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ABSTRACT

To ensure that large language model (LLM) responses are helpful and non-toxic,
we usually fine-tune a reward model on human preference data. We then select
policy responses with high rewards (best-of-n sampling) or further optimize the
policy to produce responses with high rewards (reinforcement learning from human
feedback). However, this process is vulnerable to reward overoptimization or
hacking, in which the responses selected have high rewards due to errors in the
reward model rather than a genuine preference. This is especially problematic as
the prompt or response diverges from the training data. It should be possible to
mitigate these issues by training a Bayesian reward model, which signals higher
uncertainty further from the training data distribution. Therefore, we trained
Bayesian reward models using Laplace-LoRA (Yang et al., 2024) and found that the
resulting uncertainty estimates can successfully mitigate reward overoptimization
in best-of-n sampling.

1 INTRODUCTION

With the surge of developments in generative AI, alignment with human preferences has been a
crucial research topic to ensure the safety and helpfulness of these generative systems (Stiennon et al.,
2020; Ouyang et al., 2022; Bai et al., 2022). A popular approach to aligning large language models
(LLMs) is to train a reward model that captures human preferences, generate n responses from
the initial LLM, and use the reward model to select the best response (best-of-n or BoN sampling
Stiennon et al., 2020) or use the reward model in reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022).

However, the reward model is trained based on finite data and is therefore imperfect; its imperfections
may lead to reward overoptimization or hacking when used in the context of BoN or RLHF (Gao
et al., 2023; Coste et al., 2024; Eisenstein et al., 2023; Ramé et al., 2024; Zhai et al., 2024; Zhang
et al., 2024; Chen et al., 2024). Indeed, BoN and RLHF try to find responses with particularly high
rewards, as judged by this imperfect reward model. Ideally, the responses with high reward, as judged
by the reward model, are genuinely good. This is likely to happen when responses are close to the
training data distribution, in which case we can expect the reward model to be accurate. But it is
also quite possible for poor responses to be inaccurately judged to have high reward by the imperfect
reward model. This problem is likely to be more acute in “out-of-distribution” (OOD) regions with
little training data for the reward model. Such responses raise performance and safety concerns.

Bayesian deep learning has emerged as a pivotal approach for addressing the challenges of distribution
shifts and overconfidence in deep neural networks. By providing epistemic uncertainties for out-of-
distribution (OOD) data, this paradigm enhances model robustness and reliability, as evidenced by a
range of foundational studies (Blundell et al., 2015; Zhang et al., 2019; Kristiadi et al., 2020; Ober
& Aitchison, 2021; Fortuin et al., 2021; Aitchison et al., 2021). Building on this foundation, Yang
et al. (2024) introduced Bayesian Low-Rank Adaptation (LoRA), or Laplace-LoRA, as a scalable,
parameter-efficient technique designed to equip fine-tuned Large Language Models (LLMs) with
uncertainty estimates, which may also help in settings such as Bayesian optimization on molecules
(Kristiadi et al., 2024).

In this work, we apply Laplace-LoRA to reward models for BoN sampling, and show considerable
improvements in performance as evaluated by a gold-standard reward model.

∗Work done during an internship at Huawei Noah’s Ark Lab.
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2 RELATED WORK

The study of overoptimization in language reward models has gained significant attention, with early
systematic investigations by Gao et al. (2023) revealing that larger reward models exhibit a lower
susceptibility to reward hacking in synthetic labeling setups using a gold-standard reward model
to replace human labelers. This foundational work laid the groundwork for exploring mitigation
strategies against overoptimization.

Building on this, Coste et al. (2024) extended the synthetic labeling framework to demonstrate
that reward model ensembles, through various aggregation methods such as mean, worst-case, or
uncertainty-weighted, can effectively mitigate overoptimization. Concurrently, Eisenstein et al.
(2023) explored the efficacy of pre-trained ensembles in reducing reward hacking, noting, however,
that ensemble members could still be overoptimized simultaneously. This observation underscores
the complexity of achieving robust alignment and highlights the computational demands of fully
pretrained and fine-tuned ensemble approaches.

In response to these challenges, the research community has shifted towards more efficient strategies.
Zhang et al. (2024) investigated parameter-efficient fine-tuning methods (Mangrulkar et al., 2022; Hu
et al., 2021; Shi & Lipani, 2023), including last-layer and LoRA ensembles, for reward models. Their
findings suggest that while LoRA ensembles achieve comparable benefits to full model ensembles
in best-of-n sampling, last-layer ensembles yield limited improvements (Gleave & Irving, 2022).
However, Zhai et al. (2024) critiqued the homogeneity of vanilla LoRA ensembles (Yang et al., 2024;
Wang et al., 2023), proposing additional regularization to foster diversity among ensemble members
and enhance uncertainty estimation.

Alternative approaches include Ramé et al. (2024) which leveraged weight averaging (Lin et al.,
2023), and Chen et al. (2024) which decoupled reward modeling from response length.

3 BACKGROUND

Reward modeling In RLHF, we typically model human preference using the reward model (Ouyang
et al., 2022). Specifically, for a pair of responses to a prompt (x, yw) and (x, yl), we define the human
preference model (the Bradley-Terry model) as

P (yw > yl) =
erθ(x,yw)

erθ(x,yw) + erθ(x,yl)
= σ(rθ(x, yw)− rθ(x, yl)), (1)

where rθ is the reward model and σ(·) is the sigmoid function. Then we simply perform maximum
log-likelihood optimization to learn the reward model given a fixed preference dataset

max
θ

Ex,yw,yl
[log σ(rθ(x, yw)− rθ(x, yl))]. (2)

After learning the reward model, we can apply BoN sampling to optimize for preference, or RLHF to
fine-tune the LLM policy.

Best-of-n sampling (BoN) Best-of-n (BoN) sampling (Stiennon et al., 2020; Ouyang et al., 2022;
Coste et al., 2024; Eisenstein et al., 2023) is a decoding strategy to align LLM outputs with a given
reward model without further fine-tuning the LLM policy. For any test prompt, BoN samples n
responses, and uses the reward model to rank the responses and select the best one, which has the
highest reward. The KL divergence between the BoN policy and the reference policy can be computed
analytically (Stiennon et al., 2020),

KLbon = log(n) +
n− 1

n
, (3)

which measures the degree of optimization as n increases. In addition, we use the unbiased BoN
reward estimator proposed by (Nakano et al., 2021) for obtaining proxy and gold reward model scores
(see Appendix A).

Low-rank adaptation (LoRA) LoRA is a parameter-efficient fine-tuning method, where we keep
pretrained weightsW0 fixed, and introduce a trainable perturbation to the weight matrix, ∆W = BA,

h = W0a+∆Wa = W0a+BAa. (4)
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where a and h are the inputs and outputs respectively. Importantly, ∆W is low-rank as it is written
as the product of two rectangular matrices, B ∈ Rnout×nlr and A ∈ Rnlr×nin where nlr is significantly
smaller than nin or nout.

Laplace-LoRA Recently, Yang et al. (2024) proposed Laplace-LoRA which is a scalable Bayesian
approximation to LLM finetuning. In particular, Yang et al. (2024) applied post-hoc Laplace
approximation to perform Bayesian inference on LoRA weights. Assume we have a dataset containing
inputs X and classification or regression targets y, then Bayesian inference attempt to compute the
posterior

P (θ|X,y) ∝ P (y|X,θ) P (θ) , (5)

usually with a Gaussian prior assumption P (θ) = N (0, λ−1I) (Yang et al., 2024; Daxberger et al.,
2021). However, computing this posterior is usually intractable. The Laplace approximation begins
by finding the maximum a-posteriori (MAP) solution (MacKay, 1992) (i.e. the maximum of the
log-joint, L(y,X;θ)),

L(y,X;θ) = log P (y|X,θ) + log P (θ) = log P (θ|X,y) + const (6)
θMAP = argmax

θ
L(y,X;θ). (7)

Then the Laplace approximation consists of a second-order Taylor expansion of the log-joint around
θMAP,

L(y,X;θ) ≈ L(y,X;θMAP)−
1

2
(θ − θMAP)

T (∇2
θL(y,X;θ)|θMAP)(θ − θMAP). (8)

Since the log-joint is now a quadratic function of θ, the approximate posterior becomes a Gaussian
centered at θMAP with covariance given by the inverse of the Hessian,

P (θ|D) ≈ N (θ;θMAP,Σ) , (9)

Σ = −(∇2
θL(y,X;θ)|θMAP)

−1 = −(∇2
θ log P (y|X,θ) |θMAP + λI)−1. (10)

Using Laplace approximations can be viewed as implicitly linearizing the neural network (Kunstner
et al., 2019; Immer et al., 2021). As such, it is commonly found that predicting under the linearized
model is more effective than e.g. sampling the approximate posterior over weights (Foong et al.,
2019; Daxberger et al., 2021; Deng et al., 2022; Antorán et al., 2022). In particular,

fθ(x∗) ≈ fθMAP(x∗) +∇θfθ(x∗)|TθMAP
(θ − θMAP). (11)

where x∗ is a test-input. This approach is also known as the linearized Laplace approximation.

Since we have the approximated posterior in Eq. (9) and the linearized model in Eq. (11), we can
integrate out the posterior on weights and get a Gaussian posterior on output logits,

fθ(x∗) ∼ N (fθMAP(x∗),Λ(x∗)) , (12)

where

Λ(x∗) = (∇θfθ(x∗)|TθMAP
)Σ(∇θfθ(x∗)|θMAP). (13)

4 METHOD

Our approach aims to mitigate reward overoptimization in language reward models by integrating
uncertainty quantification through the application of Laplace-LoRA. This method enriches reward
models with the capability to estimate the uncertainty associated with their predictions, thereby
enabling a more nuanced evaluation of language model responses. Specifically, Laplace-LoRA
provides a Gaussian distribution over the reward outputs for each test prompt and response pair
(x, y). This distribution is centered around the reward predicted by the standard fine-tuned model via
maximum a-posteriori (MAP), denoted as rθMAP(x, y),

rθ(x, y) ∼ N (rθMAP(x, y),Λ(x, y)), (14)

where Λ(x, y) denotes the variance. This formulation acknowledges the uncertainty in reward
predictions, particularly for OOD query and response pairs, where traditional models may exhibit
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overconfidence. We propose a novel approach for integrating an uncertainty penalty into the reward
estimation process through the uncertainty estimates given by Laplace-LoRA. In particular, we
consider two ways to incorporate the uncertainty:

Standard Deviation-Based Penalty:

r̃θ(x, y) = rθMAP(x, y)− k
√
Λ(x, y), (15)

where k is a hyperparameter that governs the impact of the uncertainty penalty. This method reduces
the reward for responses with higher standard deviation in their uncertainty estimates, promoting a
conservative reward allocation.

Variance-Based Penalty:

r̃θ(x, y) = rθMAP(x, y)− kΛ(x, y), (16)

This approach further accentuates the penalty for uncertainty, and is particularly effective at penalizing
responses with significant uncertainty (Brantley et al., 2019; Coste et al., 2024).

By incorporating these uncertainty penalties, our approach ensures that reward predictions more
accurately reflect the true preferences they aim to model, especially in the face of OOD query and
response pairs.

5 EXPERIMENTS

Our experimental framework adopts the setup utilized by Coste et al. (2024), in which a LLaMA 7B
model (Touvron et al., 2023), fine-tuned using the AlpacaFarm human preference dataset (Dubois
et al., 2024), is used as a gold-standard reward model to serve as the benchmark for evaluating
alignment and reward estimation accuracy.

In the initial phase, two distinct responses are generated for each prompt from the Alpaca instructions
dataset. These responses are produced by a 1.4B parameter Pythia model (Biderman et al., 2023),
which has undergone supervised fine-tuning for instruction following. Each response is then evaluated
using the gold-standard reward model to assign a preference, simulating the process of obtaining
human-like judgments on the responses’ quality and relevance.

Subsequently, a proxy reward model is fine-tuned with LoRA, based on a 70M parameter Pythia
model that has undergone instruction fine-tuning (see Appendix B for details). To incorporate
uncertainty quantification into our reward modeling, we apply Laplace-LoRA, enabling the proxy
reward model to produce not only reward estimates but also measures of epistemic uncertainty.

Finally, the performance of the MAP and Laplace-based approaches is evaluated. In particular,
12,500 responses are generated for each of 1,000 prompts from the Alpaca instructions validation set.
We then consider the performance of the MAP and Laplace approximation (LA)’s reward models
(Eq. 15 and Eq. 16) under BoN sampling, with different numbers of samples (as measured by the
KL-divergence Eq. 3).

We measured the policy performance under two reward models: the proxy reward model (Fig. 2a
left and Fig. 2b left) and the gold-standard reward model (Fig. 2a right and Fig. 2b right), evaluated
using the BoN estimator (Appendix A). As expected, there was always improvement as the number
of samples increased when evaluated under the proxy reward model. However, looking at the gold
reward model we observe reward overoptimization or hacking. In particular, the performance of the
MAP reward, as evaluated under the gold reward model, actually starts to decrease for a very large
KL divergence, and hence a very large number of BoN samples.

We found that taking uncertainty into account using Laplace-LoRA offered considerable benefits in
these settings. The uncertainty penalty intensifies, particularly at higher levels of KL divergence,
which is a promising indicator that Laplace-LoRA is effectively generating the anticipated uncertainty
estimates, thereby enhancing the model’s ability to discern and appropriately penalize overconfident
predictions in out-of-distribution scenarios. Fig. 2a shows a standard deviation based penalty (Eq. 15),
while Fig. 2b shows a variance based penalty (Eq. 16). Overall the performance is similar, with
perhaps a slight benefit for using variance-based methods, especially at a lower KL divergence.
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(a) Standard deviation-based penalty.
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(b) Variance-based penalty.

Figure 1: Comparison of assigned rewards (normalized) between MAP and Laplace-LoRA reward
models, across different uncertainty penalties and a range of k. Left column: compares the proxy
reward model’s evaluation. Right column: compares the gold reward model’s evaluation.

6 CONCLUSION

We showed that using Laplace-LoRA to quantify uncertainty in reward models mitigates reward
overoptimization in BoN sampling. Our findings highlight the potential of Bayesian approaches as
valuable tools to provide uncertainty estimation in face of distribution shift, paving ways for more
reliable and safer alignment of LLMs.

REFERENCES

Laurence Aitchison, Adam Yang, and Sebastian W Ober. Deep kernel processes. In International
Conference on Machine Learning, pp. 130–140. PMLR, 2021.

Javier Antorán, David Janz, James U Allingham, Erik Daxberger, Riccardo Rb Barbano, Eric
Nalisnick, and José Miguel Hernández-Lobato. Adapting the linearised laplace model evidence for
modern deep learning. In ICML, 2022.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

5



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Kiante Brantley, Wen Sun, and Mikael Henaff. Disagreement-regularized imitation learning. In
International Conference on Learning Representations, 2019.

Lichang Chen, Chen Zhu, Davit Soselia, Jiuhai Chen, Tianyi Zhou, Tom Goldstein, Heng Huang,
Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in rlhf.
arXiv preprint arXiv:2402.07319, 2024.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. In ICLR, 2024.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless bayesian deep learning. NeurIPS, 2021.

Zhijie Deng, Feng Zhou, and Jun Zhu. Accelerated linearized laplace approximation for bayesian
deep learning. NeurIPS, 2022.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems, 36,
2024.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herd-
ing? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023.

Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. ’in-
between’uncertainty in bayesian neural networks. In ICML Workshop on Uncertainty and Robust-
ness in Deep Learning, 2019.

Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W Ober, Florian Wenzel, Gunnar Rätsch, Richard E
Turner, Mark van der Wilk, and Laurence Aitchison. Bayesian neural network priors revisited.
arXiv preprint arXiv:2102.06571, 2021.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
ICML, pp. 10835–10866, 2023.

Adam Gleave and Geoffrey Irving. Uncertainty estimation for language reward models. arXiv
preprint arXiv:2203.07472, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of bayesian neural
nets via local linearization. In AISTAT, 2021.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being Bayesian, even just a bit, fixes
overconfidence in relu networks. In ICML, 2020.

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alán Aspuru-Guzik, and
Geoff Pleiss. A sober look at llms for material discovery: Are they actually good for bayesian
optimization over molecules? arXiv preprint arXiv:2402.05015, 2024.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approx-
imation for natural gradient descent. Advances in neural information processing systems, 32,
2019.

Yong Lin, Lu Tan, Hangyu Lin, Zeming Zheng, Renjie Pi, Jipeng Zhang, Shizhe Diao, Haoxiang
Wang, Han Zhao, Yuan Yao, et al. Speciality vs generality: An empirical study on catastrophic
forgetting in fine-tuning foundation models. arXiv preprint arXiv:2309.06256, 2023.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural computa-
tion, 1992.

6



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, and Sayak Paul. Peft: State-
of-the-art parameter-efficient fine-tuning methods. https://github.com/huggingface/
peft, 2022.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Sebastian W Ober and Laurence Aitchison. Global inducing point variational posteriors for bayesian
neural networks and deep gaussian processes. In International Conference on Machine Learning,
pp. 8248–8259. PMLR, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Alexandre Ramé, Nino Vieillard, Léonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. Warm: On the benefits of weight averaged reward models. arXiv
preprint arXiv:2401.12187, 2024.

Zhengxiang Shi and Aldo Lipani. Dept: Decomposed prompt tuning for parameter-efficient fine-
tuning. arXiv preprint arXiv:2309.05173, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Xi Wang, Laurence Aitchison, and Maja Rudolph. Lora ensembles for large language model fine-
tuning. arXiv preprint arXiv:2310.00035, 2023.

Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
for large language models. In ICLR, 2024.

Yuanzhao Zhai, Han Zhang, Yu Lei, Yue Yu, Kele Xu, Dawei Feng, Bo Ding, and Huaimin Wang.
Uncertainty-penalized reinforcement learning from human feedback with diverse reward lora
ensembles. arXiv preprint arXiv:2401.00243, 2024.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical
stochastic gradient mcmc for bayesian deep learning. arXiv preprint arXiv:1902.03932, 2019.

Shun Zhang, Zhenfang Chen, Sunli Chen, Yikang Shen, Zhiqing Sun, and Chuang Gan. Improving
reinforcement learning from human feedback with efficient reward model ensemble. arXiv preprint
arXiv:2401.16635, 2024.

7

https://github.com/huggingface/peft
https://github.com/huggingface/peft


Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

A BEST-OF-n ESTIMATOR

In this section, we review the BoN estimator for evaluating reward models (Nakano et al., 2021;
Gao et al., 2023; Coste et al., 2024). Assume we have two reward models rtrain for ranking selecting
responses and rval for evaluation, and queries are sampled from a query distribution x ∼ q(x) while
responses are sampled from an LLM y ∼ p(y|x). For BoN sampling, we aim to sample n responses
y1, ...yn from the LLM, and rank using rtrain. We would like to compute the expected evaluation
reward

Ex∼q,y1,...,yn∼p

[
rval(x, argmax

y∈{y1,...yn}
rtrain(x, y)

)]
. (17)

The simplest approach is to use a Monte-Carlo estimator for the expectation. However, this requires
repeated sampling of n responses from the LLM which is costly. Instead, we consider sampling a
fixed set of N ≥ n responses, and compute an unbiased estimator (for a single query x)

1(
N
n

) ∑
1≤i1≤...≤in≤N

rval(x, argmax
y∈{yi1

,...yin}
rtrain(x, y)

)
. (18)

If we sort the N responses according to rtrain with rtrain(x, y1) ≤ ... ≤ rtrain(x, yN ), the above
estimator can be further simplified

N∑
i=n

(
i−1
n−1

)(
N
n

) rval(x, yi) (19)

by noting we only need to iterate the top response from yn to yN , and select the rest (n−1) responses
from below. Finally, we take another Monte-Carlo sum over all queries x1, ..., xM .

B EXPERIMENTAL DETAILS

Here we present the experiment setups we used in our experiments. Table 1 shows the hyperparameters
we used for fine-tuning the proxy reward model based on Pythia 70M.

Hyperparameter Value
LoRA r 8
LoRA α 16

Dropout Probability 0.1
Weight Decay 0
Learning Rate 5× 10−5

Learning Rate Scheduler Linear
Batch Size 8

Max Sequence Length 300

Table 1: Hyperparameters used in fine-tuning Pythia 70M reward model with LoRA.

C ADDITIONAL EXPERIMENTS

In the main text, we have shown results for k = 1, 3, 5, 10. Here, we explore larger values k =
10, 15, 20, 30 as shown in Figure 2. We found larger penalties degrades performance of standard
deviation-based penalty more significantly, while variance-based penalty is more robust.
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(a) Standard deviation-based penalty.
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(b) Variance-based penalty.

Figure 2: Comparison of assigned rewards (normalized) between MAP and Laplace-LoRA reward
models, across different uncertainty penalties and a range of k. Left column: compares the proxy
reward model’s evaluation. Right column: compares the gold reward model’s evaluation.
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