536. In Figure 36b, where
the tokenization base is 243, 1024 < Mmyain < 59049. Multipliers are selected based on the Hull-Dobell theorem when
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sufficient qualifying a values are available; otherwise, random a values are used to ensure 128 multipliers for each modulus.
The models with approximately 76M parameters were trained on 16 million sequences over 400,000 steps, using a batch
size of 128 on a single H100 GPU for 22.62 hours. Because LCGs are typically defined for moduli that are powers of prime
numbers, the model is tested on moduli that are powers of the primes 2, 3, 5, and 7. The test set consists of 512 unseen a
values and 64 unseen c values selected via the Hull-Dobell theorem for each test modulus.

Test performance is influenced by the tokenization base, exhibiting a bias toward moduli that share the same base as the
tokenization method. For instance, in Figure 36 (a) when using a byte-level representation, the model achieves better
performance on moduli mes; = 2F compared to mies; = 3%, 5%, or 7. As contrasted with Figure 36 (b) where the
tokenization base is 243 = 3°, the model performs better on moduli m = 3*. This behavior is likely due to the property of
LCGs, where for moduli that are powers of a prime b, the lowest k-th digit exhibits a period of b*. Tokenization in such a
base highlights this periodic structure, making it more apparent and easier for the model to leverage during training and
prediction.
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Figure 36. Test accuracy vs Number index. In (a), the moduli 2048 and 16384 (blue curves) have the same root 2 as the tokenization base
256. The model performs better on these two moduli. In (b), the moduli 2178 and 19683 (orange curves) have the same root 3 as the
tokenization base 243. The model performs better on these two moduli.
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