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Abstract

We present two approaches to approximate online Bayesian inference for the parameters of
DNNs. Both are based on diagonal Gaussian approximations and linearize the network at
each step to ensure efficient computation. The first approach optimizes the exclusive KL,
DKL(q ∥ p); this amounts to matching the marginal mean and precision of p and q. The
second approach optimizes the inclusive KL, DKL(q ∥ p), which amounts to matching the
marginal mean and variance of p and q. The latter approach turns out to be equivalent to
the previously proposed “fully decoupled EKF” approach. We show experimentally that
exclusive KL is more effective than both inclusive KL and one-pass SGD.

Keywords: Bayesian inference, variational inference, online learning, extended Kalman
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1. Introduction

In this short paper, we consider the problem of online Bayesian inference for the param-
eters of a neural network. That is, we want to recursively compute p(θt|y1:t,x1:t) in an
efficient manner, where xt ∈ RNx are the input features, yt ∈ RNy are the output la-
bels, and θt ∈ RNz are the model parameters. We assume the likelihood has the form
p(yt|θt,xt) = expfam(yt|g−1(h(xt,θt))), where h is a neural network that predicts the
natural parameters η of the exponential family output, and g is some link function that
maps from natural parameters η to moment parameters m. To handle non-stationary
distributions, we allow the parameters to drift according to a Gaussian random walk, so
p(θt|θt−1) = N(θt|θt−1,Qt), where Qt = diag(qt) is the process noise. For continual learn-
ing problems where a single task drifts over time, this method tracks the optimal parameters
and their uncertainty. If instead we assume qt = 0, so the parameters are stationary, then
the method can also be used to compute p(θ|x1:T ,y1:T ) with a single pass over the data.

Exact Bayesian inference in this model family is intractable, so we must resort to ap-
proximations. In the signal processing and engineering communities, a standard approach
(e.g., Singhal and Wu, 1989; Puskorius and Feldkamp, 2003) is the extended Kalman filter
(EKF), which amounts to linearizing the observation model h at each step, and then per-
forming an exact Bayesian update. In the machine learning literature, it is more common
(e.g., Challis and Barber, 2013; Broderick et al., 2013; Nguyen et al., 2018; Lambert et al.,
2021b) to solve the following variational inference problem, using exclusive KL divergence:

qt = argmin
q

DKL(q(θt) ∥ p(θt|y1:t)) ≈ argmin
q

DKL(q(θt) ∥ p(yt|θt)qt|t−1(θt)) (1)
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where we omit the conditioning on xt for brevity, and where the one-step-ahead predictive
distribution is given by

qt|t−1(θt) =

∫
p(θt|θt−1)qt−1(θt−1)dθt = N (θt|µt|t−1,Σt|t−1) (2)

A third approach (e.g., Hernández-Lobato and Adams, 2015; Soudry et al., 2014; Ghosh
et al., 2016) based on assumed density filtering (ADF), minimizes the inclusive KL diver-
gence:

qt = argmin
q

DKL(p(θt|y1:t) ∥ q(θt)) (3)

In this paper, we discuss efficient and deterministic methods to optimize both of these
KL objectives in O(Nz) time. To do this, we use two approximations: first, we use (block)
diagonal Gaussian approximations of the form qt(θt) = N (θt|µt,Σt), where Σt = diag(Σii

t );
second, we use the EKF approximation to locally linearize the observation model at each
step. When we apply this approach to the exclusive KL objective, the resulting algorithm
is a novel diagonal variant of the mean field VI method (Blundell et al., 2015). When we
apply this approach to the inclusive KL objective, we recover the “decoupled EKF” method
(Puskorius and Feldkamp, 1991, 2003; Murtuza and Chorian, 1994).1

In Section 2, we describe our inference methods in more detail, and in Section 3, we
perform an experimental comparison. We show that the exclusive KL objective is more
statistically efficient than both inclusive KL and stochastic gradient descent (SGD), which
requires multiple passes over the data, making it harder to apply to the streaming setting.
We conclude in Section 4. Our code is available at https://github.com/probml/dynamax/
tree/main/dynamax/generalized_gaussian_ssm/dekf.

2. Methods

In this section, we briefly describe our methods. For the derivation, please see the appendix.
(We use the notation Ai and Ai to represent the ith row and column of a matrix A, and
Aii to denote the ith (block) diagonal entry, if A is square.)

Refer to Appendix A.6 for the different ways we can compute the posterior predictive
distribution.

2.1. Extended Kalman filter

For completeness, we summarize the usual EKF procedure, specialized to our setting. For
notational simplicity, we drop the conditioning on inputs xt.

The predict step is given by Eq. (2), where µt|t−1 = µt−1 and Σt|t−1 = Σt−1 +Qt.

1. We can extend the diagonal EKF + inclusive KL approach to the offline setting by using repeated
forward-backward passes; this gives a diagonal version of the method in Kamthe et al. (2022), which
approximates the local expectation propagation updates by using linearization. However, in this paper,
we focus on the online setting.

https://github.com/probml/dynamax/tree/main/dynamax/generalized_gaussian_ssm/dekf
https://github.com/probml/dynamax/tree/main/dynamax/generalized_gaussian_ssm/dekf
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If we assume a Gaussian likelihood, p(yt|θt) = N (yt|h(θt),Rt), then the update step
becomes p(θt|y1:t) = N(θt|µt|t,Σt|t) where

µt|t = µt|t−1 +Kt(yt − h(µt|t−1)) (4)

St = Rt +HtΣt|t−1H
T
t (5)

Kt = Σt|t−1H
⊺
tS

−1
t (6)

Σt|t = Σt|t−1 −KtHtΣt|t−1 = Σt|t−1 −Σt|t−1H
⊺
tS

−1
t HtΣt|t−1 (7)

where Ht ≡ Jac(h)(µt|t−1) is the Ny × Nz Jacobian matrix of the observation model and
Kt is the Nz ×Ny Kalman gain matrix.

We now derive an alternative update form that we will use below. The Woodbury
matrix inversion lemma states the following:

(A+UCV)−1 = A−1 −A−1U(C−1 +VA−1U)−1VA−1 (8)

Letting A = Σ−1
t|t−1,U = H⊺

t ,C = R−1
t ,V = Ht and applying the inversion lemma gives

the covariance update in information form, as follows:

Σ−1
t|t = Σ−1

t|t−1 +HT
t R

−1
t Ht (9)

2.2. Proposed diagonal approximations

Let p = p(θt|y1:t) = N (θt|µp,Σp) be the full covariance computed by EKF, where µp = µt|t
and Σp = Σt|t, as in Section 2.1. In general the EKF takes O(N3

y +N2
z ) time to compute,

due to the need to invert St ∈ RNy×Ny and then compute the Nz ×Nz matrix KtHtΣt|t−1.
We seek to approximate this in O(Nz) time by computing a diagonal approximation, q =
N (θt|µq,Σq), where Σq = diag(Σii).

To derive our method, first note that if the previous posterior Σt−1 is (block) diagonal,
then the prior predictive covariance for the next state is also diagonal, Σii

t|t−1 = Σii
t−1+Qii

t .
Also, the posterior covariance after the next observation can be efficiently computed using

St = Rt +
∑
j

Hj
tΣ

jj
t|t−1(H

j
t )
T (10)

From Eq. (7), the blocks of the (exact) EKF posterior covariance matrix are as follows:

Σij
t|t = Σij

t|t−1 −Σii
t|t−1(H

i
t)
TS−1

t Hj
tΣ

jj
t|t−1 (11)

The above equations tell us how to compute p. Now suppose we want to approximate
this by a diagonal q so as to minimize DKL(p ∥ q), which is mode covering. In the appendix
we show that the result is given by setting µq = µp, and by zeroing out the off-diagonal

blocks of the posterior covariance, Σij
t|t for i ̸= j. From Eq. (11) this gives

Σii
t|t = Σii

t|t−1 −Σii
t|t−1(H

i
t)
T

Rt +
∑
j

Hj
tΣ

jj
t|t−1(H

j
t )
T

−1

Hi
tΣ

ii
t|t−1 (12)
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This is equivalent to the fully decoupled EKF method of Puskorius and Feldkamp (2003);
we therefore call this the “FD-EKF” method.

Now suppose we want to minimize DKL(q ∥ p), which is mode seeking. We call this the
“variational diagonal EKF” or “VD-EKF” method. In the appendix we show that the result
is given by setting µq = µp and by zeroing out the off-diagonal elements of the posterior

precision, Σ−1
t|t . From Eq. (9) this gives

(Σii
t|t)

−1 =
(
Σii

t|t−1

)−1
+ (Hi

t)
TR−1

t Hi
t (13)

By using the matrix inversion lemma, we can also write the result as follows:

Σii
t|t = Σii

t|t−1 −Σii
t|t−1(H

i
t)
T
(
Rt +Hi

tΣ
ii
t|t−1(H

i
t)
T
)−1

Hi
tΣ

ii
t|t−1 (14)

We see that the main difference between the inclusive KL in Eq. (12) and the exclusive
KL in Eq. (14) is that the former uses the full St matrix, whereas the latter uses Si

t := Rt+
Hi

tΣ
ii
t|t−1(H

i
t)
T. Intuitively, using St instead of Si

t captures more uncertainty. In particular,

from the perspective of estimating θi, the missing terms in Si
t, namely

∑
j ̸=iH

j
tΣ

jj
t|t−1(H

j
t )
T,

play the same role as the observation covariance Rt, but reflect uncertainty in the other
parameters.

2.3. Handling non-Gaussian observations

To handle non-Gaussian observations, such as discrete labels, we follow the technique of
Ollivier (2018) and Tronarp et al. (2018). Specifically, we assume p(yt|θt) = expfam(yt|mt)
is an exponential family distribution with mean parameter mt = g−1(ηt), where ηt =
h(xt,θt) are the natural parameters (e.g., for classification, g−1 = S is the softmax transform
and ηt are the logits). We define the predicted observation to be ŷt = E[mt|y1:t−1] =
h(µt|t−1), and the error (innovation) term to be et = T (yt)− ŷt where T (yt) is the sufficient
statistics vector. We define the observation covariance to be Rt = Cov [T (Y)|ŷt].

In the case of the categorical distribution with K labels, we have T (yt) = [I (yt = 1) , . . . ,
I (yt = K)], which is the one-hot encoding. Similarly, we have ŷt = [p1t , . . . , p

K
t ], where

pkt = eη
k
t /(
∑

j e
ηjt ) are the softmax probabilities, and ηt are the logits. Finally, we have

Rt = diag(pt) − ptp
T
t . To avoid numerical problems with the sum-to-one constraint on

T (yt), pt and Rt, we can drop the last row/column. Alternatively, we can replace matrix
inverses with least squares solvers, which work even if their argument is singular. For
example, we can compute R−1 using jnp.linalg.lstsq(R, jnp.eye(D))[0].

3. Experimental results

In this section, we provide an experimental comparison of VD-EKF, FD-EKF and SGD
for fitting a small LeNet CNN model to MNIST. We approximate the posterior predictive
distribution by using a Monte Carlo approximation (see Appendix A.6 for details). The
results are shown in Fig. 1. We see that FD-EKF is similar to SGD, but that VD-EKF is
consistently better than both. This is perhaps surprising given that VD-EKF is arguably
a “less accurate” posterior approximation, since it ignores more outcome variance when
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Figure 1: Comparison of negative log-likelihood values (left) and misclassification rates
(right), using a CNN trained on MNIST dataset. FD-EKF and VD-EKF val-
ues are computed using Monte Carlo predictive distribution with sample size
100.

computing St. However, we conjecture that the mode seeking behavior of VD-EKF results
in more robust estimates than the mode-covering behavior of FD-EKF. See A.7 for more
thorough experimental results.

4. Conclusion and future work

We have shown how we can efficiently compute a diagonal approximation to the posterior by
linearizing the likelihood model, as in the EKF, and then optimizing DKL(q∥p) or DKL(p∥q)
deterministically in closed form. Perhaps surprisingly, we find that the former objective
does better.

In the future, we would like to extend this approach to include more expressive approx-
imations, such as diagonal plus low rank (e.g., see Mishkin et al., 2018; Lambert et al.,
2021a). We also want to apply it to more complex non-stationary and continual learn-
ing problems, which may be achievable with more sophisticated priors for how the weights
evolve over time. Finally we want to compare to online SGD variants that use replay buffers,
such as Hu et al. (2021).
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A.1. Objectives

Let µp = µt|t and Σp = Σt|t be the exact Gaussian posterior computed by EKF. In the
VD-EKF, we want to find the approximation q ∼ N (µq,Σq), where Σq is diagonal, which
minimizes DKL(q ∥ p), given by

DKL(q ∥ p) =
1

2

(
log

|Σp|
|Σq|

−D +
(
µq − µp

)⊺
Σp

(
µq − µp

)
+ tr

{
Σ−1

p Σq

})
(15)

In FD-EKF, we want to find the approximation that minimizes DKL(p ∥ q), given by

DKL(p ∥ q) =
1

2

(
log

|Σq|
|Σp|

−D +
(
µp − µq

)⊺
Σq

(
µp − µq

)
+ tr

{
Σ−1

q Σp

})
(16)
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A.2. Solving for the mean

In both cases, the optimal solution for the mean is to set µq = µp. We can verify this by
setting the partial derivative with respect to the mean elements µq,i to zero. The optimal
µp is given by

µt|t = µt|t−1 +Kt

(
yt − h(µt|t−1)

)
(17)

where the Kalman gain from Eq. (6) is given by

Kt = Σt|t−1H
⊺
t

(
Rt +HtΣt|t−1H

⊺
t

)−1
(18)

= Σt|t−1H
⊺
tR

−1
t

(
I+HtΣt|t−1H

⊺
tR

−1
t

)−1
(19)

We now use the push-through identity, which states the following:

U(I+VU)−1 = (I+UV)−1U (20)

Letting U = Σt|t−1H
⊺
tR

−1
t and V = Ht and applying the identity to Eq. (19):

Kt =
(
I+Σt|t−1H

⊺
tR

−1
t Ht

)−1
Σt|t−1H

⊺
tR

−1
t (21)

=
(
Σ−1

t|t−1 +H⊺
tR

−1
t Ht

)−1
H⊺

tR
−1
t (22)

= Σt|tH
⊺
tR

−1
t (23)

≈ diag

((
σi
t|t

)2)
H⊺

tR
−1
t (24)

In summary, the mean update is given by

µt|t = µt|t−1 + diag

((
σi
t|t

)2)
H⊺

tR
−1
t

(
yt − h(µt|t−1)

)
(25)

A.3. Solving for the covariance

We next plug the optimal mean µq = µp into the KL objectives and solve the resulting
simplified objectives for Σq. The result will be denoted by

Σt|t = diag

((
σi
t|t

)2)
= diag(Σii

t|t) (26)

where the form of σi
t|t will be given below.

A.4. Variational diagonal EKF (reverse KL)

In this section, we use the reverse (exclusive) KL. We plug in the optimal µq to get the
following simplified objective for Σq:

J(q) =
1

2

− log |Σq| − const +
∑
j

[
Σ−1

p Σq

]
jj

 (27)
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Suppose we chose Σq = diag(σ2
i ). Then we get

J(q) =
1

2

−
∑
j

log σ2
j − const +

∑
j

[
σ2
j

(
Σ−1

p

)
jj

] (28)

Setting ∂J(q)
∂σi

= 0, we get

∂J(q)

∂σi
= − 1

σi
+ σi

(
Σ−1

p

)
ii
= 0 (29)

which gives

σ−2
i =

(
Σ−1

p

)
ii

(30)

which says that we should match the marginal precisions of the two distributions.

Applying Eq. (30) to Eq. (9) we get(
σi
t|t

)−2
=
(
Σ−1

t|t−1 +H⊺
tR

−1
t Ht

)
ii

(31)

=
(
σi
t|t−1

)−2
+
(
H⊺

tR
−1
t Ht

)
ii

(32)

and therefore the posterior covariance has the following form, matching Eq. (13):

Σt|t = diag

([(
Σii
t|t

)−1
+
(
H⊺

tR
−1
t Ht

)
ii

]−1
)

(33)

We now discuss the time complexity of this update. Naively computing the diagonal
matrix

(
H⊺

tR
−1
t Ht

)
ii
takes O(N2

zNy + NzN
2
y + N3

y ) time. However, we can leverage the
following result: if A ∈ Rn×m and B ∈ Rm×n, then the diagonal elements can be computed
in O(nm) time using

(AB)ii =

m∑
j=1

AijBji = (Ai)TBi (34)

Hence we can first compute A = H⊺
tR

−1
t in O(NzN

2
y +N3

y ) time, and then compute (AB)ii
in an additional O(NzNy) time, where B = Ht. The total time is therefore linear in Nz.

A.5. Fully decoupled EKF (forwards KL)

We now consider the forwards (inclusive) KL objective. Plugging in µq = µp we get the
simplified objective

J(q) =
1

2

log |Σq|+
∑
j

[
Σ−1

q Σp

]
jj

+ const (35)
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Choosing Σq = diag(σ2
i ):

J(q) =
1

2

∑
j

log σ2
j +

∑
j

σ−2
j (Σp)jj

+ const (36)

Setting ∂J(q)
∂σi

= 0:

∂J(q)

∂σi
=

1

σi
− σ−3

i (Σp)ii = 0 (37)

And therefore the solution is simply taking the diagonal elements of Σp:

σ2
i = (Σp)ii (38)

Plugging in the full-covariance EKF posterior covariance Σp = Σt|t:

σ2
i =

(
Σt|t−1 −KtHtΣt|t−1

)
ii

(39)

=
(
Σt|t−1

)
ii
−
(
KtHtΣt|t−1

)
ii

(40)

Let Ai and Ai represent the ith row and column of matrix A, respectively. Then, con-
straining the prior to be diagonal Σt|t−1 = diag(σ′2

i ):

σ2
i = σ′2

i −
(
KtHtdiag(σ

′2
j )
)
ii

(41)

= σ′2
i − (KtHt)ii σ

′2
i (42)

= σ′2
i − (Kt)iH

i
tσ

′2
i (43)

Plugging in the full expression for Kt:

(Kt)i =
(
Σt|t−1H

⊺
tS

−1
)
i
=
(
diag(σ′2

j )H
⊺
tS

−1
)
i

(44)

= σ′2
i

(
H⊺

tS
−1
)
i

(45)

= σ′2
i (H⊺

t )i S
−1 (46)

= σ′2
i

(
Hi

t

)⊺
S−1 (47)

In addition, we see that:

S = Rt +Htdiag(σ
′2
j )H

⊺
t = Rt +

∑
j

Hj
tσ

′2
j

(
Hj

t

)⊺
(48)

Plugging these in, therefore, we recover the covariance update equation for the fully-
decoupled EKF, matching Eq. (12):

σ2
i = σ′2

i − σ′2
i

(
Hi

t

)⊺Rt +
∑
j

Hj
tσ

′2
j

(
Hj

t

)⊺−1

Hi
tσ

′2
i (49)
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A.6. Computing the posterior predictive distribution

After performing posterior inference for the parameters, we next compute the posterior
predictive distribution. In the classification case, this becomes

p(yt|y1:t−1,x1:t) =

∫
Cat(yt|S(h(xt,θt)))N (θt|µt|t,Σt|t)dθt (50)

The simplest approach to this integral is to replace the Gaussian posterior with a delta
function centered at the posterior mean/mode µ̂t = µt|t, which gives the plugin approxi-
mation

p(yt|y1:t−1,x1:t) = Cat(yt|S(h(xt, µ̂t))) (51)

We call this the “plugin predictive”. Alternatively we can use a Monte Carlo approximation,
in which we sample θt from the Gaussian posterior and plug into h; we call this the “MC
predictive”. However, Immer et al. (2021) argues that it is better to plug the samples into
the linearized model, ĥ(xt,θt) = Htxt; we call this the “linearized predictive”.

A.7. More experimental results

Figure 2: Comparison of negative log-likelihood values (left) and misclassification rates
(right), using a CNN on Fashion-MNIST dataset. FD-EKF and VD-EKF val-
ues are computed using Monte Carlo predictive distribution with sample size
100.
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Figure 3: MAP-plugin predictive distribution (left) and Monte Carlo posterior predictive
distribution (right) for FCEKF vs FDEKF vs VDEKF. Last row is single-pass
and 200-epoch SGD classifications for reference.
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Figure 4: Test-set negative log likelihoods (left) and misclassification rates (right) vs train-
ing step comparison for SGD vs FCEKF vs FDEKF vs VDEKF, where for the
Bayesian methods, using plugin (top), Monte Carlo (middle), and linearized pos-
terior predictive distributions, with sample size 100 for the Monte Carlo and
linearized methods.
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