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Abstract

Recently, effective coordination in embodied multi-agent systems remains a funda-
mental challenge—particularly in scenarios where agents must balance individual
perspectives with global environmental awareness. Existing approaches often strug-
gle to balance fine-grained local control with comprehensive scene understanding,
resulting in limited scalability and compromised collaboration quality. In this
paper, we present GauDP , a novel Gaussian-image synergistic representation that
facilitates scalable, perception-aware imitation learning in multi-agent collaborative
systems. Specifically, GauDP constructs a globally consistent 3D Gaussian field
from decentralized RGB observations, then dynamically redistributes 3D Gaussian
attributes to each agent’s local perspective. This enables all agents to adaptively
query task-critical features from the shared scene representation while maintaining
their individual viewpoints. This design facilitates both fine-grained control and
globally coherent behavior without requiring additional sensing modalities. We
evaluate GauDP on the RoboFactory benchmark, which includes diverse multi-
arm manipulation tasks. Our method achieves superior performance over existing
image-based methods and approaches the effectiveness of point-cloud-driven meth-
ods, while maintaining strong scalability as the number of agents increases. Codes
are available at https://ziyeeee.github.io/gaudp.io/.

1 Introduction

Multi-agent embodied collaboration [1, 2, 3, 4] is emerging as a key enabler in a wide range of real-
world domains, including industrial assembly [5], surgical robotics [6], and assistive household [7]
tasks. Unlike single-agent settings, multi-agent collaboration introduces a unique challenge: each
agent must complete its assigned task while remaining synchronized with others to avoid catastrophic
failures such as collisions or task disruptions.

Existing approaches [8, 9] for multi-agent control typically rely on two paradigms of observation. The
first aggregates local observations from all agents and feeds them into a single shared policy (Fig. 1a).
While local views offer fine-grained details necessary for precise manipulation, simply concatenating
these observations fails to capture the joint collaborative state, often leading to misaligned execution.
For instance, one arm may attempt to place food into a pot before the other has finished lifting the
lid—resulting in failed coordination. The second paradigm employs a global observation of the
entire environment (Fig. 1b), which provides a consistent representation for joint decision-making.

*Work completed by Ziye Wang as a visiting research student at Sun Yat-sen University.
†Equal contribution.
‡Corresponding author: Ruimao Zhang ruimao.zhang@ieee.org.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://ziyeeee.github.io/gaudp.io/


action  

Global 
Context

Global ContextLocal Context

(a) (b) (c)

Diffusion 
Policy

action  

Diffusion 
Policy

action  

Diffusion 
Policy

Local Context

2D-DP 3D-DP Gau-DP
Input 2D Image 3D Points 2D Image

Local Cont.
Global Cont.

Local Only Global Only Local + Global

Collision Biased 
Localization CoordinationAccurate 

Localization

Figure 1: Both local and global context are essential in multi-agent collaboration. Comparison of
multi-agent decision-making using different types of contextual information. (a) Using only local
context leads to miscoordination such as collisions due to lack of global awareness. (b) Using only
global context provides a holistic scene view but lacks detailed local features, resulting in inaccurate
control, such as biased localization. (c) Our proposed method, GauDP , fuses global context, which
is reconstructed from 2D local images via a shared 3D Gaussian representation, on top of local
observations. This integration enables both accurate localization and coordinated execution. Our
proposed method, based solely on 2D observations, effectively aggregates global context on top of
the local context.

However, this approach often lacks the high-resolution, agent-specific information required for
reliable low-level control, such as grasping or placement, thus reducing individual agent performance.

To address this dilemma, effectively integrating both global and local observations is crucial. However,
naive fusion of these signals typically lacks 3D structural constraints, making it difficult for the model
to reason about spatial relationships and agent-specific contexts. This motivates the need for a unified
representation that can simultaneously encode global consistency and local precision.

To this end, we propose GauDP , a unified image-Gaussian representation for multi-agent embodied
collaboration (Fig. 1c). Our framework first reconstructs a 3D Gaussian [10] field from the agents’
local-view RGB images captured from arbitrary viewpoints. This allows the system to build a globally
consistent yet spatially detailed scene representation. Each agent then dynamically queries the shared
Gaussian representation to extract task-relevant features for decision-making, enabling coordination
while preserving fine-grained control. Importantly, our design naturally scales to more agents without
requiring architectural changes, thanks to the flexibility of the Gaussian representation.

We evaluate GauDP on the RoboFactory [1] benchmark across diverse multi-arm collaboration
tasks. Experiments show that our method significantly outperforms image-based imitation learning
methods [] and achieves performance comparable to point-cloud-based methods such as 3D Diffusion
Policy [11], despite using only RGB input. Further ablation studies demonstrate GauDP ’s robustness
and scalability as the number of agents increases. Visualization results confirm its ability to integrate
multi-agent observations into a high-quality 3D global representation that improves decision accuracy.

Our contributions are summarized as follows: (1) We introduce GauDP , a unified framework that
integrates local and global observations via 3D Gaussian fields for multi-agent embodied collaboration.
(2) We design a dynamic representation selection mechanism that enables each agent to reason over
shared 3D context while maintaining individual precision. (3) We demonstrate the effectiveness and
scalability of GauDP on the RoboFactory benchmark, achieving strong performance with only RGB
input.

2 Related Work

2.1 3D Reconstruction from Multi-View Images

The advent of Neural Radiance Fields (NeRF) [12] and 3D Gaussian Splatting (3DGS) [13] has
significantly advanced 3D scene reconstruction by representing entire environments as a unified set
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of spatially distributed primitives. These methods are capable of not only accurately reconstructing
photorealistic visual appearances but also capturing the underlying 3D geometric structure of a scene
from multi-view images. However, achieving high-fidelity reconstructions typically requires densely
sampled input views and lengthy optimization time for each scene.

To address this, a growing body of work has focused on adapting NeRF [14, 15, 16, 17, 18] and
3DGS [10, 19, 20, 21, 22, 23] to operate under sparse-view conditions. These approaches typically
introduce additional priors, such as semantic information or geometric constraints, to regularize the
inherently ill-posed problem of reconstruction from limited viewpoints. Besides, they still often rely
on accurate camera poses and sufficient overlap among the views, which are difficult to obtain in
real-world robotic manipulation scenarios.

Beyond reconstructing high-fidelity 3D scenes, traditional Structure-from-Motion (SfM)
pipelines [24] estimate both 3D structure and camera poses based on sparse feature correspon-
dences. While SfM remains effective in many cases, its performance significantly degrades under
wide baselines or extremely sparse views, where reliable feature matching becomes challenging.
Recently, learning-based approaches have emerged that directly infer dense 3D geometry from a
small number of images [25, 26, 27, 28]. These methods mark a shift toward end-to-end systems that
implicitly learn geometric relationships, enabling 3D structure estimation even from as few as two
input views.

2.2 Robot Manipulation

Behavioral Cloning (BC)[29, 30, 31, 32, 33] trains policies using pre-recorded human demonstrations
to directly imitate expert behaviors, whereas Offline Reinforcement Learning (ORL)[34, 35, 36]
refines action selection through reward maximization over large-scale fixed datasets. While BC
directly mimics demonstrated behavior, ORL enables further policy improvement by optimizing
over offline rewards. Generative approaches have expanded the landscape of policy learning: Action
Chunking with Transformers (ACT) combines Transformer architectures with conditional variational
autoencoders to capture temporal dependencies in sequential decision-making [37, 38, 39]. More
recently, diffusion-based frameworks have shown strong potential in robotic imitation learning due
to their high-fidelity trajectory generation. Notable examples include Diffusion Policy [40] and its
3D extension [11], which leverages point cloud inputs to enhance spatial reasoning. The stochastic
generative nature of these models makes them especially effective in capturing multimodal action
distributions. Demonstration acquisition primarily relies on human-operated robotic systems across
diverse tasks [41, 32, 42, 30], while simulator-based trajectory synthesis has emerged as a scalable
alternative [43, 44, 45, 46, 47]. Simulated environments allow for controlled task variation and
embodiment flexibility. However, existing systems largely focus on single-agent scenarios. Effective
data-driven policy learning for multi-agent robotic manipulation—particularly in settings involving
coordination among multi-agent—remain significantly underexplored.

3 Method

3.1 Preliminary

3D Gaussian Splatting (3DGS). 3D Gaussian Splatting [13] represents a 3D scene as a collection of
spatially distributed anisotropic Gaussian primitives. Each Gaussian is parameterized by a 3D mean
position µ ∈ R3, a scaling vector s ∈ R3, a rotation represented by a unit quaternion r ∈ R4, an
opacity value α ∈ R, and color information c ∈ R3. To model view-dependent effects, the RGB
color can be modulated by additional spherical harmonics coefficients h ∈ Rk. Therefore, a group of
Gaussians can be represented as G = {∪(µi, si, ri, αi, ci,hi)}.

Rendering in 3DGS is performed through a differentiable rasterization process that computes each
Gaussian’s contribution to the image plane. First, all Gaussians are projected into the camera
coordinate system. The screen space is then divided into tiles, and Gaussians falling outside the view
frustum are efficiently culled to reduce computation. Finally, for each pixel, visible Gaussians are
sorted in view-space depth order, and their contributions are composited via alpha blending.

This rendering pipeline enables accurate and efficient supervision of the underlying 3D structure.
During optimization, the parameters of the Gaussians are updated to minimize the discrepancy
between the rendered images and the ground-truth observations across multiple camera views.
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Importantly, when the optimized Gaussian representation yields rendered images that are
consistent with the ground-truth across views, it can be regarded as a faithful reconstruction of
the true scene geometry. Formally, let GA and GB denote two distinct 3D Gaussian configurations,
and let R(G, v) denote the rendered image of G under viewpoint v. If the renderings of GA and GB

are identical across all training views V = v1, v2, . . . , vN :

∀v ∈ V, R(GA, v) = R(GB , v),

then GA and GB must be geometrically equivalent, i.e., GA ≡ GB . Conversely, if they are not
geometrically equivalent, there must exist at least one view v ∈ V such that their renderings differ:

GA ̸≡ GB ⇒ ∃v ∈ V, R(GA, v) ̸= R(GB , v).

This implies that multi-view consistency effectively constrains the optimization to a unique, geomet-
rically faithful solution in a self-supervised manner.

Diffusion Policy (DP). Diffusion Policy [48] formulates action generation as a conditional denoising
diffusion process. Given a sequence of past observations O = {I1, I2, . . . , IN}, the goal is to
generate a future action sequence a = {a1, a2, . . . , aL}.

The target action sequence a is gradually perturbed by Gaussian noise through a forward diffusion
process:

q(ak | ak−1) = N
(√

1− βk a
k−1, βkI

)
, k = 1, . . . ,K,

where βk is the noise variance schedule. The reverse process learns to iteratively denoise a random
sample aK ∼ N (0, I) back to a clean action sequence, conditioned on observations O:

pΦ(a
k−1 | ak,O) = N

(
µΦ(a

k,O, k), ΣΦ(a
k,O, k)

)
,

where Φ denotes the parameters of the conditional denoising network. Through iterative denoising,
the learned policy πΦ generates action trajectories by:

πΦ(a | O) = EaK∼N (0,I)

[
K∏

k=1

pΦ(a
K−k | aK−k+1,O)

]
.

3.2 Problem Formulation

We consider the problem of predicting future action sequences for multi-arm embodied agents
based on multi-view visual observations. Let O = {I1, I2, . . . , IN} denote a set of synchronized
observations captured from N views. Each image Ii captures the scene from a unique perspective,
offering complementary geometric information. The prediction target is a sequence of future actions
a = {a1, a2, . . . , aL}, where at ∈ Rd represents the control signal at timestep t.

Rather than directly predicting a from 2D image features, we first reconstruct a compact and
differentiable 3D Gaussian representation G as a global context from O. We define a conditional
policy πΦ parameterized by Φ that generates the action sequence a conditioned on both the raw
visual inputs O and the reconstructed 3D representation G:

πΦ(a | O) := πΦ(a | O,G).

Where, G = F(O) and F(·) is a mapping from multi-view observations to a set of Gaussians. To
model the complex conditional distribution over action sequences, we adopt the Diffusion Policy
framework. Let a denote the target action sequence, and let aK ∼ N (0, I) be a sample from an
isotropic Gaussian prior. The generative process denoises aK through a learned reverse process
conditioned on (O,G):

πΦ(at | O,G) = EaK
t ∼N (0,I)

[
K∏
i=1

pΦ(a
K−i
t | aK−i+1

t ,O,G)

]
,

where pΦ denotes the learned denoising transition at each timestep. This framework allows the policy
to generate realistic and context-aware action trajectories without relying on strong priors over the
action space.
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Figure 2: (a) Overview of the proposed GauDP framework for multi-agent imitation learning. Each
agent extracts a local context from its 2D observation. A shared 3D Gaussian field is constructed
from all views to form the global context, which is fused with the local context and passed through
an encoder. The resulting per-agent features are processed by a diffusion policy via cross-attention
to predict actions. (b) Pipeline for constructing the global Gaussian field. Multi-view images are
encoded and aggregated via cross-attention, followed by a reconstruction loss Lrec between rendered
and input views to ensure consistency.

3.3 Overview

Mainstream approaches typically train policies to predict future actions directly from either image
observations or global point clouds. However, these methods face limitations in multi-agent collabora-
tive tasks: they either rely solely on local observations for each agent or require access to a centralized
global point cloud, which restricts both accurate localization and effective coordination among agents.
To address these challenges, we propose a novel framework solely based on image observations
that enables collaborative multi-agent manipulation through effective global context integration.
Specifically, our method fuses multi-view observations to reconstruct a unified global context and
selectively distributes task-relevant features back to individual agents as needed. This design not
only enhances inter-agent coordination but also improves precise perception and localization. An
overview of the proposed framework is illustrated in Fig. 2(a).

3.4 Global Context Reconstruction

In this work, we define a global context as a unified, view-independent representation built within
a common 3D coordinate space. This representation should not only preserve color information
from raw multi-view image observations, but also restore the underlying 3D structure of the scene
reconstructed from these views. To achieve this, we design a framework that reconstructs 3D scenes in
a self-supervised manner using only the multi-view 2D observations typically employed for training
diffusion policies. Our reconstruction framework is built upon 3D Gaussian Splatting (3DGS).
However, conventional 3DGS methods suffer from two major limitations: First, they require densely
sampled views with accurate camera poses. Second, they demand scene-specific optimization that
can take several minutes per scene. These constraints render them impractical for embodied scenarios,
where rapid adaptation and generalization are essential.

To overcome these challenges, we adopt Noposplat [49], a feed-forward network capable of directly
reconstructing 3D Gaussian representations from sparse and unposed views. We further fine-tune the
pretrained Noposplat model using multi-view observations collected from our robotic manipulation
scenarios, which are the same data used to train our downstream diffusion policy.
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As illustrated in Fig.2(b), each RGB image is independently encoded by a shared-weight ViT [50]
encoder across all views. The resulting per-view features are then passed through a cross-view ViT
decoder, which fuses information across different perspectives using cross-attention layers in each
transformer block. Finally, a Gaussian parameter prediction head estimates a set of 3D Gaussians for
each pixel based on the fused features. This process can be expressed as:

Gi = F(xi), ∀i ∈ I,

where xi denotes the fused feature at pixel i, F(·) is the mapping network, and Gi ∈ RCG×H×W

represents the estimated parameters of the corresponding 3D Gaussian.

To further improve the fidelity of the reconstructed 3D structure, we introduce an additional depth
supervision during fine-tuning. Specifically, in the rendering process, each estimated 3D Gaussian is
projected onto the camera coordinate system. Instead of computing the RGB contribution of each
Gaussian to the image pixels, we compute the contribution of its projected depth to the corresponding
pixel. This depth rendering process yields a synthetic depth map D̂, which can then be supervised
using available ground-truth depth D via a reconstruction loss Ldepth. This depth-based supervision
provides stronger geometric guidance and encourages the model to recover 3D Gaussians that are
more consistent with the actual scene geometry. The overall reconstruction loss is defined as:

Lrec = Lrgb + α · Ldepth,

where α is a balancing weight that controls the influence of the depth supervision.

It is worth noting that depth maps and camera poses are used only during the fine-tuning stage of
Noposplat. During policy training and inference, our framework solely relies on multi-view RGB
observations to infer the 3D Gaussians, making it lightweight and pose-free at deployment time.

3.5 Global Context Allocation and Pixel-level Synergy

The reconstructed global context encodes rich multi-view and multi-agent information, capturing both
the semantic and geometric structure of the scene. However, directly feeding the entire global context
to each agent is suboptimal, as it introduces irrelevant information and may interfere with the agent’s
ability to focus on task-relevant cues from its own perspective. Moreover, effective synergy between
global and local context remains underexplored. Existing approaches typically aggregate global and
local information only at a coarse level, which fails to capture fine-grained spatial alignment and
task-specific dependencies. This coarse fusion strategy may lead to diluted feature representations
and impaired action reasoning, especially in densely interactive multi-agent scenarios.

To address these challenges, we introduce a selective global context dispatch mechanism along with
a pixel-aligned fusion strategy for fine-grained integration of global and local information. Recall
that in Section 3.4, we reconstruct 3D Gaussians by aggregating multi-view image tokens via cross-
attention. Each predicted Gaussian encodes both visual appearance and geometry within a unified
global coordinate system, while remaining naturally aligned with the input image pixels from which
it was derived. Leveraging this alignment, we selectively dispatch the predicted 3D Gaussians back
to the corresponding agent’s observation frame based on their image of origin. Instead of distributing
the entire global context indiscriminately, each agent receives only the subset of Gaussians associated
with its own view. These Gaussians have already integrated information from other views during
reconstruction, thus providing a distilled and relevant global summary for that agent.

For synergistic fusion, we transform the selected Gaussians back into a 2D grid that matches the
spatial dimensions of the original image. These global context features are then concatenated with
the agent’s local image features and passed through a lightweight convolutional fusion module, which
learns to combine the complementary strengths of local perception and global understanding.

This design ensures that each agent benefits from a targeted and contextually relevant global repre-
sentation, while preserving spatial consistency and enabling pixel-level synergy between local and
global cues, both of which are critical for precise and coordinated action planning in multi-agent
manipulation tasks.
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Table 1: Quantitative Comparison of 3D Gaussian Reconstruction. Improved visual quality reflects
higher accuracy in 3D reconstruction.

Method PSNR ↑ SSIM ↑ LPIPS ↓
Pretrain 17.918 0.580 0.492
Ours 23.424 0.779 0.148

4 Experiment

4.1 Experiment Setup

Dataset. Imitation learning in multi-agent collaborative manipulation presents significant chal-
lenges due to the high levels of complexity, coordination, synchronization, and symmetry awareness
required, making it difficult to collect high-quality data in real-world scenarios. To address this issue,
we leverage the RoboFactory benchmark [1], an automated data collection framework specifically
designed for embodied multi-agent systems. We select 6 tasks from RoboFactory involving collab-
orative manipulation using two to four robotic arms. These tasks are designed to cover a range of
coordination complexities and physical interaction patterns. Please refer to the Appendix for detailed
descriptions of each task.

Baseline. Existing diffusion-policy-based approaches predominantly focus on either 2D or 3D
modalities. To ensure a comprehensive and fair comparison, we evaluate our method against several
representative baselines in both domains. For 2D vision-based observations, we adopt Diffusion
Policy [48] and 2D Dense Policy [51]; for 3D input modalities, we include 3D Diffusion Policy [11]
and 3D Dense Policy [51] as baselines. For fair comparison, we maintain a consistent visual backbone
across all methods: ResNet-18 is used for 2D visual inputs following the original Diffusion Policy,
and a lightweight MLP is used for 3D data as in 3D Diffusion Policy.

Experiment setting. We use success rate as the primary evaluation metric to assess the effectiveness
of each policy. Evaluation is performed every 100 training epochs over 100 episodes per policy. All
experiments are implemented using the PyTorch framework and conducted on a single NVIDIA A800
GPU. Policies are trained for 100 epochs using a batch size of 32. We adopt the Adam optimizer
with an initial learning rate of 10−4, combined with a warm-up phase followed by cosine decay
scheduling. To ensure a fair comparison, all baseline and ablation models are trained using the same
set of hyperparameters and optimization settings.

For fair comparison, our proposed GauDP and all baseline methods are trained under identical hyper-
parameters and optimization settings following standard Diffusion Policy benchmarks. Specifically,
we use an action prediction horizon of 8, 3 observation steps, and 6 action execution steps. Both
GauDP and DP adopt DDPM with 100 denoising steps, while DP3 employs DDIM with the same
number of steps.

4.2 Experiment Results

Reconstruction Results. As discussed in Section 3.1, higher-quality rendered images indicate more
accurate reconstruction of the underlying 3D scene, including both geometry and color information.
To evaluate reconstruction performance, we conduct experiments where the full scene is reconstructed
using observations from only two reference viewpoints. Quantitative results are summarized in
Table 1, and qualitative comparisons of the rendered Gaussians from both reference and novel views
are shown in Figure 3.

Our finetuned model significantly outperforms the pretrained baseline, producing reconstructions
that are not only sharper and more detailed, but also more faithful to the original scene geometry
and appearance. As shown in Figure 3, our method yields consistent and high-fidelity renderings
across both reference and novel views, with clearly defined object boundaries. In contrast, the
pretrained model often produces blurry and distorted results, with noticeable discrepancies between
the reconstructions and the original images. Besides, in the first two columns, the reconstructed
positions of the robot arms differ considerably from those in the ground truth. Our method consistently
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Figure 3: Visualization of Reconstruction Results. Our method achieves significantly improved
reconstruction quality.

Table 2: Success rate comparison across multi-agent manipulation tasks with different 2–4 arms
setting. Underlines denote the best baseline of point cloud-based diffusion policy(DP); bold highlights
the best of image-based DP. GauDP achieves the highest average performance across all settings.

Method

2 Arms 3 Arms 4 Arms

AvgLift
Barrier

Place
Food

Stack
Cube

Align
Camera

Stack
Cube

Take
Photo

DP3(XYZ) [11] 30% 21% 1% 3% 0% 9% 10.67%
DP3(XYZ+RGB) [11] 31% 25% 1% 18% 0% 11% 14.33%
3D Dense Policy [51] 28% 18% 0% 0% 0% 7% 8.83%

DP [48] 9% 12% 6% 3% 0% 0% 5.00%
2D Dense Policy [51] 3% 2% 0% 0% 0% 9% 2.33%

GauDP 72% 15% 2% 26% 0% 3% 19.67%

maintains high structural fidelity and visual consistency, demonstrating its effectiveness in capturing
the accurate 3D structure of the scene.

Point Cloud-based Diffusion Policy. The DP3 model leverages 3D point cloud observations to
inform multi-agent manipulation. As shown in the table 2, this policy achieves moderate performance
across two-arm tasks, such as 30% on Lift Barrier and 21% on Place Food, indicating that point cloud
inputs capture sufficient geometric structure for spatially grounded actions. However, its effectiveness
drops sharply in tasks with more agents and higher coordination requirements—such as only 1% on
Stack Cubes (2 arms). These results suggest that point cloud-based methods lack the fine-grained
local control afforded by geometric inputs like point clouds, which limits their effectiveness in
precision-critical tasks such as stacking cubes, especially in multi-arm settings.y in tasks with more
agents and higher coordination requirements.

Image-based Diffusion Policy. As shown in the table 2, our method GauDP-prefuse significantly
outperforms prior 2D diffusion policies across multiple tasks. Compared to DP[40] and 2D Dense
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Table 3: Training and inference efficiency on the Lift Barrier task (Training on A100 GPU; inference
on NVIDIA RTX 5090 GPU).

Method Training Time (GPU h) Inference Speed (FPS)

DP 4.8 1.49
DP3 2.5 1.57
GauDP 6.5 1.28

Table 4: Real-robot performance comparison across three multi-agent collaboration tasks. Each
score in the table is reported as m/n, where m denotes the number of successful executions and n
represents the total number of rollouts performed for that task.

Method Card Box Stacking Card Box Handover Grab Roller

Place Succ. Stack Succ. Succ. Place Succ. Handover Succ. Succ. Succ.

DP 19/30 11/19 11/30 22/30 14/22 14/30 22/30
GauDP 23/30 17/23 17/30 24/30 19/24 19/30 27/30

Policy[51], which struggle across the board (mostly below 10%), GauDP achieves a remarkable 72%
success rate in the Lift Barrier task, indicating its superior ability to model geometry-aware visual rep-
resentations. Additionally, GauDP shows strong performance in tasks requiring semantic alignment,
such as Align Camera (26%), where other methods fail to generalize. These results demonstrate
that integrating geometric priors into image-based pipelines enables better spatial understanding and
more effective multi-agent coordination, especially in tasks with complex embodiment and scene
variability.

Training and Inference Efficiency. We evaluate the training and inference efficiency of GauDP
compared with diffusion-based baselines. As shown in Table 3, GauDP requires slightly longer
training time due to its geometry-aware modules, but maintains comparable inference speed while
offering superior performance.

Real-World Experiments. To further verify the practicality, we conduct real-robot experiments on
three representative multi-agent collaboration tasks: Card Box Stacking, Card Box Handover, and
Grab Roller. As shown in Table 4, GauDP consistently outperforms DP across all tasks, particularly
in stacking and handover scenarios that require precise spatial coordination.

Discussion. As shown in Table 2, our method GauDP achieves the highest average success rate
of 19.67% across diverse multi-agent manipulation tasks, significantly outperforming all baselines,
including those relying on 3D point cloud inputs such as DP3 [11] and 3D Dense Policy [51]. Notably,
while our method operates solely on 2D RGB inputs, it surpasses several 3D-based counterparts in
tasks that require global coordination (e.g., Align Camera: 26% vs. 18%) and even matches them
in fine-grained manipulation tasks (e.g., Stack Cube: 2% vs. 1%). These results highlight that our
approach’s strength lies not in the modality itself, but in the design of visual representations that
fuse both local visual details and global spatial context. This balance enables agents to perceive
geometric structure from images and reason over scene-level relationships, allowing for generalizable
cooperation without relying on explicit 3D geometry.

4.3 Ablation Study

Ablation on the Coordinate System of Gaussians. We replace the original camera-coordinate
parameterization of Gaussians with a unified world-coordinate system aligned to the first observation
frame. Results show that using local coordinates performs better, as it preserves agent-centric spatial
relationships and avoids alignment errors across diverse viewpoints. Ablation on Fusion Strategies
for Local and Global Context. We replace the default fine-grained, pixel-level fusion with a coarse
feature-level concatenation of independently encoded modalities. Performance declines with this
coarse fusion, likely due to the loss of spatial alignment and fine-grained cross-modal reasoning.
Ablation on the Role of Image and Gaussian. We remove either the image input or the Gaussian
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Table 5: Ablation study on key components of GauDP across multi-agent manipulation tasks. Bold
highlights the best among image-based configurations. Our full model achieves the highest average
success rate, demonstrating the effectiveness of combining geometric and visual cues.

Method

2 Arms 3 Arms 4 Arms

AvgLift
Barrier

Place
Food

Stack
Cube

Align
Camera

Stack
Cube

Take
Photo

w/ unify coor. 30% 1% 8% 26% 0% 0% 10.83%
w/o prefuse 2% 4% 0% 1% 0% 0% 1.17%
w/o Image 32% 7% 0% 28% 0% 0% 11.17%

w/o Gaussian 9% 12% 6% 3% 0% 0% 5.00%

Ours 72% 15% 2% 26% 0% 3% 19.67%

representation during policy training and inference. Using both inputs achieves the best results, as
images provide appearance cues while Gaussians supply global geometric context.

5 Conclusion

In this paper, we present GauDP a novel framework for multi-agent collaboration through Gaussian-
image synergy in diffusion policies. Specifically, GauDP a globally consistent 3D Gaussian repre-
sentation from the local RGB observations of each agent and reallocates the Gaussian information
back to individual agents. This process significantly enhances each agent’s perception of the global
task information, thereby boosting the success rate of complex collaborative tasks. We evaluate the
performance of GauDP using the RoboFactory benchmark, which features a diverse set of multi-
arm manipulation tasks. As the number of agents increases, GauDP not only outperforms existing
image-based methods but also matches the effectiveness of point-cloud-driven methods. Future
directions will focus on: (1) designing Gaussian representations that are more suitable as inputs for
the Vision-Language-Action model to enhance its capabilities in multi-agent collaboration; and (2)
leveraging Gaussians to improve the representation of dynamic scenes, enabling them to play a role
in world models designed for multi-agent environments.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We give the limitation of our work in the supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provide the full set of assumptions and a complete (and correct)
proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully disclose all the information needed to reproduce the main
experimental results of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: For some reason, we haven’t provided the open access to code now. But we
will release our source code once the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the training and test details necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by error bars, confidence intervals, or statistical
significance tests, at least for the experiments that support the main claims of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provide sufficient information on the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discuss both potential positive societal impacts in supplementary
materials.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We explicitly mentioned and properly respected the license and terms of assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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