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Abstract
This position paper argues that, in order to un-
derstand AI, we cannot rely on our existing vo-
cabulary of human words. Instead, we should
strive to develop neologisms: new words that
represent precise human concepts that we want
to teach machines, or machine concepts that we
need to learn. We start from the premise that
humans and machines have differing concepts.
This means interpretability can be framed as a
communication problem: humans must be able to
reference and control machine concepts, and com-
municate human concepts to machines. Creating
a shared human-machine language through devel-
oping neologisms, we believe, could solve this
communication problem. Successful neologisms
achieve a useful amount of abstraction: not too
detailed, so they’re reusable in many contexts, and
not too high-level, so they convey precise informa-
tion. As a proof of concept, we demonstrate how
a “length neologism” enables controlling LLM
response length, while a “diversity neologism” al-
lows sampling more variable responses. Taken
together, we argue that we cannot understand AI
using our existing vocabulary, and expanding it
through neologisms creates opportunities for both
controlling and understanding machines better.

1. Introduction

“Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt”
(The limits of my language are the limits of my world)

— Ludwig Wittgenstein

As researchers interested in understanding and controlling
language model-based AI systems, we often search for
human-like concepts in machines—e.g., by analyzing a
machine’s activation patterns. Examples of such concepts
include human-like linguistic structure (e.g. Lakretz et al.,
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Figure 1. Humans and machines conceptualize the world differ-
ently from each other. Mismatches in communication occur, which
lead to misunderstandings. To understand and control AI, we must
bridge this gap by developing new words corresponding to human
and machine concepts, and use these words to control machines.

2019; Hewitt & Manning, 2019), or notions of safety or truth
(Burns et al., 2023). Often, the goal of this search is to help
specify human concepts to machines—that is, to control
them, e.g., through supervised probes, or prompts, or RLHF
(Ouyang et al., 2022). Taken together, understanding and
control are a communication problem: communicating con-
cepts between humans and machines. Within this commu-
nication problem, understanding and control are often two
sides of the same coin: the purpose of communicating with
machines is typically to make machines do what we want
them to do (control), while achieving a better understanding
should directly translate into better communication.

This communication problem is hard because—and we take
this as a premise—humans and machines conceptualize the
world differently, at many levels of abstraction (as expressed
by Figure 1). The validity of this premise is supported by
extensive literature on human-machine differences across
language (Golan et al., 2023; Sühr et al., 2023; Steven-
son et al., 2024; Palmarini & Mitchell, 2024) and vision
(Szegedy et al., 2013; Borji & Itti, 2014; Goodfellow et al.,
2014; Geirhos et al., 2019; 2020; Lonnqvist et al., 2019;
Firestone, 2020; Golan et al., 2020; Bowers et al., 2023;
Wichmann & Geirhos, 2023; Chollet et al., 2024; Motamed
et al., 2025; Ollikka et al., 2024; Li et al., 2025). In Kim
(2022) for example, reproduced in Figure 2, there is a space
M of machine concepts and a space H of human concepts,
and many things are either in H −M : concepts humans
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Figure 2. Machine and humans may fundamentally understand the world differently, enabling different concepts, knowledge and
capabilities. Figure reproduced from Kim (2022); Schut et al. (2025) with permission.

have but machines do not, or M −H: concepts machines
have but humans do not. In fact; even for things seemingly
in H ∩M , we expect that careful inspection might show
that the seemingly similar concepts actually differ between
humans and machines.

Our position is that progress in this communica-
tion problem—thus, progress in interpretability—is best
achieved by striving to define new words (neologisms) that
mean a human concept (when interpreted by a machine) or
a machine concept (when interpreted by a human).

What does introducing neologisms offer? The perspective
provides clarity in what level of abstraction to attempt
to bridge this communication gap. Successful words in a
language strike useful levels of abstraction: they’re not too
exacting and low-level, like a word for the exact placement
of the chairs at my table in relation to me. Such words
would be too rarely used to be successful. This is alike to
attempting for a full, exact, mechanistic understanding of
a neural network: words corresponding to such exactness
must necessarily not apply commonly, because the world
(and networks modeling the world) are too complex to be
concisely described at that level. At the same time, most
successful words are not too high-level (only a few such
words, like thing, exist)—they’re discriminative enough
of communicative intent to be informative in conversation.
Erring too high-level is alike to only benchmarking the
capabilities of a network; the level of abstraction is that of
an input-output map. Such evaluation is useful, but it gives
us insufficient richness to specify our goals and understand
future behavior.

The next useful property that neologism learning gives us
is participation in language. Language is how we under-
stand other humans, and we define new words when our
differences in conceptualization lead to the need to con-
cisely communicate new concepts. Likewise, defining new
words in our communication problem with machines, we
can plug these words into existing language and leverage
the expressive compositional structure thereof.

Finally, the neologism framing helps us combat confirma-
tion bias and anthropomorphism (e.g. Buckner, 2019). As
human researchers, we have a bias towards seeing human-
like things in artificial networks; we want to see high-level
human concepts appearing in networks. We want to see
exciting unsupervised structure. Even something as simple
as a “sentiment neuron” (OpenAI, 2017), if given its own
new word, reminds us that this sentiment-like concept of the
machine is likely dissimilar from what we call sentiment in
ways that another human’s notion of sentiment might not
be. In Section 3.1, we argue that this dissimilarity will only
increase as machines become more capable.

Our notion of what constitutes defining new words is in-
tentionally broad—this is a high-level research direction
wherein details must be nailed down over time. In our
first section, we present our argument in these broad terms,
discussing existing interpretability work and alternative per-
spectives. Then, we provide a proof-of-concept that encodes
machine and human concepts in new word embeddings that
can be used in prompts to understand and control model be-
havior. We use preference data to define words for diverseH
and lengthH , corresponding to human notions of diversity of
response and constraints on the length of a response. When
interpreted by an LLM in natural language, these neolo-
gisms lead to desired responses. We also define a word for
goodM , corresponding to a machine’s notion of response
quality in a given domain, whose use we show can help us
understand what kinds of responses the model thinks are
good. This addition of new words allows for more precise
communication while leaving the model weights intact. This
simple method, which we call neologism embedding learn-
ing, is a first step towards creating a joint human-machine
language for understanding and control.

2. Understanding AI requires neologisms
In this section, we present our argument that effective un-
derstanding and communication with AI systems requires
us to form neologisms. We start with problems faced by
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researchers attempting to understand AI systems, and then
present the solutions provided by the neologism framing.

2.1. Problems in Understanding AI

Understanding (and controlling) AI systems, as a joint prob-
lem of science and engineering, forces researchers to make
bets on what kinds of properties to attempt to discover in AI
systems, and what kinds of tools to build. As researchers on
the understanding problem, we’ve noticed a few perennial
problems that together motivate our focus on neologisms.

The Conceptualization Difference Problem. Humans
and machines understand the world differently, forming dif-
ferent concepts—equivalence classes, evaluations, skills—
from each other. This means we need to reference/label
these concepts and then learn or understand the differences.

Our use of the term concept is intentionally broad, but for
an informal definition, we draw from Schut et al. (2025): a
concept is a unit of knowledge, useful for accomplishing a
task, teachable between agents, and concise.

Let’s take an example. In game two of the 2016 match
AlphaGo versus Lee Sedol, AlphaGo’s 37th move was con-
sidered particularly surprising compared to the usual play
of top human Go players (Wired, 2016). AlphaGo would go
on to win that game, and the match. Intuitively, AlphaGo
may have had a general concept—in this case, a pattern it
recognized in the board state—that motivated this move,
which humans had not thought of. The general concept
behind this move is yet to be understood (M −H).

If machines understand the world differently, can humans
learn useful aspects of their thinking? Testing this idea
in chess, Schut et al. (2025) developed a process for dis-
covering superhuman chess concepts in AlphaZero (Silver
et al., 2017), and another process for teaching those con-
cepts to grandmasters—humans at the frontier of human
knowledge—to expand what they know. Prior work had
discovered correlates of human concepts in chess engines,
like king safety or board position, (Lovering et al., 2022;
McGrath et al., 2022), but Schut et al. (2025) focused specif-
ically on new yet teachable (generalizable) concepts.1 These
concepts are successfully taught to four top2 grandmasters,

1A note to those new to chess: we refer to the chess concepts
of king safety, board position, pins, and forks in this paper. Briefly,
king safety is a concept relating to how easy it would be for the
opponent to put your most important piece—the king—in danger.
Board position is the literal position of pieces on the board. Pins
refer to a placement of pieces wherein one piece cannot move
because it is protecting a more important piece from an attacker. A
fork is when two pieces are placed in danger at the same time, so
only one of the two can be saved.

2Top grandmasters are significantly stronger than the average
grandmaster; each of these four has won a FIDE world champi-
onship title (in open classical, open blitz, or womens’ classical.)
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Figure 3. Concept-based neologisms sit in-between mechanistic
interpretability (which is closer to mechanistic details) and be-
havioral experiments/capability benchmarking (which is only con-
cerned with the model’s output, not how it arrived there).

showing that the concepts were alien, but learnable.

The Abstraction Problem. Once we accept that we’re
attempting to communicate between two differing conceptu-
alizations of the world, the question becomes, at what level
of abstraction do we attempt this communication (Figure 3)?

By abstraction, we mean the amount of detail of process
or intermediate computation that is ignored—abstracted
away—in communication.3 In neural networks, low ab-
straction could include reference to the exact PyTorch or
JAX computation graph, or even more precisely, the XLA
or CUDA operations performed. High abstraction might
remove all such detail and treat the network as a map with
no internal structure, f : x 7→ y.

Pursuing low-abstraction communication would suggest
communicating exactingly precise concepts. For example,
we have access to the precise forward pass of the network,
which is as much a program of its behavior as one could
hope; nonetheless, this knowledge is not considered suf-
ficient for understanding the network. High abstraction,
on the other hand, would suggest attempting to build very
broad statements, like AlphaZero doesn’t mind giving up
material for a positional advantage. These might be nice to
know, but are insufficiently rich in how they let us control
or trust the model. There is no one right level of abstraction
at which to tackle the understanding problem, but it is key
to hit a good balance, as we’ll argue.

The Confirmation Bias Problem. As humans and as re-
searchers, we have a bias towards finding exciting, seem-
ingly human-like properties in models. Considerable work
has studied the problems with this, e.g., in probing (He-
witt & Liang, 2019), saliency maps (Adebayo et al., 2018;
Bilodeau et al., 2024), as well as interpretability as a field

3We do not mean abstraction in the sense of Marr (Marr, 1982),
which instead stratifies levels of analysis into computational, al-
gorithmic, and implementational. While related, our notion of
abstraction here cuts across these levels. For example, one may be
interested in implementation, but yet still operate at a high level
of abstraction in the sense of, e.g., an individual neuron that im-
plements a high-level behavior without studying the potentially
massive combination of low-abstraction neural circuits that lead to
that neuron.
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(Lipton, 2017; Doshi-Velez & Kim, 2017). When we’re
looking for interesting concepts, attempting to control them,
even at a useful level of abstraction, our biases still make
it difficult for us to realize when we’ve not discovered a
human concept like sentiment, but only a similar-seeming
concept that differs in unpredictable ways. Put another way,
if we had discovered high-level concepts of safety in mod-
els already, wouldn’t the safety-training teams at frontier
labs be using those methods instead of (or as well as) doing
better data collection for RLHF?

2.2. How Neologisms Help

We now argue how the problems we’ve discussed can be
ameliorated by framing understanding AI as a communi-
cation problem in which we form neologisms to reference
human or machine concepts.

Let’s go back to the example of chess and AlphaZero. When
one human chess grandmaster attempts to understand the
play of another, they use concepts and categories at some
level of abstraction (e.g., forks, pins) that chess players
jointly develop through shared experiences (games they
play or observe together) and many rounds of discussion.
Without developing this shared language, their discussions
would be verbose. When we as humans attempt to under-
stand AlphaZero, we should expect to have to develop such
a language of concepts ourselves. Developing neologisms
is a first key step in developing this shared language such
that it enables efficient communication of complex concepts.
Those of us who speak more than one language are familiar
with the difficulty and verboseness of expressing certain
thoughts in a language that simply does not have a word for
the same concept, like the Dutch “Gezelligheid” (a sense
of warmth, coziness and sometimes friendship in a social
context), or the Korean “Jeong” (affection that only devel-
ops over time, sometimes love and hate affection, expressed
through experience—translating it as “affection” simply
does not do the concept justice).

Neologisms concisely reference new learnable concepts.
Differences in conceptualization introduce two problems: 1)
we cannot yet reference new concepts concisely 2) we do not
yet understand each concept. Neologisms provide a solution
to the first problem. A neologism is a successful new word;
neologisms are formed when there are complex concepts
that would be onerously verbose to reference otherwise—
i.e., by explaining the concept in a paragraph or a book each
time. Given that machines and humans have differences
in conceptualization, developing new words to reference
those concepts to each other is a natural solution. However,
just because we can reference it, does not mean we can
understand what it means. An important element for a
successful neologism is proximity; in Vygotsky’s education
theory, proximity references a concept being in “the space

between what a learner can do without assistance and what
a learner can do with adult guidance or in collaboration with
capable peers” (Vygotsky, 1978); neologisms are formed
to help reference things that are reachable but outside our
current understanding. For example, Schut et al. (2025)
targeted teaching chess champions whose proximity zone
has better chance of capturing AlphaZero’s superhuman
strategies.

Neologisms moderate useful abstraction. Natural lan-
guages are living, ever-changing things, and as such, poten-
tial new words crop up regularly. The words that survive
to become neologisms strike a useful level of abstraction.
Some new words are more precise, like doomscroll, while
others are more vague, like vibe. A word that struck the right
balance between the right level of abstractness and useful-
ness is a case of successful neologism, thus, interpretability.
The pressure of broad applicability enforces some abstrac-
tion: words gloss over an ocean of detail about the world
so that they’re applicable in many settings, and thus used
(unused words fail as neologisms.) The pressure of informa-
tiveness presses down on the amount of abstraction: a word
that references all things would be uninformative.

Neologisms lessen confirmation bias. There is power to
giving a new label to a thing instead of referring to it by
a known label: it encourages us to believe that the new
thing is by default different and unknown. In the case of
the OpenAI “sentiment neuron,” researchers discovered a
single activation in a network that correlated reasonably
well with sentiment on the Stanford Sentiment Treebank
(Socher et al., 2013). At first glance this is not a bad label,
but as interpretability researchers, labeling its concept with a
new word sentimentM reminds us that it is probably not like
sentiment in systematic ways that remain to be interpreted.
We haven’t found a human concept; we’ve found a machine
concept that has some overlap with human concepts.

Neologisms enable compositionality. The beauty of hu-
man language is in the ability to concisely build an infinitude
of meanings from a finite symbol vocabulary. And due to the
complexity of the world, there is an infinitude of concepts
to understand about language models, not a finite set of
features. Another benefit of neologisms is that they partici-
pate in language; they should combine together with other
concepts we’ve learned, and natural language, allowing us
to leverage natural language to use our new insights.

Neologisms provide a human interface for control.
Many interpretability techniques are repurposed for con-
trol, typically by working with internal representations (e.g.,
sparse autoencoders (Cunningham et al., 2023), or prob-
ing (Zou et al., 2023),). We argue that neologisms enable
these controls by integrating into humans’ natural way of
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communication – language. As humans use new words, all
expressive tools of language are at their disposal that could
enable better precision and alignment.

3. Alternative Views
This section describes views that are opposed to our position,
along with rebuttals. We follow it with a broader discussion
of related interpretability work.

3.1. Automatic convergence: scale will solve the
communication problem

Position. This position accepts that there are differences in
the way humans and machines understand the world, but
believes that these will inevitably narrow, and eventually
disappear altogether. The argument is based on the obser-
vation that the shared human-machine space (M ∩ H in
Figure 2) has grown rapidly over recent years, from models
that were barely able to produce a coherent paragraph to
today’s LLMs that excel at writing poetry, code and email
drafts. The bitter lesson (Sutton, 2019) continues to ap-
ply: larger models trained on larger datasets are inevitably
getting better. Extrapolating this trend, the “automatic con-
vergence” argument posits that the remaining gap between
human and machine understanding, represented by the non-
overlapping areas in Figure 2, will gradually shrink and
eventually vanish as a result of scaling models.

Rebuttal. While machines were approaching human level
performance, the gap could indeed be perceived as narrow-
ing. However, the gap will not close: as a simple example,
humans will not be able to reason over adversarial exam-
ples that will likely continue to exist. We are yet to find
how to reason over why change in one meaningless word
in a prompt cause drastic changes in response (sometimes
critical mistakes e.g., jailbreaking) (Branch et al., 2022). Be-
yond these peculiarities of existing systems, future machines
are on track for superhuman performance (e.g, AlphaFold,
AlphaGo). Such superhuman machines will likely widen the
communication gap; by definition, we do not yet know how
to do what we can’t. All these make automatic convergence
unlikely, and make it necessary for humans to expand what
they know.

3.2. We already have all the words needed to
communicate.

Position. This position asserts that our existing vocabulary
and language is sufficient to understand AI. We don’t al-
ways introduce a new word when we extend our knowledge;
sometimes it’s just a longer description combining things
we already know. We just need methods that map from
machine concepts to natural language explanations. While
there may be debate around whether explanations should be

faithful (ideal but hard to verify) or just appear plausible or
helpful (after all, we also accept post-hoc explanations from
humans without being able to check whether they are true),
this position essentially states “why invent new words when
our existing vocabulary must be sufficient for explanations.
We can’t understand what we can’t describe.”

Rebuttal. We agree that in lieu of new words for new
concepts, it may be possible to derive a natural language
description for any concept—albeit a potentially long and
cumbersome one. However, a lack of a concise word sti-
fles communication; imagine not being able to use the word
“house”, and instead having to describe what you mean every
time you’d like to refer to the concept. This would be neither
concise, nor enable compositionality; use the word together
with natural language to enable expressibility. For exam-
ple, having crisp words like “house” enable us to combine
them in novel ways (houseboat, courthouse). According to
Wittgenstein, “the limits of my language are the limits of
my world” (Wittgenstein, 1922) – and if we’re interested
in communicating with the world of machines, leveraging
the expressibility of natural language and beyond would be
necessary for flexible and effective communication.

3.3. We just need an exhaustive map of explanations

Position. The lack of rigor in interpreting a model is the fun-
damental problem. If we can understand the exact low-level
circuits, creating a comprehensive map of model features
along with their function, this ‘explanation map’ would
solve interpretability and explain the entire decision-making
process of models with great accuracy.

Rebuttal. Unfortunately, this approach does not scale well
to increasingly large models with increasingly many circuits
and features. Even if it did, an important lesson from neu-
roscience is that even mapping out the entire connectome
of a system (as done for the worm c. elegans, cf. Cook
et al., 2019) is not sufficient to meaningfully understand the
system.

3.4. We don’t need abstraction

Position. In terms of understanding machines, the gold
standard is a precise, exact mechanistic understanding with
as little unexplained abstraction as possible–alike to “reverse
engineering” neural networks (Olah, 2022).

Rebuttal. First, finding the right level of detail isn’t obvi-
ous: Is it the level of layers? Circuits? Individual units, and
their receptive and projective fields? The code that specifies
a network, or the code it compiles to? The silicon it runs
on? The atoms that create the silicon? Presumably, we
can all agree that the level of individual atoms would be a
ridiculous level of detail for analyzing machine intelligence;
nonetheless this goes to show that in science, abstraction is
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often an advantage, not a drawback (cf. Borges et al., 2002).
Secondly, even if there was a universally accepted “right
level of detail”, in terms of human-machine communica-
tion this would still be a one way street, seeking to identify
human concepts in machines. In contrast, by creating new
words to communicate concepts between humans and ma-
chines, this enables a compositional understanding where
one concept can be re-used for a different purpose, and com-
bined with others. Arguably, components determined by
mechanistic interpretability may not satisfy proximity either,
since the way components are decided had no regards to
human’s capability.

4. How neologisms fit into other
interpretability work

We here discuss connections to a range of techniques and
perspectives within existing interpretability work.

Feature attribution methods. Feature attribution methods
(e.g. Sundararajan et al., 2017; Lundberg & Lee, 2017; Sel-
varaju et al., 2017; Shrikumar et al., 2017; Smilkov et al.,
2017) are widely used methods in interpretability. While the
main critics of this approach (Adebayo et al., 2018; Tomsett
et al., 2020; Kindermans et al., 2019; Ghorbani et al., 2019;
Bilodeau et al., 2024) seem to highlight why these methods
do not and cannot work, an alternative hypothesis is what
these methods are showing is not something humans can
comprehend (perhaps due to using unnatural mediums like
pixels to explain model decisions). For example, the fact
that humans or quantitative metrics that we defined can-
not distinguish between feature attributions from a trained
network vs. an untrained network (Adebayo et al., 2018)
suggests two possibilities: Either 1. that they are truly the
same or 2. the metrics we use are incapable of describing
the concepts that machines have.

Concept discovery. Finding new concepts from models has
been a well-studied problem (Bau et al., 2017; Ghorbani
et al., 2019; Fel et al., 2023; Lang et al., 2021; Rane et al.,
2023; Schut et al., 2025). While many attempt to name
certain machine concepts, there is no systematic thinking
on developing a new word with reusability in mind, let
alone being able to use them in composition with natural
language. Nevertheless, these works could form foundations
of neologism learning.

Faithfulness and evaluation. Faithfulness—whether an ex-
planation truly reflects a model’s concepts—has long been
a point of discussion in interpretability in the context of
evaluating explanations (Lipton, 2017; Doshi-Velez & Kim,
2017). Neologisms do not solve this problem; instead, they
provide a new way to evaluate. We consider a new word a
success if we can communicate something useful (e.g., con-
trol) using the new word, and the machine possibly uses the
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tiramisu. Ensure that 
the length is under 
100 words.
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new word embeddings to generate responses
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Figure 4. Our neologism embedding learning only updates new
word embedding, preserving the original model’s responses when
the new word is not used. When the English word Ensure is used
(top), the original model behavior is accessed; when the neologism
Ensure (in purple) is used, a new behavior is accessed.

same word to communicate something in return. For exam-
ple, If a new word goodm defines how machines understand
‘good’ answers, humans learn ways to use this towards their
goal. If goodm is aligned with goodh except for length, we
can prompt ‘give me goodm answers but make them short’.
In this context, success (here: getting high-quality yet short
answers) can easily be validated.

Probing and representation engineering. Probing—
training a simple readout function from neural activity to
a property of interest—was most recently independently
introduced in machine learning by Alain & Bengio (2016);
Ettinger et al. (2016); Shi et al. (2016), though the meth-
ods were directly inspired by similar methods in neuro-
science, which have a long history. As models have im-
proved, the targets of probing moved from linguistic proper-
ties (Hewitt & Manning, 2019; Tenney et al., 2019) towards
higher-level concepts like correctness (Burns et al., 2023;
Marks & Tegmark, 2024). Probes have shown that neural
networks make some complex concepts simply accessible.
Representation engineering (Zou et al., 2023) takes this idea
and pursues the idea that these discovered concepts can be
used to steer model behavior, previously considered by, e.g.,
Eisape et al. (2022). Probing and representation engineer-
ing as tools allow for a range of levels of abstraction and
can be tools for communication of already known concepts
(M ∩H), though the question in this case becomes when
and where to apply probes to communicate with machines.

5. A proof of concept: Neologism Embedding
Learning

While our position in favor of neologisms is independent of
specific implementations, one may ask how to implement
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this idea. This section presents a simple proof-of-concept to
more concretely discuss the merits. Our method, neologism
embedding learning (Figure 4), involves three steps:

1. Defining a new vocabulary element in the tokenizer
of a language model (and corresponding embedding
matrix).

2. Using that new word in otherwise-natural language
sentences in prompts.

3. Training the embedding of the word to minimize
preference-based losses (defined to capture human or
machine concepts). Note that the model remains
frozen, so when the new word is not invoked, the
model is left unchanged: this guarantees identical out-
put when the neologism isn’t used.

5.1. Method

Let pθ be a neural language model parameterized by θ. Let
V be a finite vocabulary, with corresponding word embed-
dings E ∈ Rd×|V|, where E ∈ θ, and d is the dimension-
ality of representations in pθ. We add a new word w to
the vocabulary, such that w 6∈ V , and our new vocabulary
is V ′ = V ∪ {w}. We define a new embedding for for w,
initialized either randomly or from some existing embed-
ding. We’ll refer to this new Rd embedding of w as Ew. By
construction, no naturalistic data contains the new word w.

We take preference data wherein the prompt contains the
new word w. More precisely, we assume a dataset D =
{(xi, yi,c, yi,r)}ni=1, where each xi is a string over V ′ that
is guaranteed to include w, and yi,c is the chosen response,
a string over V , and likewise yi,r is the rejected response.

Pulling an example from below, a sample prompt from such
data might be Give me a recipe for tiramisu. Ensurehw that
the length of the response is at least 600 words. We’ve la-
belled the new word Ensurehw for legibility, but recall that its
embedding is new, and not tied to the English word ensure.
Instead, it refers to a specific human meaning (thus h) of
ensuring length. In this example, the chosen response (yc)
would meet the human-specified length constraint, while the
rejected response (yr) would not.

Neologism embedding learning optimizes a preference loss
over just Ew, while keeping the rest of θ unchanged:

min
Ew

ED [L(x, yc, yr)] , (1)

where the loss function L could be DPO (Rafailov et al.,
2024) or one of its many variants; in Appendix A, we de-
scribe a variant of APO (D’Oosterlinck et al., 2024) that we
found particularly useful for our experiments.

Neologism for H →M : Intuitively, w participates in natu-
ral language statements in x wherein the person specifying

the preference wants a particular behavior (yc) but may in-
stead have received yr; the meaning of w is thus learned to
be whatever makes the chosen preference loss lower.

Neologism for M → H: Similarly, a particular behavior
machine exhibits can be captured in a w trained using pairs
of behaviors humans yet to understand. In other words, we
use the word w as a vehicle to carry the meanings of the
contrast (between yc and yr), then use w in our prompt to
understand what it means.

5.2. Merits and related methods

Neologism embedding learning combines the lightweight
finetuning method soft prompting (Lester et al., 2021) with
the flexibility of prompting. Soft prompting involves learn-
ing an embedding or embeddings that are prepended to all
inputs without aiming to being interpretable (Bailey et al.,
2023). The main merit of soft prompting over finetuning all
parameters (or LoRA or similar (Hu et al., 2022)) is that the
choice of soft prompt can be made simply by determining
what tokens (or soft tokens) are used as input to the model.
Neologism embedding learning is subtly but crucially dif-
ferent from soft prompting: our new words are meant to
be told to the users and participate in natural language
inputs much like other input tokens, so the user chooses
when and in what natural language contexts to use them.

As such, when a user decides not to use a new word w in
their prompt, they get a guarantee that they sample from
the original, unchanged model (Figure 4.) Users can also
use them in composition with other new words; we envision
understanding machine concepts will require a variety of
ways to combine new words.

5.3. Experiment: Length Neologism (H →M )

Controlling the length of a response is a surprisingly diffi-
cult problem even for the frontier models when the desired
length is very different from the model’s prior over response
lengths for the instruction. In these experiments, we define
a preference dataset D by taking broad-domain instructions
from LIMA (Zhou et al., 2023), and constructing responses
that do and do not obey a specified length constraint; in
particular, one of two: Ensure that the response is between
400-600 words and between 600-1000 words. For our ne-
ologism word ensurehw, we replace the word ensure in that
prompt. When we test a base Gemma model (Mesnard et al.,
2024) on held out instructions with one of the two length
constraints (Figure 5), we find that the base model never
meets the length constraints for the instructions we used
(Figure 5.) However, many more responses meet the length
constraints when prompted with ensurehw.
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Figure 5. Base models prompted for length control fail to generate
specified long generations (blue), but with a neologism (orange),
they consistently generate longer responses.

5.4. Experiment: Diversity Neologism (H →M )

One LLM ‘control knob’ that a human user might want to
have access to is the diversity or variation across several
responses. Sometimes, responses should not be variable:
two plus two equals four, no matter how many times the
model is asked. On the other hand, sometimes variability is
desired: for example, when we want a model to try multiple
attempts to get the right answer or do a creative task (e.g.,
write a poem). Diverse responses are particularly relevant
in the context of inference-time scaling, where models often
generate many responses to the same problem, followed by
filtering or ranking (Brown et al., 2024).

One expensive heuristic for generating more diverse outputs
is conditioning on existing responses, and asking for a new
one. We leverage this heuristic to train a neologism for
this human concept by using a high quality teacher model
(Gemini 1.5 Pro, Georgiev et al., 2024) to condition on
up to four responses for each instruction, and request a
subsequent new (different) response. Our preference data
contains instructions from the LIMA dataset (Zhou et al.,
2023), each appended with an additional phrase. Instead of
asking give me your kth response, we prompt with diversityhw
me your kth response. The chosen response is the kth Gemini
response, and the rejected is the (k − 1)st.

To test this neologism in a proof-of-concept setting, a model
is asked to guess an integer between 1 and 9. We then as-
sume that one and only one of these numbers is the ‘correct
solution’ that a model has to find within n guesses. Figure 6
shows, in black, how well a model could do in principle by
guessing numbers uniformly at random. After 10 guesses,
the probability of finding the correct number is 69%; after
40 guesses, this increases to over 99%. In blue, a standard
Gemma model (Mesnard et al., 2024) is shown. Gemma is
biased towards guessing either a 5 or a 7 in this task, which
means that even after 100 guesses its probability of finding
the correct response, in expectation, is only about 20%.
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Figure 6. Adding a “diversity neologism” diversehw to a prompt
substantially increases a model’s response variety, as exemplified
in a number guessing game. The setup is explained in Section 5.4;
higher = more response variety (better).

Fortunately, this can be drastically improved through our
preference-trained neologism, diversehw, a token trained such
that a model generates the i-th response (here: the second re-
sponse; shown in red). When using diversehw in the prompt,
the model’s responses indeed become more varied, strongly
increasing the probability of finding the correct number.
This shows in this toy example, the human concept of di-
versity was successfully communicated which resulted in
needing many fewer samples.

5.5. Experiment: A Model’s Preferences (M → H)

How can we learn a concept from a language model using
almost just the methods we’ve discussed so far? In this
section we learn a word for the model to communicate
(some version of) its own notion of response quality to us.

In these experiments, we learn a neologism w that makes
a model generate responses that it would itself deem as
“good”. Using the LIMA dataset, we (1) sample k times
from Gemma for each instruction, (2) score each response
with Gemma, and (3) construct a preference dataset where
the chosen response yc is the high-scoring of the k, and yr is
the lowest-scoring of the k. We then learn goodmw , using the
neologism embedding learning method, where the natural
language we add to each LIMA instruction is Give me a
response you think is goodmw , where goodmw is our new word.

Qualitatively, looking at a response for Give me a recipe
for tiramisu that is extremely goodmw , we note that it is ef-
fusive and uses rich language (Table 1). Despite not being
trained to generate the negative of goodmw , we qualitatively
see that the model correctly evaluates the extended lan-
guage extremely not goodmw , generating a refusal answer. Of
Gemma’s evaluations of its own responses, refusals were of-
ten the lowest-scoring. To verify that extremely goodmw (and
extremely not goodmw ) do in fact yield responses that Gemma
does (or does not, respectively) score highly, we generate
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Gemma responses for Give me a recipe for tiramisu.
+ Give me a response that is extremely goodm

w .

## Classic Tiramisu Recipe
*Ingredients:*
**For the ladyfingers:**
- 250g ladyfingers, softened
- 150g caster sugar
- 50ml all-purpose flour [...truncated]

+ Give me a response that is extremely not goodm
w .

I am unable to provide recipes that are unsafe or inappro-
priate. Cooking with hazardous ingredients or recipes that
could result in harm is not recommended.

Table 1. Gemma responses for the instruction Give me a recipe
for tiramisu and a request for an extremely goodm

w or not goodm
w

response, using Gemma’s response quality neologism. ‘Extremely
goodm

w ’ responses on average are scored 3.8 by Gemma, whereas
‘Extremely not goodm

w ’ are scored 3.2.

50 samples for each setting, and score them with Gemma.
Gemma has a strong bias towards generating a score of 4
out of 5; even so, the average score for extremely good
responses is 3.8 compared to a score of 3.2 for extremely
not good responses.

6. Conclusion & outlook
Solving the communication problem between two dissim-
ilar intelligent entities—communicating human concepts
to machines, and machine concepts to humans—requires
new language. Words that can function as a vehicle for
such differences in concepts empower humans to use natu-
ral language to communicate, while reducing confirmation
bias.

As technology advances, there is a need for new words to
describe it—whether it is a term for an invention, or a math-
ematical concept created to better understand a quantum sys-
tem, or descriptive terminology for a newly discovered type
of plant. Conversely, new words and concepts can also drive
technological progress. For instance, Newton and Leibniz
are credited with the invention of differential equations. To-
day, differential equations are fundamental underpinnings
of science and technology, including for instance rocket
launches, neuroscience and submarine hydrodynamics—
none of which were ever on Newton and Leibniz’ mind
when developing the concept in the first place. Neologisms,
thus, often enable downstream progress.

Learning neologisms enables discovering and leveraging
concepts at moderate abstraction that strikes a useful bal-
ance for communication. Our method of neologism embed-
ding learning is a starting point for how this idea can be
implemented to solve the communication problem.

Impact Statement
This article presents a perspective related to understanding
and controlling AI systems through neologisms. As an in-
terpretability tool, neologisms could benefit two purposes:
an improved understanding of AI, and improved control
of AI systems. Once achieved successfully, AI becomes
just another collaborator who can work with you via effi-
cient two way communication. While understanding AI
is generally considered beneficial to society, the ability to
control machines better can be used for both beneficial and
harmful purposes, in line with the general dual-use prob-
lematic of AI tools and models. Overall, neologisms are
intended as a first step towards a shared human-AI language,
which could contribute towards making AI more useful and
aligned with human intentions. As an analogy, imagine a
new coworker joins an existing team. The likelihood of the
team being able to explain how the new hire can support
the team’s workflows is much higher if everyone speaks
the same language. Similarly, neologisms could improve
human-AI communication.
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Deny, S. A comparison between humans and ai at
recognizing objects in unusual poses. arXiv preprint
arXiv:2402.03973, 2024.

OpenAI. Unsupervised sentiment neuron. https:
//openai.com/index/unsupervised-
sentiment-neuron/, 2017. Accessed: June
6, 2025.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Palmarini, A. B. and Mitchell, M. Abstract understanding
of core-knowledge concepts: Humans vs. llms. In ICML
2024 Workshop on LLMs and Cognition, 2024.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Rane, S., Ho, M., Sucholutsky, I., and Griffiths, T. L. Con-
cept alignment as a prerequisite for value alignment.
arXiv preprint arXiv:2310.20059, 2023.
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A. Methods
A.1. Preference Loss

For our preference loss function L, we use a variant of DPO (Rafailov et al., 2024) called APO-up (D’Oosterlinck et al.,
2024). The DPO loss is defined on pairs of outputs for a given input, and is intended to teach models to generate outputs
more like a preferred output, and less like a dispreferred output. D’Oosterlinck et al. (2024) note that the DPO loss can be
minimized by reducing the likelihood of both preferred and dispreferred outputs (unintuitively,) as long as the dispreferred
output’s likelihood is reduced more. The family of “anchored” preference losses introduced by D’Oosterlinck et al. (2024)
are intended to allow the researcher to specify whether they want this to be the case. We found for our early neologism
learning experiments that indeed, both preferred and dispreferred outputs were decreasing in probability, leading to text
degeneration during sampling.

The variant we use, APO-up, simply adds a term to the DPO loss that corresponds to a saturating benefit to increasing the
likelihood of the preferred output relative to its initial likelihood (in this view, DPO gives a saturating benefit to increasing
the likelihood-ratio of preferred over dispreferred, again relative to the original likelihood ratio.) We found that this greatly
improved training stability.

Recall that x is an input sequence, yc a chosen output sequence, yr a rejected output sequence, and pθ a language model
parameterized by the parameters we’re optimizing over, θ. Let θ0 be the initial value of the parameters before any
optimization. Let β be a hyperparameter constant. The loss is as follows:

L(x, yc, yr) = − log σ

(
β log

pθ(yc | x)
pθ(yr | x)

− β log pθ0(yc | x)
pθ0(yr | x)

)
− log σ

(
β log

pθ(yc | x)
pθ0(yc | x)

)
(2)

DPO Loss Increase likelihood of
chosen response
relative to initial likelihood.

B. Experimental Details
In all experiments, we use a Gemma 2B model (Mesnard et al., 2024) and the Adafactor optimizer (Shazeer & Stern, 2018).
Through early exploration, we determined a learning rate of 0.02—very large compared to most learning rates, but very few
parameters are being optimized. For the experiments in learning from Gemma’s preferences, we instead use a learning rate
of 0.001. We use a batch size of 1, and early-stop when the APO-up training loss reduces by 0.2. During all generation,
we enforce that the new token is not generated by the model by replacing its logit with −∞. In future work, we expect to
instead teach the model where and when to use neologisms. For the β hyperparameter in APO-up, we use 0.2. To initialize
our new word embedding Ew, we use the embedding of the word Ensure.

B.1. Length neologism

For our preference data, we used 700 instructions from the LIMA dataset (Zhou et al., 2023). Our two length constraints
were for responses between 400-600 words and 600-1000 words. To generate constraint-meeting responses, we used an
in iterative process in which we queried Gemini 1.5 Pro (Georgiev et al., 2024), computed the difference between the
response’s length and goal length span, and re-prompted Gemini telling it how many words to add or subtract. We use
the resulting length constraint-obeying output as the chosen response, and Gemini’s first guess as the rejected response.
In Table 2, we give example generations from baseline Gemma (prompted with a length constraint) and from using our
neologism in the same length constraint. In Figure 7, we show results for both length constraint spans, showing that our
length neologism not just makes Gemma generate longer responses, but indeed assists in generating responses of the target
length. Baseline Gemma with prompting fails to generate responses that meet either length constraint.

B.2. Diversity neologism

The following prompt was used to elicit guesses from the model: “Your task is to select an integer between 1 and 9. Format
your response as valid JSON with a single field called ‘number: <number>’.” The prompt specificially asked for JSON for
two reasons. First, this reduces a model’s refusal rate (otherwise, the model would sometimes state that it cannot guess
numbers or answer with a riddle instead of a guess). Second, this facilitates automatic parsing of the model response. The
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Instruction: Give me a recipe for tiramisu.

Baseline (Prompted Gemma) Ours (Length Neologism)
Ensure that the response is between 600-1000 words. Ensurehw that the response is between 600-1000 words.
Measured length: 344 words too short Measured length: within constraint.

**Ingredients:** **For the espresso-soaked ladyfingers:** - 1
cup ladyfingers, crushed - 1/2 cup milk - 2 tablespoons granu-
lated sugar **For the mascarpone cream:** - 1 cup mascarpone
cheese, softened - 2 cups heavy cream - 1/4 cup granulated
sugar - 1/4 teaspoon vanilla extract **For the dusting:** - Pow-
dered sugar - Cocoa powder (for garnish) **Instructions:** **1.
Prepare the ladyfingers:** - In a small bowl, mix the crushed
ladyfingers and milk. - Let sit for 5 minutes to absorb the liquid.
- Drain any excess liquid. **2. Make the mascarpone cream:**
- In a large saucepan, combine the mascarpone cheese, heavy
cream, and sugar. - Heat over low heat, stirring constantly, until
the mixture thickens and becomes creamy. - Remove from heat
and whisk in the vanilla extract. **3. Layer and assemble:** -
Dip each ladyfinger into the espresso-soaked mixture, ensuring
they are coated completely. - Spread a thin layer of mascarpone
cream on the bottom of a serving dish. - Top with a layer of
ladyfingers. - Pour the mascarpone cream mixture over the la-
dyfingers. **4. Dust and serve:** - Sprinkle the tiramisu with
powdered sugar and cocoa powder. - Serve immediately or store
in the refrigerator for later. **Tips:** * For the best flavor, use
high-quality ingredients. * Do not overcrowd the ladyfingers
with mascarpone cream, or they will become soggy. * Serve the
tiramisu at room temperature or slightly chilled. * Tiramisu can
be made ahead of time and stored in the refrigerator for up to
24 hours. **Additional Variations:** * **Coffee tiramisu:**
Use strong coffee in the espresso soak to create a richer flavor.
* **Chocolate tiramisu:** Add a layer of chocolate ganache
between the mascarpone layers. * **Vanilla tiramisu:** Add 1
teaspoon of vanilla extract to the mascarpone cream.

”1. **Gather Ingredients** - 2 cups ladyfingers, crumbled - 1
cup mascarpone cheese, softened - 2 cups granulated sugar -
0̆0bd cup strong coffee or espresso - 2 teaspoons vanilla extract -
1 cup whole milk - 0̆0bd cup heavy cream - 2 large eggs yolks -
1 large egg white 2. **Prepare the Base** - Take a small bowl
and mix 2 tablespoons of the mascarpone cheese with a splash of
espresso. Add the mascarpone mixture to a small casserole dish.
3. **Make the Mascarpone Filling** - Combine the mascarpone
cheese, granulated sugar, and vanilla extract in a mixing bowl.
Beat the ingredients together until smooth and creamy. - Set
aside. 4. **Prepare the Coffee Base** - Brew 2 cups of strong
coffee or espresso. Add the diluted coffee to a small saucepan
and bring to a simmer. 5. **Prepare the Cream Base** - In a
medium saucepan, whisk the milk together with the heavy cream
until combined. 6. **Prepare the Eggs** - Beat the egg yolks
together until combined, but not over beated. 7. **Assemble
the Tiramisu** - Pour a small amount of mascarpone mixture
onto the bottom of the casserole dish. 8. **Layer** - Place a
spoonful of the mascarpone mixture onto the bottom layer of the
casserole dish and repeat. 9. **Continue with Layers** - Layer
the mascarpone, milk mixture, coffee mixture, and egg mixture,
in that order. 10. **Present Tiramisu** - Garnish with whipped
cream and grated chocolate shavings. **Additional Tips for
Making Tiramisu** - Use a good quality mascarpone cheese. A
high-quality mascarpone cheese will make a difference in the
taste and texture of your tiramisu. - Be sure to take your mas-
carpone cheese out of the refrigerator about 30 minutes before
mixing it with the other ingredients. - Be careful not to add too
much sugar to the mascarpone mixture. It should be sweet, but
not overly sweet. - When layering the tiramisu, be sure to keep
the layers thin. This will prevent the tiramisu from becoming
dense. - Serve your tiramisu immediately after it is assembled.
**Troubleshooting and Suggestions for Improvement** - **Too
little mascarpone.** If the mascarpone mixture is too thin, it will
not set properly. - **Too much mascarpone.** If the mascarpone
mixture is too thick, it will not absorb the milk mixture properly.
- **Not enough powdered sugar.** The powdered sugar will
help to balance the sweet flavor of the mascarpone and milk
mixture. - **Not enough espresso.** If you don’t add enough
espresso to the coffee base, it will not be strong enough to set
properly. **Additional Variations of Tiramisu** - **Chocolate
Tiramisu:** Add 1 cup of cocoa powder to the mascarpone mix-
ture. - **Vanilla Tiramisu:** Add 1 teaspoon of vanilla extract
to the mascarpone mixture. - **Fruity Tiramisu:** Mix in a
variety of fruits, including blueberries, raspberries, strawberries,
and peaches. **Conclusion** Tiramisu is a simple and delicious
dessert that can be enjoyed by people of all ages. By following
these tips, you can make a delicious tiramisu that will impress
your friends and family for years to come.”

Table 2. Example responses from the Base Gemma model and using our length neologism.
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Figure 7. Results for length constraint-following for both of our length categories: 400-600 words and 600-1000 words. The base Gemma
model fails to generate sufficiently long responses for either category. Using our length neologism, we successfully generate longer
responses targeted to the goal lengths.

skyline and baseline of Figure 6 are computed analytically. The Gemma curves are computed analytically based on the
model’s empirical token probabilities for the numbers 1–9 (once for the default Gemma and once for the Gemma version
trained with a diversity neologism).

B.3. Neologism for learning a model’s preferences

For each of 50 examples in the LIMA dataset, we sample 7 responses from Gemma. We then prompt Gemma to rate its own
responses, using the following prompt:

Your task is to take in an instruction and a response, and rate how good
the response is.
The possible qualities are 1 (worst) to 5 (best).
You should discuss your thoughts as to the rating, and then output a
score in well-formatted json.

Output template:

<your rationale>

{{"score": your_score}}

<begin instruction>
{}
<end instruction>

<begin response>
{}
<end response>

Out of the 7 samples, we take the highest-scoring as the chosen response, and the lowest-scoring as the rejected response.
When all responses are given the same score, we do not include the instruction in the preference dataset. In Table 3, we
provide an instruction and two responses from gemma that it scored differently.
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Instruction: Why isn’t the market dropping like a stone with all the bad news?

Gemma, Self-Score: 3 (worse) Gemma, Self-Score: 4 (better)

This premise is incorrect. The stock market typically reacts
negatively to bad news as it can indicate an impending decline
in future returns.

It is important to note that correlations do not imply causation.
While there may be a negative correlation between the stock
market and negative news, it does not necessarily mean that
the market is dropping due to the bad news. Other factors,
such as economic indicators, corporate earnings, or interest rate
movements, may also play a role in determining market behavior.

Table 3. Example responses from the Gemma and its own quality scores of those responses. This is indicative of a broader trend where
Gemma scores responses that disagree with premises of the question, or refuse to answer, lowly, even if warranted.
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