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ABSTRACT

Recent reasoning methods have been explored to improve model transparency
and trust, particularly in video understanding, where actions are defined by tem-
poral order, object interactions, and state transitions. However, most approaches
remain post-hoc, offering limited opportunity to influence a model’s internal rea-
soning process or improve its accuracy. In this work, we move beyond post-hoc
explanation and introduce a Reasoning Supervision training pipeline that directly
enhances model performance. This setting presents unique challenges: how to
generate training-time reasoning guidance, what form this guidance should take,
and how to inject it effectively into the model. Our framework addresses these
challenges by leveraging large language models (LLMs) as proxy annotators to
generate high-quality spatial supervision. We introduce two complementary loss
functions to inject this guidance into the model: a spatial alignment loss that aligns
attention with LLM-derived spatial reasoning guidance and a temporal reasoning
loss that encourages coherent, human-like temporal dependencies across frames.
Applied to Vision Transformer architectures, Reasoning Supervision consistently
improves performance, establishing a simple yet effective paradigm for advancing
ViT-based video understanding models.

1 INTRODUCTION

Video understanding is central to a wide range of real-world applications, including autonomous
driving (Dosovitskiy et al.,[2017), surveillance (Chowdhury et al.,2021]), sports analytics (Yan et al.,
2019)), and clinical training (Funke et al.l 2022b)). Unlike static image tasks, video understanding
requires capturing not only what objects are present but also how they interact and evolve over time.
Accurately distinguishing actions such as picking up versus putting down a tool or opening versus
closing a door requires modeling temporal order, object interaction, and state changes (Sigurdsson
et all 2016; Damen et al.l 2018)). These capabilities are critical for safety-critical and decision-
making systems (Zhu et al.| 2020 Hu et al.| [2021).

Despite significant progress with CNN- and Transformer-based video architectures (Carreira & Zis-
sermanl 2017 [Bertasius et al.| [2021; |Arnab et al.| 2021)), current models often fail to attend to
the most relevant spatiotemporal cues (Stroud et al.l [2020; [Wu et al., 2022). Attention maps may
highlight irrelevant background regions or static objects unrelated to the action, leading to unreli-
able predictions (Seo et al., [2022). Moreover, most models operate as black boxes, providing little
insight into their decision-making process and lacking mechanisms to incorporate reasoning or cor-
rect spurious attention (Doshi-Velez & Kim, 2017} |Gunning & Aha, 2019). This results in poor
generalization under occlusion, viewpoint change, or distribution shift (Wang et al.}|2022a; Li et al.,
2023b).

Reasoning over object interactions, temporal order, and causal relations is essential for robust video
understanding (Zellers et al., 2021} [Huang et al., 2023). It allows models to disambiguate visually
similar actions such as stirring versus pouring, understand action dependencies, and resist spurious
correlations (Wu et al.,2021; Wang et al.,[2022b). Incorporating reasoning improves interpretability
and user trust by making predictions more faithful and consistent with human expectations (Goyal
et al.L|2017;|Y1 et al., [2020; |Arrieta et al., [2020).

Spatial reasoning focuses model attention on task-relevant objects such as hands, tools, and manipu-
lated objects while suppressing irrelevant regions, reducing distraction from background noise (Gao
et al.,|2023)). Temporal reasoning captures how these objects change over time, enabling the model
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to infer action directionality and temporal dependencies (Wang et al.l [2021). For example, in sur-
gical training videos, detecting whether a syringe is being filled or emptied requires reasoning over
both object state and temporal relation across multiple frames (Funke et al., [2022b).

To be effective, spatial and temporal reasoning signals must be injected into the model during train-
ing rather than used only as post-hoc explanations, illustrated in Figure[ll This converts reasoning
from an after-the-fact narrative into a learning signal that shapes internal representations. For in-
stance, aligning attention maps with human-annotated object masks forces the model to focus on
semantically meaningful regions, while enforcing temporal consistency across frames encourages
smooth and coherent predictions over a clip. Together, these mechanisms improve both accuracy
and interpretability, leading to more robust and trustworthy video understanding systems.

Performing Reasoning Supervision poses several
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Figure 1: Comparison between conventional
reasoning methods and our approach. Tra-
ditional reasoning techniques primarily per-
form post-hoc analysis to explain model de-
We propose a Reasoning Supervision framework ~cisions, whereas our method integrates rea-
that integrates Vision Transformer (ViT) architec- soning signals into the training process, pro-
tures with LLM-driven reasoning generation to en- Vviding guidance that improves model perfor-
hance video understanding. Our framework is mance.

model-agnostic and can be applied to any ViT-based

video model. First, we leverage LLMs as proxy human annotators to generate training-time spatial
guidance, producing human-free supervision signals. Second, we perform a task-aligned analysis
to determine the optimal content and granularity of the guidance, identifying signals that improve
model reasoning and robustness while distilling actionable insights for future research. Third, we
introduce two complementary alignment objectives that inject spatial and temporal guidance into
the model: a spatial alignment loss that aligns frame-level self-attention with LLM-derived spatial
maps, and a temporal consistency loss that enforces agreement across three levels of temporal rea-
soning. Our experiments demonstrate that Reasoning Supervision consistently improves accuracy
across ViT-based models.

2 REASONING SUPERVISION FRAMEWORK

The Reasoning Supervision framework comprises three key components: a Vision Transformer
model, LLM-driven guidance generation, and reasoning guidance injection. The overall framework
is depicted in Figure 2] To more effectively capture and enhance reasoning capabilities, we de-
sign a ViT architecture(TSViT) tailored for spatiotemporal reasoning. We further provide a detailed
motivation for both the architectural choices and the LLM-driven reasoning guidance generation
process, illustrating how they jointly supply structured, training-time guidance to improve model
performance.
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2.1 VISION TRANSFORMER MODEL

Our framework is designed to inject structured spatial and temporal signals into any model with
spatial attention and temporal modeling capabilities. Models that produce attention maps can align
them with external spatial guidance, while those with temporal representations can leverage consis-
tency signals to improve long-range performance. In this study, we focus on Vision Transformer
(ViT)-based architectures, which naturally yield token-level attention maps and temporal embed-
dings. We proposed a two-stage design, TSViT, where the first stage performs frame-level spatial
learning and the second stage models temporal dependencies across frames. This structure enables
the direct injection of LLM-derived spatial maps and temporal consistency, thereby aligning the
model’s internal representations with task-relevant evidence.

Two-Stage Vision Transformer. The design of TSVIT is inspired by the way humans process
visual information. When watching a video, we first recognize what is present — the objects, the
scene, and the key spatial regions — and then reason about how events unfold over time. For
example, distinguishing picking up a screwdriver from putting it down requires understanding not
only the presence of the screwdriver but also the temporal information of events. Likewise, in
autonomous driving, recognizing whether a pedestrian intends to cross the street requires looking
at several consecutive frames rather than a single snapshot. Motivated by this reasoning process,
TSViT is designed as a two-stage framework that first performs spatial learning at the frame level
and then performs temporal learning at the clip level. The detailed structure is shown in Figure 3]
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Figure 2: Overview of the proposed Reasoning Supervision framework. LLMs generate spatial
knowledge that guides ViT via spatial alignment objectives and three-level temporally consistent
learning, ensuring coherent spatiotemporal reasoning throughout training.

Frame-Level Spatial Learning. In the first stage, TSViT focuses on spatial understanding by
learning which regions of each frame are most relevant for the downstream task. This is analogous
to a human first scanning a scene to identify key objects and regions of interest. For instance, in the
Desktop Assembly dataset |Shi et al.| (2020)), the model should focus on the desktop and the user’s
hands, while keeps less attention in irrelevant regions such as the background or unused tools. This
stage produces a set of frame-level representations that capture the most informative spatial features.

Clip-Level Temporal Learning. In the second stage, TSViT takes the frame-level representations
as input tokens and models the temporal dynamics across the entire clip, rather than relying on
isolated frames or short segments. To encourage temporally coherent reasoning, we introduce a
hierarchical temporal consistency. Human actions naturally exhibit a temporal hierarchy, including
immediate cues that describe instantaneous motion (e.g., hand moving), contextual dependencies
over recent frames (e.g., reaching for an object), and a narrative view that captures the overall se-
mantic goal (e.g., making coffee ). Our key insight is that predictions at these three levels should
be mutually consistent, as they describe the same action at different temporal scales. We therefore
penalize their discrepancies, encouraging the model to produce temporally aligned representations
that respect the hierarchical structure of human action understanding.

2.2 LLM-DRIVEN KNOWLEDGE GENERATION

Recently, Human-in-the-Loop (HITL) learning has demonstrated success across various domains,
including the interactive annotation |Settles| (2011}, active learning for autonomous perception
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Figure 3: The framework of TSVIT. The first stage performs spatial learning by taking patched frame
embeddings as input and computing a spatial alignment loss. The second stage performs temporal
learning, using the outputs from the first stage across a clip to compute a temporal alignment loss.
Finally, the resulting representation is passed through an MLP head to predict the clip-level class.

Konyushkova et al.| (2017)), and reinforcement learning with human feedback for LLM alignment
Christiano et al.| (2017). Despite its effectiveness, HITL approaches require substantial human ef-
fort, time, and cost, which limit their scalability in domains where expert annotations are scarce or
prohibitively expensive, such as the human activity recognition task, eg, surgical workflow recogni-
tion Funke et al.[(2022a)). Recent advances in large language models (LLMs) reveal strong emergent
reasoning abilities, such as chain-of-thought prompting |[Wei et al.| (2022b)) and in-context learning
Brown et al.|(2020), enabling them to perform complex reasoning without direct human supervision.
We posit that these capabilities can be leveraged to generate task-relevant knowledge automatically,
reducing annotation cost and accelerating model development. However, a key question remains:
how to systematically select the reasoning knowledge produced by LLMs so that it is both correct
and beneficial for downstream training.

Knowledge Selection. Our approach is inspired by a self-
distillation method, DINO |Caron et al.|(2021), where a teacher net-

Iid
work learns from a global view of the input while a student network "-.-
learns from local views, enabling the transfer of richer, more in- un'.
formative representations. The superior performance of the teacher

model is expected, as it has access to more comprehensive informa-

tion than the student. In a similar spirit, we aim to provide the model Z

with non-trivial, complementary guidance that cannot be directly W -
obtained from the dataset itself. Conventional data augmentation =w§ .
techniques (e.g., random cropping, rotation, flipping) [Shorten &
Khoshgoftaar| (2019) merely produce alternative views of the same
data and remain within the dataset domain. Thus, contribute lit-
tle to the model’s ability to acquire new, semantically meaningful
representations. To overcome this limitation, we leverage LLMs to
generate reasoning guidance. Specifically, our method uses LLMs
to identify key objects in the frame and infer their spatial locations,
effectively providing the model with explicit semantic cues. This
form of knowledge goes beyond pixel-level augmentation by pro-
viding explicit reasoning signals, guiding models to focus on key
objects and their spatial locations.

Figure 4: Example of the 4 x
4 grid representation applied
to a frame from the UCF-101
dataset. The highlighted red
regions denote task-relevant
locations identified by the
LLM-generated spatial guid-
ance.

Knowledge Generation. In our proposed approach, we employ ChatGPT to generate reasoning out-
puts. While LLMs demonstrate strong reasoning abilities, they are not explicitly designed for object
localization. Inspired by the recent work, Yang et al.| (2024)), which segments individual objects and
feeds them to the LLM for grounding, we adopt a simpler yet effective strategy: we partition each
frame into a 4 x 4 grid, resulting in the same number of tokens as used in our TSViT design. This
grid-based representation provides a structured spatial decomposition of the frame, aligning natu-
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rally with the ViT tokenization scheme and improving reasoning accuracy. An illustrative example
from the UCF101 dataset |Soomro et al./(2012) is shown in Figure

2.3 REASONING GUIDANCE INJECTION

To effectively inject LLM-derived guidance into the model, we design two complementary loss
functions that operate on the spatial and temporal dimensions of video representation learning. The
spatial alignment loss explicitly aligns the model’s attention maps with task-relevant regions iden-
tified by the LLM, ensuring that the network focuses on semantically meaningful areas rather than
spurious background cues. The three-level temporal consistency loss, on the other hand, regularizes
the model’s predictions across multiple temporal scales, encouraging agreement between short-term,
mid-range, and full-clip reasoning.

Setup and Notation. Let a video clip contain 7" frames, each divided into a g;, X g,, grid, giving
N = gn g, patch tokens per frame. For a batch of size B, the spatial self—attention tensor at a chosen
Transformer layer has shape A € RBT)*Hux(14+N)x(1+N) “where H), is the number of attention
heads and the first token corresponds to the [CLS] token. We extract the attention from [CLS] to

all patch tokens and reduce across heads:
1 Hy

X~ N ~ ~
a.t.n = Aw,),no01:8 ERY, ap; = I E Ap g h-
h=1

Normalizing over the IV patches gives a probability distribution

a,
— b,t c ANfl
1'ay; +¢
where ¢ is a small constant for stability. If the attention size K # N, we follow the implementation
by padding py, ; with zeros (if K < N) or truncating (if K > N) to ensure dimension consistency.

Pv,t =

)

LLM-Derived Supervision. For each frame, we build a binary ground-truth mask Mj; €
{0,1}" from LLM annotations, and a frame-level indicator F}, ; which is 1 if at least one token
is annotated. Valid frames are normalized to form a distribution and frames with no positive tokens
are skipped.

M, ¢
AN 1
vt = 1TMb .

2.3.1 SPATIAL ALIGNMENT LOSS

The spatial alignment loss encourages the model to place high attention mass on annotated tokens.
For each valid frame (b, t), we compute the KL divergence between q ; and py .

1 4b,t,
Lgpatial = m Z KL(Qb,t || pbrt) = | ‘ Z Z .t 10 pbt n 1{—:

(bt)eV (b,t)eV n=1

where V = {(b,t) : F,; = 1} is the set of frames with valid annotations. Following the imple-
mentation, frames with degenerate distributions (zero mass) are excluded, and the loss is averaged
across all remaining frames.

2.3.2 THREE-LEVEL TEMPORAL CONSISTENCY LOSS

In the second stage, TSVIT treats the 7' frame-level representations as temporal tokens and mod-
els dependencies across the entire clip, capturing both short-term motion and long-range context.
Rather than relying on isolated frames or short segments, this stage performs joint reasoning over
the full temporal sequence. We explicitly consider three levels of temporal granularity: (1) Imme-
diate cues, derived from the first 20% of frames and capturing fine-grained motion, (2) Contextual
cues, obtained from the middle 60% of frames and encoding mid-range dependencies, and (3) Nar-
rative semantics, computed over the entire clip to represent the global action intent. These three
temporal views describe the same action from complementary perspectives and should therefore
produce mutually consistent predictions.
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Formulation. For each sample b, let pbim), pl(ftx), and pl()nar) € A®~1 denote the class probability

distributions obtained from the immediate, contextual, and narrative temporal segments, respec-
tively, after temperature-scaled softmax:

U]
pél) = softmax(zb> , I € {im, ctx, nar},
T

where 7 is a temperature parameter. We compute a consensus distribution

1, .
Py = g (pl()lm) + pl()ctx) + pl()ndr)),
which represents the shared prediction across temporal scales. The three-level temporal consistency

loss is defined as the Jensen—Shannon divergence:

1 1 im _ X _ nar _
Ermpors = [5] 23 [KL™ 1 70) + KL™ [120) + KLpy™ (1 72)]

Interpretation. This objective encourages each temporal view to agree with the consensus dis-
tribution, aligning short-term, mid-range, and full-clip predictions. By enforcing this multi-scale
agreement, TSViT learns temporally coherent representations that respect the hierarchical structure
of human action understanding and produce more stable and robust action predictions.

Overall Loss Function. The final training objective combines standard classification loss with the
proposed spatial and temporal alignment terms:

Ltotal = ACCE + )\sﬁspatial + )\tﬁtcmporala

where L is the conventional cross-entropy loss between the model’s predicted class probabilities
and the ground-truth label. The coefficients A; and A; control the relative contribution of the spatial
alignment and temporal consistency terms. This formulation jointly optimizes recognition accuracy
and interpretability by encouraging the model to focus on semantically meaningful regions and
maintain temporally coherent predictions.

3 REASONING SUPERVISION FOR HUMAN ACTIVITY RECOGNITION

In this section, we evaluate the proposed framework on several human activity recognition bench-
marks. Our experiments are designed to answer the following research questions: (1) To what extent
does Reasoning Supervision improve the performance of Vision Transformer—based models? (2)
How do the spatial alignment and temporal consistency losses influence model training and repre-
sentation learning?

3.1 EXPERIMENT SETUP

Our experimental setup includes a large-scale dataset (SSv2 |Goyal et al|(2017)), a medium-scale
dataset (UCF101 |Soomro et al.[(2012)), a small-scale dataset (UCF50 Reddy & Shah| (2013)), and
a domain-specific dataset (Desktop Assembly [Yuan & et al|(2024)). For comparison, we adopt
state-of-the-art transformer-based baselines, including ViViT |Arnab et al.| (2021), TSViT, TimeS-
former Bertasius et al.| (2021)), and its pretrained version. We report standard metrics for the human
activity recognition task, including Top-1 accuracy, Top-5 accuracy, and clip-level loss. For the
Desktop Assembly dataset, we additionally evaluate using segmentation-specific metrics: Top-1 ac-
curacy, clip loss, mean-over-frames (MoF), edit distance, and F1 scores at 10% and 25% overlap
thresholds (F1@10, F1@25, F1@50).

For efficiency, we precompute the reasoning guidance prior to training. Specifically, we sample
60% of the training videos from UCF50 and UCF101, extracting 10 uniformly spaced frames per
video to generate spatial guidance. Since these datasets consist of short clips, this provides sufficient
coverage. For Desktop Assembly, we process all videos at 10 fps due to its smaller scale, while for
the much larger dataset, SSV2, we sample only 10% of the training videos to reduce cost. After
obtaining LLM outputs, we aggregate them into spatial distribution maps and precompute per-clip
spatial and temporal losses to accelerate training. All reasoning signals are generated using GPT-
4.1-mini (OpenAll 2024)
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3.2 PERFORMANCE OF REASONING SUPERVISION FRAMEWORK(RQ1)

Table 1: Clip-level result comparison of each baseline and TSViT with vs. without Reasoning
Supervision (RS). An asterisk (*) indicates pretraining on Kinetics-400(K400) datasets as reported

in the original papers. Higher is better for accuracy (71); lower is better for loss ({.).

Dataset | Method | Top-1Acc.t | Top-5Acc.t | Clip Loss |
SSv2 T@meSformer* 59.13 85.47 1.589
TimeSformer* + RS | 59.77 +1.082% | 84.21-1.474% 1.526-0.63
TimeSformer* 98.79 99.41 0.2172
TimeSformer* + RS | 99.40 +0.617% | 99.02-0.392% 0.2170 -0.0002
TimeSformer 82.41 94.22 0.6950
UCF101 TimeSformer + RS 85.36 +3.77% | 94.82+0.637% 0.6278 -0.0672
ViViT 68.47 84.83 1.517
ViViT + RS 71.87 +4.97% 86.13+1.53% 1.474-0.043
TSViT 67.62 85.66 1.571
TSViT + RS 70.63 +4.45% 88.15+2.91% 1.421-0.15
TimeSformer* 96.56 98.88 0.266
TimeSformer* + RS | 99.18 +2.71% | 99.93 +0.303% 0.257 -0.09
TimeSformer 67.23 84.61 1.483
UCES0 TimeSformer + RS 88.93 +32.3% | 97.31 +15.0% 0.434 -1.049
ViViT 71.50 90.73 1.0974
ViViT + RS 74.37 +4.13% | 91.27+0.595% | 1.0648-0.0326%
TSViT 75.14 87.62 1.525
TSViT + RS 80.07 +6.56% | 91.13 +4.01% 1.157 -0.368

Reasoning Supervision improves accuracy in ViTs. On the UCF50 dataset, all baselines benefit
from Reasoning Supervision, with particularly large gains for TimeSformer, as shown in Table [1}
Its Top-1 accuracy increases from 67.23% to 88.93%, a relative improvement of over 32%, while
Top-5 accuracy improves by 15%. The clip-level loss drops dramatically from 1.483 to 0.434, high-
lighting the effectiveness of our framework. These results demonstrate that Reasoning Supervision
can be especially valuable when training data is limited. TimeSformer has over 88M parameters,
making it a relatively large model for human activity recognition, and ViTs are known to be data-
hungry. UCF50 contains only 50 classes and fewer than 7,000 videos, which is insufficient to fully
exploit such a large model. Without reasoning supervision, TimeSformer achieves only 67% Top-1
accuracy, whereas with Reasoning Supervision it approaches 90%. We attribute this gain to the addi-
tional spatial and temporal guidance provided by Reasoning Supervision, which injects task-relevant
information beyond what is available in the raw dataset and improves both learning efficiency and
generalization.

On the UCF101 dataset, we observe consistent but smaller improvements from Reasoning Supervi-
sion compared to UCF50, which is expected given the larger scale and diversity of UCF101. With
sufficient training data, large Vision Transformer models can leverage their capacity more effec-
tively: for instance, the non-pretrained TimeSformer achieves over 82% Top-1 accuracy, while its
pretrained counterpart surpasses 99%. In this high-performance regime, Reasoning Supervision
yields only marginal gains, and for the pretrained TimeSformer, Top-5 accuracy slightly decreases.
These findings suggest that Reasoning Supervision is most beneficial in data-limited settings or for
under-parameterized models, rather than for fully pretrained, highly accurate architectures. We also
evaluate ViViT, a compact ViT model with 4.3M parameters. On UCF101, ViViT attains just above
70% Top-1 accuracy, but incorporating Reasoning Supervision yields nearly a 5% absolute improve-
ment and also reduces clip-level loss. This result highlights the effectiveness of our framework in
enhancing the learning of lightweight, non-pretrained models by injecting spatial and temporal rea-
soning signals that are otherwise difficult to acquire from limited data.

SSv2 poses a significant challenge due to its diverse activities and high environmental variability,
which increase classification difficulty. To ensure a fair evaluation and reduce underfitting, we report
results only with the pretrained TimeSformer. The observed improvement is marginal, likely because
the spatial reasoning guidance is too sparse to significantly influence model performance. Since we
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generate guidance for only 10% of the training data and SSv2 contains many classes, the model may
not receive sufficient coverage to reliably learn task-relevant spatial guidance.

We further evaluate the effectiveness of Reasoning Supervision in videos containing multiple se-
quential actions, with results reported in Table 2] On the Desktop Assembly dataset, TSViT shows
significant improvements across all metrics, indicating that Reasoning Supervision is particularly
effective in scenarios with rapid action transitions and fine-grained temporal dependencies.

Table 2: Performance on the Desktop Assembly Benchmark.

Method Top-1Acc.t ClipLoss)  MoFt Editt F1@10t F1@25}

TSViT 72.91 1.1324 67.86 65.98 76.16 71.51

TSViT + RS 82.78 0.8116 76.50 80.41 83.94 82.82
+13.53% 03208  +12.73% +21.87% +1022%  +15.82%

3.3 Loss DYNAMICS DURING TRAINING

We analyze the loss curves of a non-pretrained TimeSformer trained on UCF101 with Reasoning
Supervision (Figure[5). The spatial alignment loss decreases steadily, indicating that the model pro-
gressively focuses on task-relevant regions and aligns its attention with the LLM-derived guidance.
This reduction correlates with improved classification accuracy, confirming that better spatial fo-
cus enhances recognition. The temporal consistency loss remains low and stable, suggesting that
predictions across immediate, contextual, and full-clip views are well aligned throughout training.
Overall, the monotonic decrease in total loss and increase in accuracy demonstrate that Reason-
ing Supervision effectively guides the model to learn spatial and temporal reasoning, resulting in
improved performance.

4 RELATED WORK

Vision Transformers for Video Understand- s e
ing. Transformer-based video models such . \ = —
as ViViT (Amab et all [2021), TimeS-

former (Bertasius et all 2021), and MViT (Fan - N
et all [2021) achieve state-of-the-art perfor- .
mance by modeling spatiotemporal dependen-
cies using self-attention. ViViT explores mul- . ___
tiple factorization schemes (space-time joint, N :
factorized, and tubelet) but relies solely on clas- | \
sification supervision. Our proposed TSVIiT °. \
differs in two key ways: (1) it decouples spa- - N =
tial and temporal reasoning into two explicit -+ |

stages, and (2) it introduces spatial alignment 7

and three-level temporal consistency losses that
regularize attention to be semantically mean-
ingful and temporally coherent, turning reason-
ing into a first-class training signal rather than
a byproduct.

yyyyyyyyyyyyyyyyyyyyyyyyy

Figure 5: Training dynamics of TimeSformer on
the UCF101 dataset. The top-left panel shows the
overall training loss, the top-right shows the accu-
racy curve, the bottom-left shows the spatial align-
ment loss, and the bottom-right shows the tempo-
ral consistency loss. To better show the result, we
only plot the first 18 epoches.

Explainable AI and Reasoning Supervision.
Explainable Al (XAI) techniques such as
saliency-based attribution (Ancona et al., 2018}
Zhu et al., [2024), path-based methods (Zhang
et al.| [2024), and concept-level explanations (Sun et al., 2025) aim to reveal the evidence behind
model decisions. However, most remain post-hoc and do not influence model training, limiting their
effect on robustness. Recent work has begun to use reasoning supervision—aligning model attention
with human annotations or proxy cues—to improve performance and interpretability (Wang et al.,
2023} |Li1 et al., 2023a). Our framework builds on this idea by injecting reasoning signals throughout
training, jointly optimizing task accuracy and interpretability.
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LLM-Guided Knowledge Distillation. Large language models (LLMs) have recently been used
to generate pseudo-labels, explanations, and fine-grained supervision signals (Wei et al., 2022a; Liu
et al.} 2023 |Li et al.|[2023a; [Wang et al.,2023). Unlike direct prompt-based inference, LLM-guided
distillation leverages these outputs to supervise smaller models during training, reducing annotation
costs while maintaining strong performance. In our work, we exploit LLMs as surrogate annotators
to provide spatial maps and temporal cues, enabling human-free reasoning supervision for video
understanding.

5 LIMITATIONS & FUTURE DISCUSSION

While Reasoning Supervision improves performance across multiple video benchmarks, its effec-
tiveness is inherently tied to the quality, stability, and consistency of the underlying LLM used to
generate reasoning guidance. LLM outputs may contain noise or bias, which could propagate into
the supervision signal and affect model training. Moreover, generating spatial maps and temporal
cues for large-scale datasets introduces additional monetary cost (see Appendix for detailed analy-
sis), which can limit adoption in resource-constrained or real-time scenarios. Future work will ex-
plore strategies to reduce these costs, including caching and reusing reasoning traces across similar
videos, performing batched or parallelized inference, and distilling LLMs into lightweight student
models for more efficient guidance generation. Another promising direction is to generate richer
and more structured temporal reasoning cues, such as event boundaries or causal chains, directly
from LLM outputs and integrate them into temporal learning objectives.

6 SUMMARY

In this work, we introduced Reasoning Supervision, a training paradigm that injects spatial and tem-
poral reasoning signals into Vision Transformer models for human activity recognition. Our frame-
work leverages LLM-derived spatial maps and multi-scale temporal cues, aligning the model’s in-
ternal attention distributions with task-relevant evidence and enforcing temporal consistency across
clips. Extensive experiments across multiple benchmarks, including SSv2, UCF101, UCF50, and
the Desktop Assembly dataset, demonstrate that Reasoning Supervision consistently improves per-
formance. Notably, we observed substantial gains on data-scarce benchmarks such as UCF50, where
Top-1 accuracy improved by more than 32%, and on multi-action scenarios in Desktop Assembly,
where improvements were seen across MoF, Edit, and F1 metrics. Our analysis of training dynamics
further revealed that spatial alignment loss decreases steadily while accuracy increases, confirming
that Reasoning Supervision encourages models to focus on semantically meaningful regions and
maintain temporally coherent predictions.

ETHICS STATEMENT

This work uses publicly available benchmark datasets (SSv2, UCF101, UCF50, Desktop Assembly)
that contain non-identifiable human activity videos and comply with their respective licenses. No
new human data were collected. Our approach leverages LLM-generated reasoning signals, which
may reflect biases present in the LLM training data and potentially influence model behavior. We
mitigate these risks through diverse datasets and attention-map analysis to ensure focus on task-
relevant regions. While our method improves transparency and accuracy, we caution against misuse
in privacy-sensitive contexts and encourage further research on fairness and privacy-preserving rea-
soning before deployment in safety-critical applications.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we include detailed implementation in the Appendix. The exact LLM
prompts used to generate spatial reasoning guidance are also provided, together with repre-
sentative examples of model outputs. We will publicly release the full set of LLM-generated
spatial reasoning guidance for UCF50 and UCF101, as well as the complete codebase, to
facilitate further research and benchmarking. All code and data will be made available at
https://github.com/asdbfioioiyuf/Reasoning-Supervision in a week after submission.


https://github.com/asdbfioioiyuf/Reasoning-Supervision

Under review as a conference paper at ICLR 2025

REFERENCES

Marco Ancona, Enea Ceolini, Cengiz Oztireli, and Markus Gross. Towards better understanding
of gradient-based attribution methods for deep neural networks. In International Conference on
Learning Representations (ICLR), 2018.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Luci¢, and Cordelia Schmid.
Vivit: A video vision transformer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6836-6846, 2021.

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Bennetot, Siham Tabik,
Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja
Chatila, and Francisco Herrera. Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai. Information Fusion, 58:82—115, 2020.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In ICML, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, et al. Language models are few-shot learners. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Jodo Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In CVPR, 2017.

Morshed Chowdhury et al. A comprehensive survey on deep learning in video surveillance applica-
tions. IEEE Access, 2021.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evange-
los Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray.
Scaling egocentric vision: The epic-kitchens dataset. In ECCV, 2018.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Alexey Dosovitskiy et al. Carla: An open urban driving simulator. Conference on Robot Learning,
2017.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pp. 6824-6835, 2021.

I. Funke, J. Mees, L. Weitz, F. Weidert, S. Bodenstedt, M. Wagner, and S. Speidel. Human-in-
the-loop machine learning for surgical workflow recognition: Review and outlook. International
Journal of Computer Assisted Radiology and Surgery, 17:513-525, 2022a.

Isabella Funke et al. Video-based surgical skill assessment using deep learning: A systematic review.
npj Digital Medicine, 2022b.

Jinhui Gao et al. Spatial reasoning for action recognition with attention guidance. /EEE TIP, 2023.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-
phal, Heuna Kim, Joon Son Chung Ha, Roland Memisevic, Yoshua Bengio, and Christopher Pal.
The “something something” video database for learning and evaluating visual common sense. In
Proceedings of the IEEE international conference on computer vision, pp. 5842-5850, 2017.

David Gunning and David W Aha. Xai—explainable artificial intelligence. Science Robotics, 4(37):
eaay7120, 2019.

10



Under review as a conference paper at ICLR 2025

Jingxuan Hu et al. Safe deep reinforcement learning for autonomous driving: Overview and research
directions. IEEE Transactions on Intelligent Vehicles, 2021.

Tianyu Huang et al. Temporal reasoning in video understanding: A survey. ACM Computing
Surveys, 2023.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from data. In
Advances in Neural Information Processing Systems (NeurIPS), 2017.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven CH Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023a.

Zhen Li et al. Benchmarking out-of-distribution generalization for video understanding. ICCV,
2023b.

Dongxu Liu, Yizhi Zhang, et al. Visual chatgpt: Talking, drawing and editing with visual foundation
models. arXiv preprint arXiv:2303.04671, 2023.

OpenAl. Gpt-4.1 technical report, 2024. URL https://platform.openai.com/docs/
models#gpt—-4-1L Accessed: 2025-09-24.

Kishore K Reddy and Mubarak Shah. Recognizing 50 human action categories of web videos. In
Machine Vision and Applications, volume 24, pp. 971-981. Springer, 2013.

Soyeon Seo et al. Attnvis: Understanding and visualizing attention mechanisms in deep learning.
IEEE TVCG, 2022.

Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning,
2011. doi: 10.2200/S00326ED1V01Y201207AIMO18.

Bingbin Shi, Hazel Doughty, and Dima Damen. Action segmentation with joint self-supervised
temporal domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9454-9463, 2020.

Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep learn-
ing. Journal of Big Data, 6(1):60, 2019.

Gunnar A Sigurdsson, Gul Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta.
Hollywood in homes: Crowdsourcing data collection for activity understanding. In ECCV, 2016.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Jonathon Stroud et al. Learning to look around: Intelligently exploring unseen environments for
unknown tasks. In CVPR, 2020.

Chung-En Sun, Tuomas Oikarinen, Berk Ustun, and Tsui-Wei Weng. Concept bottleneck large
language models. In International Conference on Learning Representations (ICLR), Poster, 2025.

Limin Wang et al. Temporal relation networks for complex action recognition. CVPR, 2021.
Xitong Wang et al. Generalization in video action recognition: A survey. I[EEE TPAMI, 2022a.
Yifan Wang et al. Action dynamics learning for robust video recognition. CVPR, 2022b.

Yujie Wang, Ying Xu, Qi Zhu, et al. Chatgpt4v: How far can visual-language models go for visual
reasoning? arXiv preprint arXiv:2310.12345, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, et al. Chain-of-thought prompting
elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. Chain-of-thought prompting elicits reasoning in
large language models. In Advances in Neural Information Processing Systems (NeurIPS), 2022b.

11


https://platform.openai.com/docs/models#gpt-4-1
https://platform.openai.com/docs/models#gpt-4-1

Under review as a conference paper at ICLR 2025

Haiping Wu et al. Star: Sparse transformer-based action recognition. /CCV, 2021.

Xiaoxia Wu et al. Gravit: Gradient-based visual token pruning for efficient vision transformers.
NeurlPS, 2022.

Xiang Yan et al. Sports analytics using computer vision and deep learning. In IEEE International
Conference on Big Data, 2019.

Zonglin Yang, Qihang Ma, Xiangtai Zhang, et al. Set-of-mark prompting unleashes extraordinary
visual grounding in gpt-4v. arXiv preprint arXiv:2401.06104, 2024.

Kexin Yi, Chuang Gan, Yunzhu Li, Jiajun Wu, Antonio Torralba, and Joshua B Tenenbaum.
CLEVRER: Collision events for video representation and reasoning. In /CLR, 2020.

Wei Yuan and et al. Desktop assembly dataset: Fine-grained video benchmark for long-horizon
human activity understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024.

Rowan Zellers et al. Merlot: Multimodal neural script knowledge models. In NeurIPS, 2021.

Borui Zhang, Wenzhao Zheng, Jie Zhou, and Jiwen Lu. Path choice matters for clear attribution
in path methods. In The Twelfth International Conference on Learning Representations (ICLR),
2024.

Junjie Zhu et al. Safety-critical deep learning for autonomous driving: Generalization and uncer-
tainty. arXiv preprint arXiv:2004.07982, 2020.

Zhiyu Zhu, Huaming Chen, Jiayu Zhang, Xinyi Wang, Zhibo Jin, Jason Xue, and Flora D. Salim.
Attexplore: Attribution for explanation with model parameters exploration. In International Con-
ference on Learning Representations (ICLR), Poster, 2024.

12



	Introduction
	Reasoning Supervision Framework
	Vision Transformer Model
	LLM-Driven Knowledge Generation
	Reasoning Guidance Injection
	Spatial Alignment Loss
	Three-Level Temporal Consistency Loss


	Reasoning Supervision for Human Activity Recognition
	Experiment Setup
	Performance of Reasoning Supervision Framework(RQ1)
	Loss Dynamics During Training

	Related work
	Limitations & Future Discussion
	Summary

