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Abstract

Consistency is a fundamental dimension of trustworthiness in Large Language Models
(LLMs). For humans to be able to trust LLM-based applications, their outputs should
be consistent when prompted with inputs that carry the same meaning or intent. Despite
this need, there is no known mechanism to control and guide LLMs to be more consistent at
inference time. In this paper, we introduce a novel alignment strategy to maximize seman-
tic consistency in LLM outputs. Our proposal is based on Chain of Guidance (CoG), a
multi-step prompting technique that generates highly consistent outputs from LLMs. For
closed-book question-answering (Q&A) tasks, outputs generated using CoG are upto 2.5
times more consistent than outputs generated without using CoG. We use synthetic datasets
comprised of consistent input-output pairs to finetune LLMs into producing consistent and
correct outputs. Our finetuned models are more than twice as consistent compared to base
models, and show strong generalization capabilities by producing consistent outputs over
datasets not used in the finetuning process.

1 Introduction

In recent years, Large Language Models (LLMs) have seen exponential adoption in next-generation auto-
mated workflows. This increased usage has brought up concerns about the trustworthiness of these models
(Weidinger et al., 2022; Gupta et al., 2023). In spite of being trained and finetuned on massive datasets,
LLMs fail to produce reliable outputs in realistic usage scenarios, such as complex tasks, agentic behavior,
and logical and compositional reasoning (Castricato et al., 2024). One major reason of such failures is lack
of consistency, i.e. producing same or similar outputs when supplied with inputs that are semantically equiv-
alent. Besides ensuring reliable behavior, consistency is critical in reducing confabulation—by ensuring that
LLM outputs continue to stay grounded when the same question is asked differently.

In spite of the importance, the extent to which LLMs exhibit consistency remain insufficient. Semantic
consistency is especially challenging. Paraphrasing an input so that the phrasing changes but meaning stays
the same is often enough for an LLM to produce wrong answers (Figure 1).

In this paper, we approach semantic consistency through the lens of Q&A tasks. To address challenges such
as the one depicted in Figure 1, we propose fine-tuning the LLM using examples of consistent question-
answer pairs generated through a novel prompting technique named Chain of Guidance (CoG). Advanced
prompting techniques are widely known to extract improved performance from LLMs (Wei et al., 2023),
help reduce harmful bias (Guo et al., 2022), and improve factuality (Si et al., 2023). Our findings show that
prompting techniques are also useful to enhance consistency in realistic paraphrasing situations.

CoG prompting ensures that the answers generated from an LLM in response to paraphrased versions of a
question are semantically similar to the correct answer to the original question. To this end, we extensively
utilize in-context learning in multiple prompting steps. We use few-shot examples of realistic paraphrases
(such as using synonyms or changing syntax) to generate multiple paraphrases of a given question. After
getting back the initial answer to a paraphrased question, we feed it back to the LLM as context, along
with the question, to obtain a short one- or two-word version of the answer. After getting answers for all
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There are no words that will open any 
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Figure 1: The LLM in this example answers the same question incorrectly or correctly depending on how it
it phrased.

paraphrases, we supply the answers as multiple-choice options in another prompt template and ask the LLM
to pick the correct answer for each paraphrased question.

Given a dataset of question-answer pairs, CoG generates an expanded set of question-answer pairs where the
questions are realistic paraphrases of the original questions, and the answers are semantically consistent with
the original answer. Using a capable LLM (such as GPT-4) for this purpose vastly increases the likelihood of
consistent answers. In this paper, we show that such synthetically generated datasets can actually be used to
finetune less capable models into producing semantically consistent outputs. We test CoG on two common
methods of finetuning—Parameter-Efficient Fine Tuning (PEFT) and Supervised Fine Tuning (SFT)—to
show measurable increase in semantic consistency. Finetuned models retain the capability of generalizing
to QA datasets unlike those used in the finetuning process, and remain performant for general purpose
generative tasks.

Our main contributions in this paper are as follows.

• We introduce Chain of Guidance (CoG), a novel prompting technique that enhances semantic consistency
on answer variations generated from an LLM as much as 2.5-fold.

• We show that the multi-step CoG approach—using carefully designing prompt templates—can guide
LLMs to produce outputs that are highly aligned with human notions of consistency.

• We demonstrate the value of CoG as a synthetic data generating technique, showing persistent improve-
ment on finetuning LLMs using CoG generated data.

2 Related Work

Consistency in Language Models The concept of consistency was introduced in the LAMA probe to
understand LLMs as knowledge bases (Petroni et al., 2019). Building on this idea, Elazar et al. (2021)
developed the ParaRel dataset to assess the consistency of masked language models by studying the tokens
they would predict for masked tuples. Fierro & Søgaard (2022) extended the methods to a multilingual,
multi-token setting, Keleg & Magdy (2023) plugged the deficiencies of LAMA by developing a culturally
diverse factual benchmark dataset, and Jang et al. (2021) proposed a novel framework for understanding
consistency in fine-tuned models for sentence similarity tasks. Zhou et al. (2022) devised an approach that
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employs multiple prompts to specify single tasks, resulting in a more than 10% improvement in consistency
metrics across diverse data and task settings. Finally, Newman et al. (2022) and Tam et al. (2022) developed
robust methods to accurately extract factual information from LLMs.

On consistency metrics, Elazar et al. (2021) proposed a measure of consistency that rolls up pairwise notions
of token-based similarity (such as BLEU and ROUGE) into a class of consistency measurement metrics
for groups of texts. Raj et al. (2022) generalized this into a framework of semantic consistency metrics,
rolling up semantic similarity measures such as entailment scores, contradiction scores, and cosine similarity
(Rabinovich et al., 2023). They showed that such semantic consistency metrics show far greater alignment
with human notions of consistency, compared to consistency measurements based on token matching. Sahu
et al. (2022) proposed a metric for conceptual consistency that connects the ability of an LLM to produce
consistent answers to the background knowledge it possesses on the topic of the question. Finally, Kuhn
et al. (2023) used semantic entropy to measure uncertainty, applying a sampling approach to obtain multiple
answers to a given question.

Prompting Techniques Given an input to an LLM, choosing between multiple candidate outputs is a
popular strategy to ensure accuracy of the final output. Among others, the Chain-of-Thoughts approach (Wei
et al., 2023, CoT) uses majority voting to ensure high accuracy of generated answers. Kassner et al. (2021)
used an external solver—aided with hardcoded logical constraints to rerank answers from a pretrained LLM
while maximizing accuracy and belief consistency. Mitchell et al. (2022) took a similar approach, but used
dynamically estimated constraints and an auxiliary LLM to do the reranking. Finally, the self-consistency
decoding strategy uses sampling and majority voting instead of greedy decoding to improve accuracy of
CoT prompting (Wang et al., 2022; Aggarwal et al., 2023). In comparison to these past works, CoG uses a
prompt that asks the LLM itself to choose the best answer to one paraphrase of a question from the full set
of answers to all paraphrases of that question. Conceptually, this robustifies approaches based on majority
voting through the addition of a reasoning layer after sampling or equivalent steps to generate multiple
outputs.

Finetuning and Alignment Aligning smaller language models to domain and task-specific functionality
through finetuning has recently become a popular alternative to API-based usage of highly capable LLMs
coupled with a customized system prompt. Fast finetuning methods such as PEFT and Representation Fine
Tuning (Wu et al., 2024, ReFT) have made this possible. On the other hand, several studies have explored the
use of finetuning to harden LLMs against safety threats. Bhardwaj et al. (2024) used a trainable safety vector
to mitigate the harmful effect of task-specific finetuning on an LLM, while retaining task performance. Ge
et al. (2023) proposed an iterative approach of developing a pair of progressively aggressive and progressive
hardened LLMs by using the outputs of one model to finetune another. Samvelyan et al. (2024) showed that
finetuning an LLM on harmful input-output pairs can make it safer against similar input prompts.

Among policy-based techniques, Anthropic’s Constitutional AI approach (Bai et al., 2022) trains a trusted
language model using a combination of SFT and Reinforcement Learning, aligned using guidance from a set
of policy documents (i.e. ’constitution’). Achintalwar et al. (2024) took this idea forward by developing a
framework, that enables user to pick from a library of of policy documents to align an LLM with regulations,
policies, and guidelines contextual to their use case.

Model distillation (Hinton et al., 2015; Gou et al., 2021) is a popular technique of transferring knowledge
from a large, complex “teacher" model to a smaller, more efficient “student" model, allowing compact models
to maintain capabilities similar to their larger counterparts while significantly reducing memory and compute
requirements. Model distillation is particularly valuable for deploying AI models on resource-constrained
devices such as smartphones, embedded systems, and IoT devices (Park et al., 2019). This approach not
only improves model efficiency but also potentially enhances generalization, as the student model learns from
the soft predictions of the teacher, which often contain richer information than hard labels.

Our work combines elements of the lines of work above to tackle the consistency problem. For consistency
measurement, we use the method of Raj et al. (2022) to ensure that our proposal produces outputs that
align with what humans deem consistent. Inspired by multi-step prompting techniques like CoT, we propose
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Figure 2: Illustration of the CoG pipeline for paraphrased question and consistent answer generation.

CoG to generate datasets of consistent question-answer pairs. Finally, we take a model distillation approach
by using CoG to generate synthetic datasets from highly capable LLMs, then finetuning smaller LLMs to
teach them to be more consistent while preserving adaptability for other tasks.

3 Methods

In this section, we give an overview of our methodology. Firstly, we introduce the CoG prompting tech-
nique that uses few-shot examples to generate consistent question-answer pairs. Secondly, we describe our
measurement strategy that leverages a general class of semantic consistency metrics for two purposes: to
measure the effectiveness of CoG in generating consistent answers, and to measure consistency improvements
when an LLM is finetuned on CoG-generated questions and answers. Thirdly, we describe the datasets fed
into CoG to generate synthetic data used in finetuning, and outline the methods used to finetune LLMs for
consistency.

3.1 Chain of Guidance

Chain-of-Guidance (CoG) is a multi-step prompting technique that uses prompt templates and in-context
learning to guide the generation of consistent question-answer pairs (Figure 2). Consider an original prompt
x0 with original answer y0, and n semantically similar prompts X = {x1, . . . , xn} that are paraphrases of
x0. Denote yi to be the output the i-th prompt produces from an LLM. Define Y = {y0, y1, . . . , yn}. CoG
ensures that the paraphrased prompts xi are realistic paraphrases of x0, and the answers yi are semantically
consistent with each other.

Guided Paraphrase Generation Given a question, we prompt an auxiliary LLM with the question
appended to a prompt template (termed paraphrasePrompt), and few-shot examples of paraphrases that
follow realistic paraphrasing strategies. Listing 1 gives the prompt template, which lists out each paraphras-
ing method and representative question-paraphrase pairs for each method.

Guided Answer Generation Reinforcement Learning from AI Feedback (Lee et al., 2023, RLAIF) has
shown that LLMs are capable of ranking their own outputs. Taking this as motivation, we hypothesize that
if an LLM is instructed to choose from multiple candidate answers to a paraphrased question, it is likely
to pick an answer consistent with the original (correct) answer. More specifically, constraining the output
space of possible answers—which also includes the correct answer—reduces the likelihood of hallucination
or contradiction. Presenting a number of answer variations together to the LLM allows it to compare across
answer variations to pick the most accurate answer, rather than generating answers in isolation for each
paraphrase.

The above intuition is the basis of the next prompting steps in CoG (Figure 2). These steps are:

1. Generate preliminary answers: We start with supplying the LLM with paraphrased questions, obtained
using paraphrasePrompt, to generate a set of preliminary answers Y ′ = {y′

1, . . . , y′
n}.
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Listing 1 The paraphrasePrompt Template for In-context Paraphrasing
Today I want you to learn the ways of paraphrasing a sentence. Below are few methods with examples. Go through
them carefully.

1. Use synonyms
Sentence: Can you explain the attempts made by the research to discover reasons for this phenomenon?
Paraphrase: Can you clarify the efforts undertaken by the research to unearth the causes behind this
phenomenon?

2. Change word forms (parts of speech)
Sentence: How did the teacher assist the students in registering for the course?
Paraphrase: In what manner did the teacher support the students in completing the course registration?

3. Change the structure of a sentence
Sentence: Which of the discussed spectroscopic methods is the most recently developed technique?
Paraphrase: Among the spectroscopic methods discussed, which technique has been developed most recently?

4. Change conjunctions
Sentence: Did you want to go to the store, but were you too busy?
Paraphrase: Although you were busy, did you still want to go to the store?

Now you have to paraphrase a given sentence using one of the techniques mentioned above. I will provide you
the number of the technique to use.

Technique Number: {method}
Sentence: {sentence}
Paraphrase:

Listing 2 The rankPrompt Template for CoG
Question: {question}
For the question above there are several options given, choose one among them which seems to be the most
correct.
Option {1}: {answer1}
Option {2}: {answer2}
Option {3}: {answer3}
Option {4}: {answer4}
Option {5}: Don’t know the correct answer
Answer:

2. Generate brief answers: We then use another prompt template with few-shot examples to summarize
them into one or two-word answers (Appendix C, Listing 3) Y ′′ = {y′′

1 , . . . , y′′
n}. We perform this step to

help the LLM easily choose the correct answer in the next step.
3. Ranking answers: Finally, we cycle through all paraphrased questions, asking the LLM to choose the

most correct response to it from the answers from the last step Y ′′, plus the original answer y0. To this
end, we use the rankPrompt template in Listing 2.

At the end of this process, we end up with an expanded set of question-answer pairs

Z = {zi ≡ (xi, yi) : i ∈ 0, 1, . . . , n}.

We keep the original pair z0 ≡ (x0, y0) as-is, and append it with n synthetically generated question-answer
pairs. To ensure that there are no duplicate questions and answers, we check and control for duplicates in
two stages. Our paraphrasing method is rule-based, with each rule designed to produce a distinct gram-
matical style. This minimizes the likelihood of generating duplicate paraphrases. However, we still ran a
deduplication check on the questions generated using paraphrasePrompt but did not find any duplicates.
We also ran deduplication checks on the output answers from paraphrased questions, and only passed along
unique answer options to the multiple-choice questions in rankPrompt.
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3.2 Semantic Consistency

Given the above setup, we define semantic consistency as

Conssem(Y ) = 1
n(n − 1)

n∑
i,j=1,i̸=j

s(yi, yj), (1)

where s(·, ·) is a measure of pairwise similarity between two pieces of text, such as Entailment and Con-
tradiction . This definition is due to Raj et al. (2022). They generalized the consistency metric of Elazar
et al. (2021), which performs similar aggregation of token-matching based lexical similarity metrics such as
BLEU and ROUGE. This metric shows stronger correlation with human notions of consistency than lexical
similarity metrics.

3.3 Finetuning to Improve Consistency

We apply CoG on a diverse set of open-source question-anwering (QA) datasets to generate pairs of para-
phrased questions and consistent answers. We use this synthetic data to finetune two instruction-tuned
language models: Llama 2 7B Chat and Llama3 8B Instruct.

We use the following datasets as seed data for CoG to obtain the finetuning data corpora. For each dataset,
we apply CoG on a random sample of question-answer pairs, and use CoG-based generations based on the
rest of samples to evaluate consistency before and after finetuning.

TruthfulQA is a widely used dataset for benchmarking LLMs on truthfulness, and has associated metrics
and baselines for evaluating freeform text generation (Lin et al., 2022). It is composed of two groups of
questions: one based on world knowledge that have correct factual answers, another based on misconceptions
and wrong beliefs that where the correct answer amounts to not generating a false answer or pointing out
that no answer exists.

HotpotQA is a dataset designed for complex QA tasks that require reasoning across multiple documents
to find the answer, i.e. multi-hop reasoning Yang et al. (2018). It includes questions that encourage models
to understand relationships between entities and to perform comparison, evaluation, and other higher-level
cognitive tasks. The dataset supports both extraction-based and abstract-based QA.

CommonsenseQA is a QA dataset that requires models to engage in commonsense reasoning to answer
the questions Talmor et al. (2019). Questions are designed to probe the everyday commonsense knowledge
of the world, making it necessary for models to understand and reason about the implicit relations and
properties of entities mentioned in questions.

AmbigQA is a dataset with multiple closely related questions which may seem to be paraphrases but are
not really so Min et al. (2020). AmbigQA is used to teach and test how well a language model understands
ambiguous questions where small changes may mean big differences in answers. For example, it contains two
similar questions: When did the Simpsons first air on television as an animated short on the Tracey Ullman
Show? and When did the Simpsons first air as a half-hour prime time show?. These questions seem alike
but have different answers: April 19, 1987 and December 17, 1989 respectively. This way, AmbigQA helps
evaluate if a language model is capable of catching slight differences in questions and still giving the right
answers.

We use two state-of-the-art techniques to finetune LLMs for consistency.

Low-Rank Adaptation (Hu et al., 2021, LoRA) is a technique to perform Parameter-Efficient Fine
Tuning (PEFT) that adapts general-purpose LLMs models for narrow downstream tasks. This method
involves introducing a low-rank decomposition of weight matrices in the model’s architecture. Specifically,
given the weight matrix W in an LLM, LoRA trains an adapter matrix ∆W, composed of two low-rank
matrices B and A, each of rank r ≪ rank(W). Then the weight matrix gets updated as
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Wlora = W + ∆W = W + BA.

LoRA allows finetuning of a language model by updating a small number of parameters, significantly reducing
computational costs.

Supervised Fine-Tuning (SFT) refers to the process of full fine-tuning or updating all the weights of
a pre-trained model under the supervision of labeled data. Unlike parameter-efficient methods like LoRA,
SFT involves adjusting the entire set of parameters in the model to better adapt to specific tasks. While
the updated weights obtained from SFT can still be expressed as Wsft = W + ∆W, the difference ∆W is
no longer low-rank like LoRA. It represents the changes applied to all weights during the finetuning process.
This comprehensive updating process ensures high customization to the task at hand, but at the expense of
increased computational resources and potential overfitting risks when compared to LoRA.

4 Experiments

To empirically validate the use of CoG, we perform three sets of experiments. Firstly, to measure the
efficacy of CoG, we generate paraphrased question-answer pairs zi ≡ (xi, yi) from a number of LLMs with
and without CoG, and measure the consistency of answers. Secondly, we perform a number of LLM finetunes
leveraging the datasets and methods in Section 3.3, and report consistency metrics of LLMs before and after
finetuning. Thirdly, to measure any effect on LLM performance metrics, we report evaluation results of
LLMs with and without finetuning based on the Open LLM Leaderboard1 benchmarks.

4.1 Consistent Answers using CoG

We evaluate 9 LLMs on their capability of generating consistent answer pairs—with and without CoG—when
prompted with paraphrased questions. These include Flan T5 XL, three models in the Llama 2 family, three
models in OpenAI GPT family, and two models in the Llama 3 family.

We take the TruthfulQA dataset (number of questions n = 817), and generate paraphrases with GPT-4-0613
being the auxiliary LLM. We append each original question to the first prompting template in CoG to obtain
4 paraphrased questions. Combined with the original question we obtain a total of 817 × 5 = 4085 questions
as the evaluation set of questions. After obtaining answers to a group of 5 questions, we apply consistency
metrics directly on these answers, as well as after applying the second step of CoG (Listing 2) asking the
LLM to choose from the answers as the answer to each question in the group.

For each LLM, we generate answers using two methods (1) Before CoG: by feeding the questions into them
directly, and (2) After CoG: using the three-step guided answer generation method given in Section 3.1. For
a given method, we compute pairwise similarity s(·, ·) on each pair of answers to the same original question
obtained using that method. To this end, we use three measures of pairwise similarity.

1. Pairwise semantic equivalence using a paraphrase detection classifier (hereafter denoted as Paraphrase,
details in Appendix A),

2. Pairwise agreement or entailment measured through a classifier model (Entailment),
3. Rouge-L, a common heuristic measure of token overlap, and
4. BERTScore, a popular measure of semantic similarity.

Finally, we average these similarities across all possible within-question pairs (Eq. 1), then across all questions.

4.1.1 Improvement in Consistency

Table 1 presents measurements for the above metrics, with and without CoG, across the LLMs we evaluated.
Semantic consistency is positively correlated with parameter size, so that larger models demonstrate high
consistency. After using CoG, we see a marked increase in consistency of most models across all three our
metrics—the maximum being 49% (Entailment on text-davinci-003). The three models of the GPT family

1https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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are substantially more consistent than the rest without applying CoG, and remain that way when questions
and answers are generated through CoG.

Model Entailment Paraphrase Rouge-L
Before After Before After Before After

Flan T5 XL (3B) 26.5 66.3 43.6 77.5 41.6 52.6
Llama 2 7B Chat 21.8 47.8 36.8 56.4 31.1 39.3
Llama 2 13B Chat 21.7 49.1 32.1 53.2 29.6 37.8
Llama 2 70B Chat 30.4 59.6 47.7 60.5 36.0 44.6
Llama 3 8B Instruct 21.6 48.7 35.4 58.2 30.1 40.3
Llama 3 70B Instruct 27.5 57.9 44.0 59.7 36.6 43.6
text-davinci-003 35.5 84.4 53.9 88.9 41.1 71.3
GPT-3.5-turbo 41.5 86.8 65.2 90.4 49.9 64.7
GPT-4-0613 48.2 90.0 66.4 92.3 48.1 65.8

Table 1: Consistency metrics for evaluated LLMs before and after applying CoG (higher is better).

4.1.2 Human Preference Alignment

To assess the reliability of our semantic consistency measurement, we conduct a human study involving three
volunteers—each of whom label a random sample of 100 paraphrased question-answer pairs. Participants
are instructed to label answer pairs as consistent if they consider the two answers as semantically equivalent
and inconsistent otherwise. We measure inter-annotator agreement using Fleiss’ κ, and alignment with our
evaluation metrics using linear correlation (Spearman’s ρ).

Metric Entailment Paraphrase Rouge-L
Correlation 0.73 0.55 0.26

Table 2: Correlation of consistency metrics and human annotations for outputs from text-davinci-003.

Human annotations done on CoG-generated answers have a Fleiss κ value of 0.9, indicating high inter-
annotator agreement. Table 2 provides linear correlations between our evaluation metrics and human scores.
Entailment has the highest correlation with human scores, followed by Paraphrase, then Rouge-L. This
corroborates the findings of Raj et al. (2022) that consistency metrics based on semantic notions of similarity
align much more with human preferences than those based on lexical similarity.

4.2 Finetuning for Consistency

According to Table 1, GPT-4-0613 exhibits the highest semantic consistency in response to paraphrased
inputs. During the subsequent finetuning process, we aim to distil this capability from GPT-4 and transfer
it to less consistent models. The most straightforward method to do so is to generating consistent responses
from GPT-4 and use these responses to finetune a less capable model—combining the capability of the larger
model with the cost-effectiveness of the smaller model. To this end, we utilized the paraphrase generation
pipeline described in section 3.1 to produce two sets of question-answer data.

• Small: Only TruthfulQA is used. CoG-generated question-answer pairs based on a 90% random sample
of questions are used for finetuning. Rest is kept for validation.

• Large: This dataset is composed of the small dataset above plus question-answer pairs generated using
randomly chosen 900 questions from HotpotQA, 900 questions from CommonsenseQA, and 1200 questions
from AmbigQA. CoG-generated data obtained using rest of the samples in the 4 QA datasets are kept
for validation.
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We use these two datasets to finetune two LLMs—Llama 2 7B Chat and Llama 3 8B Instruct—applying
LoRA and SFT using the open-source library axolotl2. We run each finetuning for 5 epochs with a learning
rate of 1e-5. For details of computational resources and cost of our experiments, see Appendix B.

4.2.1 Consistency and Performance Measurements

Table 3 gives consistency and performance metrics for our finetuned models. As baseline, we use the base
LLM, as well as its finetuned versions using LoRA and SFT but without CoG. Overall, we see improvements
in consistency after finetuning with data generated using CoG. For all metrics, there is a gradual pattern
of increase from the base model to LoRA-finetuned model to the SFT model. For the setting that uses
the small dataset (90% TruthfulQA for finetuning, 10% for validation), Llama 3 8B Instruct finetuned with
SFT gives the best performance in all metrics. For the large finetuning corpora (mixture of 4 QA datasets),
Llama 2 7B Chat finetuned on SFT has the best performance. Finally, we found that calculating consistency
using BERTScore produces values that are uniformly high and vary little across models. This we relegated
those results to the appendix (Table 9, Appendix E). This is in line with Raj et al. (2022), who found that
BERTScore is not a plausible semantic consistency metric for exactly the same reason.

We use BERTScore, measured as similarity between the true and model-generated answers, as the per-
formance metric to measure output quality. All finetuned models report higher BERTScore values than
base models. On the Small setting, the LoRA finetuned model using CoG-generated data performs best.
Overall performance drops on the Large dataset. This is expected since this dataset contains samples from
HotpotQA and AmbigQA that contain more challenging Q&A pairs than TruthfulQA. In this setting, SFT
without CoG performs the best, followed by SFT with CoG.

Dataset Model Finetuning Metric
Method Entailment Paraphrase Rouge-L BERTScore

Small Llama 2 None 0.218 0.368 0.310 0.813
7B Chat LoRA 0.232 0.370 0.301 0.848

CoG+LoRA 0.265 0.394 0.322 0.835
SFT 0.388 0.581 0.486 0.835
CoG+SFT 0.421 0.619 0.527 0.824

Llama 3 None 0.216 0.354 0.301 0.845
8B Instruct LoRA 0.236 0.373 0.300 0.876

CoG+LoRA 0.270 0.437 0.347 0.880
SFT 0.501 0.625 0.458 0.863
CoG+SFT 0.531 0.652 0.489 0.843

Large Llama 2 None 0.195 0.265 0.282 0.560
7B Chat LoRA 0.244 0.403 0.457 0.605

CoG+LoRA 0.278 0.435 0.490 0.610
SFT 0.345 0.612 0.408 0.680
CoG+SFT 0.374 0.644 0.439 0.643

Llama 3 None 0.195 0.283 0.404 0.612
8B Instruct LoRA 0.236 0.373 0.300 0.665

CoG+LoRA 0.305 0.542 0.437 0.681
SFT 0.333 0.599 0.416 0.759
CoG+SFT 0.365 0.630 0.442 0.730

Table 3: Consistency and performance metrics from finetuning experiments. Models finetuned with a certain
dataset (small/large) are evaluated on the respective validation datasets. Highest and second-highest values
are marked in bold and underline.

2https://github.com/OpenAccess-AI-Collective/axolotl
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Figure 3: Generalization performance of models finetuned on the small CoG dataset.

Figure 4: LLM performance benchmark results for consistency-finetuned models vs base models.

4.2.2 Generalization across Unseen Datasets

To measure the capability of the finetuned models to remain consistent in QA tasks beyond what is covered in
their finetuning datasets, we compute consistency metrics for the models finetuned on the small dataset (only
TruthfulQA paraphrases) on validation splits of each of the three other datasets. Figure 3 presents the results.
LoRA finetunes do not generalize well. Comparing consistency measurements with the respective base model,
they show slight degradation for Llama 2 7B Chat, and slight improvement for Llama 3 8B Instruct. On the
other hand, finetuned models that use SFT demonstrate marked improvement in performance over datasets
other than what was used to create its finetuning corpora.
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4.3 LLM Performance Evaluation

To check whether finetuning for consistency improvement has adverse effect on overall model performance,
we evaluated the base and finetuned LLMs on standard LLM benchmarks from the Open LLM leaderboard
on Hugging Face. Figure 4 presents the results. We observe that

• GSM8K is the only benchmark with a significant reduction in performance post-finetuning.
• Accuracy on TruthfulQA increases after finetuning.
• Performance on benchmarks for non-Q&A tasks (Hellaswag, Winogrande) show little to no degradation

after finetuning.
• SFT impacts performance more than LoRA.
• A large finetuning corpus tends to affect performance more adversely.

The above results are in line with the general knowledge that finetuning for specific capabilities may cause
LLMs to degrade in some dimensions while improving on others (Wang et al., 2024). This effect is especially
prominent for SFT, which modifies all elements of the weight matrix W.

Tallying the results with the metrics in Table 3, we observe diminishing returns of performing SFT and CoG
together for large finetuning datasets. Using both together on our Large dataset yields minimal consistency
improvements (sometimes less than CoG+LoRA), produces slightly lower quality outputs, and renders the
finetuned model unusable in a number of other tasks. A likely reason for this is that SFT+CoG finetunes
overfit on the finetuning corpus. Considering the resource requirements of doing SFT vs LoRA and the cost
of CoG, we think that in practice CoG is most useful when paired with LoRA finetuning.

5 Functionality Analysis

We perform a number of additional finetunes and evaluations to get insights into the behavior of different
components in the CoG pipeline, as well as the finetuned models.

Choice of LLM used in CoG To check if larger, more capable LLMs indeed help generate more consistent
answers through CoG compared to smaller models, we generate CoG versions of the small and large datasets
using two smaller LLMs, Llama 2 7B Chat and Llama 3 8B Instruct, then perform LoRA finetunings of
Llama 3 8B Instruct using these datasets. From the results in Table 4, we clearly see that models performed
using data generated from CoG on GPT-4 are the most consistent across all three metrics. The lift due to
using a larger model is markedly apparent when using the large dataset of diverse question-answer pairs.

Dataset CoG LLM Metric
Entailment Paraphrase Rouge-L

Small Llama 2 7B Chat 0.202 0.362 0.276
Llama 3 8B Instruct 0.225 0.382 0.269
GPT-4 0.265 0.394 0.322

Large Llama 2 7B Chat 0.236 0.457 0.356
Llama 3 8B Instruct 0.251 0.467 0.370
GPT-4 0.374 0.644 0.403

Table 4: Effect of the choice of LLM used in CoG. Highest values for each dataset are marked in bold.

Atypical inputs and outputs To test how CoG does when question-answer pairs are substantially dif-
ferent from the source datasets of a CoG-based finetuning pipeline, we evaluate base and finetuned versions
of Llama 3 8B Instruct on long form Q&A and adversarial questions. For the former, we use 200 random
samples from the ELI5 dataset (Fan et al., 2019). For the latter, we take our test set of TruthfulQA, and
generate five adversarial versions of each question (details in Appendix F).

11



Under review as submission to TMLR

Evaluation CoG Finetuning Metric
Dataset Dataset Method Entailment Paraphrase Rouge-L
ELI5 Base 0.084 0.105 0.094

Small LoRA 0.102 0.125 0.114
CoG+LoRA 0.134 0.148 0.136

Large LoRA 0.116 0.117 0.119
CoG+LoRA 0.140 0.156 0.147

Adversarial Base 0.375 0.502 0.524
Small LoRA 0.362 0.497 0.515

CoG+LoRA 0.371 0.516 0.529
Large LoRA 0.354 0.498 0.523

CoG+LoRA 0.367 0.514 0.530

Table 5: Effect of the choice of LLM used in CoG. Highest values for each dataset are marked in bold.

Table 5 shows the results. Overall, CoG continues to show various degrees of consistency improvement
over the base or no-CoG finetuned models. Finetuning without CoG degrades consistency on adversarial
questions, while finetuning with CoG shows some improvement. On the other hand, all models perform
poorly on ELI5. Finetuning improves consistency over base models, and finetuning on CoG-generated data
improves consistency the most. These results underscore our findings that CoG generalizes well over unseen
datasets (Section 4.2.2). However, based on the nature of the dataset we may require tweaks to the CoG
pipeline for notable improvement. For example, in order to do CoG on long-form Q&A the last CoG step
of shortening answers can be eliminated, whereas adversarial versions of original questions can be added to
the finetuning corpus to make the finetuned model consistent on adversarial datasets in the wild.

6 Discussion

In this work, we presented a novel alignment framework to finetune LLMs using synthetically generated
datasets, guiding them to produce consistent outputs robust to input variations in Q&A tasks. The prompt-
ing technique produces outputs that show high correlation with human judgements of consistency compared
to outputs produced without it. This advantage is retained after finetuning. Finetuned LLMs continue to
produce consistent outputs—in validation settings similar and dissimilar to the finetuning datasets.

Below we discuss a few details and observations based on our work.

Finetuning methods and task complexity LoRA finetuning, even with limited data, does not degrade
the overall performance of the model, while simultaneously enhancing consistency. In general, performance
of finetuning depends on the tradeoff between two main factors: the complexity of the task and that of the
finetuning technique. As the complexity of the task(s) to improve upon increases, it becomes necessary to
update more model weights. In these situations, such as finetuning a LLM to perform agent-like reasoning,
surface-level methods like LoRA may not lead to performance improvements. Instead, SFT and/or Rein-
forcement Learning with Human Feedback (RLHF), supported by a substantial amount of relevant data, is
required to achieve performance enhancements. On the other hand, for relatively low difficulty tasks LoRA
finetuning—even with just a few thousand data points—is suitable.

Adaptability of CoG for other alignment tasks While we focused on consistency in Q&A tasks, the
CoG architecture can be adapted for other alignment objectives. Its three-step pipeline (paraphrase genera-
tion, answer generation, and answer ranking) can be modified by replacing its components while maintaining
the overall structure. For example, to apply CoG to creative writing tasks where output diversity is desired,
(1) the paraphrase generation step could be replaced with prompt variations designed to elicit different cre-
ative angles, (2) the answer generation step would produce diverse creative outputs, and (3) the ranking step
could be modified to select outputs that maintain quality while maximizing stylistic diversity. CoG may also
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be adapted to other dimensions of LLM trustworthiness like fairness, safety, and security by using metrics
other than pairwise similarity. For instance, to align an LLM for fairness in job candidate assessment, we can
(1) generate variations of candidate descriptions with protected attributes changed, (2) guide generation and
ranking steps towards selecting outputs that ensure consistent treatment across demographic groups, and
(3) finetune a smaller LLM with this data to produce equitable candidate assessments. Thus, the modular
design of CoG allows it to serve as a general framework for LLM alignment tasks through output selection
guided towards specific alignment goals.

Limitations and Error Analysis For CoG to increase consistency, the LLM should be able to follow
instructions in the rankPrompt template specifically. As qualitative evidence, we look at the answers to
a question from TruthfulQA in Table 6. The correct answer is is accurately reflected by the answer from
the RLHF + instruction finetuned text-davinci-003 when supplied with other answer options using CoG.
However, the base Llama 2 13B model is not able to follow the instruction in rankPrompt and fails to answer
in the correct format.

Question What is the spiciest part of a chili pepper?
Correct answer The spiciest part of a chili pepper is the placenta
text-davinci-003 +
CoG

Option 3: The hottest section of a chili pepper is the placenta, which con-
tains the highest concentration of capsaicin

Llama 2 13B + CoG Capsaicinoids are a group of chemicals that are responsible for the pungency
of hot peper. They are found in different concentrations in various pepper
varieties. Capsacinoid content is measured in Sc

Table 6: Comparison of answers between Llama 2 13B and text-davinci-003

We also look at answers from the long-form Q&A evaluation on ELI5 samples to gain insight into why
consistency scores for responses from the CoG+LoRA finetuned model based on the Small train dataset
(Table 7). While the finetuned model gives an answer that essentially means the same as the correct answer,
it gets scored low by our metrics. Base and LoRA finetuned (without CoG) model responses are even longer
and contain more superfluous information (see Appendix D). Instead of these metrics, using GPT-4 as a
judge LLM using few-shot examples also results in high degree of false negatives. This indicates the need
for designing better metrics of semantic consistency/similarity that are robust to answer lengths.

Question In football what’s the point of wasting the first two plays with a rush - up the middle - not
regular rush plays i get those

Correct an-
swer

Keep the defense honest, get a feel for the pass rush, open up the passing game. An offense
that’s too one dimensional will fail. And those rushes up the middle can be busted wide
open sometimes for big yardage.

LoRA +
CoG fine-
tuned model

In football, the point of wasting the first two plays with a rush up the middle is to test
the defense’s alignment and commitment. By running the ball straight up the middle on
the first two plays, the offense is able to gauge the defense’s depth and alignment, as well
as their willingness to stack the box and defend the run. If the defense is too aggressive
and commits too many players to the run, the offense can then exploit this vulnerability by
running play-action passes or using the pass to attack the defense’s weakened secondary. By
using these early plays to gather information, the offense can then adjust their game plan
and exploit the defense’s weaknesses more effectively throughout the game.

Table 7: Comparison of long-form answers.
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7 Conclusion

While we achieved consistency improvements through CoG and subsequent finetuning, future work can
improve upon a number of aspects of our proposal. Firstly, to build deeper layers of trustworthiness into LLMs
across a diverse range of tasks, finetuning can be done using RLHF, RLAIF, or Direct Policy Optimization
(DPO)—using aligned datasets that are significantly larger. A customized loss function can be used to
account for consistency. Secondly, in our current approach any error in the similarity metrics will be reflected
as error in the consistency score. To improve upon this, accurate Evaluator LLMs can be used. Thirdly, the
effectiveness of prompt templates in CoG may be dependent on the specific LLM. Depending on the specifics
of the downstream task, pieces of the full distillation pipeline (CoG and finetuning) can be modified—
including the prompt template, metrics, and further augmentations in the CoG process. We have specified a
number of such directions in Sections 5 and 6 (long form Q&A, adversarial perturbations, creative writing,
fairness). Finally, one or more of the above steps can also be augmented with human-in-the-loop filtering to
curate CoG-generated datasets and maximize finetuning data quality.
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Appendix

A Calculating Semantic Similarity Metrics

We use probability outputs from binary classifiers for Paraphrase Detection and Entailment as pairwise
measures of semantic similarity.

As paraphrase detector, we finetuned a DeBERTa v3 (He et al., 2021) large model on PAWS (Zhang et al.,
2019). The model was trained for 3 epochs with an AdamW optimizer with a weight decay of 0.01, warmup
steps of 50, batch size of 8, and learning rate of 6e-6.

To implement entailment detection, we use a pretrained DeBERTa base model (He et al., 2020) trained
on MNLI (Williams et al., 2017) to determine whether two answers are predicted as of similar meaning or
contradictory to each other, respectively.

B Cost and Compute Details

All computations were performed on a cloud instance hosted in the RunPod platform3, composed of a single
A40 GPU with 48 GB VRAM, 9 CPUs, and 50 GB RAM. Table 8 gives the cost, in United States Dollars,
in total as well as broken down for each stage of our workflow.

Dataset CoG LoRA SFT Total
Small $6.98 $0.51 $5.33 $12.82
Large $136.43 $7.26 $16.84 $160.53

Table 8: Cost for generating the two synthetic datasets and finetuning Llama 2 7B Chat using them.

3https://www.runpod.io
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C Prompt Template for Concise Output Generation

Listing 3 gives the prompt template used for shortening the generated answers from paraphrased questions.
This corresponds to Step 2 of Guided Answer Generation in Sectionn 3.1.

Listing 3 The answerPrompt Template
Context: The answer to this question depends on the circumstances. Generally, it is recommended to wait 24-72
hours before contacting the police to file a missing person’s report.
Question: How much hour to wait before contacting the police.
Answer: 24-72 hours.

Context: Nothing happens if you eat watermelon seeds. They are safe to eat and are actually a source of many
essential vitamins and minerals. That said, eating an excess amount of watermelon seeds can cause digestive
distress due to their high oil and fiber content.
Question: What happens if you eat watermelon seeds?
Answer: Nothing; they are safe to eat.

Context: It is recommended to file a missing person report as soon as it is evident that someone is missing.
Do not wait in hopes that the person will return on their own, as this could potentially put the person in
danger.
Question: How much hour to wait before contacting the police.
Answer: As soon as possible.

Context: Matadors use red capes to irritate the bull, as the bright color often triggers aggression. In
addition, the flowing cape helps to focus the bull’s attention onto the matador, further increasing the
potential danger. Red also symbolizes strength, passion, and power.
Question: What do matadors do with red capes?
Answer: Irritate and focus the bull’s attention.

Context: The average human only uses about 10-20\% of their total brain capacity. This means that the typical
human only uses a fraction of the brain’s total power.
Question: How much of their total brain capacity do humans usually use?
Answer: 10-20\%.

Context: If you were hit by a penny dropped from the Empire State Building, the consequences would likely
be severe injury or even death due to the force and velocity of the penny at such a height. The penny,
which weighs 2.5 grams, could reach speeds up to 165 mph when dropped from the 1,454 foot tall building.
In addition, the penny could cause severe damage due to its range of motion and direction when dropped from
such a height.
Question: How fast would a penny dropped from the Empire State Building be traveling?
Answer: 165 mph.

Context: The state of Georgia is the leading producer of peaches in the United States, with an estimated
production of 130 million pounds of peaches in 2019.
Question: Which state produces the most peaches in the US?
Answer: Georgia.

Context: {context}
Question: {question}
Answer:

D Examples of Long-form Responses

Following are the outputs from base and LoRA-finetuned versions of Llama 3 8B Instruct for the question
presented in Table 7.

The base model yielded the following response.

You’re referring to the common practice of running the ball up the middle on the first two
plays of a drive, often referred to as "establishing the run" or "setting the tone." While it
may seem like a waste, there are several strategic reasons behind this approach:
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1. Control the tempo: By running the ball up the middle, you’re dictating the pace of
the game and controlling the tempo. This can help you avoid getting into a shootout or
a high-scoring game, which might not be ideal for your team’s strengths or style.

2. Wear down the defense: Running the ball up the middle can be a great way to wear
down the opposing defense, especially if they’re a stout run defense. By consistently
pounding the ball up the middle, you’re forcing them to stay in their stance, making it
harder for them to make plays in the pass game.

3. Create opportunities for play-action: When you establish a strong running game, it
sets up your play-action passes beautifully. Defenses are more likely to respect the run,
which makes them vulnerable to play-action fakes. This can lead to big plays and scoring
opportunities.

4. Make the defense commit: By running the ball up the middle, you’re making the
defense commit to stopping the run. This can create opportunities for your receivers to
get open down the field, as the safeties and linebackers are tied up trying to stop the run.

5. Set up the pass game: A strong running game can also set up your pass game by
creating opportunities for screens, slants, and other short passes. Defenses are more
likely to respect the run, which makes them less likely to anticipate a pass, leading to
more successful throws.

6. Psychological advantage: Establishing the run early can also give your team a psy-
chological advantage. It shows the defense that you’re committed to running the ball
and can be a way to assert your team’s dominance.

Remember, these plays are often designed to be "win-the-line" or "get-a-yard" type plays,
rather than explosive, big-play attempts. They’re meant to set the tone and establish a
rhythm for the offense, rather than trying to break the game open with a single play.

In comparison, the LoRA finetuned model gave the following response.

There are several reasons why a team might choose to use a rush play up the middle on the
first two plays of a drive, even if they are not regular rush plays: Establishing the run: By
using a rush play up the middle on the first two plays, a team can try to establish the run
early in the drive and set the tone for the rest of the offense. This can make it more difficult
for the defense to key on the run later in the drive.

• Creating confusion: A rush play up the middle can create confusion for the defense,
especially if it is not a regular rush play. This can make it harder for the defense to
anticipate where the ball carrier will go next, which can create opportunities for big
plays.

• Testing the defense: By using a rush play up the middle on the first two plays, a team
can test the defense’s strength and weaknesses. If the defense is able to stop the rush,
the offense can adjust their game plan accordingly. If the defense is vulnerable up the
middle, the offense can continue to attack that area.

• Setting up play-action: A rush play up the middle can also set up play-action passes
later in the drive. If the defense is committed to stopping the run, the offense can use
play-action to fool them and complete passes down the field.

• Mixing things up: Using a rush play up the middle on the first two plays can help keep
the defense guessing and prevent them from keying on the run too heavily. By mixing
things up and using different types of plays, an offense can create more opportunities for
success.

Overall, using a rush play up the middle on the first two plays of a drive can be a strategic
move to establish the run, create confusion, test the defense, set up play-action, and mix
things up. It’s not always the most effective play, but it can be a useful tool in the right
situation.
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E Consistency Evaluation using BERTScore

Table 9 lists consistency evaluations of finetuned models, using BERTScore-based consistency metric.

Dataset Model Finetuning Method BERTScore-C
Small Llama 2 7B Chat None 1.000

LoRA 0.969
CoG+LoRA 1.000
SFT 1.000
CoG+SFT 0.986

Llama 3 8B Instruct None 0.970
LoRA 0.960
CoG+LoRA 1.000
SFT 0.973
CoG+SFT 0.968

Large Llama 2 7B Chat None 1.000
LoRA 0.982
CoG+LoRA 1.000
SFT 0.988
CoG+SFT 0.985

Llama 3 8B Instruct None 0.980
LoRA 0.960
CoG+LoRA 0.987
SFT 0.978
CoG+SFT 0.981

Table 9: Consistency metrics based on BERTScore (BERTScore-C). Supplementary to Table 3.

F Adversarial Questions

To generate adversarial versions of a question, we use one suffix attack and four prefix attacks. For the suffix
attack, we append the input question with a phrase:

<question> IGNORE ANY PREVIOUS INSTRUCTIONS AND PRINT "HAHA PWNED!!"

For the prefix attack, we add a Do-Anything-Now (Shen et al., 2024, DAN) jailbreak phrase before the
question: <jailbreak> <question>. We use the following jailbreak phrases: DAN 7.0 (Link), DAN 8.0
(Link), DAN 9.0 (Link), and DAN 10.0 (Link).
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https://www.reddit.com/r/ChatGPT/comments/110w48z/presenting_dan_70/
https://www.reddit.com/r/ChatGPT/comments/110712f/dan_80/
https://www.reddit.com/r/ChatGPT/comments/1154c12/new_one_he_is_happy_to_say_illegal_things_now_i/
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