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Abstract

This paper explores the application of deep reinforcement learning (DRL) to classi-
cal inventory management problems while incorporating theoretical insights from
traditional operations research. We demonstrate that a simple DRL implementa-
tion using DirectBackprop [12] can effectively handle diverse scenarios including
multi-period systems with lost sales, lead times, perishability, dual sourcing, and
joint procurement-removal decisions. Through extensive experiments, we show
that our approach performs competitively against established benchmarks while
naturally learning many structural properties of optimal policies that were previ-
ously derived analytically. We introduce a Structure-Informed Policy Network
technique that explicitly incorporates these analytical insights into the learning
process, enhancing generalization and robustness. Using realistic retail demand
data, we demonstrate how this approach helps with extrapolation and provides
robustness on out-of-sample data.

1 Introduction and Background

Inventory management optimization represents a cornerstone challenge in operations research and
supply chain management, exemplifying the tension between model-based rigor and data-driven
flexibility that characterizes modern ML-OR integration challenges. Traditional approaches have
relied on analytical methods and heuristics [26, 20], providing valuable solutions for simplified
settings such as the seminal newsvendor problem [17] or Economic Order Quantity [7]. These
model-based approaches offer interpretability and theoretical guarantees but often struggle with
the complexity and scale of real-world systems. However, real-world applications involve complex
dynamics, stochastic demand patterns, and intricate constraints that often render these methods
intractable. Even in relatively simple settings such as one with stationary demand, lost sales and lead
times, the problem is notoriously difficult [27].

Deep Reinforcement Learning (DRL) offers a promising alternative, capable of learning effective
policies directly from data without relying on explicit modeling of system dynamics. This model-free
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paradigm aligns with recent advances in AI/ML that have achieved success by eschewing traditional
model-based assumptions. However, this creates the challenge of leveraging the rich theoretical
insights from decades of OR research while harnessing the adaptive power of modern ML techniques.

Recent work has demonstrated DRL’s potential in addressing practical inventory control problems,
with notable successes in applications at major retailers like JD.com [18], Alibaba [11], and Amazon
[12]. However, most approaches suffer from limitations when it comes to representing practical
alternatives and fail to adequately address the uncertainty mitigation challenges inherent in converting
data into reliable operational decisions. Common approaches apply RL algorithms at an instance level
[21, 16, 6], learning policies for individual products by leveraging information across multiple realized
scenarios. This contrasts with practical settings where one typically has access to single realized
scenarios for individual products and must leverage information across products. Additionally, many
studies allow policies to consume distribution parameters directly, while in practice we only have
access to historical realized demand, creating additional layers of uncertainty propagation from data
prediction errors into operational decisions.

2 Approach and Methodology

Our work addresses these limitations through several key innovations that exemplify effective ML-OR
synergization:

• We apply DRL as it would be implemented in practice, mimicking state information available
to practitioners. This involves learning policies across products using only historical infor-
mation, without access to demand distribution parameters. This approach directly addresses
the uncertainty mitigation challenge by learning robust policies that can handle distributional
shifts and model uncertainty without requiring explicit uncertainty quantification.

• We leverage the DirectBackprop algorithm [12], which allows for the reduction of the
problem to supervised learning with minimal hyperparameter tuning. This algorithm has
shown success in practical applications and benefits from learnability results [25]. The
differentiable formulation enables efficient gradient-based optimization while maintaining
computational tractability for large-scale applications.

• We demonstrate strong performance across diverse scenarios: multi-period systems with lost
sales (both with and without lead times), perishable product management, dual sourcing,
and joint inventory procurement and removal.

• We propose a Structure-Informed Neural Network technique that incorporates analytically-
derived characteristics of optimal policies into the learning process, inspired by Physics
Informed Neural Networks [19]. This approach represents a novel framework for integrating
operational domain knowledge into ML algorithms, balancing model-based insights with
data-driven flexibility. The technique uses differential penalties to enforce structural prop-
erties derived from classical OR theory, ensuring that learned policies conform to known
theoretical properties while maintaining the adaptability of neural networks.

3 Key Results

Our experimental results demonstrate several significant findings:

3.1 Performance on Classical Problems

We evaluate our approach on five classical inventory management problems:

• Basic Lost Sales: Our DRL approach achieves within 0.5% of the optimal (omniscient)
policy despite having access to only historical information rather than full distributional
knowledge. This is notable as the optimal policy is known to be of base-stock type [8, 22].

• Lead Times with Lost Sales: In this notoriously difficult setting [27], where optimal
policies are generally unknown, our approach outperforms established heuristics including
vector base-stock policies [14], with the performance gap increasing with lead time length.
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• Perishable Inventory: For products with finite shelf life, where optimal policies depend on
the full m − 1 dimensional state space [15, 3], the DRL policy significantly outperforms
naive base-stock policies for short shelf lives while matching the performance of optimized
base-stock policies as shelf life increases.

• Dual Sourcing: Our approach learns near-optimal policies in settings with known solutions
[4, 24] and outperforms heuristics in more complex scenarios with non-consecutive lead
times.

• Joint Procurement-Removal: The DRL agent successfully learns interval-stock policies
[13] for inventory management with returns, demonstrating its ability to discover complex
policy structures.

3.2 Structure-Informed Learning

A key finding is that the DRL approach naturally learns many structural properties of optimal policies
that were previously derived through operations research methods, including monotonicity properties
[14] and sensitivity results derived through L♮-convexity [28] and multimodularity [10]. However,
these properties may not hold uniformly across the state space, particularly in regions rarely visited
during training, creating potential reliability issues when policies encounter out-of-distribution states.

Our Structure-Informed Policy Network technique addresses this by explicitly incorporating these
properties through differential penalties during training, representing a principled approach to uncer-
tainty mitigation that leverages the rich theoretical arsenal of OR. The method computes gradients of
policy outputs with respect to state variables and penalizes violations of known structural properties
such as monotonicity in inventory levels or convexity in cost functions. This regularization approach
ensures that learned policies maintain theoretical consistency even in rarely-visited regions of the
state space, providing robustness guarantees that are crucial for operational deployment.

Figure 1 illustrates the regularization effect for 4 sample products in the case of a multiperiod
inventory problem with lost sales, and a lead time of 5 periods. The contour plots are slices of the
learned policies in a given period, and show the order quantity as a function of on-hand inventory and
inventory arriving 1 period hence. The top row corresponds to the unregularized policy, while the
bottom row corresponds to the regularized one.
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Figure 1: Example contour plots of the unpenalized (top), and penalized (bottom) policies for a few
given product in the case of L = 5 as a function of the endogenous state y = (y0, y1, 0, 0, 0) at time
t = 0.

We show empirically that this approach:

• Improves generalization to out-of-sample states by enforcing known structural properties
throughout the state space
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• Provides robustness against demand shocks and non-stationary patterns by maintaining
policy coherence with established OR principles

• Maintains or improves performance while ensuring policy conformance with theoretical
properties, demonstrating that OR insights enhance rather than constrain ML performance

• Results in more interpretable policies that are easier to validate and deploy in practice,
bridging the gap between "black box" ML systems and the transparency requirements of
operational systems

• Reduces the computational overhead of uncertainty quantification by embedding structural
constraints directly into the policy architecture

3.3 Real-World Demand Data

Using retail data from Corporacion Favorita, we compare our end-to-end DRL approach against
a traditional predict-then-optimize baseline using state-of-the-art demand forecasting [23] in a
simplified zero-lead time setting. The DRL approach:

• Achieves higher average reward over the test period

• Operates with consistently lower inventory levels (reducing working capital requirements)

• Shows better adaptability to demand spikes and seasonal patterns, particularly around
Christmas periods

• Maintains higher demand-weighted service levels while using less inventory

• Demonstrates superior recovery from major demand shocks like the 2016 Ecuador earth-
quake

This outperformance aligns with theoretical results suggesting benefits of end-to-end approaches
over separate prediction and optimization [2] and matches industry experiences at major retailers
[12, 18, 11].

4 Implications and Future Work

Our work demonstrates that combining modern deep reinforcement learning with classical operations
research insights yields practical and robust solutions for real-world inventory management challenges.
This bridges the gap between theoretical understanding and data-driven approaches, offering several
promising directions for future research:

• Extending the Structure-Informed Policy Network approach to incorporate additional types
of structural properties, particularly those derived from convex analysis tools like supermod-
ularity and L♮-convexity [1].

• Investigating scalability to larger networks with multiple echelons or more complex con-
straints, building on recent work in network inventory management [5, 9].

• Developing theoretical guarantees for the convergence and optimality of structure-informed
policies, extending existing results on learnability [12] and VC theory [25].

• Exploring applications to other classical operations problems where theoretical insights
exist but practical implementation remains challenging.

The success of our approach in handling diverse scenarios while maintaining theoretical properties
suggests broad applicability across the operations research domain. By combining the flexibility of
deep learning with classical theoretical insights, we provide a framework for developing practical
solutions that benefit from decades of analytical research while adapting to real-world complexities.
This work contributes to the broader goal of ML-OR synergization by demonstrating how principled
integration of domain knowledge can enhance both the performance and reliability of data-driven
operational systems.
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