
Under review as a conference paper at ICLR 2021

SEARCHING FOR CONVOLUTIONS AND A
MORE AMBITIOUS NAS

Anonymous authors
Paper under double-blind review

ABSTRACT

An important goal of neural architecture search (NAS) is to automate-away the
design of neural networks on new tasks in under-explored domains, thus help-
ing to democratize machine learning. However, current NAS research largely fo-
cuses on search spaces consisting of existing operations—such as different types
of convolution—that are already known to work well on well-studied problems—
often in computer vision. Our work is motivated by the following question: can
we enable users to build their own search spaces and discover the right neural
operations given data from their specific domain? We make progress towards
this broader vision for NAS by introducing a space of operations generalizing the
convolution that enables search over a large family of parameterizable linear-time
matrix-vector functions. Our flexible construction allows users to design their own
search spaces adapted to the nature and shape of their data, to warm-start search
methods using convolutions when they are known to perform well, or to discover
new operations from scratch when they do not. We evaluate our approach on sev-
eral novel search spaces over vision and text data, on all of which simple NAS
search algorithms can find operations that perform better than baseline layers.

1 INTRODUCTION

Neural architecture search is often motivated by the AutoML vision of democratizing ML by reduc-
ing the need for expert deep net design, both on existing problems and in new domains. However,
while NAS research has seen rapid growth with developments such as weight-sharing (Pham et al.,
2018) and “NAS-benches” (Ying et al., 2019; Zela et al., 2020), most efforts focus on search spaces
that glue together established primitives for well-studied tasks like vision and text (Liu et al., 2019;
Li & Talwalkar, 2019; Xu et al., 2020; Li et al., 2020) or on deployment-time issues such as latency
(Cai et al., 2020). Application studies have followed suit (Nekrasov et al., 2019; Wang et al., 2020).

In this work, we revisit a broader vision for NAS, proposing to move towards much more general
search spaces while still exploiting successful components of leading network topologies and effi-
cient NAS methods. We introduce search spaces built using the Chrysalis,1 a rich family of param-
eterizable operations that we develop using a characterization of efficient matrix transforms by Dao
et al. (2020) and which contain convolutions and many other simple linear operations. When com-
bined with a backbone architecture, the Chrysalis induces general NAS search spaces for discovering
the right operation for a given type of data. For example, when inducing a novel search space from
the LeNet architecture (LeCun et al., 1999), we show that randomly initialized gradient-based NAS
methods applied to CIFAR-10 discover operations in the Chrysalis that outperform convolutions—
the “right” operation for vision—by 1% on both CIFAR-10 and CIFAR-100. Our contributions,
summarized below, take critical steps towards a broader NAS that enables the discovery of good
design patterns with limited human specification from data in under-explored domains:

• We define the broad NAS problem and discuss how it interacts with modern techniques such
as continuous relaxation, weight-sharing, and bilevel optimization. This discussion sets up our
new approach for search space design and our associated evaluations of whether leading NAS
methods, applied to our proposed search spaces, can find good parameterizable operations.

• We introduce Kaleidoscope-operations (K-operations), parameterizable operations comprising
the Chrysalis that generalize the convolution while preserving key desirable properties: short
1Following Dao et al. (2020), butterfly-based naming will be used throughout.

1

Under review as a conference paper at ICLR 2021

description length, linearity, and fast computation. Notably, K-operations can be combined with
fixed architectures to induce rich search spaces in which architectural parameters are decoupled
from model weights, the former to be searched via NAS methods.

• We evaluate the Chrysalis on text and image settings where convolutions are known to work well.
For images, we construct the ButterfLeNet search space by combining K-operations with the well-
known LeNet (LeCun et al., 1999). For text classification, we generalize the simple multi-width
model of Kim (2014). On both we evaluate several applicable NAS methods and find that single-
level supernet SGD is able to find operations that come close to or match the performance of
convolutions when searched from-scratch, while also improving upon them when warm-started.

• We conclude by examining the generality of our approach on domains where convolutions are
the “wrong” operation. We first consider permuted image data, where the “right” operation is
permutation followed by convolution, and observe that NAS methods applied to the ButterfLeNet
search space yield an architecture that outperforms all fixed operation baselines by 8%. Next we
consider spherical MNIST data of Cohen et al. (2018), where the “right” operation is the spherical
convolution from the same paper. We consider the K-operation search space that generalizes their
network and again find that it outperforms convolutions by more than 20%. Our results highlight
the capacity of K-operation-based search spaces, coupled with standard NAS methods, to broaden
the scope of NAS to discovering neural primitives in new data domains.

1.1 RELATED WORK

AutoML is a well-studied area, with most work focusing on the fairly small search spaces of hyper-
parameter optimization (Bergstra & Bengio, 2012; Li et al., 2018) or on NAS (Elsken et al., 2019).
In the latter case, it has been observed that the search spaces are still “easy” in the sense that random
architectures can do reasonably well (Elsken et al., 2019; Li & Talwalkar, 2019). More recently,
Real et al. (2020) demonstrated the possibility of evolving all aspects of ML—not just the model but
also the training algorithm—from scratch. We seek to establish a middle ground in which search
spaces are large and domain-agnostic but still allow the encoding of desirable constraints and the
application of well-tested learning algorithms such as stochastic gradient descent (SGD).

Our main contribution is a family of search spaces that build upon K-operations, which generalize
parameterized convolutions (LeCun et al., 1999). Most NAS search spaces only allow a categorical
choice between a few kinds of convolutions (Liu et al., 2019; Zela et al., 2020; Dong & Yang, 2020);
even when drastically expanded to include many types of filter sizes and other hyperparameters
(Mei et al., 2020), the operation itself is not generalized and so these search spaces may not be
useful outside of domains where convolutions are applicable. Beyond NAS, recent work by Zhou
et al. (2020) uses a meta-learning framing (Thrun & Pratt, 1998) to study how to learn more general
types of symmetries—beyond simply translational—from multi-task data. This transfer-based setup
allows a clear formalization of learning such equivariances, though unlike NAS, it is not applicable
to single-task settings. In addition, their technical approach does not generalize two-dimensional
convolutions due to computational intractabality, while our K-operations are indeed able to do so.

The above works search over spaces of parameterizable operations by delineating a set of architec-
tural or meta parameters to define the space over operations that are separate from model weights,
which parameterize the operations found. In contrast, other efforts seek to simply outperform con-
volutions by directly training more expressive models. This includes several that use linear maps
based on butterfly factors as drop-in replacements for linear or convolutional layers (Dao et al., 2019;
2020; Alizadeh vahid et al., 2020; Ailon et al., 2020). Very recently, Neyshabur (2020) showed that
a sparsity-inducing optimization routine can train fully connected nets that match the performance
of convolutional networks and in the process the weights learn local connectivity patterns. However,
none of these papers return parameterizable operations from a formally defined search space.

2 STATISTICAL AND OPTIMIZATION OBJECTIVES OF NAS

In this section we set up the statistical and algorithmic objectives of neural architecture search. This
is critical since we seek a definition of NAS that encompasses not only categorical decisions but
also learning primitives such as convolutions. We ignore latency and transfer considerations and
instead focus on the statistical problem of learning to parameterize a function fw,a : Z ÞÑ R so as
to minimize its expected value Ezfw,apzq w.r.t. some unknown distribution over the data-domain
Z . Here a P A are architectures in some search spaceA and w PW are model-weights of sufficient

2

Under review as a conference paper at ICLR 2021

dimensionality to parameterize any architecture in A. Classically, a is chosen by a human expert to
aid the data-driven selection of w PW , i.e. to have favorable statistical and optimization properties
to ensure that, given a finite data set S � Z , some learning algorithm Alg : 2Z � A ÞÑ W will
return wa � AlgpS, aq s.t. Ezfwa,apzq is small. Alg is usually some iterative gradient-based
approximation like SGD to the empirical risk over S.

NAS Algorithms and Optimization Objectives: In contrast to the standard learning setting, NAS
aims to select both a P A and w P W on the basis of training data, reducing the need for human
intervention to constructing a search space and implementing a search algorithm, both of which
should be as amenable as possible to general-purpose, domain-agnostic designs. Assuming a given
training method Alg, this leads to search objectives of the form

arg min
aPA

¸

zPV

fwa,apzq s.t. wa � AlgpT, aq (1)

where T, V � S are disjoint training and validation sets. The main challenge with this search
objective is intractability: (1) A usually contains combinatorially many architectures and (2) eval-
uating even one requires one run of Alg. Modern NAS avoids these problems using two tech-
niques: continuous relaxation and weight-sharing (Pham et al., 2018; Liu et al., 2019) First, the
often-discrete architecture search space A is relaxed into a convex space of architecture parameters
Θ � A such that any θ P Θ is associated with some architecture a P A via some discretization
mapping Map : Θ ÞÑ A. For example, Θ could consist of linear combinations of operations in A
and Map could select the one with the largest coefficient. After continuous relaxation, we can run
search by updating θ using gradients w.r.t. fwθ,θ, replacing the approximation error incurred by
truncating the discrete optimization of (1) with the one incurred by running the discretization Map
on the output of

arg min
θPΘ

¸

zPV

fwθ,θpzq s.t. wθ � AlgpT, θq (2)

This addresses the first intractability issue, but computing the architecture gradient w.r.t. fwθ,θ is
still prohibitively expensive due to the need to differentiate through Alg. Weight-sharing resolves
this via another approximation that simply maintains a fixed set of shared weights w throughout
search and updates θ using the gradient of fw,θ, which does not depend on Alg. This exploits the
fact that changing θ directly affects the objective fw,θ and so having different weights for different
architectures, i.e. not sharing them, is not necessary to distinguish their performance (Li et al., 2020).
The weight-sharing approximation to (2) leads to alternating update methods (Pham et al., 2018; Liu
et al., 2019) in which gradient updates to w using data from T are alternated with gradient updates to
θ using data from V ; one can also define a single-level, empirical risk minimization (ERM) objective

arg min
θPΘ

min
wPW

¸

zPS

fw,θpzq (3)

which can also be solved by alternating gradient updates, just using the same data, or by joint gradi-
ent updates. Despite eschewing the usual data-splitting of most AutoML algorithms, this objective
has been found to do well in certain NAS settings (Li et al., 2020).

The Goals of NAS: The use of weight-sharing, continuous relaxation, and ERM blurs the line
between NAS and regular model training, since architecture parameters are optimized in much the
same way as model weights during search. The remaining differences are due to post-search dis-
cretization, in which an architecture a � Mappθq P A is recovered from the output θ P Θ of (2)
or (3), and post-discretization re-training, in which new weights w � AlgpS, aq are obtained with
the discrete architecture. We will blur the line even further by considering search spaces that do not
require post-search discretization and thus may not need post-discretization re-training either.

It is thus useful to formally state our main objective, in alignment with standard NAS (Liu et al.,
2019; Ying et al., 2019), which is to use the given data T to find a ‘good’ architecture a P A, i.e., one
such that with suitable model weights wa we obtain a function fwa,a with low test error. In practice,
suitable model weights can be obtained either via: (a) offline evaluation in which we train model
weights directly after discovering a, i.e., wa � AlgpT, aq; or (b) supernet evaluation in which we
leverage the model weights learned jointly with architectural parameters, as in (2) or (3).

For most instances of NAS with weight-sharing, offline evaluation achieves better test performance
than supernet evaluation; this likely results from a combination of (1) overfitting while training w

3

Under review as a conference paper at ICLR 2021

in-conjunction with relaxed architecture parameters θ, and (2) lossiness when discretizing to obtain
a valid architecture a � Mappθq post-search (Liu et al., 2019; Dong & Yang, 2020). However,
our proposed search spaces do not require discretization, and we will see that supernet evaluation
sometimes outperforms offline evaluation, which we view as a benefit since it removes the need
for re-training. Notably, while single-task supernet evaluation can be viewed as similar in spirit to
regular model training, as we use T to jointly train a weight-architecture pair with low test error,
we can isolate the quality of an architecture alone by performing supernet evaluation in a transfer
learning setting, which we explore in Section 4.

3 GENERALIZING CONVOLUTIONS WITH PARAMETERIZABLE OPERATIONS

The use of parameterized convolution operations to extract features from images is a major archi-
tectural breakthrough that has spearheaded most recent progress in computer vision (LeCun et al.,
1999). Convolutions have also found numerous application in other domains such as text (Kim,
2014; Zhang et al., 2015), but they may not be the appropriate parameterized operation for all do-
mains, or the right kind of convolution may not always be evident or easy to construct (Cohen et al.,
2018). Our main question is whether NAS can find a good parameterized neural primitive for a given
data domain. To investigate, we start with a minimal requirement: that NAS can find an operation
that matches the performance of convolutions given computer vision data. This leads to our main
contribution: a Chrysalis of parameterizable K-operations that generalizes the convolution while
preserving many of its desirable properties: small description length, linearity, and efficiency. Sub-
stituting K-operations for operations such as convolutions in backbone architectures yields search
spaces in which the goal is to search the Chrysalis for a good K-operation to use on the input data.

Desirable Properties of Parameterizable Neural Operations: We first define what a parame-
terizable operation is; this is crucial for distinguishing our process of searching for such operations
compared to directly training model parameters for them.
Definition 3.1. A parameterizable operation Opp�, �q is a function with two inputs, i.e., data and
model parameters w, and outputs a parameterized function Opp�,wq.

For example, a linear layer is a parameterizable operation that takes as input a matrix and outputs
the corresponding linear map; Neyshabur (2020) trains such layers in an attempt to recover convo-
lutional performance. Another example is the Kaleidoscope layer (K-layer) of Dao et al. (2020),
which is similar except the matrix is constrained to be a stack of one or more structured maps. No-
tably, these and other works (Dao et al., 2019; Alizadeh vahid et al., 2020; Ailon et al., 2020) fix the
parameterizable operation Op and learn its parameterization w; in contrast, we search for a good
Op. In particular, we formulate our search for a good Op via a search over architecture encodings
a. As discussed in Section 2, we give evidence that the NAS approach of separating the search for a
from the learning of w yields good operations Opa.

Our aim is to construct a search space that generalizes the convolution Convp�, �q while preserving
its favorable, domain-independent properties; the goal will then be to use NAS to find operations
within this search space that have good domain-dependent properties. We identify three domain-
independent properties possessed by functions Convp�,wq returned by the parameterizable convo-
lution for any fixed input dimension n ¥ 1 and any model weights w P ROpnq:
1. Short description length: parameterized function Convp�,wq can be represented withOpnq bits.
2. Linearity: DAw,n s.t. Convpx,wq � Aw,nx for all inputs x P Rn and }Aw,n}F9}w}2.
3. Fast computation: given arbitrary x P Rn we can compute Convpx,wq in time Opnq.

These properties have many learning-theoretic and computational advantages. In particular, models
with short description length have better generalization guarantees (Shalev-Shwartz & Ben-David,
2014, Theorem 7.7); linearity is also advantageous statistically due to its simplicity and may interact
better with optimization techniques such as batch-norm and weight-decay (Ioffe & Szegedy, 2015;
Zhang et al., 2019). The last property has clear importance in practice and is intimately connected
with the first, since any linear transform with description length ω̃pnq must take time ω̃pnq.

The Chrysalis of Kaleidoscope Operations: To maintain these properties we turn to Kaleido-
scope matrices (K-matrices) (Dao et al., 2020), which are products of butterfly matrices (Parker,
1995). Each butterfly matrix of dimension n � n is itself a product of log n sparse matrices with
a special fixed sparsity pattern, which encodes the recursive divide-and-conquer algorithms such
as the FFT. Each butterfly matrix has a total of Opn log nq parameters and Opn log nq runtime to

4

Under review as a conference paper at ICLR 2021

M

K2 K1

w

x
1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Depth

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Va
lid

at
io

n
ac

cu
ra

cy

Figure 1: Illustration of a K-operation parameterized by weights w and K-matrices a � pK1,K2,Mq, with
elementwise product in orange (left). a is found via search, while weights w are retrained for the discovered a.
Plot of supernet evaluation of K-operations found when searching ButterfLeNet as a function of depth (right).

multiply a vector x P Rn. The depth of a K-matrix refers to the number of butterfly matrices in
the product that form that K-matrix. Remarkably, all n � n matrices whose matrix-vector products
can be expressed as a constant-depth arithmetic circuit with Opnq gates can be represented as a
constant-depth K-matrix with memory and time complexity Õpnq (Dao et al., 2020, Theorem 1); for
many specific matrices, including convolutions, the logarithmic factors also disappear. These matri-
ces thus provide a simple way to define a search space containing operations sharing the desirable
properties of convolutions.

Several works have proposed a parameterizable operations based on butterfly factors; for example
Dao et al. (2020) propose replace convolutional layers by K-matrices. As discussed above, such
approaches fix a parameterizable operation and train model weights for it rather than finding one in
a larger search space. In contrast we propose to search over a space of kaleidoscope operations, im-
posing the constraint that our selected K-operations have same architecture parameterizations across
all instantiations in the resulting network, but can be parameterized by different model weights in
each instantiation. This is analogous to the parameterization of the same convolution operation by
different models weights (or filters) at each instantiation in a network. These K-operations com-
prise the Chrysalis, which can be combined with backbone architectures to create new search spaces
containing potential operations for new domains.

For simplicity, we motivate and formalize our design of K-operations for the case of 1d input data;
for higher dimensions, see Appendix A. To motivate our construction, note that a convolution of an
input x P Rn with filters w P Rn can be expressed using the Fourier transform matrix F P Cn�n:

Convpx,wq � F�1 diagpFwqFx (4)

Thus we can obtain a space of parameterizable operations that contains convolutions by varying the
matrices in the expression above. Since F and its inverse are both K-matrices (Dao et al., 2020),
this can be done efficiently as follows:
Definition 3.2. A Kaleidoscope operation K-Opa of depth k ¥ 1 defined by three K-matrices
a � pK1,K2,Mq of depth k is an operation that, when parameterized by model weights w P Rn,
takes as input an arbitrary vector x P Rn and outputs RealpK1 diagpMwqK2xq.

It is easy to show that K-operations satisfy the three desirable data-independent properties of convo-
lutions. Furthermore, in the single-channel case the extended function class K-Opap�,wq of depth
k can trivially express any depth-2k K-matrix transform by setting w � 1n and M � In; this
includes well-known functions such as Fourier, cosine, and wavelet transforms. Note that depth
increases the expressivity of the space of K-operations and can be critical for performance (c.f. Fig-
ure 1). In the multi-channel case a layer of K-operations is less expressive than the K-layer of Dao
et al. (2020) but can still express average-pooling (a type of convolution) and skip-connections, thus
comprising most of operations in NAS search spaces such as DARTS (Liu et al., 2019).

The caveat here is that the Chrysalis itself does not contain these operations since it does not in-
clude any nonzero operations that ignore the filter weights w, which is required for parameter-free
operations such as average pooling and skip-connections. This can be easily rectified by adding
per-channel bias terms inside the diag that allow its output to be the identity, setting up a channel-
connection problem related to that of Wortsman et al. (2019). However, we did not find simple
algorithms for doing so empirically beneficial and so leave further exploration to future work.

5

Under review as a conference paper at ICLR 2021

Table 1: Comparison of architectures found by searching ButterfLeNet on CIFAR-10. Results are averages
over five random seeds affecting both search and offline evaluation. When warm starting with convolutions,
offline evaluation of Supernet SGD outperforms fixed convolutions by 1% on both CIFAR-10 and on transfer
to CIFAR-100. Furthermore, when search is initialized to a random operation, offline evaluation of Supernet
SGDR matches the performance of fixed convolutions. Finally, we find that when warm starting with convolu-
tions, supernet evaluation of ButterfLeNet using Supernet SGDR attains the best performance.
CIFAR fixed operation baselines DARTS Supernet SGD Supernet SGDR
classes (eval.) random 1st 2nd from warm from warm

linear conv K-layer K-op order order scratch start scratch start
10 (supernet) - - - - 51.25 70.25 75.27 76.43 76.84 77.15
10 (offline) 59.17 75.76 68.64 56.76 57.92 71.88 73.75 76.46 75.43 75.98
100 (offline�) 28.02 43.88 39.26 29.47 29.50 41.70 42.86 44.86 44.33 44.20
� For DARTS, Supernet SGD, and Supernet SGDR, a K-Op found on CIFAR-10 is transferred to CIFAR-100.

Convolution

Bu
tte

rfL
eN

et
 la

ye
r 1

Bu
tte

rfL
eN

et
 L

ay
er

 2

K-Opa: warm start K-Opa: from scratch

Figure 2: Comparison of the filters, and filter analogues, produced by three parameterized operations trained
on CIFAR-10: convolutions, K-operations warm-started with convolutions, and K-operations searched from
scratch. The latter two are discovered using Supernet SGD. In the case of convolutions, these are randomly
selected filters at random positions on the input feature map. In the cases of the learned K-operations, these
are randomly selected neighborhoods of the operation over the input feature map. The first layer of the warm
started K-operation remains mostly convolutional, while the second layer pools features more globally. The
first layer of the from scratch K-operation has some locality structure, while the second layer does not.

4 USING THE CHRYSALIS TO COMPETE WITH CONVOLUTIONS

We now examine the viability of the Chrysalis to find good K-operations on tasks where convolu-
tions are known to perform well. We first consider standard computer vision tasks, i.e., the canonical
application of convolutions, and next study another well-known application of parameterized con-
volutions: extracting features from temporal data such as text (Kim, 2014; Zhang et al., 2015).

ButterfLeNet-Searching for Good Operations on Image Data. To construct a search space from
(2d) K-operations, we use the classic LeNet architecture (LeCun et al., 1999), which consists of two
convolutional layers followed by two fully connected layers. We replace each convolutional layer
by a layer in which the same depth-9 K-Op is shared across all input-output channels; our task on
the resulting search space, ButterfLeNet, is thus to learn two operations in total, one for each layer.
Offline evaluation of the discovered operation is conducted by fixing the architecture parameters a
and retraining the model weights using SGD with the same hyperparameters used for LeNet.

Because K-operations comprise a continuous search space, ButterfLeNet is amenable to standard
gradient based optimization without the need for continuous relaxation. At the same time, it is
not straightforward to define sampling-based approaches beyond random search, which itself works
poorly due to the difficulty of the search space. We thus evaluate the following gradient-based
methods, each with the same fixed budget in terms of number of training epochs:

• DARTS (Liu et al., 2019): approximates the bilevel objective (2) using Adam (Kingma & Ba,
2015) to update the architecture parameters and SGD to update the shared weights.

6

Under review as a conference paper at ICLR 2021

Table 2: Comparison of fixed operations and K-operations found via Supernet SGD over ButterfLeNet-Text.
Tasks comprise a standard set of text classification benchmarks. Either supernet or offline evaluation of warm
started K-operations found using Supernet SGD outperform the fixed operation baselines on all 7 datasets.

method evaluation CR MPQA MR SST1 SST2 SUBJ TREC
baseline linear offline 73.89 88.37 71.22 38.93 77.66 88.08 86.76

operations convolution offline 81.47 90.53 87.75 45.03 85.35 91.66 92.48
from scratch supernet 78.74 90.51 77.43 43.71 82.06 90.78 89.44

Supernet from scratch offline 78.58 91.24 76.09 43.74 82.56 90.40 90.44
SGD warm start supernet 83.11 90.84 80.00 44.91 85.84 91.88 93.20

warm start offline 83.74 90.90 79.72 45.24 85.3 92.18 92.24

• Supernet SGD: direct optimization of the single-level objective (3) using SGD.

• Supernet SGDR: runs Supernet SGD but periodically resets the step-size schedule and reinitializes
model weights w; inspired by the warm-restart method of Loshchilov & Hutter (2017), it attempts
to boost from-scratch performance by “warm-starting” from a discovered K-operation.

We further compare our discovered K-operations to four natural parameterizable operations: linear
(fully-connected) layers, convolutions, K-layers, and random K-operations.

In Tables 1 we show that Supernet SGD is able to search ButterfLeNet from random initialization
to find K-operations that match the performance of convolutions, i.e. regular LeNet. Despite being
less expressive, our approach also outperforms the fixed K-layer approach in which all convolu-
tions are replaced with fully-parameterized K-matrices. Interestingly, supernet evaluation is worse
for established NAS methods like DARTS but better for direct optimization, with Supernet SGD-R
outperforming convolutions by around 1.1% from scratch and 1.4% when warm-started. Because
of the K-operation construction, we can also investigate the quality of K-operations found when we
“warm-start” K-Opa to be a convolution by setting the K-matrices comprising a to the appropri-
ate Fourier transforms; doing so we find K-operations that outperform convolutions. Table 1 also
shows a transfer learning experiment that further demonstrates the usefulness of the K-operations
discovered on CIFAR-10: when the architecture parameters are fixed and the weights retrained on
CIFAR-100, our operations outperform convolutions at test-time. Finally, we note the difficulty of
our search space, as demonstrated by the poor performance of random K-operations, which do worse
than even linear layers; this is in contrast to most NAS search spaces, which are often easy-enough
to be solved by random search (Li & Talwalkar, 2019; Yang et al., 2020). We find that a larger
ButterfLeNet model, Wide ButterfLeNet, can still outperform convolutions in terms of supernet
evaluation. This is shown in Appendix B.

We also explore what operations are being learned, comparing convolutions, K-operations discov-
ered by warm-starting with convolutions, and K-operations found from-scratch in Figure 2. Our
visualizations suggest that learned K-operations use more global information to extract features,
especially in the second ButterfLeNet layer discovered from-scratch.

ButterfLeNet-Text: Searching for Good One-Dimensional Operations. We next consider ap-
plications of temporal data such as text. We again use the Chrysalis to replace convolutions in all
input-output channels in an existing model, namely the network of Kim (2014) which has three par-
allel convolutional layers with different kernel widths followed by a fully-connected layer; our task
will be to find a separate K-operation for each of layer.

Our evaluation focuses on a standard suite of sentence classification tasks, with results presented in
Table 2. As before, we compare the performance of Supernet SGD with the baseline performance
of fixed linear operations. In 5 out of 7 of the datasets considered, offline evaluation of Supernet
SGD where the K-operations are warm started yields higher performance than all fixed operation
baselines. On the remaining two datasets, supernet evaluation outperforms convolutions and offline
evaluation matches the performance of convolutions. We find that when the K-operations are ini-
tialized from scratch, offline evaluation substantially outperforms the fully connected baseline and,
among the architectures considered, achieves the highest test accuracy on the MPQA dataset.

7

Under review as a conference paper at ICLR 2021

Table 3: Comparison of fixed operation baselines to ButterfLeNet trained using Supernet SGD on permuted
CIFAR-10 and CIFAR-100. K-operations trained from scratch outperform all other methods on supernet eval-
uation, offline evaluation, and transfer to CIFAR-100.

fixed operation baselines Supernet SGD
dataset linear conv K-layer from scratch warm start

CIFAR-10 (supernet) - - - 74.69 70.22
CIFAR-10 (offline) 59.61 58.90 66.16 72.99 69.56

CIFAR-100 (offline�) 27.89 31.41 37.36 42.73 40.42
� For Supernet SGD, a K-Op found on CIFAR-10 is transferred to CIFAR-100.

Table 4: Comparison of spherical convolutions, convolutions, and NAS on the ButterfLeNet-Spherical search
space, built atop the convolutional baseline of Cohen et al. (2018). We test on the stereographically projected
spherical MNIST as well as a rotated variant (Cohen et al., 2018).

Spherical MNIST fixed operations Supernet SGD
subset (evaluation) conv spherical from scratch warm start warm start, from scratch
non-rotated (supernet) - - 98.44 97.26 98.56
non-rotated (offline) 97.59 96.49 98.55 98.23 98.87
rotated (supernet) 33.92 96.32 35.77 28.26 56.11
rotated (offline) 33.92 96.32 33.38 30.29 54.49

5 BEYOND CONVOLUTIONS AND TOWARDS A MORE AMBITIOUS NAS

Convolutions are well-suited to many applications, but they are not always the best operation to
use. Since our broader goal is to enable users to apply the Chrysalis to find neural primitives for
whatever type of data they use, we now ask whether our novel search spaces can be leveraged to find
operations that outperform convolutions in domains where they are not optimal. We establish this in
two simple settings using the same approach as before: borrowing existing network structures and
replacing convolutions by K-operations.

ButterfLeNet: Unpermuting Image Data. Here we consider a setting similar to that of Section ??
except a fixed permutation of all rows and columns is applied to CIFAR images before being passed
as input. Since K-matrices can express both convolutions and permutations, there exist K-operations
that do well on this data; this experiment thus tests whether we can leverage our search space to
identify these good operations. Note that Dao et al. (2019) report a related experiment, in which they
directly attempt to recover a permutation; our setting is more difficult because we are simultaneously
attempting to do well on a classification task. Table 3 shows that both supernet and offline evaluation
of Supernet SGD can attain nearly the same performance as in the unpermuted case when searching
from-scratch. Perhaps unsurprisingly, warm-starting from convolutions performs worse. We also
outperform all fixed linear operations, including the K-layer approach that is more expressive than
our approach but experiences a slightly larger drop in performance from Table 1.

ButterfLeNet-Spherical. Finally, we consider the spherical MNIST dataset of Cohen et al. (2018),
applying the Chrysalis to their baseline model consisting of two convolutional and one fully-
connected layer. The spherical MNIST dataset consists of a stereographic projection of the MNIST
dataset onto the sphere and a projection back to the plane, resulting in a nonlinear distortion. The
rotated variant additionally applies random rotations before projecting back to the plane. We com-
pare convolutions to search spaces induced by the Chrysalis. Since the spherical CNN of Cohen
et al. (2018) uses two types of spherical convolution layers, we add an additional evaluation that
only warm starts the first layer to break the symmetry of initializing both operations to be the same.

Table 4 shows that supernet and offline evaluation of Supernet SGD both find operations that sig-
nificantly outperform convolutions but are also significantly behind spherical convolutions on the
rotated spherical MNIST dataset. While convolutions, spherical convolutions, and K-operations
all achieve high performance on the stereographically projected data, spherical convolutions are
specifically designed to be invariant to rotation as well. It is unclear to what degree K-matrices are
expressive enough to capture rotational invariance of stereographic projections. On the other-hand,
our general-purpose approach significantly exceeds simple convolutions. This demonstrates that
while it is difficult to match sophisticated operation designs, K-operations can still lead to strong
improvements over convolutions in new domains.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Nir Ailon, Omer Leibovich, and Vineet Nair. Sparse linear networks with a fixed butterfly structure:
Theory and practice. arXiv, 2020.

Keivan Alizadeh vahid, Anish Prabhu, Ali Farhadi, and Mohammad Rastegari. Butterfly transform:
An efficient FFT based neural architecture design. In Proceedings of the IEEE Conference on
Conference on Computer Vision and Pattern Recognition, 2020.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305, 2012.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In Proceedings of the 8th International Con-
ference on Learning Representations, 2020.

Taco S. Cohen, Mario Geiger, Jonas Koehler, and Max Welling. Spherical CNNs. In Proceedings
of the 6th International Conference on Learning Representations, 2018.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms
for linear transforms using butterfly factorizations. In Proceedings of the 36th International Con-
ference on Machine Learning, 2019.

Tri Dao, Nimit Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski, Atri
Rudra, and Christopher Ré. Kaleidoscope: An efficient, learnable representation for all structured
linear maps. In Proceedings of the 8th International Conference on Learning Representations,
2020.

Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the scope of reproducible neural archi-
tecture search. In Proceedings of the 8th International Conference on Learning Representations,
2020.

Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-learning of neural
architectures for few-shot learning. arXiv, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning, 2015.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations, 2015.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with gradient-
based learning. In Shape, Contour and Grouping in Computer Vision. 1999.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2019.

Liam Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Geometry-aware gradient
algorithms for neural architecture search. arXiv, 2020.

Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment,
2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
Proceedings of the 7th International Conference on Learning Representations, 2019.

9

Under review as a conference paper at ICLR 2021

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Pro-
ceedings of the 5th International Conference on Learning Representations, 2017.

Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie Yang, Alan Yuille, and Jianchao Yang.
AtomNAS: Fine-grained end-to-end neural architecture search. In Proceedings of the 8th Inter-
national Conference on Learning Representations, 2020.

Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid. Fast neural architecture search of com-
pact semantic segmentation models via auxiliary cells. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019.

Behnam Neyshabur. Towards learning convolutions from scratch. arXiv, 2020.

D. Stott Parker. Random butterfly transformations with applications in computational linear algebra.
Technical report, UCLA, 1995.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In Proceedings of the 35th International Conference on Machine
Learning, 2018.

Esteban Real, Chen Liang, David R. So, and Quoc V. Le. AutoML-Zero: Evolving machine learn-
ing algorithms from scratch. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

Sebastian Thrun and Lorien Pratt. Learning to Learn. Springer Science & Business Media, 1998.

Yujing Wang, Yaming Yang, Yiren Chen, Jing Bai, Ce Zhang, Guinan Su, Xiaoyu Kou, Yunhai
Tong, Mao Yang, and Lidong Zhou. Textnas: A neural architecture search space tailored for text
representation. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020.

Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings. In Ad-
vances in Neural Information Processing Systems, 2019.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. PC-
DARTS: Partial channel connections for memory-efficient architecture search. In Proceedings of
the 8th International Conference on Learning Representations, 2020.

Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci. NAS evaluation is frustratingly hard.
In Proceedings of the 8th International Conference on Learning Representations, 2020.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
Bench-101: Towards reproducible neural architecture search. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, 2019.

Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

Arber Zela, Julien Siems, and Frank Hutter. NAS-Bench-1Shot1: Benchmarking and dissecting one-
shot neural architecture search. In Proceedings of the 8th International Conference on Learning
Representations, 2020.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization. In Proceedings of the 7th International Conference on Learning Representations,
2019.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Processing Systems, 2015.

Allan Zhou, Tom Knowles, and Chelsea Finn. Meta-learning symmetries by reparameterization.
arXiv, 2020.

10

Under review as a conference paper at ICLR 2021

Table 5: Performance on CIFAR-10 of a larger variant of LeNet (“Wide LeNet”) with a greater
number of channels. Here, supernet evaluation of warm started Supernet SGD achieves the highest
performance on CIFAR-10.

Supernet SGD
dataset conv from scratch warm start

CIFAR-10 (supernet) - 78.42 87.27
CIFAR-10 (offline) 86.72 76.51 86.72

A HIGHER-DIMENSIONAL KALEIDOSCOPE OPERATIONS

To generalized Kaleidoscope operations to higher dimension, we simply perform the Kaleidoscope
operations on each dimension of the input. This is similar to how 2d-FFT is done by performing two
1d-FFTs on each dimension of the input.

More precisely, we take the Kronecker product (denoted by bq of the 1d Kaleidoscope matrices in
the 1d Kaleidoscope operation. For simplicity of notation, we assume that the two dimensions have
the same size n.
Definition A.1. A 2d Kaleidoscope operation K-Opa of depth k ¥ 1 defined by six K-
matrices a � pK1,1,K1,2,K2,1,K2,2,M1,M2q of depth k is an operation that, when param-
eterized by model weights w P Rn2

, takes as input an arbitrary vector x P Rn2

and outputs
RealpK1 diagpMwqK2xq where K1 �K1,1bK1,2, K2 �K2,1bK2,2, and M �M1bM2.

It is also straightforward to generalize to N-d:
Definition A.2. An N-d Kaleidoscope operation K-Opa of depth k ¥ 1 defined by 3N K-matrices
a � pK1,1, ...,K1,N ,K2,1, ...,K2,N ,M1, ...,MN q of depth k is an operation that, when param-
eterized by model weights w P RnN , takes as input an arbitrary vector x P RnN and outputs
RealpK1 diagpMwqK2xq where K1 � bNi�1K1,i,K2 � bNi�1K2,i, and M � bNi�1Mi.

B WIDE BUTTERFLENET

We show that warm started supernet training of a larger LeNet architecture can outperform its fixed
convolutional counterpart. These results are presented in Table 5.

C EXPERIMENTAL DETAILS

C.1 BUTTERFLENET-VISION

C.1.1 ARCHITECTURE DETAILS

For all LeNet experiments, we use the LeNet architecture except padding is added to the convolu-
tional layers to preserve feature map dimension, and ReLU activations are used. Namely, this is
convolution (3, 6), average pooling (2, 2), convolution (6, 16), average pooling (2, 2), linear (120),
linear (84), linear (10 or 100). 5 � 5 kernels are used throughout. The linear baseline consists of
4 linear layers with ReLU activations. In particular, that is linear (6 * 16 * 16), linear (16 * 8 *
8), linear (120), linear (84), linear (10 or 100). The K-layer baseline replaces all convolutions in
LeNet with K-layers of the same shape. A K-layer consists of two K-matrices per input-output
channel pair. For ButterfLeNet experiments, we replace each convolutional layer in LeNet with a
K-operation of the same shape, and parameterized by the same number of model parameters as the
analogous convolutional layer. In particular for our warm start experiments, we initialize K1 and
K2 to be inverse Fourier transform and Fourier transform matrices scaled to be unitary, while M is
initialized to be a unscaled Fourier transform matrix. Each of these are depth 1 K-matrices. When
initializing K-operations from scratch, we use depth 9 K-matrices with unitary initialization. That is,
K1,K2,M are each a product of 9 K-matrices, where K1,K2,M are each initialized to be random
unitary matrices.

Wide LeNet comprises 3 convolutional layers with more channels than LeNet, and two linear layers.
In particular, convolution (3, 32), batch norm, convolution (32, 64), batch norm, convolution (64,

11

Under review as a conference paper at ICLR 2021

128), linear (128), batch norm, linear (10 or 100). Here, convolutions use 3 � 3 filters. As before,
ReLU activations are used. Wide ButterfLeNet replaces all convolutional layers with K-operations
of corresponding dimension. In both the warm start and from scratch settings, we tie the operations
between the second and third K-operation layers.

C.1.2 HYPERPARAMETERS FOR OFFLINE EVALUATION AND FIXED BASELINES

For offline evaluation (except DARTS) and models with fixed operations, we train for 200 epochs
using SGD with a learning rate of 0.01, decreased to 0.005 at epoch 100, to 0.001 at epoch 150 and
a minibatch size of 128. We use a weight decay of 0.0001. For all methods except from scratch
ButterfLeNet, we employ data augmentation with random cropping and random horizontal flipping.
For from scratch ButterfLeNet, we instead employ the Fast AutoAugment policy found on CIFAR-
10 (Lim et al., 2019). For offline evaluation of DARTS, we train using the Adam optimizer (Kingma
& Ba, 2015) to stay faithful to the original DARTS formulation.

C.1.3 ARCHITECTURE SEARCH

For Supernet SGD methods, we train the supernet for 800 epochs using SGD and an initial learning
rate of 0.01, decreased to 0.005 at epoch 400, to 0.001 at epoch 600. We use the same augmenta-
tion scheme used for baselines and offline evaluation, where from scratch ButterfLeNet uses Fast
AutoAugment. We use a weight decay of 0.0001. First and second order DARTS use Adam (with
a learning rate of 0.001) for optimizing architecture parameters as well as a bilevel training routine.
First order DARTS alternates between updating architecture parameters and model parameters us-
ing a validation set and the training set. In practice, we partition the training set into equally sized
subsets. Second order DARTS uses a second order gradient with a ‘lookahead’ step, which is ap-
proximated using a finite difference approximation. We find that the second order update is more
stable in our search spaces.

For Supernet SGDR methods, we train the supernet 4 times for 200 epochs each, using SGD with
a learning rate of 0.01, decreased to 0.005 at epoch 100, to 0.001 at epoch 150. All other hyperpa-
rameters are the same as above.

C.2 BUTTERFLENET-TEXT

C.2.1 ARCHITECTURE DETAILS

Our convolutional baseline is the convolutional architecture proposed by Kim (2014) with static
word2vec embeddings. This architecture involves three 1d convolutional layers in parallel with
different filter sizes (3, 4, and 5), and 100 output channels each, which are concatenated. This is
followed by 1d max pooling, and a 300 � k linear layer where k is the number of classes in the
classification task. The linear baseline replaces the three parallel convolutional layers with a single
linear layer. For both of these, the ReLU activation function is used throughout. ButterfLeNet-text,
which generalizes the convolutional baseline, replaces all 1d convolutions with 1d K-operations of
the same dimensionality. For from scratch, we use depth 9 K-operations.

C.2.2 HYPERPARAMETERS FOR BUTTERFLENET-TEXT

We use the same training procedure for supernet training, offline evaluation, and fixed operations.
In particular, we use the Adadelta optimizer (Zeiler, 2012) and train using early stopping with a
patience parameter of 3 based on a held out validation set. We use a batch size of 50 and employ
dropout with a probability of 0.5 on the final linear layer.

C.3 BUTTERFLENET-SPHERICAL

C.3.1 ARCHITECTURE DETAILS

The baseline convolutional architecture that we consider comprises two convolutional layers and a
fully connected layer. Both convolutional layers have 5�5 kernels with a stride of 3, the first has 20
output channels and the second has 40 output channels, and use ReLU throughout. This is followed

12

Under review as a conference paper at ICLR 2021

by a linear layer. ButterfLeNet-spherical replaces these convolutions with K-operations. We warm
start the first K-operation as convolutions and initialize the second one from scratch.

C.3.2 HYPERPARAMETERS FOR BUTTERFLENET-SPHERICAL

We use the same training procedure for supernet training, offline evaluation, and fixed operations.
Namely, we train for 20 epochs using Adam with a learning rate of 0.0005 and a minibatch size of
32.

13

	Introduction
	Related Work

	Statistical and Optimization Objectives of NAS
	Generalizing Convolutions with Parameterizable Operations
	Using the Chrysalis to Compete with Convolutions
	Beyond Convolutions and Towards a More Ambitious NAS
	Higher-Dimensional Kaleidoscope Operations
	Wide ButterfLeNet
	Experimental Details
	ButterfLeNet-vision
	Architecture details
	Hyperparameters for offline evaluation and fixed baselines
	Architecture search

	ButterfLeNet-text
	Architecture details
	Hyperparameters for ButterfLeNet-text

	ButterfLeNet-spherical
	Architecture details
	Hyperparameters for ButterfLeNet-spherical

