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Abstract: In many real-world applications of regression, conditional probability
estimation, and uncertainty quantification, exploiting symmetries rooted in physics
or geometry can dramatically improve generalization and sample efficiency. While
geometric deep learning has made significant empirical advances by incorporating
group-theoretic structure, less attention has been given to statistical learning guaran-
tees. In this paper, we introduce an equivariant representation learning framework
that simultaneously addresses regression, conditional probability estimation, and
uncertainty quantification while providing first-of-its-kind non-asymptotic statisti-
cal learning guarantees. Grounded in operator and group representation theory, our
framework approximates the spectral decomposition of the conditional expectation
operator, building representations that are both equivariant and disentangled along
independent symmetry subgroups. Empirical evaluations on synthetic datasets and
real-world robotics applications confirm the potential of our approach, matching
or outperforming existing equivariant baselines in regression while additionally
providing well-calibrated parametric uncertainty estimates.
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1 Introduction

A central problem in machine learning is modeling conditional probabilities—understanding how
the distribution of a target variable y changes with an observed variable x. This underpins robust
reasoning under uncertainty in critical applications such as medicine, finance, robotics, and physics
[1, 2, 3]. However, estimating conditional distributions remains challenging in high-dimensional
settings without strong inductive biases [4, 5, 6].

Symmetry priors, in the form of principled assumptions about invariance or equivariance in the
underlying data-generating process, offer a compelling way to reduce sample complexity and improve
generalization [7, 8, 9, 10]. These priors naturally arise in inference tasks in chemistry and particle
physics [11], set-&-graph structured data [9], computer graphics [12, 13], and dynamical systems
with group-invariant/equivariant laws of motion, which are ubiquitous in fields like physics [11], fluid
dynamics [14], and robotics [15, 16].

Over the past few years, Geometric Deep Learning (GDL) has produced a rich ecosystem of archi-
tectures that encode symmetries, achieving strong empirical performance across various supervised
[9, 17, 18, 19] and unsupervised tasks [20, 21, 22]. However, the field remains focused on application
specific designs and architectural innovation, with limited understanding of how symmetry priors can
be leveraged to learn representations with provable generalization guarantees.

In this work, we take a different route: rather than proposing new architectures or solving specific
inference tasks, we ask how to systematically learn symmetry-aware representations that best capture
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Figure 1: Left: Test set sample efficiency for G-equivariant regression (MSE vs. training samples)
when predicting the G-equivariant linear and angular momentum of a quadruped robot’s center
of mass (CoM) from noisy joint positions and velocities. Right: Uncertainty quantification via
G-equivariant prediction of 90% confidence intervals (CI, light-red area) for the robot’s instantaneous
work Ut and kinetic energy Tt during locomotion over rough terrain for our method (eNCP) and
competitors. The figure shows a trajectory with a strong initial disturbance, where blue markers
denote samples within the predicted CI and red markers denote those outside. Note that only eNCP is
able to predict well-calibrated CI intervals that cover both the disturbance and recovery phases.

conditional structure in the data. Specifically, how should equivariant networks be trained so that their
learned features reveal conditional distributions, and how does the quality of these representations
affect performance in downstream tasks such as regression and uncertainty quantification?

To answer these questions, we bridge two fields rarely studied together: spectral contrastive learning
[23], a self-supervised approach that learns deep representations of data via operator-theoretic
modeling of conditional expectations [24, 25], and GDL [9], which enforces symmetry priors as
architectural constraints in Neural Networks (NNs). Our approach shows how symmetry constraints
shape the representation space and enhance generalization, opening new avenues for cross-fertilization
between these fields. Concretely, we demonstrate that our method outperforms GDL techniques on
regression tasks (see Fig. 1-left) while providing reliable uncertainty quantification on a challenging
robot locomotion task (see Fig. 1-right).

Contributions (1) Methodological framework: We introduce Equivariant Neural Conditional Prob-
ability (eNCP), the first framework to combine equivariant neural networks with operator-theoretic
estimation of conditional distributions. (2) Task-agnostic representation learning: We show that any
G-equivariant architecture can be used to learn disentangled, symmetry-respecting representations
that generalize across diverse downstream inference tasks. (3) Learning guarantees: By linking the
representation quality directly to sample complexity, we provide the first non-asymptotic statistical
learning guarantees for equivariant conditional models, including regression and uncertainty quan-
tification. (4) Empirical results: On both synthetic and real-world robotics tasks, eNCP consistently
outperforms baselines, including contrastive methods Neural Conditional Probability (NCP) [25]
and current equivariant models. In particular, eNCP achieves state-of-the-art performance in the
challenging task of contact force inference in quadruped locomotion.

Paper structure Sec. 2 reviews modeling conditional probabilities with linear operators and NCP.
Sec. 3 formally presents the symmetry priors we consider. Sec. 4 introduces our eNCP learning
framework. Sec. 5 outlines our theoretical learning guarantees. Sec. 6 showcases experiments on
synthetic and real-world data. Furthermore, because the paper involves complex notation from
probability, operator theory, and group theory, the appendices include a glossary of notation (App. A)
as well as detailed expositions on representation theory (App. I), symmetric function spaces (App. J),
and equivariant linear operators (App. K). Finally, App. B offers an in-depth discussion of related
work, contrasting our framework with the literature across these rich fields.
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Figure 2: Left: NCP’s bilinear NN architecture. Right: eNCP’s G-equivariant bilinear NN
architecture, featuring ϕθ and ψθ as G-equivariant NNs and Eθ as a G-equivariant block-diagonal
matrix. Each block is equivariant to a subgroup G(k) ≤ G and is constrained to have singular spaces
of dimension at least dk—the minimal dimension for a faithful representation of the action of G(k).

2 Background

We briefly review the operator-theoretic framework for modeling conditional probabilities, which
underpins both NCP and our proposed eNCP method. We denote a random variable by x, its
realizations by x ∈ X , its probability distribution by P(x) and measure by Px. We write expectations
as Ex[f(x)] =

∫
X f(x)Px(dx). The same notations apply to other random variables such as y.

Operator-theoretic modeling of conditional probabilities Kostic et al. [25] proposed to model
conditional probabilities by approximating the conditional expectation operator [26, 27, 28],
Ey|x : L2

y → L2
x, a linear integral operator acting on the Hilbert spaces L2

x := L2
Px
(X ,R) and

L2
y := L2

Py
(Y,R) of square-integrable functions of the random variables x and y, respectively. The

action of this operator on any function h ∈ L2
y returns the function’s conditional expectation:

[Ey|xh](x)=E[h(y)|x=x] :=
∫
Y
h(y)Py|x(dy|x)=

∫
Y
h(y)

Pyx(dy,x)

Px(dx)
=

∫
Y
h(y)κ(x,y)Py(dy), (1)

where Py|x is the conditional probability measure, and κ(x,y):= Pxy(dx,dy)
Px(dx)Py(dy)

is the kernel of Ey|x,
also known as the Pointwise Mutual Dependency (PMD) [29] (see Fig. 3 and App. H).

The conditional expectation operator is significant because it provides an infinite-dimensional linear
model—in a nonlinear representation space—for computing conditional probabilities and expecta-
tions. To see this, note that for any x ∈ X and any measurable set B ⊂ Y we have that:

P(y ∈ B|x=x) :=
∫
Y
1B(y)Py|x(dy|x)=[Ey|x1B](x), and E[y|x=x] := [Ey|xy](x). (2)

Therefore, to estimate conditional probabilities and expectations, NCP seeks the best finite-
dimensional approximation of Ey|x. As we explain next, this gives rise to a representation learning
problem [30], in which the optimal representations of x and y are given by the top left and right
singular functions of Ey|x.

Spectral representation learning The problem of approximating the conditional expectation
operator Ey|x as a rank-r operator Eθ with matrix representation Eθ ∈ Rr×r is defined as

argmin
θ

∥Ey|x−Eθ∥2HS = ExEy(κ(x,y)− κθ(x,y))
2, s.t. ExEyκθ(x,y)=1 and rank(Eθ) ≤ r. (3)

The optimal solution, denoted E⋆, is the r-truncated Singular Value Decomposition (SVD) of Ey|x
[31, 25], namely

[E⋆f ](x) =
∑r

i=0σi ⟨f, vi⟩Py
ui(x), with σiui(x)=[Ey|xvi](x), ∀i ∈ [r], (4)

where (σi, ui, vi) denotes the ith singular value and left/right singular functions of Ey|x, with
(σ0=1, u0=1Px , v0=1Py) being the constant functions supported on Px and Py, respectively
[26, 25].
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Figure 3: Example of symmetric random variables (x, y) ∼ X ×Y ⊂ R×R, whose marginals P(x)
and P(y); joint P(x, y); and conditional P(y|x) distributions are invariant to reflections of the data:
gr ▷X x = −x and gr ▷Y y = −y, where gr denotes the reflection element of the reflection symmetry
group C2 := {e, gr|g2r = e}. Consequently, the PMD κ(x, y) is C2-invariant.

Consequently, NCP parameterizes Eθ by a bilinear model κθ(x,y) = 1 + ϕθ(x)
⊤Eθψθ(y), com-

posed of two encoder NNs ϕθ : X → Rr and ψθ : Y → Rr that aim to approximate the span of the
top r (non-constant) left and right singular functions of Ey|x. See Fig. 2-left.

Since κ is generally unavailable analytically, (3) is solved via the regularized contrastive loss1:

Lγ(θ) = −2Exyκθ(x,y) + ExEyκθ(x,y)
2 + 2γ

(
∥Exϕθ(x)∥2F + ∥Eyψθ(y)∥2F

+ ∥Cov(ϕθ)− Ir∥2F + ∥Cov(ψθ)− Ir∥2F
)
,

(5)

where the first two regularization terms center the learned representations, ensuring that
ExEyκθ(x,y)≈1 [25], while the last two enforce approximate orthonormality of the learned bases
in Fθx := span(ϕθ) ⊂ L2

x and Fθy := span(ψθ) ⊂ L2
y [6]. A key property of NCP is that the

learned representations enables reliable regression and conditional probability estimation—and thus
uncertainty quantification—via (2) (see Tab. 3 in the appendix and [25]).

3 Problem formulation

This paper tackles the problem of estimating the conditional expectation E[y|x= ·], and, more gener-
ally, conditional distribution P(y|x), for random variables x∈X and y∈Y , under the assumption
that2 P(y|x) and P(x) are G-invariant under symmetry transformations of the data (see Fig. 3), i.e.:

P(y|x)=P(g ▷Y y|g ▷X x), P(x) = P(g▷X x), ∀ g ∈ G, (6)

where G denotes a finite symmetry group (Def. I.1) acting on the data spaces X and Y via the group
actions, ▷X : G × X → X , and ▷Y : G × Y → Y , with g ▷X x ∈ X and g ▷Y y ∈ Y denoting linear,
invertible transformations of x and y defined by g ∈ G (see Fig. 3 and Def. I.2).

These priors imply the G-invariance of the joint distribution P(x,y) and of y’s marginal distribution
P(y), as well as the G-equivariance of conditional expectations (see Fig. 3-middle and Prop. D.1):

g ▷Y E[y|x=x]=E[y|x=g ▷X x] ∀ g ∈ G,x ∈ X . (7)

Note that (7) implies the G-equivariance of the regression function x 7→ E[y|x=x]. Therefore, the
symmetry priors (6) are satisfied whenever we approximate an equivariant/invariant function—that is,
in virtually all applications of GDL [9].

The above symmetry priors represent a strong inductive bias for the conditional expectation operator
(2), as they lead the PMD kernel defining the operator to be G-invariant (see Fig. 3-right):

κ(x,y) = κ(g ▷X x, g ▷Y y) ∀ g ∈ G,x ∈ X ,y ∈ Y. (8)

1Used in density-ratio fitting [29], representation learning [32, 33], and mutual information estimation [34].
2Throughout, with some abuse of notation we denote by P(x) and P(y|x) both the probability and conditional

probability, respectively, as well as the corresponding densities, when they exist.
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In Sec. 4, we extend the NCP framework [25] by leveraging (8) to incorporate the above symmetry
priors. As we shall see, this enables efficient use of GDL architectures to estimate the G-invariant
conditional probabilities in (6) and G-equivariant regression in (7), via (2), with strong learning
guarantees. In Sec. 4, we extend the NCP framework [25] by leveraging (8) to incorporate symmetry
priors. This enables efficient estimation of G-invariant conditional probabilities (6) and G-equivariant
regression (7) using GDL architectures, via (2), with strong learning guarantees.

4 ENCP method for equivariant representation learning

In this section, we show how to incorporate the symmetry priors (6) into NCP’s representation learning
framework. First, we analyze the symmetry constraints on the infinite-dimensional conditional
expectation operator and prove that, for symmetric random variables x and y, the optimal solution
of (3) yields G-equivariant representations ϕθ and ψθ and approximates the operator with a G-
equivariant matrix Eθ. Then, we explain how to embed these structural constraints into the bilinear
neural network architecture of NCP using any type of equivariant NNs.

Symmetric function spaces The assumption of G-invariance of the marginal probabilities (Sec. 3)
implies that the function spaces L2

x and L2
y are symmetric Hilbert spaces of G-equivariant functions,

as these inherit unitary group actions ▷L2
x
: G × L2

x → L2
x and ▷L2

y
: G × L2

y → L2
y defined via the

push-forward of symmetry transformations of the data spaces (see details in App. J and in Fig. 13):
g ▷L2

x
f(·) := f(g−1 ▷X ·) ∈ L2

x, g ▷L2
y
h(·) := h(g−1 ▷Y ·) ∈ L2

y, ∀g ∈ G. (9)

A fundamental property of G-symmetric Hilbert spaces is their orthogonal decomposition into
niso ≤ |G| subspaces referred to as isotypic subspaces: L2

x=⊕⊥
k∈[1,niso]

L2(k)
x , and L2

y=⊕⊥
k∈[1,niso]

L2(k)
y

(see Thm. I.8). Where each L2(k)
x and L2(k)

y denote the spaces of G(k)-equivariant functions of x and y,
with G(k) being a subgroup of G. This standard result from harmonic analysis [35] enables us to
express any G-equivariant function as a sum of its projections onto the isotypic subspaces:

f(·)=f inv(·) +
niso∑
k=2

f (k)(·), h(·)=hinv(·) +
niso∑
k=2

h(k)(·), s.t f (k)∈L2(k)
x , h(k)∈L2(k)

y , ∀k ∈ [niso], (10)

where f (k) and h(k) denote the G(k)-equivariant components of f and h, which are by construction
invariant to all g /∈ G(k). Moreover, by convention, we associate the first subspace (k = 1) with the
space of G-invariant functions, i.e., G(1)=Ginv={e} (see Example J.4 in the Appendix).

Equivariant conditional expectation operator The G-invariance of the PMD kernel (8), implies
that Ey|x is a G-equivariant linear operator (see Def. K.1). This means that Ey|x commutes with the
group action on the function spaces, and consequently, can be decomposed (disentangled) into a
direct sum of operators acting on the corresponding isotypic subspaces (see details in App. K):

g ▷L2
x
[Ey|xh](·)=Ey|x[g ▷L2

y
h](·) ⇐⇒ [Ey|xh](·)=

niso∑
k=1

[E(k)

y|xh
(k)](·) ∀ h ∈ L2

y, g ∈ G, (11)

where each E(k)

y|x : L
2(k)
y → L2(k)

x models the conditional expectation for G(k)-equivariant functions.

Equivariant disentangled representation learning The G-equivariant structure of Ey|x and its
disentanglement (11) into isotypic components suggests that computing the conditional expectation of
a G-equivariant function is equivalent to summing the conditional expectations of its G(k)-equivariant
components for all k ∈ [niso]. Therefore, the loss function of problem (3), where Ey|x is approximated
in finite dimensional spaces Fθx and Fθy, decouples into niso independent (disentangled) components:

argmin
θ

∥Ey|x−Eθ∥2HS =
∑niso

k=1∥E
(k)

y|x−E(k)

θ ∥2HS = ExEy

∑niso
k=1(κ

(k)(x,y)−κ(k)

θ (x,y))2,

s.t. ExEyκθ(x,y)=1, and κθ(g ▷X x, g ▷Y y)=κθ(x,y), ∀g ∈ G, (x,y) ∈ X × Y.
(12)

Eθ = ⊕niso
k=1E

(k)

θ , with each block an rk×rk G(k)-equivariant matrix 3. The corresponding approxi-
mated PMD kernel is given by:

κθ(x,y) = 1Px(x)1Py (y) +
∑niso

k=1κ
(k)

θ (x,y), κ(k)

θ (x,y) := ϕ(k)

θ (x)⊤E(k)

θ ψ
(k)

θ (y), (13)

3We chose to use square matrices for notational convenience, however the dimensions can vary
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Task f(x) := Ey[y|x=x] ≈ f̂θ(x) P[y∈B|x ∈ A] ≈ P̂θ[y∈B|x∈A]

Estimate Êy[y]+ϕθ(x)
⊤EθÊy[ψθ(y)⊗ y] Êy[1B]+

Êx[1A(x)⊗ϕθ(x)]⊤Eθ Êy[1B(y)⊗ψθ(y)]

Êx[1A(x)]

Learning
Guarantees

∥f−f̂θ∥L2
x
≲
√

Var[∥y∥]

(
Er
θ+

ln(niso/δ)

(disoN)
α

1+2α

)
|P−P̂θ|≲

√
P[y∈B]

P[x∈G▷XA]

(
Er
θ+

ln(niso/δ)

(disoN)
α

1+2α

)
Table 1: Statistical guarantees for eNCP. The error bounds are shaped by (i) the structure of
the symmetry group G—the number of isotypic subspaces niso and their minimum singular space
dimension diso =

∑niso
k=1 dk (see Fig. 2), which enlarge the effective sample size—, (ii) the quality

of the learned representations Erθ = ∥Ey|x − Eθ∥op ≤
√

Lγ(θ)− Lγ(⋆), and (iii) the operator’s
singular-value decay rate α > 0. Note that G ▷X A := ∪g∈G g ▷X A denotes the group orbit of A.

where 1Px(x)1Py(y) arises since the first singular functions of Ey|x are constant, see (4).

This parameterization inherently preserves the symmetry constraints of each operator’s singular
functions, which we leverage in both theory and practice (see Apps. E and K.2.1 for details).

Disentangled training loss Having introduced the equivariance constraints on the truncated operator
matrix, to solve (12) we follow the NCP approach and rewrite it using the contrastive loss (5), which,
reflecting the operator’s isotypic decomposition in (11) becomes separable:

Lγ(θ) :=
∑niso

k=1

(
−2Exyκ

(k)

θ (x,y)+ExEyκ
(k)

θ (x,y)2+γΩ(k)(θ)
)
+ 2γ

(
∥Exϕ

inv
θ (x)∥2F+∥Eyψ

inv
θ (y)∥2F

)
.

(14)
This decomposes the problem of learning G-equivariant representations of x and y into learning niso
less constrained G(k)-equivariant representations transforming according to distinct subgroups of G.
Such representations are known in the literature as disentangled representations [18] (see Def. I.9).

Moreover, we improve the estimates of the regularization terms in (5) by leveraging our symmetry
priors to: (i) tighten the centering regularization (14) given that functions in F (k)

x and F (k)
y are centered

by construction for k ̸= inv (see Cor. L.4)—and (ii) exploit the orthogonality between isotypic
subspaces (10) to independently regularize orthonormality for each isotypic subspace (see example
in Fig. 10 in the appendix), leading to better covariance estimates [36]:

Ω(k)(θ) :=
∑niso

k=1∥Cov(ϕ
(k))−Irk∥

2
F +∥Cov(ψ(k))−Irk∥

2
F . (15)

Given a batch {(xn,yn)}Nn=1 and their corresponding embeddings {(ϕθ(xn),ψθ(yn))}Nn=1, the
empirical unregularized loss is estimated via U-statistics, yielding an unbiased estimate with an
effective sample size of N2 [32, 34].

L̂0(θ)=
∑

k∈[niso]

[
1
N

∑
n∈[N ]κ

(k)

θ (xn,yn)+
1

N(N−1)

∑
a∈[N ]

∑
b∈[N ]\{a} κ

(k)

θ (xa,yb)
2
]
. (16)

Similarly, we use U-statistics to obtain unbiased estimates for orthonormal regularization in (15),
achieving an effective sample size of dkN2 per isotypic subspace (see App. F.2). Consequently,
standard NN optimization methods can be employed to learn equivariant representations via the
approximate model of Ey|x, enabling downstream inference tasks described in the next section.

5 Inference and learning guarantees

Once training is complete, the learned G-invariant PMD from (13) can be used, via (2), for G-
equivariant regression and G-invariant conditional probability estimation. In summary, these estimates
are obtained using a NN architecture composed of ϕθ, Eθ, and a final linear layer that delivers the
basis expansion coefficients of the target variable in the y representation space Fθy = span(ψθ).

Crucially, these parametric estimators come with tight statistical guarantees—summarized in Tab. 1
and Thm. C.1 and derived in Apps. C and M. These guarantees show that the contrastive objectives (5)
and (14) serve as faithful surrogates for the standard Mean Squared Error (MSE) regression objective.
(i) The bounds are governed by a regularity parameter α satisfying

∑
i∈N σ

1/α
i <∞ (with α = ∞

for finite-rank operators and α = 0 for merely compact ones). In particular, the operator is trace
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class when α = 1 and Hilbert-Schmidt when α = 1
2—the latter equivalent to κ ∈ L2

Px×Py
(X × Y)

(see App. M). Accordingly, the learning rates range from arbitrarily slow as α→ 0 to the fast rate
(disoN)−1/2 as α→ ∞; (ii) equivariant disentangled representations boost the effective sample size
to disoN ≥ nisoN ≫ N , providing not only the expected niso gain from disentanglement but also
an additional diso =

∑niso
k=1 dk boost (see Fig. 2-right) by fully exploiting the equivariant structure

within each isotypic–singular space; (iii) for applications requiring pointwise control, (20) provides a
set-wise learning bound that quantifies how symmetries mitigate bottlenecks in estimating observables
tied to rare events—here the effective rarity of x ∈ A is captured by γG′(A), yielding gains up to
|G|,P[x ∈ A] ≫ P[x ∈ A] when A is asymmetric; and (iv) in the absence of symmetry priors—i.e.,
when G = e and |G|=niso=diso=1—our framework recovers the baseline results of [37], whereas
leveraging symmetries amplifies the effective sample size and fundamentally alleviates the intrinsic
bottlenecks of rare-event estimation.

6 Experiments

We present three experiments evaluating our method in (i) approximating the conditional expectation
operator and the use of the learned operator for (ii) G-equivariant regression and (iii) symmetry-aware
uncertainty quantification. For additional empirical evidence, and specific details refer to App. G.

Conditional expectation operator learning This experiment directly quantifies the MSE of
approximating Ey|x, i.e., κmse := ExEy(κ(x,y) − κθ(x,y))

2. To achieve this, we extend the
Conditional Gaussian Mixture Model (cGMM) of Gilardi et al. [38] to parametrically construct
symmetric vector-valued random variables x ∈ X and y ∈ Y that satisfy the symmetry priors in (6)
for arbitrary finite symmetry groups (see a 2D example in Fig. 3). This provides an analytical form of
the PMD ratio κ, enabling direct estimation of κmse, usually impossible for real-world datasets.

The results in Fig. 5 compare our model eNCP against its symmetry-agnostic counterpart NCP and
two baselines—a standard Multi-Layer Perceptron (MLP) and an Equivariant MLP (eMLP)—all with
equivalent architectural footprint. Where NCP and eNCP are trained using (5) and (14), respectively,
while MLP and eMLP are trained using standard MSE.

The results in Fig. 5 demonstrate that our eNCP model outperforms all other baselines in both
performance and sample complexity. Consistent with [37], the NCP model shows poorer sample
complexity than MLP and eMLP due to its indirect approach to regression, via approximation of Ey|x.
However, by incorporating symmetry priors our eNCP model appears to mitigate this limitation.

G-Equivariant regression To test our model’s potential for performing G-equivariant regression,
we address the robot’s Center of Mass (CoM) momenta regression task of [15]. The goal is to
predict a quadruped robot’s CoM linear l ∈ R3 and angular momenta k ∈ R3 given the noisy
observations of the robot’s generalized positions q ∈ R12 and velocity coordinates q̇ ∈ R12, i.e.,
[l⊤,k⊤]⊤ = hCoM(q + ϵq, q̇ + ϵq̇) (see details in App. G.2 and Fig. 7 in the appendix). We
compare eNCP against NCP and two baselines—a standard MLP and an eMLP—all with equivalent
architectural footprint. Where NCP and eNCP are trained using (5) and (14), respectively, while
MLP and eMLP are trained using standard MSE.

The results in Fig. 1 demonstrate that our eNCP model outperforms all other baselines in both
performance and sample complexity. Consistent with [37], the NCP model shows poorer sample
complexity than MLP and eMLP due to its indirect approach to regression, via approximation of
Ey|x. However, by incorporating symmetry priors our eNCP model appears to mitigate this limitation.
Symmetry aware uncertainty quantification Finally, we demonstrate the practical impact of our
approach on a core robotics problem: providing robust uncertainty quantification for unavailable
yet crucial state observables for robot control and state estimation [39, 40]. Specifically, we use
proprioceptive sensor readings to provide 90% confidence intervals for the robot’s Ground Reaction
Forces (GRF) τgrf ∈ R12, the instantaneous work exerted or subtracted to the robot U(q, q̇, τ ) ∈ R,
and the kinetic energy T (q, q̇) ∈ R, while the robot traverses rough terrain (see App. G.3.2). Reliable
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Figure 4: Prediction of 90% confidence intervals (CI) for the ground-reaction forces τgrf ∈ R12 of a
quadruped robot on rough terrain with varying friction. We compare the eNCP vs. eCQR (see NCP
and CQR in Fig. 4) models based on relaxed coverage and set size (see Tab. 4). CIs are computed for
each leg—front-right (FR), front-left (FL), hind-right (HR), and hind-left—along the x, y, and z axes.
Forces outside the CI are highlighted in red, while those within appear in blue.

probabilistic estimates of these quantities are of crucial relevance for optimal control [39], contact
detection [40], state estimation [41], and system identification [42].

r-Coverage ↑ Coverage ↑
eNCP 99.5±0.1% 95.0±0.4%
NCP 99.5±0.0% 56.9±0.3%
eCQR 84.2±0.7% 6.7±1.2%
CQR 80.5±3.7% 8.5±0.9%

Table 2: Relaxed coverage, see (31),
and Coverage, see (30), for the test-set
confidence intervals in quadruped loco-
motion uncertainty estimation of y =
[τ⊤

grf, U, T ]
⊤. Target coverage is: 90%.

This task tests our model’s ability to learn conditional
distributions from high-dimensional data, considering
that for the eNCP and NCP models, quantile estima-
tion is done by regressing the Conditional Cumulative
Distribution Function (CCDF) for each dimension of
y = [y1, . . . ] and then applying a linear search to extract
quantiles (see Fig. 9 in the appendix). This is achieved
by discretizing the range of each yi into Nb bins and
estimating P(yi ∈ Ai,n|x = ·) := [Ey|x1Ai,n ](·) for all
n ∈ [Nb] (see Sec. 5), where Ai,n consists of the first n
bins. In practice, this means regressing |Y| × Nb con-
ditional probabilities corresponding to sets of varying sizes in a single forward pass. By contrast,
the baseline CQR [43] and its equivariant adaptation eCQR directly regress quantiles for a fixed
coverage level (i.e., the probability that an event lies within the predicted confidence interval) and
need retraining for different coverage values.

The results in Tab. 2, Fig. 1 (for U and T ) and in Fig. 12 in the appendix (for τgrf) show eNCP as the
only model capable of providing robust uncertainty quantification, as it is the only model with an
empirical coverage on the test set close to the desired value, rendering other models unreliable for
practical applications. This underscores eNCP’s potential for conditional probability estimation.

7 Conclusions

We introduce a novel framework for equivariant representation learning that enables estimation
of equivariant regression and conditional probabilities with statistical learning guarantees. Our
approach builds on a recent contrastive representation learning method that approximates the spectral
decomposition of the conditional expectation operator. By incorporating symmetry priors, we impose
additional structural constraints that further decompose the conditional expectation operator and
enhance the effective sample size. We demonstrate the benefits of our approach through both
theoretical learning bounds and empirical experiments. Notably, we provide the first theoretical
learning guarantees for equivariant regression using neural network features, thereby bridging spectral
representation learning and geometric deep learning.
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[62] É. Cartan. La théorie des groupes finis et continus et l’analysis situs. Number 42 in Mémorial
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Part I

Appendix
A Symbols and notation

Numbers and Arrays
x A scalar, or scalar function x(·)
x A vector, or vector-valued function x(·)
x1 ⊕ x2 Direct sum (stacking) of vectors, such that x1 ⊕ x2 := [ x1

x2
]

K A matrix
A⊕B Direct sum of matrices, such thatA⊕B := [A O

O B ]
K A linear operator
I Identity matrix
δi,j The Kronecker function, equal to 1 when i = j, and 0 when i ̸= j

Sets, Vector Spaces, and Function Spaces
X ,Z,H,F A vector or Hilbert space
R,C The set of real and complex numbers
X ⊕ Y Direct sum of vector spaces X and Y , such that if x ∈ X and y ∈ Y ,

then x⊕ y ∈ X ⊕ Y
L2
x := L2

Px
(X ,R) The Hilbert space of square-integrable functions on X with respect to

the measure Px, defined as L2
Px
(X ) := {f |

∫
X |f(x)|2Px(dx)<∞}

⟨f, f ′⟩Px
Inner product between f an f ′ in L2

Px
X , defined as ⟨f, f ′⟩Px

:=∫
X f(x)f

′(x)Px(dx)

Group and Representation theory
G A symmetry group
g, g1, ga A symmetry group element
g ▷ x The (left) group action of g on x defined by g ▷ x := ρX (g)X
ρX A representation of the group G on the vector space X , defined for a

chosen basis of X
ρ̄k An irreducible representation Def. I.7 of the group G
ρX (g) Representation of the group element g on the vector space X , defined

for a chosen basis X
ρX ⊕ ρY Direct sum of group representations, such that ρX (g) ⊕ ρY(g) :=[

ρX (g)

ρY (g)

]
Gx The group orbit of x, defined as Gx := {g ▷ x | g ∈ G}
γG′(A) The symmetry index of a set A ⊆ X w.r.t. probability distribution on

X and group elements G′ ⊆ G
Ga ×Gb Direct product of groups Ga and Gb

U(X ) Unitary group on the vector space X
GL(X ) General Linear group on the vector space X , a.k.a the space of

invertible matrices in R|X |×|X|

Cn Cyclic group of order n
K4 Klein four-group

Probability Theory
x ∼ P(x) Random vector x ∈ X has distribution P(x)
Px A probability measure on the space X
Ex[f(x)] Expectation of f(x) with respect to Px

Cov(f(x)) Variance of f(x) with respect to Px, define as Ex(f(x)− Exf(x))
2

Cov(f(x), h(y)) Covariance of f(x) and h(y) with respect to the joint distribution
Pxy, defined as Exy(f(x)− Exf(x))(h(y)− Eyh(y))

N (x;µ,Σ) Gaussian distribution over x with mean µ and covariance Σ
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B Related work

B.1 Contrastive representation learning

Contrastive representation learning obtains high-dimensional representations from unlabeled data
by contrasting positive and negative sample pairs via a noise contrastive loss (similar to Eq. (5))
[44, 45, 46]. Most works in this field aim to learn representations in a self-supervised fashion
that transfer well to downstream classification tasks [47, 48, 49, 30, 24, 33]. In contrast, our
approach targets representations that effectively transfer to (equivariant) regression and uncertainty
quantification, as in [25]. Given a dataset D = {(xn,yn)}Nn=1 from a target (stochastic) function
y = f(x), we treat positive pairs as drawn from the joint distribution (x,y) ∼ P(x,y) and negative
pairs as drawn from the product of the marginals (x,y) ∼ P(x)P(y). In this setting, our contrastive
loss aims to learn representations that approximate the PMD ratio κ(x,y) = P(x,y)

P(x)P(y) , [25] or
equivalently, the pointwise mutual information ln(κ(x,y)) [30, 50, 51, 52]. Crucially, our work is
the first study this problem when there is prior knowledge of the invariance of κ under the action of a
compact symmetry group, which occurs in most applications of GDL.

Linear transferability The goal of contrastive representation learning is to acquire representations
that transfer to diverse downstream inference tasks [53, 45]. While empirical studies demonstrate
that contrastive learning can outperform supervised methods [48, 30, 51], theoretical works aim to
establish linear separability/transferability guarantees [54] 4. That is, showing that linear functionals
of the (frozen) learned representations suffice for regression/classification inference.

In the context of classification, [45, 46, 47] show that contrastive learning losses serve as surrogates
for standard supervised classification losses (e.g., the cross-entropy). Where the gap between the
surrogate and supervised loss diminishes with the number of negative samples [46] (N2 for the loss
in Eq. (16)). To provide these transferability guarantees, these work assume X = Y , so that the PMD
ratio κ becomes a positive definite kernel. Consequently, kernel method guarantees can be transferred
to the classification task, even when the representations are parameterized by NNs [47, 46, 54].

Considerably fewer works have studied contrastive representation learning in the context of down-
stream regression tasks [56, 25]. Crucially, Kostic et al. [25] show that a contrastive learning loss
serves as surrogate to the MSE regression loss (A summary of this method appears in Sec. 2 and in
Tab. 3). While, to the best of our knowledge, [56] is the only work empirically studying contrastive
learning for regression in the presence of symmetries.

Task f(x) := Ey[y|x=x] ≈ f̂θ(x) P[y∈B|x ∈ A] ≈ P̂θ[y∈B|x∈A]

Estimate Êy[y]+ϕθ(x)
⊤EθÊy[ψθ(y)⊗ y] Êy[1B]+

Êx[1A(x)⊗ϕθ(x)]⊤Eθ Êy[1B(y)⊗ψθ(y)]

Êx[1A(x)]

Guarantees ∥f−f̂θ∥L2
x
≲
√

Var[∥y∥]
(
Er
θ+

ln(1/δ)

N
α

1+2α

)
|P−P̂θ|≲

√
P[y∈B]
P[x∈A]

(
Er
θ+

ln(1/δ)

N
α

1+2α

)
Table 3: Statistical learning guarantees of NCP [25] for regression and conditional probability
estimation. The bounds are shaped by the quality of the learned representations Erθ = ∥Ey|x−Eθ∥op ≤√
Lγ(θ)− Lγ(⋆) (see (5)), the sample size N , and the decay rate of Ey|x singular-values α > 0,

which quantifies the difficulty of the problem.

B.2 Equivariant representation learning

Equivariant contrastive representation learning [57, 58] aims to learn representations that are equiv-
ariant—instead of invariant—to data transformations. For example, Marchetti et al. [59], Gupta et al.
[60], Lin et al. [50] provide empirical evidence that representations of 3D scenes, images, and human
body poses that are equivariant to translations, rotations, or reflections yield improved performance

4Also refeered to as linear evaluation protocol [55]
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in classification tasks. Additionally, Yerxa et al. [56] show that rotation- and reflection-aware image
representations enhance the regression of neural responses in the macaque inferior temporal cortex,
while also providing theoretical justification that such equivariant representations mirror the known
structure of animal visual perception. By introducing these transformations via data-augmentation of
the training set, these methods inherently enforce symmetries in the data distributions, which are the
fundamental priors assumed in Sec. 3.

Disentangled representations In equivariant representation learning, disentangled representations
have been extensively studied [22]. Initially, [53] defined disentanglement as decomposing repre-
sentations into components that capture distinct, independently varying factors. Later, using group
theory, Higgins et al. [18] formalized that a representation is disentangled if its space decomposes
into orthogonal subspaces reflecting a symmetry group decomposition, with each subspace influenced
exclusively by one subgroup (see Def. I.9). As discussed in App. I, this aligns with the isotypic
decomposition of a Hilbert space [35]: H = ⊕⊥

k=1H(k)—known in dynamical systems [61]—when
the symmetry group decomposes as G =

∏niso
k=1 G(k). Orthogonality between subspaces follows from

Schur’s orthogonality relations via Cartan’s and Peter-Weyl’s theorems [62]. This symmetric structure
is the cause of the achitectural constraints imposed in the eNCP architecture Fig. 2.

Several empirical works have explored disentanglement in representation learning. For instance,
Keurti et al. [21] proposed an autoencoder-based method to learn disentangled equivariant represen-
tations by using loss regularization to enforce latent space equivariance and sparsity for separating
latent group actions. Unlike our approach, their method does not assume prior knowledge of the
symmetry group and relies entirely on loss regularization rather than architectural constraints. Simi-
larly, works such as [see e.g. 63, 20] have investigated various symmetry priors in latent space by
examining the emergence of disentangled structures and enforcing algebraic constraints. Notably,
in fields like molecular dynamics, physics, computer graphics, and robotics, symmetry priors are
intrinsic to the task or system [15, 50, 59], making them natural assumptions. In a similar spirit
to our work, Marchetti et al. [59] leverage the known SO3 symmetries of the 3D world to learn
SO3-disentangled equivariant representations using contrastive learning, thereby demonstrating the
empirical advantages of symmetry-aware, disentangled representations for object classification.

B.3 Symmetry-aware statistical learning theory

Existing literature on symmetry-aware learning focuses on group-invariant regression via kernel
methods [64, 65, 66, 67, 10, 68, 69, 70, 71]. Most of these methods cannot be directly transferred
to modern GDL architectures. In contrast, in deep learning and GDL, while many works offer a
group-theoretical analysis and empirical evidence of the benefits of incorporating symmetry priors
[7, 72, 73, 74], none, to our knowledge, provide statistical learning guarantees that analytically
quantify these benefits in terms of the structure of the compact/finite symmetry group.

C Inference and learning guarantees

Consider vector-valued regression with an observable h ∈ L2
Py
(Y,Z), where Z is a symmetry-

endowed vector space. The target function z : X → Z is the conditional expectation of of h, that is:
z(x) := Ey[h(y)|x = x] = [Ey|xh](x). Then, using the learned model, we estimate z by

[Ey|xh](x) ≈ ẑθ(x) := Êy[h(y)]+ϕ
⊤
θ (x)

⊤Eθ Êy[ψθ(y)⊗ h(y)],

where Êy[ψθ(y)⊗h(y)] denote the basis expansion coefficients of h in the learned basis of Fθy ⊂ L2
y.

With Êx : L2
x → R and Êy : L2

y → R being the G-invariant empirical expectations defined by:

Êx[f(x)]=
1

|G|N
∑
g∈G

∑
n∈[N ]

f(g ▷X xn) and Êy[h(y)]=
1

|G|N
∑
g∈G

∑
n∈[N ]

h(g ▷Y yn). (17)

Hence, our method learns representations of x and y that transform nonlinear regression of observ-
ables into a simple linear regression in the learned space. For example, assuming y has bounded
variance and setting h(y) = y, we recover the standard (G-equivariant) regression solution (see
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Tab. 1-left). Equally important, by letting h = 1B—the indicator of a measurable set B ⊆ Y—the
model estimates conditional probabilities (see Tab. 1-right), thereby supporting both regression and
uncertainty quantification (e.g., conditional quantiles, covariances; see Sec. 6 and [25]).

To further illustrate the impact of symmetries in conditional probability estimation, we consider
conditioning on measurable sets A ⊆ X , leading to the estimate z(A) := Ey[h(y)|x ∈ A] ≈
Êx[ẑθ(x)]/̂Ex[1A(x)]. In this context, symmetry is crucial in alleviating the bottlenecks of rare event
estimation, as described next in Thm. C.1. To capture this effect, we introduce the symmetry index of
A with respect to the probability distribution of x, which quantifies the degree of symmetry in A:

γG(A) =
1

|G| − 1

∑
g∈G\{e}

P(x ∈ A ∩ g ▷X A)
P(x ∈ A)

. (18)

Observe that γG′(A) ∈ [0, 1]. In particular, γG(A) = 1 if A is G-invariant (e.g., the vertical and
horizontal reflection planes in Fig. 3), while γG(A) = 0 if g ▷X A ∩ A = ∅ for all g ∈ G (e.g., any
set disjoint from the reflection planes in Fig. 3). We refer to the latter as a G-asymmetric set.

The following learning bounds cover the general setting presented above.
Theorem C.1. Let Pxy and Px be G-invariant, and let Ey|x be a (1/α)-Schatten-class operator.
Given θ ∈ Θ, let κθ be the kernel given in (13) that defines a rank r = disom G-equivariant operator
Eθ, where m is the number of distinct singular spaces, and diso =

∑
k∈[niso]

dk ≥ niso denotes
the “total dimensionality” associated to the group G. Given δ ∈ [0, 1), let Erθ=∥Ey|x−Eθ∥op be the
representation learning error. Let ε⋆N (δ)= [disoN ]−

α
1+2α ln(niso/δ) and m≍ [Nd−2α

iso ]
1

1+2α .

If h∈L2
Py
(Y,Z) is either G-invariant or G-equivariant, A ⊂ X is a measurable set and G′ ≤ G,

then with probability at least 1− δ w.r.t. an iid draw of DN = {(xn,yn)}Nn=1 from Pxy it holds

∥z − ẑθ∥L2
Px

(X ,Z)
≲
√

Var[∥h(y)∥Z ]
[
Er
θ + ε⋆N (δ)

]
(19)

and

∥z(A)− ẑθ(A)∥Z ≲

√
1 + (|G′| − 1)γG′(A)

√
Var[∥h(y)∥Z ]√

|G′|P(x ∈ A)

[
Er
θ + ε⋆N (δ)

]
. (20)

Proof. G-invariance of Px and Py allows us to control both bias (Thm. M.2) and variance (Prop.
M.3) of ẑθ. A simple balancing of m yields the final bound on the error.

We conclude by highlighting key implications of the theorem. The parameter α quantifies the problem
regularity via

∑
i∈N σ

1/α
i <∞, with α = ∞ for finite-rank operators and α = 0 for merely compact

operators. The operator is trace class for α = 1 and Hilbert–Schmidt for α = 1/2, which is equivalent
to κ ∈ L2

Px×Py
(X×Y) (see App. M). Hence, our results cover learning rates ranging from arbitrarily

slow (as α → 0) to fast rates [disoN ]−1/2 as α → ∞; (ii) Equivariant disentangled representations
boost the effective sample size to disoN ≥ nisoN ≫ N , providing not only the expected niso gain
from disentanglement but also a remarkable diso =

∑niso
k=1 dk boost (see Fig. 2-right)—achieved by

fully exploiting the equivariant structure within each isotypic-singular space. (iii) Because point-wise
guarantees are essential in some applications, (20) offers a set-wise learning bound that quantifies
how symmetries help overcome bottlenecks in estimating observables associated with rare events.
In particular, the effective rarity of x ∈ A is captured by γG′(A), yielding a maximal gain of
|G|P[x ∈ A] ≫ P[x ∈ A] when A is asymmetric. (iv) When no symmetry prior exist, that is, when
G = {e} and |G|=niso=diso =1, our framework recovers the baseline results of [37]. In contrast,
exploiting symmetries yields substantial statistical gains: it amplifies the effective sample size and
fundamentally mitigates the inherent bottlenecks of rare event estimation.

D Symmetry constraints on conditional expectations

Under the assumed symmetry priors in (6) the conditional expectation of y is a G-equivariant
function/map. This property is depicted in Fig. 3-center and proved in the following proposition.
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Proposition D.1 (G-equivariant conditional expectations). Let x ∈ X and y ∈ Y be two vector
valued random variables satisfying the symmetry priors of Eq. (6). Then, the conditional expectation
of y given x is G-equivariant, since, for every g ∈ G,x ∈ X ,

E[y|x = g ▷X x] = g ▷Y E[y|x = x]

=

∫
Y
g ▷Y y Py|x(dy|x)

=

∫
Y
y Py|x

(
g−1 ▷Y dy|x

)
=

∫
Y
y Py|x(dy|g ▷X x) (by Eq. (6))

= E[y|x = g ▷X x].

E G-Equivariant bilinear NN architecture

This section outlines how to construct a G-equivariant disentangled representation for the random
variables x and y using any type of G-equivariant NN architecture backbone, such as MLP, CNNs,
Transformers, and others.

Let fθ : X 7→ Rr and hθ : Y 7→ Rr be two G-equivariant NNs, whose outputs will be interpreted
as the basis functions of the truncated symmetric function spaces Fx ⊂ L2

x and Fy ⊂ L2
y. Assume,

the group representations on Fx and Fy are constructed from multiplicities of the group’s regular
representation, ρFx

=
⊕r/|G|

n=1 ρreg and ρFy
=
⊕r/|G|

n=1 ρreg—as done usually in practice [17]. Since
for (most) finite groups, the decomposition of ρreg into irreps is known or can be computed, we
have access to the analytical change of basis Qx : Fx 7→ Fx and Qy : Fy 7→ Fy to transition to
the isotypic basis. Consequently, we can directly parameterize the representations of the random
variables in disentangled form as:

ϕθ(·) = Q⊤
x (fθ(·)− Ex[fθ(x)]), ψθ(·) = Q⊤

y (hθ(·)− Ey[hθ(y)]). (21)

Given that during training these representations are not orthogonal, the truncated operator is param-
eterized as the trainable G-equivariant matrix Eθ = ⊕niso

k E(k)

θ = ⊕niso
k O(k) ⊗ Idk with parameters

{O(k) ∈ Rmk×mk}niso
k=1. Hence, the kernel of each the truncated operator is given in terms of the

model free parameters by:

κθ(x,y) = 1Px(x)1Py (y) +

niso∑
k=1

mk∑
s,t

O(k)
s,t

dk∑
i,j

ϕθ(k)s,i (x)ψ
θ(k)
t,j (y). (22)

Note that after training, the SVD of the learned operator can be computed by exploiting the constraints
imposed by the operator’s G-equivariance (see Thm. K.5 and Fig. 2). Importantly, once changed to
the spectral basis, the group action on the approximated spectral basis matches that on the isotypic
basis (see Cor. K.4).

F Symmetry aware orthonormalization of disentangled representations

This section covers how to compute unbiased empirical estimates of the orthonormalization and
centering regularization terms in Eq. (14) in the presence of symmetries.

Let Ey|x : L2
y 7→ L2

x be the conditional expectation operator and Eθ : Fy 7→ Fx be its r-rank
approximation on the spaces Fx = span({ϕi}ri=1) and Fy = span({ψi}ri=1). Denote by κ(x,y) :=
Pxy(x,y)
Px(x)Py(y)

and κθ(x,y) :=
∑r
i,j=1[Eθ]i,jϕi(x)ψj(y) = ϕ(x)⊤Eθψ(y) the kernel functions of
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the full and restricted operator, respectively. Then we have that:

∥Ey|x − Eθ∥2HS ≤ −2⟨Ey|x,Eθ⟩HS + ∥Eθ∥2HS, (23a)

≤ −2

∫
X×Y

κ(x,y)κθ(x,y)Px(dx)Py(dy) +

∫
X×Y

κθ(x,y)
2Px(dx)Py(dy)

≤ −2

∫
X×Y

κθ(x,y)Pxy(dx, dy) +

∫
X×Y

κθ(x,y)
2Px(dx)Py(dy)

≤ −2Exyκθ(x,y) + ExEyκθ(x,y)
2. (23b)

For the purpose of our representation learning problem, we consider the scenario in which the chosen
basis sets include the constant function, and all other basis functions are centered by construction.
That is, IFx

= {1Px} ∪ {ϕi | ⟨ϕi,1Px⟩x = 0}ri=1 and IFy
= {1Py} ∪ {ψi | ⟨ψi,1Py⟩y = 0}ri=1.

This results in the (r + 1)-dimensional matrices:

Vx :=
[
1 0
0 Cx

]
, Vy :=

[
1 0
0 Cy

]
, (24)

where Cx = Cov(ϕ(x),ϕ(x)) ∈ Rr×r, Cy = Cov(ψ(y),ψ(y)) ∈ Rr×r denote the matrix forms
of the truncated covariance operators Cx : Fx 7→ Fx and Cy : Fy 7→ Fy (see Def. L.5), respectively.
Then the orthonormality regularization of Eq. (5) becomes:

∥Vx − I∥2F = ∥Cx − Ir∥2F + 2∥EPxϕ(x)∥
2 ∥Vy − I∥2F = ∥Cy − Ir∥2F + 2∥EPyψ(y)∥

2. (25)

Since ∥Cx∥2F = tr(C2
xy) involves products of covariance matrices, we compute its empirical value

using unbiased estimators. For generality, we present the unbiased estimator for the cross-covariance.

Unbiased estimation of Frobenious norm of cross-covariance operators Since ∥Cxy∥2F =
tr(C2

xy) involves products of covariance matrices, we obtain unbiased estimates from finite samples
by computing the metric using two independent sampling sets from Pxy. This is observed by:

∥Cxy∥2F = tr(C2
xy) =

r∑
i=1

[C2
xy]i,i =

r∑
i=1

r∑
j=1

[Cxy]i,j [Cxy]j,i

=

r∑
i=1

r∑
j=1

E(x,y)∼Pxy [ϕc,i(x)ψc,j(y)]E(x′,y′)∼Pxy [ϕc,j(x
′)ψc,i(y

′)]

= E(x,y,x′,y′)∼Pxy [

r∑
i=1

ϕc,i(x)ψc,i(y
′)

r∑
j=1

ϕc,j(x
′)ψc,j(y)]

= E(x,y,x′,y′)∼Pxy [(ϕc(x)
⊤ψc(y

′))(ϕc(x
′)⊤ψc(y))]

≈ 1

N2

N∑
n=1

N∑
m=1

(ϕc(xn)
⊤ψc(y

′
m))(ϕc(x

′
m)⊤ψc(yn)),

(26)

where ϕc(x) = ϕ(x)− EPxϕ(x) denotes the centered basis functions, and ((x,y), (x′,y′)) ∼ Pxy

indicates two independent sampling sets from Pxy used for the unbiased estimation of ∥Cx∥2F .
The final equation then provides the unbiased empirical estimator computed on a dataset D =
{(xn,yn) ∼ Pxy}Nn=1 and any random permutation of it, denoted as D′ = {(x′

n,y
′
n) ∼ Pxy}Nn=1.

F.1 Unbiased estimation of orthonormal regularization

The regularization term for optimizing the loss (5) involves encouraging the basis sets to be orthonor-
mal. The metric quantifying the orthogonality of the basis sets is defined by:

∥Vx − I∥2F = ∥Cx − Ir∥2F + 2∥EPxϕ(x)∥
2 = tr(C2

x)− 2tr(Cx) + r + 2∥EPxϕ(x)∥
2,

∥Vy − I∥2F = ∥Cy − Ir∥2F + 2∥EPyψ(y)∥
2 = tr(C2

y)− 2tr(Cy) + r + 2∥EPyψ(y)∥
2.

(27)
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Hence given a dataset of samples D = {(xn,yn) ∼ Pxy}Nn=1, and any random permutation of the
dataset order D′ = {(x′

n,y
′
n) ∼ Pxy}Nn=1 we can derive unbiased empirical estimates of (27) as:

∥Vx − I∥2F ≈ Ê(x,x′)∼Px [(ϕc(x)
⊤ϕc(x

′))2]− 2ÊPx [ϕc(x)
⊤ϕc(x)] + r + 2∥ÊPxϕ(x)∥

2

≈ 1

N2

N∑
n=1

N∑
m=1

(ϕc(xn)
⊤ϕc(x

′
m))2 − 2

1

N

N∑
n=1

ϕc(xn)
⊤ϕc(xn) + r + 2∥ 1

N

N∑
n=1

ϕ(xn)∥2,

∥Vy − I∥2F ≈ Ê(y,y′)∼Py [(ψc(y)
⊤ψc(y

′))2]− 2ÊPy [ψc(y)
⊤ψc(y)] + r + 2∥ÊPyϕ(y)∥

2

≈ 1

N2

N∑
n=1

N∑
m=1

(ψc(yn)
⊤ψc(y

′
m))2 − 2

1

N

N∑
n=1

ψc(yn)
⊤ψc(yn) + r + 2∥ 1

N

N∑
n=1

ψ(yn)∥2.

(28)

F.2 Orthonormal regularization of symmetric Hilbert spaces

Since the covariance operators Cx : L2
x 7→ L2

x and Cy : L2
y 7→ L2

y are G-equivariant (see Prop. L.6),
their matrix representations in the isotypic basis are block-diagonal. Hence (27) becomes:

∥Vx − I∥2F = ∥Cx − Ir∥2F + 2∥EPxϕ(x)∥
2

= ∥⊕niso
k=1 C

(k)
x − Ir∥2F + 2∥EPxϕ

inv(x)∥2,

=

niso∑
k=1

∥C(k)
x − I (k)

r ∥2F + 2∥EPxϕ
inv(x)∥2

=

niso∑
k=1

(
∥C(k)

x ∥2F − 2tr(C(k)
x ) + rk

)
+ 2∥EPxϕ(x)∥

2

= 2∥EPxϕ(x)∥
2 + r +

niso∑
k=1

∥Z(k)
x ⊗ I|ρ̄k|∥

2
F − 2tr(Z(k)

x ⊗ I|ρ̄k|)

= 2∥EPxϕ(x)∥
2 + r +

niso∑
k=1

|ρ̄k|
(
∥Z(k)

x ∥2F − 2tr(Z(k)
x )
)
,

(29)

where the Frobenius norm of the matricesZ(k)
x andZ(k)

y , for all k ∈ [1, niso], admit unbiased estimators
as given in equation (26). Similar development follows for the y case.

G Experimental setup

In this section we provide details on the experimental setup. We first describe general design choices
and hyperparameters and then provide details for each experiment.

Sample efficiency experiments For both the conditional expectation operator approximation and
the G-equivariant regression experiments, we evaluate model performance by measuring sample
efficiency/complexity. To do so, we partition the dataset D = {(xn,yn)}Nn=1 into training, validation,
and testing splits in proportions of 70%, 15%, and 15%, respectively. With fixed validation and
testing sets, we iteratively train the models on increasing portions of the training set and report the
test performance for each size.

For each training set size, we select the model checkpoint with the best validation loss to compute
the test performance. Thus, these experiments quantify the generalization error (or true risk) and its
evolution as a function of the training set size.

NNs architectures and hyperparameters To compare our equivariant representation learning
framework with other contrastive and supervised methods, all (inference) models share a similar fixed
architectural footprint. For the baseline models, the only hyperparameter tuned is the learning rate,
whereas for the NCP and eNCP models we additionally tune the regularization weight γ in Eqs. (5)
and (14). Further details for each experiment are provided in the corresponding sections below.
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Code reproducibility All experiments, plots and examples are provided in the open-access reposi-
tory and python package symm rep learn.

G.1 Conditional expectation operator approximation

In this experiment, we extend the conditional Gaussian Mixture Model (GMM) proposed by Gilardi
et al. [38] to parametrically construct symmetric random variables taking values in arbitrary data
spaces X and Y and with arbitrary finite symmetry groups G. The GMM is defined by

z := x⊕ y ∼
∑
g∈G

ng∑
c=1

N (ρZ(g)µz,c , ρZ(g)Σz,cρZ(g)
⊤),

where ρZ(g) := ρX (g) ⊕ ρY(g) are arbitrary group representations of G and ng is the number of
unique Gaussians with randomly sampled means µz := µx ⊕ µy and block-diagonal covariances
Σz := Σx⊕Σy. Since every Gaussian appears in group orbits, this symmetric GMM has G-invariant
marginal distributions and an analytical expression for the conditional expectation operator kernel
κ(x,y) = pxy(x,y)/Px(x)Py(y) (see 2D example in Fig. 3). Consequently, we can directly estimate
the approximation of the conditional expectation operator (Eq. (5)) as the mean squared error between
the true and learned density ratios, i.e., κmse := ExEy ∥κ(x,y)− κθ(x,y)∥2.

To the best of our knowledge, this is the first synthetic experiment that directly estimates the
truncation error of the conditional expectation operator in an inference task-agnostic setting, serving
as a benchmark for future work.

Figure 5: Sample efficiency plots comparing the test set PMD MSE κmse := ExEy(κ(x,y) −
κθ(x,y))

2 versus the number of training samples, in log scales. Each plot corresponds to a symmetric
cGMM with distinct symmetry groups and (x,y) dimensionality. The tested groups are the cyclic
groups C2 and C6, the Dihedral group D6 (order 12), and the Icosahedral group Ih (order 60).

Figure 6: Sample efficiency plots comparing test set regression mean-square-error of the density
ratio κ(x,y) = Pxy(x,y)/Px(x)Py(y) (log-scale) vs. the number of samples in the training set (log-
scale). Each plot represents a different symmetric GMM with varying symmetry groups G and
dimensionalities of the random variables |X | and |Y|. The groups tested are the cyclicg grups C2 and
C6, the Dihedral group D6 of order 12 and the Icosahedral group Ih of order 60.

Fig. 5 compares sample efficiency using κmse, while Fig. 6 shows the error in the G-invariant of the
learned κ ratio versus sample size, highlighting that symmetry-aware methods encode this property
as an architectural constraint, ensuring a strictly G-invariant learned ratio.

G.2 G-equivariant regression of robot’s CoM momenta

In this experiment, we evaluate the quality of the learned representations using the contrastive loss
Eqs. (5) and (14) alongside supervised learning baselines trained with the standard MSE loss. The task
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is a G-equivariant benchmark in robotics presented in [15], with the goal of predicting a quadruped
robot’s CoM linear l ∈ R3 and angular momenta k ∈ R3 from noisy observations of the robot’s
generalized positions q ∈ R12 and velocity coordinates q̇ ∈ R12. Consequently, the random variables
are defined as x = q + ϵq ⊕ q̇ + ϵq̇ and y = l⊕ k, where ϵq ∈ R12 and ϵq̇ ∈ R12 are independent
Gaussian noise terms that model sensor noise. The function computing the CoM momenta from these
proprioceptive observations is highly non-linear and G-equivariant whenever G is a morphological
symmetry group of the robot (see Fig. 7 and [15] for details).

The robot considered is the quadruped robot Solo (Fig. 7-right), which possesses a symmetry group
of order 8: G = K4 × C2, as depicted in this animation showing 8 symmetric robot configurations
along with their corresponding linear and angular momenta vectors.

NN architectures We configure all models under consideration (eNCP, NCP, eMLP, and MLP) to
have an inference-time NN architecture with a similar footprint. In particular, the encoder network
for x in NCP and eNCP is designed similarly to the NN used in MLP/eMLP. The idea is to test how
a model with the same capacity performs on the downstream task of classification when trained using
either the representation learning loss or a supervised learning loss. The backbone of all architectures
is a standard multilayer perceptron consisting of three hidden layers, each with 512 units, followed
by a final hidden layer containing 128 units. This final layer encodes the feature vector r for the NCP
and eNCP models. Crucially, since G-equivariance enforces weight sharing in the NN architecture,
the encoder NN for eNCP and eMLP comprises ×8 fewer parameters than their symmetry-agnostic
counterparts.

Figure 7: Example of morphological finite symmetry in robotics. Left: A humanoid robot with the
reflectional symmetry group G ≡ C2. Right: The quadruped robot Solo with the symmetry group
G = K4 × C2 (only K4 is shown for clarity). The robot’s center of mass linear l ∈ R3 and angular
k ∈ R3 momentum are depicted as orange and green vectors, respectively, for each symmetric
configuration. Images adapted from Ordoñez-Apraez et al. [15] with author approval.

G.3 Uncertainty quantification via conditional quantile regression

The goal of these experiments benchmark is to learn the family of conditional distributions P(y | x =
·) for a bivariate random variable y = [y0, y1] ∈ R2 given a scalar covariate x ∈ R. Once P(y | x)
is recovered, the practitioner can estimate conditional (1 − α)–confidence regions by regressing
the lower and upper conditional quantiles qα/2(x), q1−α/2(x) for any desired miscoverage level
α ∈ (0, 1). In particular, a 95% confidence region corresponds to α = 0.05, so the two quantiles of
interest are q0.025(x) and q0.975(x). See Fig. 8 for a visual representation of the problem.

Conditional quantile regression models We compare the NCP and proposed eNCP models to a
standard baseline for parametric NN conditional quantile regression, namely CQR [43], which uses
two separate NNs to predict the lower and upper quantiles of the conditional distribution, trained with
a pinball loss function (see [43] for details). Both models use MLP backbones with similar parameter
counts, ensuring that improvements are solely due to the loss functions.

Furthermore, CQR can only be trained for specific confidence intervals, requiring retraining for
different quantiles. In contrast, the NCP and eNCP models, trained using the deep representation
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Figure 8: Synthetic experiment in uncertainty quantification, originally proposed by Feldman et al.
[43]. The task is to predict the 95% confidence intervals (black bounding boxes) of a random variable
y ∈ R2 conditioned on a scalar random variable x ∈ R. Left: The marginal distribution P(y).
Middle: The marginal distribution P(x). Right: Example conditional distributions P(y|x = ·) for
different conditioning values.

learning approach of Secs. 2 and 4, regress the CCDF of each dimension of y given x. Thus, they
can estimate conditional quantiles for any confidence interval via the quantile estimation algorithm
from the CCDF described in Kostic et al. [25] without retraining. See details in Fig. 9.

Evaluation metrics: coverage and set size Let C1−α(x) ⊆ Rd denote a prediction set of nominal
level (1− α) produced by a conditional quantile regression model for the response y ∈ Rd given the
covariate x ∈ Rp. In all experiments we assess two complementary metrics.

• Coverage. The conditional coverage of C1−α is the probability that the true response is captured
by the predicted region,

c1−α(x) := P
(
y ∈ C1−α(x) | x

)
, with the target c1−α(x) ≈ 1− α ∀x. (30)

In practice we report the marginal coverage Êx[c1−α(x)], estimated on a large held-out sample;
values above (resp. below) 1− α indicate over- (resp. under-) coverage.

• Relaxed Coverage (r-Coverage). The conditional relaxed coverage of C1−α is defined as the
probability that each scalar component of the response lies within its corresponding predicted
confidence interval. Formally, if y = [y1, . . . , yd] and C1−α(x) has corresponding marginal
intervals C(i)

1−α(x) for i ∈ {1, . . . , d}, then

rc1−α(x) :=

d∏
i=1

P
(

yi ∈ C(i)
1−α(x)

∣∣∣x), (31)

Figure 9: Prediction of the 80% and 95% confidence intervals for the random variable y in experiment
App. G.3 using the proposed eNCP model. The model estimates the CCDF by discretizing each
dimension of y = [y1, y2] into 100 bins and computing the conditional probabilities P(yi ∈ An|x =
·) := [Ey|x1An

](·) for all n ∈ [100] based on the learned conditional expectation operator κθ(x,y)
(see Sec. 5). Here, An comprises the bins from the 0-th to the n-th. This yields the estimated CCDF
for y1 (center) and y2 (right) at x = 2.7. The CCDFs can then be used to estimate upper and lower
quantiles for any confidence interval [25]. In practice, the eNCP model regresses 2× 100 variables
in a single forward pass. Thus, the final layer of the conditional quantile regression model is a linear
layer of size r × (2× 100), where r is the number of features in the y representation (see Sec. 2).
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with the target rc1−α(x) ≈ 1− α for all x. As with coverage, we report the marginal relaxed
coverage Êx[rc1−α(x)].

• Set size. To quantify how informative the region is, we measure its size (volume) under the
Lebesgue measure λd:

Size1−α(x) := vol
(
C1−α(x)

)
. (32)

Smaller sets correspond to sharper uncertainty estimates, provided the required coverage is
met. For multidimensional responses the volume is expressed in the natural units of Rd; for
d = 1 it reduces to the interval length. As with coverage, we report the marginal expectation
Êx[Size1−α(x)] so that models can be compared fairly across the entire input distribution.

G.3.1 Synthetic benchmark

The goal of these experiments is to learn the conditional distributions P(y | x = ·) for a bivariate
random variable y = [y0, y1] ∈ R2 given a scalar covariate x ∈ R. Following Feldman et al. [43],
the covariate is sampled uniformly: x ∼ Unif

(
0.8, 3.2

)
, and the response variable y is produced by

a non-linear transformation of auxiliary latent variables (see Fig. 8):

y0 =
z
β x

+ r cosϕ,

y1 = 1
2

(
− cos z + 1

)
+ r sinϕ + sinx,

z ∼ Unif(−π, π),
ϕ ∼ Unif(0, 2π),

r ∼ Unif(−0.1, 0.1).

Here, β > 0 is a scaling constant.

The additive perturbation r(cosϕ, sinϕ) yields heteroskedastic, anisotropic noise, whereas the
1
2 (− cos z + 1) and sinx terms introduce strong non-monotonicity and interaction effects between x
and y. As a result, the conditional quantile functions x 7→ qτ (x) are highly non-linear, making this
dataset an ideal low-dimensional experiment for conditional quantile regression methods.

Results The experiment results are depicted in Fig. 11. Where the NCP and eNCP models outper-
form the baseline CQR model in terms of both coverage and set size. Furthermore, Fig. 10 illustrates
the basis functions learned by the NCP and eNCP models for the random variable y = [y0, y1].
In contrast to the standard NCP model, the eNCP model incorporates symmetry priors, enabling a
clean separation of its latent representation into two orthogonal subspaces: one corresponding to
C2-invariant functions and the other to functions that change sign under reflection.

Figure 10: Left: Learned basis functions from the NCP model for y = [y0, y1]. Right: Learned
basis functions from the eNCP model for y. The marginal distribution of y exhibits reflection
symmetry gr ▷Y y = [−y0, y1] under G = C2. Incorporating this prior, the eNCP model decomposes
its latent space as Fy = F inv

y ⊕ F(2)
y , with the first subspace capturing C2-invariant functions and

the second capturing those that change sign under reflection. The orthogonality of these subspaces
allows independent optimization of the basis functions.
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Figure 11: Results of a synthetic experiment in uncertainty quantification comparing CQR, NCP,
and eNCP models. The task, originally proposed by Feldman et al. [43], is to predict the 95%
confidence intervals of a random variable y ∈ R2 conditioned on a scalar random variable x ∈ R.
The conditional distributions P(y|x = ·) are shown in the left and fourth columns for different
conditioning values, while the second-third and fifth-sixth columns display the CCDF predicted by
the eNCP and NCP models, respectively. The CQR model directly regresses the upper and lower
quantiles for each dimension of y and must be retrained if the confidence interval probability changes.
In contrast, since the NCP and eNCP models estimate the CCDF for each dimension, these predictions
can be easily adapted to any confidence interval probability by simply changing the threshold value.
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Validation Test

r-Coverage ↑ Coverage ↑ Set Size ↓ r-Coverage ↑ Coverage ↑ Set Size ↓

eNCP 99.3±0.0% 94.1±0.4% 2.4±0.4×1010 99.5±0.1% 95.0±0.4% 4.3±3.6×109

NCP 96.4±0.0% 56.9±0.1% 3.9±4.5×1010 99.5±0.0% 56.9±0.3% 2.6±1.4×1010

eCQR 70.7±0.6% 7.3±1.7% 3.7±2.6×108 84.2±0.7% 6.7±1.2% 1.7±1.7×107

CQR 67.6±1.8% 7.6±0.4% 2.5±2.4×109 80.5±3.7% 8.5±0.9% 1.4±0.1×108

Table 4: Validation and test set metrics for the prediction of 95% confidence intervals on observables
of a quadruped robot traversing rough terrains (see App. G.3.2). Model performance is evaluated
using three metrics: (i) relaxed coverage (r-Coverage) (Eq. (31)), (ii) coverage (Eq. (30)), and (iii) set
size (Eq. (32)). The best results are highlighted in blue. Note that although the confidence interval
volumes (set size) of the eCQR and CQR models are significantly smaller than those of the NCP
and eNCP models, the former fail to achieve the expected 95% coverage on both the validation and
test sets. In contrast, the eNCP model attains the best overall coverage, proving its effectiveness
for uncertainty quantification. Importantly, the eNCP and NCP models can be adjusted, without
retraining, to provide confidence intervals for any desired coverage level, whereas the CQR and
eCQR models must be retrained for each new level.

G.3.2 Uncertainty quantification in quadruped legged locomotion

We test how well conditional-quantile models can recover the conditional 95% confidence regions
of three physically meaningful observables produced by a simulated AlienGo quadruped walking
over rough terrain (see Fig. 1) under varying friction coefficients. The dataset was collected using the
Quadruped-PyMPC simulation framework and model predictive controller from [75].

The observables for which state-dependent uncertainty estimates are desired are yt =
[Ut, Tt, τ

grf
t ]⊤, with each component defined as follows:

• G-invariant Kinetic Energy. T (q, q̇) = 1
2 q̇

⊤M(q) q̇ ∈ R, where M(q) is the configuration-
dependent inertia matrix. Noise is introduced through sensor measurement errors on the robot’s
degree of freedom (DoF) position q ∈ R12 and velocity q̇ ∈ R12.

• G-invariant Instantaneous Mechanical Work. U(q, q̇, τ ) ∈ R, representing the instantaneous
mechanical work exerted or absorbed by the robot. This quantity depends on the actuator torques
(typically measured with noisy, biased sensors) as well as the external forces (e.g. gravity, contact
forces) that are not reliably measurable due to unobserved terrain parameters.

• G-equivariant Ground-Reaction Forces τgrf ∈ R12, a fundamental quantity in quadruped control,
whose reliable estimation and uncertainty quantification are critical for downstream tasks in robotics
[41, 76].

The observables of interest are predicted using a suit of onboard proprioceptive sensory signals
available at time t:

xt =
[
qt, q̇t, at, vt, vt,err, ωt, ωt,err, gt, ṗt,feet, τ

cmd
t

]⊤
.

Specifically, qt ∈ Rnq and q̇t ∈ Rnq are the joint positions and velocities, respectively; at ∈ R3 is
the linear acceleration of the robot’s base frame measured by the IMU; vt ∈ R3 is the base linear
velocity, while vt,err ∈ R3 the command error base linear velocity; ωt ∈ R3 and ωt,err ∈ R3 are
the base angular velocity and its command error; gt ∈ R3 is the gravity vector expressed in the
base frame; ṗt,feet ∈ R12 stacks the linear velocities of the four feet (three components each); and
τ cmd
t ∈ Rnq contains the commanded joint torques.

Hence we design the experiments to compare models of similar footprint in number of parameters,
while the loss used for training differs between the NCP and eNCP models w.r.t to the CQR and
eCQR models.

NN architectures We configure all models considered eNCP, NCP, eCQR, and CQR to have
an inference-time NN architecture of the similar footprint. The backbone of all architectures is a
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standard multilayer perceptron consisting of three hidden layers, each with 512 units, followed by
a final hidden layer containing 128 units. This final layer serves to encode the feature vector r for
the NCP and eNCP models. Crucially, since G-equivariance enforces weight sharing in the NN
architecture the encoder NN for eNCP, eCQR have ×2 less parameters than their symmetry-agnostic
counterparts.

Results. Given sensory input x, the model predicts a set C0.95(x) ⊆ R14 satisfying P(y ∈
C0.95(x) | x) ≈ 0.95, while minimizing its volume Êx[vol(C0.95(x))]. Empirically high coverage
implies that the true G-invariant kinetic energy, instantaneous mechanical work, and the G-equivariant
12-dimensional ground-reaction forces lie within the predicted confidence set. In contrast, relaxed
coverage (r-Coverage) quantifies the reliability of the estimates on a per-dimension basis. Tab. 4
summarizes the validation and test results for the eNCP, NCP, CQR, and eCQR models, and Fig. 12
illustrates a trajectory of GRF and their respective 90% confidence intervals for each model. Both
CQR and eCQR tend to produce confidence intervals of smaller volume but fail to achieve the desired
coverage on the testing set, implying that the models’ confidence intervals are not reliable and require
further calibration through retraining or conformal calibration [43]. In contrast, the eNCP model
achieves the desired coverage on the test set while producing confidence intervals of larger volume,
hence yielding reliable confidence intervals.

Figure 12: Prediction of 90% confidence intervals (CI) for the ground-reaction forces τgrf ∈ R12

of a quadruped robot on rough terrain with varying friction. We compare the eNCP, NCP, eCQR,
and CQR models based on relaxed coverage and set size (see Tab. 4). CIs are computed for each
leg—front-right (FR), front-left (FL), hind-right (HR), and hind-left—along the x, y, and z axes.
Forces outside the CI are highlighted in red, while those within appear in blue. Terrain variations
cause significant variability in the x and y components due to differences in surface orientation and
friction, whereas the z component is mainly influenced by local height changes that alter contact
timing and produce short-duration high-impact forces.

27



H Conditional probability modeling via the conditional expectation operator

This section introduces the modelling of conditional probabilities for two random variables via
the conditional expectation operator. Our goal is to understand conditional expectation from
an operator-theoretic perspective. We begin by describing the marginal, joint, and conditional
probabilities of the random variables within a measure-theoretic framework. This discussion extends
the exposition of Kostic et al. [37].

Given two random variables (x,y) taking values in the measure spaces (X ,ΣX , Px) and (Y,ΣY , Py),
we have that the marginal probability of any set A ∈ ΣX and B ∈ ΣY are given by

P(x ∈ A) =
∫
X
1A(x)Px(dx) =

∫
A
Px(dx) and P(y ∈ B) =

∫
Y
1B(y)Py(dy) =

∫
B
Py(dy), (33)

where 1A ∈ L2
x and 1B ∈ L2

y denote the characteristic functions of sets A and B, respectively.

Furthermore, under the reasonable assumption that the joint probability measure is absolutely continu-
ous w.r.t to the product of the marginals Pxy ≪ Px × Py, we have that there exist a Radon-Nikodym
derivative κ : X × Y → R+ such that Pxy(dx, dy) = κ(x,y)Px(dx)Py(dy). Note that κ is a
kernel function that pointwise deforms the product of the marginals to produce the joint distribution
[29] (see Fig. 3). This kernel function enable us to express the joint probability by:

P(x ∈ A,y ∈ B)=
∫
X×Y

1A(x)1B(y)κ(x,y)Py(dy)Px(dx)︸ ︷︷ ︸
Pxy(dx,dy)

=

∫
A×B

k(x,y)Px(dx)Py(dy). (34)

Furthermore, given that P(y∈B|x∈A) = P(x∈A,y∈B)/P(x ∈ A), the conditional probability of any set
B ∈ ΣY given a value of the random variable x=x is given by:

P(y∈B|x=x)=
∫
Y
1B(y)Py|x(dy|x)=

∫
Y
1B(y)κ(x,y)Py(dy) =

∫
B
κ(x,y)Py(dy), (35)

where Py|x : ΣY ×X 7→ [0, 1] denotes the conditional probability measure. This is a well-defined
probability measure considering that:

P(x ∈ A) := P(x ∈ A,y ∈ Y) =

∫
A

(∫
Y
κ(x,y)Py(dy)

)
︸ ︷︷ ︸
EPy|x(dy|x=x)=1 ∀x∈X

Px(dx) =

∫
A
Px(dx).

The operator perspective Every measurable function h ∈ L2
y can be approximated by simple func-

tions—that is, as a combination of characteristic functions on measurable sets: h(·) ≈
∑
i∈N βi1Ai

(·).
Thus, Eq. (35) is a special case of the more general problem of approximating the conditional expec-
tation of any function h ∈ L2

y given x. This conditional expectation is captured by the action of a
linear integral operator:

Definition H.1 (Conditional expectation operator). Let (x,y) be two random variables defined
on the measure spaces (X ,ΣX , Px) and (Y,ΣY , Py), respectively, and let L2

x and L2
y denote

the corresponding spaces of square-integrable functions. The conditional expectation operator
Ey|x : L2

y → L2
x is the linear integral operator—defined via the PMD Radon–Nikodym deriva-

tive κ(x,y) = Pxy(dx, dy)/Px(dx)Py(dy) —which acts on any function h ∈ L2
y by computing its

conditional expectation:

[Ey|xh](x)=E[h(y)|x=x]:=
∫
Y
h(y)Py|x(dy|x)=

∫
Y
h(y)

Pxy(dy,x)
Px(dx)

=

∫
Y
h(y)κ(x,y)Py(dy).

From a learning perspective, approximating the conditional expectation operator sufficiently well for
a relevant set of functions in L2

y implies that we can approximate the conditional probability measure
of any set A ∈ ΣY . This enables both regression and uncertainty quantification applications with a
single model (see Eq. (2)).
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I Background on group and representation theory

Group actions and representations This section provides a concise overview of the fundamental
concepts in group and representation theory, which are used to define the symmetries of the random
variables we consider in this work. For a comprehensive background on these topics in finite-
dimensional vector spaces, see Weiler et al. [17]; for the infinite-dimensional case, consult Knapp
[77]. These concepts will be referenced as needed in the main text. To begin, we define a group as an
abstract mathematical object.

Definition I.1 (Group). A group is a set G, endowed with a binary composition operator defined as:

(◦) : G ×G −→ G
(g1, g2) −→ g1 ◦ g2,

(36a)

such that the following axioms hold:

Associativity: (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3), ∀ g1, g2, g3 ∈ G, (36b)
Identity: ∃ e ∈ G such that e ◦ g = g = g ◦ e, ∀ g ∈ G, (36c)
Inverses: ∀ g ∈ G, ∃ g−1 ∈ G such that g ◦ g−1 = e = g−1 ◦ g. (36d)

We are primarily interested in symmetry groups, i.e., groups of transformations acting on a set X .
Each transformation is a bijection that leaves a fundamental property invariant. For example, if X
represents states of a dynamical system, the invariant property is the state energy (see Fig. 7); if X is
a data space, the preserved quantity is typically the probability density/distribution (see Fig. 3).

Definition I.2 (Group action on a set [17]). Let X be a set endowed with symmetry group G. The
(left) group action of the group G on the set X is a map:

(▷) : G ×X −→ X
(g,x) −→ g ▷ x

(37a)

that is compatible with the group composition and identity element e ∈ G, in the sense that:

Identity: e ▷ x = x, ∀ x ∈ X (37b)
Associativity: (g1 ◦ g2) ▷ x = g1 ▷ (g2 ▷ x), ∀ g1, g2 ∈ G,∀ x ∈ X . (37c)

We are primarily interested in studying symmetry transformations on sets with a vector space
structure. In most practical cases, the group action on a vector space is linear, allowing symmetry
transformations to be represented as linear invertible maps. These maps can be expressed in matrix
form once a basis for the space is chosen.

Definition I.3 (Linear group representation). Let X be a vector space endowed with symmetry group
G. A linear representation of G on X is a map, denoted by ρX , between symmetry transformation
and invertible linear maps on X (i.e., elements of the general linear group GL(X )):

ρX : G −→ GL(X )
g −→ ρX (g),

(38a)

such that the following properties hold:

composition : ρX (g1 ◦ g2) = ρX (g1)ρX (g2), ∀ g1, g2 ∈ G, (38b)
inversion : ρX (g

−1) = ρX (g)
−1, ∀ g ∈ G. (38c)

identity : ρX (g ◦ g−1) = ρX (e) = I, (38d)

Whenever the vector space is of finite dimension n <∞, linear maps admit a matrix form ρX (g) ∈
Rn×n, once a basis set IX for the vector space X is chosen. In this case, Eqs. (38b) to (38d) show
how the composition and inversion of symmetry transformations translate to matrix multiplication
and inversion, respectively. Moreover, ρX allows to express a (linear) group action (Def. I.2) as a
matrix-vector multiplication:

(▷) : G ×X −→ X
(g,x) −→ g ▷ x := ρX (g)x.

(38e)
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Since the matrix form of linear maps depends on the choice of basis, we can relate different matrix
representations of the same linear map through changes of basis. This leads us to the concept of
equivalent group representations.

Definition I.4 (Equivalent group representations). Let X be a vector space endowed with symmetry
group G, and let ρ′X and ρX be two group representations of G on X . They are said to be equivalent,
denoted by ρ′X ∼ ρX , if there exists a change of basisQ : X → X such that

ρ′X (g) = QρX (g)Q
−1, ∀ g ∈ G. (39)

Equivalent representations arise when the same group action (▷) : G × X → X is expressed in
different coordinate frames or bases. For instance, let AX and BX be two bases for X = span(AX ) =
span(BX ), and let QB

A : X → X denote the change of basis from AX to BX , so that xB = QB
Ax

A

for all xA ∈ X . Then the group action admits equivalent representations, ρAX ∼ ρBX , since

g ▷ xB := QB
A(g ▷ x

A), ∀g ∈ G,

ρBX (g)x
B = QB

A
(
ρAX (g)x

A) = (QB
Aρ

A
X (g)Q

B
A
−1
)
xB,

ρBX (g) = Q
B
Aρ

A
X (g)Q

B
A
−1
.

(40)

To reveal the modular structure of symmetric vector spaces, we often change bases to decompose
them into subspaces stable under the action of the group G, termed G-stable subspaces. This
decomposition mirrors how a symmetry group breaks down into subgroups and is essential for
analyzing and simplifying group representations. We introduce the following definition.

Definition I.5 (G-stable and irreducible subspaces). Let X be a vector space endowed with a group
action (▷) of the symmetry group G. A subspace X ′ ⊆ X is said to be G-stable if the action of any
group element on any vector in the subspace remains within the subspace, that is,

g ▷ x ∈ X ′, ∀ x ∈ X ′ ⊆ X ,∀ g ∈ G.

If the only G-stable subspaces of X are {0} and X itself, then X is a irreducible G-stable space.

Decomposing symmetric vector spaces into G-stable subspaces corresponds to decomposing the
group representation associated with ▷ into smaller representations acting on these G-stable subspaces:

Definition I.6 (Decomposable representation). Let X be a vector space with a group action (▷)
defined by the representation ρX in a chosen basis AX . The representation is decomposable if it is
equivalent to a direct sum of two lower-dimensional representations, ρX ∼ ρX1

⊕ ρX2
, where X1 and

X2 are G-stable subspaces of X . Equivalently, there exists a change of basisQB
A : X → X such that

ρBX =
[
ρX1

0

0 ρX2

]
= QB

AρXQ
B
A
−1
, and g ▷ xB := ρBX (g)x

B =
[
ρX1

(g)xB
1

ρX2
(g)xB

2

]
, whereQB

Ax =
[
xB
1∈X1

xB
2∈X2

]
This shows that the decomposition ρX ∼ ρX1

⊕ ρX2
corresponds to splitting the vector space into

G-stable subspaces, X = X1 ⊕X2. Moreover, if the representation is block-diagonal in some basis
set BX , then BX is the union of disjoint basis sets BX1

and BX2
for X1 and X2, respectively.

Definition I.7 (Irreducible representation). Let X be a vector space endowed with a group action
(▷) of a symmetry group G. A representation ρX of G on X is said to be irreducible if it cannot be
decomposed into smaller representations acting on proper G-stable subspaces (Def. I.5). That is, the
only G-stable subspaces X ′ ⊆ X are X ′ = {0} and X ′ = X itself.

We have now equipped all the necessary tools to decompose symmetric vector spaces into their
smallest building blocks: irreducible G-stable subspaces.

Irreducible representations are the fundamental building blocks for all representations of the group
G. Any unitary representation can be decomposed into a direct sum of irreducible representations,
analogous to the prime factorization of integers. In terms of the vector spaces on which the group acts,
this decomposition of the representation corresponds to decomposing the space into G-irreducible
subspaces (Def. I.5):
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Theorem I.8 (Isotypic decomposition of symmetric Hilbert spaces [77]). Let G be a compact group
and H a separable Hilbert space with a unitary group representation ρH : G → U(H). Then we
can identify niso ≤ |G| irreducible representations ρ̄k : G → U(H̄k) that allow us to decompose
H into a sum of orthogonal subspaces, denoted isotypic subspaces: H =

⊕⊥
1≤k≤niso

Hk where
each Hk =

⊕mk

j=1 Hk,j is the sum of at most mk ≤ ∞ countably many subspaces isometrically
isomorphic to H̄k.

Isotypic decomposition and disentangled representations Whenever the symmetric vector space
of interest defines a vector valued representation of some data, the isotypic decomposition of the
representation space is intricately linked with the concept of disentangled representations

Definition I.9 (Disentangled representation (Higgins et al. [18])). A vector representation is called
a disentangled representation with respect to a particular decomposition of a symmetry group into
subgroups, if it decomposes into independent subspaces, where each subspace is affected by the
action of a single subgroup, and the actions of all other subgroups leave the subspace unaffected.

The subspaces of Def. I.9 reefer to each of the isotypic subspaces Hi, and the symmetry subgroups
refer to the effective (matrix) group encoded by each irreducible representation ρ̄k : G 7→ U(H̄k).
Which we denote in the main body as G(k).

I.1 Maps between symmetric vector spaces

We will frequently study and use linear and non-linear maps between symmetric vector spaces. Our
focus is on maps that preserve entirely or partially the group structure of the vector spaces. These
types of maps can be classified as G-equivariant, G-invariant maps:

Definition I.10 (G-equivariant and G-invariant maps). Let X and Y be two vector spaces endowed
with the same symmetry group G, with the respective group actions ▷X and ▷Y . A map f : X 7→ Y is
said to be G-equivariant if it commutes with the group action, such that:

g ▷Y y = g ▷Y f(x) = f(g ▷X x), ∀x ∈ X , g ∈ G.
ρY(g)f(x) = f(ρX (g)x)

⇐⇒

X
▷X

f

��

X

f

��

Y
▷Y Y

(41a)

A specific case of G-equivariant maps are the G-invariant ones, which are maps that commute with
the group action and have trivial output group actions ▷Y such that ρY(g) = I for all g ∈ G. That is:

y = g ▷Y f(x) = f(g ▷X x), ∀x ∈ X , g ∈ G.
y = ρY(g)f(x) = f(ρX (g)x)

⇐⇒

X
▷X

f
  

X

f

��

Y

▷Y

RR

(41b)

I.2 Structure of G-equivariant linear maps

Definition I.11 (Homomorphism, Isomorphism, and G-equivariant linear maps). Let X and Y be
two vector spaces endowed with the same symmetry group G, with the respective group actions
▷X : G ×X 7→ X and ▷Y : G × Y 7→ Y . The spaces are said to be G-homomorphic if there exists a
linear map A : X 7→ Y that commutes with the group action, such that g ▷Y (Ax) = A(g ▷X x) for
all x ∈ X . They are said to be G-isomorphic if the linear map is invertible. Graphically, X and Y
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are G-homomorphic or G-isomorphic if the following diagrams commute:

X
▷X

A

��

X

A

��

Y
▷Y Y︸ ︷︷ ︸

Homomorphism

A ∈ HomoG(X ,Y) or X
▷X

A

��

OO

A−1

X

A

��

OO

A−1

Y
▷Y Y︸ ︷︷ ︸

Isomorphism

A ∈ IsoG(X ,Y). (42)

Here, HomoG(X ,Y) denotes the space of G-equivariant linear maps between X and Y , and
IsoG(X ,Y) denotes the space of G-equivariant invertible linear maps between X and Y .

Lemma I.12 (Schur’s Lemma for unitary representations [77, Prop 1.5]). Consider two Hilbert
spaces, H and H′, endowed with the irreducible unitary representations ρ̄H : G 7→ U(H) and
ρ̄H′ : G 7→ U(H′), respectively. Let T : H 7→ H′ be a linear G-equivariant operator such that
ρ̄H′T = Tρ̄H. If the irreducible representations are not equivalent, i.e., ρ̄H ≁ ρ̄H′ , then T is the
trivial (or zero) map. Conversely, if ρ̄H ∼ ρ̄H′ , then T is a constant multiple of an isomorphism
(Def. I.11). Denoting I as the identity operator, this can be expressed as:

ρ̄H ≁ ρ̄H′ ⇐⇒ 0H′ = Th | ∀ h ∈ H (43a)

ρ̄H ∼ ρ̄H′ ⇐⇒ T = αU, α ∈ C,U · UH = I (43b)
ρ̄H = ρ̄H′ ⇐⇒ T = αI (43c)

For intiution refeer to the following blog post

J Representation theory of symmetric function spaces

In this section, we study symmetry group actions on infinite-dimensional function spaces and specify
the conditions needed to approximate these spaces in finite dimensions. Specifically, given a set X
with a compact symmetry group G acting via (▷) (Def. I.2), the space of scalar-valued functions

Figure 13: Left: Diagram of the group action ▷F on functions f1(x) = x2+c and f2(x) = x3 defined
on the domain X := R endowed with the reflectional symmetry group G := C2 = {e, gs}, with the
reflection action acting on the domain by gs ▷ x = −x and on the function space F := {f | f : X 7→
R} by [g ▷F f ](x) = f(g ▷X x) = f(−x). Hence we have that f1 is a G-invariant function, gs ▷F
f1(x) = f1(x) and f2 a G-equivariant function gs ▷F f2(x) = −x3. Center: Diagram representing
the action ▷F on the (arbitrarily chosen) function f(x) = N (x; c1, 2)+N (x; c2, 1) defined over the
symmetric domain X = R2 with the cyclic symmetry group G = C3 = {e, g120, g240} and group
action g ▷ x = ρX (g)x = Rgx, whereRg is a rotation matrix in 2D. Here, g120 ▷F f is equivalent
to evaluating f on a domain rotated by −120◦. The same holds for g240 ▷F f . Note that the z-offsets
are added for visualization purposes. Right: Diagram representing the action ▷F on the function
z ∈ F̂ , defined to be a member of the finite-dimensional symmetric function space F̂ := span(IF̂ ),
constructed from a basis set composed of the group orbit of the (arbitrarily chosen) function f ∈ F ,
that is IF̂ := Gf = {f, g120 ▷F f, g240 ▷F f}. This function space is G-stable by construction, since
GIF̂ = IF̂ . Note that the z-offsets are added for visualization purposes.
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on X , F = {f | f : X 7→ R}, becomes a symmetric function space. The action of a symmetry
transformation on a function is defined as:

Definition J.1 (Group action on a function space). Let X be a set endowed with the symmetry group
G, and let F be the space of scalar-valued functions on X . The (left) action of G on a function
f ∈ F is defined as the composition of f with the inverse of the group element g−1:

(▷F) : G ×F −→ F
(g, f) −→ [g ▷F f ](x) := [f ◦ g−1](x) = f(g−1

▷ x), ∀ x ∈ X . (44a)

In other words, the point-wise evaluation of f on a g−1-transformed set X is equivalent to the
evaluation of the transformed function g ▷F f ∈ F on the original set X (see simple examples
in Fig. 13). Any function space that is stable under the group action Eq. (44a) is refereed to as a
symmetric function space. Note that this action is compatible with the group composition and identity
element e ∈ G, such that the following properties hold:

Identity: e ▷F f(·) = f(·), (44b)
Associativity: [(g2 ◦ g1) ▷F f ](·) = [g2 ▷F [g1 ▷F f ]](·), ∀ g1, g2 ∈ G. (44c)

Remark J.2. From an algebraic perspective, the inversion g−1 (contragredient representation) emerges
to ensure that the associativity property of the group action (Eq. (44c)) holds:

[(g2 ◦ g1) ▷F f ](x) = [g2 ▷F [g1 ▷F f ]](x), ∀ x ∈ X
f((g2 ◦ g1)−1 ▷ x) = [g1 ▷F f ](g

−1
2 ▷ x) = f(g−1

1 ▷ (g−1
2 ▷ x))

f((g2 ◦ g1)−1 ▷ x) = f((g1 ◦ g2)−1 ▷ x).

In the context of this work, we will study the scenario where the function space F is a separable
Hilbert space and the group action of G on F is unitary, i.e., it preserves the inner product of the
function space. This setup is crucial to enable us to approximate F and the group action on F in
finite dimensions.

J.1 Unitary group representation on function spaces

Assume our symmetric set X is endowed with a measure space structure (X ,ΣX , Px), where
Px : ΣX 7→ R is the space measure. Then, consider a function space with a separable Hilbert space
structure F := L2

Px
X ,R, and inner product ⟨f1, f2⟩Px

=
∫
X f1(x)f2(x)Px(dx) for all f1, f2 ∈ F .

Then, the action ▷F of the group G on the function space F is termed unitary if it preserves the inner
product of the function space:

⟨f1, f2⟩Px
= ⟨g ▷F f1, g ▷F f2⟩Px

∀ f1, f2 ∈ F , g ∈ G∫
X
f1(x)f2(x)Px(dx) =

∫
X
(g ▷F f1)(x)(g ▷F f2)(x)Px(dx)

=

∫
X
f1(g

−1 ▷ x)f2(g
−1 ▷ x)Px(dx)

=

∫
g▷X=X

f1(x)f2(x)Px(g ▷ dx).

(45)

That is, the group action is unitary if Px is a G-invariant measure Px(g ▷ dx) = Px(dx), ∀ g ∈
G, dx ⊆ X . Note that an G-invariant measure (and inner product) exists whenever G is finite,
because for any measure η : ΣΩ 7→ R, we can use the group-average trick to obtain one, given by
Px(X) = Σg∈Gη(g ▷ X).5

The importance of the Hilbert space structure is that it enables the definition of a unitary group
representation. Unitary representations have a well-studied modular structure that allows their
decomposition (Thm. I.8) into G-stable subspaces (Def. I.5), which is crucial for approximating
symmetric function spaces using a finite set of basis elements. Let IF = {ϕi | ϕi ∈ L2

x}i∈N be an
orthogonal basis for the function space F = span(IF ), so that any function f ∈ F can be represented

5Such a G-invariant measure exists for any (finite or continuous) compact group. See discussion.
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by its basis expansion coefficients α = [⟨ϕi⟩Px
f ]i∈N, since fα(x) =

∑
i∈N ⟨ϕi, f⟩Px

ϕi(x). In this
basis, the group action of G on F defines a unitary group representation mapping group elements to
unitary linear integral operators on F , which can be expressed in matrix form.
Definition J.3 (Unitary group representation on a function space). Let F = L2

Px
X ,R be a separable

Hilbert space of scalar-valued functions on a set X endowed with the symmetry group G. Let IF be
an orthogonal basis set spanning F . Then, the group action of G on F (Def. J.1) defines a unitary
group representation mapping group elements to unitary linear integral operators on F:

ρF : G −→ U(F)
g −→ ρF (g)

, s.t. ρF (g)
∗ = ρF (g

−1). (46)

Each unitary operator ρF(g) : F 7→ F admits an infinite-dimensional matrix representation with
entries [ρF(g)]i,j := ⟨f̂i, g ▷F f̂j⟩Px

, which characterize how the group action transforms the chosen
basis functions. Consequently, once the group representation for a chosen basis set is defined, the
group action on a function fα ∈ F can be expressed as an (infinite-dimensional) matrix transforma-
tion of its basis expansion coefficients α, given by:

[g ▷F fα](·) :=
∑
i∈N

⟨f̂i, g ▷F fα⟩Px
f̂i(·) =

∑
i∈N

(∑
j∈N

⟨f̂i, g ▷F f̂j⟩Px
⟨f̂j , f⟩Px︸ ︷︷ ︸

αj

)
f̂i(·). (47)

Example J.4 (Isotypic decomposition of symmetric function space). Let (X ,ΣX , Px) be a symmetric
2D measure space with domain X ∼ R2 and cyclic symmetry group G := C3 = {e, g120, g240},
acting on the 2D plane by 120◦ rotations (Fig. 14). Define the finite-dimensional function space
Fx ⊂ L2

x with basis IFx
= {ϕ, g120 ▷ ϕ, g240 ▷ ϕ}, where ϕ ∈ Fx is an arbitrary measurable function

(Fig. 14-left). In this basis, the group action ▷Fx
for any function zα ∈ Fx is given by the regular

representation ρFx
= ρreg acting on the coefficient vector α ∈ R3 (Fig. 7-right).

[g ▷Fx zα](·) =
3∑

i=1

⟨ϕi, g ▷Fx zα⟩Px
ϕi(·) ≡ (ρreg(g)α)

⊤
[

ϕ(·)
g120▷ϕ(·)
g240▷ϕ(·)

]
, ρreg(g) =


I3, if g = e[
0 1 0
0 0 1
1 0 0

]
, if g = g120[

0 0 1
1 0 0
0 1 0

]
, if g = g240

(48)
The group C3 possesses two types of (real-valued) irreducible representations, niso = 2: the trivial
irreducible representation ρ̄inv and a 2D rotation representation ρ̄2π/3, defined by:

ρ̄inv(g) = I1, ∀ g ∈ C3, and ρ̄2π/3(g) =
[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, s.t. θ =


0◦, if g = e

120◦ if g = g120
240◦ if g = g240

(49)

Applying the appropriate change of basis, we decompose the regular representation into a direct sum
of the group’s irreducible representations: ρreg = Q(ρ̄inv ⊕ ρ̄2π/3)Q

−1, where Q transitions from
the regular basis to the isotypic basis of Fx. Since C3 is abelian, Q corresponds to the linear map
defining the Fourier transform.

By Thm. I.8, this results in the orthogonal decomposition of the finite-dimensional function space
into two orthogonal subspaces; Fx = F inv

x ⊕⊥ F(2)
x , where F inv

x denotes the 1-dimensional subspace
of G-invariant functions, and F(2)

x is the 2-dimensional subspace with group actions defined by the
2D irreducible representation ρ̄2π/3. We can construct the basis set in the isotypic basis given:

Iiso
Fx

= Q

[
ϕ(·)

g120▷ϕ(·)
g240▷ϕ(·)

]
=

[
uinv(·)
u
(2)
1 (·)

u
(2)
2 (·)

]
s.t. Q =

[
1/

√
3 1/

√
3 1/

√
3

2/
√

6 −1/
√

6 −1/
√

6

0 1/
√

2 −1/
√

2

]
(50)

The new basis functions in the isotypic basis are depicted in Fig. 14-right, and elucidate that the
symmetry constraints on this 3-dimensional function space, result in m = 2 unique functions, each
associated with a unique irreducible representation.

Assuming Px is a G-invariant probability measure, we compute the expected value of each basis
function. In the regular basis, functions related by a symmetry transformation share the same expected
value, i.e., Exϕ = Exg ▷ ϕ for all g ∈ C3. In the isotypic basis, functions lacking a G-invariant
component (i.e., u(2)1 , u

(2)
2 ) are centered: Exu

(2)
1 = Exu

(2)
2 = 0. In our example this constraint

becomes clear from the nature of the change of basisQ. Eq. (50).
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Figure 14: Visualization of the basis functions in the finite-dimensional symmetric function space
Fx from Example J.4. Left: Depiction of the basis functions in the regular basis IFx

= {ϕ, g120 ▷

ϕ, g240 ▷ ϕ}, generated by the action of the cyclic group C3 on an arbitrary function ϕ ∈ Fx. Right:
Depiction of the basis functions in the isotypic basis Iiso

Fx
= {uinv, u

(2)
1 , u

(2)
2 }, obtained via the change

of basis matrix Q. The first basis function uinv corresponds to the G-invariant subspace F inv
x and

is visually invariant under the action of C3 on X . The other two basis functions u(2)1 , u(2)2 are
constrained to span a G-stable subspace of L2

x, denoted by F(2)
x that transform according to the

irreducible representation ρ̄2π/3. Meaning for any function f ∈ F(2)
x , the group action g ▷Fx

f can be
computed by a linear transformation of its basis expansion coefficients.

K G-equivariant linear integral operators

This section gives an overview of G-equivariant linear integral operators between symmetric function
spaces. We define these operators, discuss their properties, and specify conditions under which they
commute with group actions. In App. K.1 we examine their infinite-dimensional matrix form and the
resulting algebraic constraints from G-equivariance. In App. K.2 we then show how to exploit these
constraints in a finite-rank approximation.

Let G be a compact group acting on two measure spaces (X ,ΣX , Px) and (Y,ΣY , Py) via the
group actions ▷X and ▷Y (see Def. I.2). Assume that the measures Px and Py are G-invariant, i.e.,
Px(g ▷X B) = Px(B) and Py(g ▷Y A) = Py(A) for all g ∈ G, B ∈ ΣX , and A ∈ ΣY (see Def. I.10).

Let L2
x = {f : X 7→ R | ∥f∥Px

< +∞} and L2
y = {h : Y 7→ R | ∥h∥Py

< +∞} be the
Hilbert spaces of square-integrable functions with respect to Px and Py, respectively. Since X and
Y have a G-action, the spaces L2

x and L2
y inherit group actions defined by [g ▷L2

x
f ](x) = f(g−1

▷X
x), [g ▷L2

y
h](y) = h(g−1

▷Y y), for all f ∈ L2
x and h ∈ L2

y (see Def. J.1).

We consider linear integral operators T : L2
x 7→ L2

y defined by

h(y) = [Tf ](y) =

∫
X
κ(x,y)f(x)Px(dx), (51)

where k : X × Y 7→ R is the kernel function of T. In this work we focus on those operators whose
kernels are G-invariant such operators are called G-equivariant.

Definition K.1 (G-equivariant linear intergral operators). Let (X ,ΣX , Px) and (Y,ΣY , Py) be two
measure spaces endowed with group actions ▷X and ▷Y and G-invariant measures Px and Py for
a given compact symmetry group G. Let T : L2

x 7→ L2
y be a linear integral operator between the

spaces of square-integrable functions defined on the two measure spaces. The operator T is said to
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be G-equivariant if it commutes with the group action, that is ∀ f ∈ L2
x, g ∈ G and y ∈ Y:

[T[g ▷L2
x
f ]](y) = [g ▷L2

y
[Tf ]](y) (52a)∫

X
κ(x,y)f(g−1 ▷X x)Px(dx) = g ▷L2

y

(∫
X
κ(x,y)f(x)Px(dx)

)
∫
X
k(g ▷X x,y)f(x)Px(g ▷X dx) =

∫
X
k(x, g−1 ▷Y y)f(x)Px(dx) s.t. g ▷X X := X∫

X
k(g ▷X x,y)f(x)Px(dx) =

∫
X
k(x, g−1 ▷Y y)f(x)Px(dx) s.t. Px(g ▷X dx) = Px(dx)

k(g ▷X x,y) = k(x, g−1 ▷Y y) ⇐⇒ k(g ▷X x, g ▷Y y) = κ(x,y). (52b)

Notice that the G-equivariance of the operator T is linked to the G-invariance of its kernel function,
which is required to satisfy Eq. (52b).

Multiple approaches exist to parameterize and approximate linear integral operators with finite
resources [78, sec. 4]. Here, we assume that both the input and output function spaces are separable
Hilbert spaces, so that the operator can be represented as an infinite-dimensional matrix once
appropriate basis sets are chosen. Its finite-dimensional (truncated or finite-rank) approximation is
then obtained by selecting a finite number of basis functions in each space.

K.1 Infinite-dimensional matrix form of the operator

Since L2
x and L2

y are Hilbert spaces with inner products ⟨·, ·⟩Px
and ⟨·, ·⟩Py

respectively, we can
choose orthogonal bases for both spaces: IL2

x
= {ϕi | ϕi ∈ L2

x}i∈N and IL2
y
= {ψj | ψj ∈ L2

y}j∈N.
This choice allows any function f ∈ L2

x and h ∈ L2
y to be represented by their infinite-dimensional

coefficient vectors α = [⟨ϕi, f⟩Px
]i∈N and β = [⟨ψj , h⟩Py

]j∈N, so that:

f(x) := fα(x) =

∞∑
i=1

⟨ϕi, f⟩Px
ϕi(x) ≡ αTϕ(x) h(y) := hβ(y) =

∞∑
j=1

⟨ψj , h⟩Py
ψj(y) ≡ βTψ(y)

(53)
Here, αTϕ(x) and βTψ(y) represent the function as the dot product of its expansion coefficients
with the basis evaluations ϕ(x) = [ϕi(x)]i∈N and ψ(y) = [ψj(y)]j∈N. This notation is useful when
we later select a finite number of basis functions to form a finite-dimensional approximation of T.

With the chosen bases, the action of a linear integral operator T : L2
y → L2

x on any f ∈ L2
x is

determined by its action on the basis functions:

[Tfα](y) =

∫
X
κ(x,y)

(∑
i∈N

αi ϕi(x)
)
Px(dx) =

∑
i∈N

αi

∫
X
κ(x,y)ϕi(x)Px(dx) =

∑
i∈N

αi [Tϕi](y)

(54)
Since [Tϕi] ∈ L2

y, each [Tϕi](y) can be expanded using the output basis as [Tϕi](y) =∑
j∈N ⟨ψj , Tϕi⟩Py

ψj(y). Thus, the operator T can be represented by the infinite-dimensional
matrix T with entries Tij = ⟨ψi, Tϕj⟩Py

. Therefore, the action of T on any fα ∈ L2
x is given by the

matrix–vector product β = T α, i.e.,

[Tfα](y) =
∑
j∈N

αj [Tϕj ](y) =
∑
j∈N

αj

∑
i∈N

⟨ψi, Tϕj⟩Py
ψi(y)

=
∑
i∈N

∑
j∈N

Tij αj ψi(y) ≡ (T α)T ψ(y)
(55)

Eq. (55) shows that knowing the action of T on the bases IL2
x

and IL2
y

determines its action on
any function in L2

x. In the sections that follow, we describe how symmetry constrains this action
by requiring the bases to be G-stable and by imposing G-equivariance on T , thereby introducing
exploitable algebraic constraints for improved finite-rank approximations.

K.1.1 G-equivariant matrix form of the operator

Whenever the function spaces carry a symmetry group G, the group action on their bases IL2
x

and IL2
y

is defined by the unitary representations ρL2
x
: G → U()L2

x and ρL2
y
: G → U()L2

y (see Def. J.3). As

36



in Eq. (55), these representations can be expressed in (infinite-dimensional) matrix form so that the
group action is given by a matrix-vector product:

[g ▷L2
x
fα](·) ≡ (ρL2

x
(g)α)Tϕ(·), ∀ fα ∈ L2

x, g ∈ G

[g ▷L2
y
hβ](·) ≡ (ρL2

y
(g)β)Tψ(·), ∀ hβ ∈ L2

y, g ∈ G
(56)

Since the operator T is G-equivariant by construction (Eq. (52a)), the matrix form T of the operator
must also be G-equivariant with respect to the group representations ρL2

x
and ρL2

y
:

[T[g ▷L2
x
fα]](y) = [g ▷L2

y
[Tfα]](y) ∀ fα ∈ L2

x, g ∈ G,y ∈ Y

(TρL2
x
(g)α)⊤ψ(y) = (ρL2

y
(g)Tα)⊤ψ(y) s.t. Eqs. (55) and (56)

TρL2
x
(g) = ρL2

y
(g)T

(57)

With bases IL2
x

and IL2
y

for L2
x and L2

y, the kernel (Def. K.1) can be written as κ(x,y) =∑
i,j∈N Ti,j ϕj(x)ψi(y). Hence, the G-invariance condition (Eq. (52b)) on the kernel directly

implies that the matrix T is G-equivariant, as stated in the following proposition:

Proposition K.2 (G-invariant kernel implies G-equivariant matrix form). Let T : L2
x 7→ L2

y be a
G-equivariant operator between symmetric function spaces endowed with the group actions ▷L2

x

and ▷L2
y

of a compact symmetry group G. Let ρL2
x

and ρL2
y

be the group representation of the on the
input/output function spaces on the chosen basis sets IL2

x
and IL2

y
. Then the G-invariance of the

operator’s kernel function (Eq. (52b)) implies that the matrix form of the operator, in the chosen basis
sets, is G-equivariant w.r.t the group representations ρL2

x
and ρL2

y
(Eq. (57)).

Proof. The proof follows by choosing appropriate G-stable basis sets {ϕi} ⊂ L2
x and {ψj} ⊂ L2

y, so
that for all g ∈ G we have g ▷L2

x
ϕi = ϕg▷i and g ▷L2

y
ψj = ψg▷j with g ▷ i, g ▷ j ∈ N. This basis

sets the G-invariance of the kernel translates into algebraic constraints on the matrix form T .

k(x,y) = k(g−1 ▷X x, g
−1 ▷Y y) ∀ g ∈ G,x ∈ X ,y ∈ Y∑

i∈N

∑
j∈N

Ti,jϕi(x)ψj(y) =
∑
i∈N

∑
j∈N

Ti,j [g ▷L2
x
ϕi](x)[g ▷Y ψj ](y) =

∑
i∈N

∑
j∈N

Ti,jϕg▷i(x)ψg▷j(y)
(58)

That is, the kernel is G-equivariant if the operator’s matrix satisfies Ti,j = Tg▷i, g▷j for all g ∈
G, i, j ∈ N. This condition exactly characterizes the G-equivariance of the matrix form.

Ti,j = ⟨ψi,Tϕj⟩Py
= ⟨ψg▷i,Tϕg▷j⟩Py

= Tg▷i,g▷j ∀g ∈ G, i, j ∈ N

= ⟨g ▷L2
y
ψi,T[g ▷L2

x
ϕj ]⟩Py

= ⟨g ▷L2
y
ψi, g ▷L2

y
[Tϕj ]⟩Py

s.t. Eq. (52a)

= ⟨ψi,Tϕj⟩Py
= Ti,j s.t. Eq. (45)

(59)

K.1.2 Block-diagonal structure of the operator matrix form

According to Thm. I.8, a Hilbert space with a compact symmetry group G decomposes into niso
orthogonal subspaces—one for each irreducible representation type—yielding an orthogonal decom-
position of the operator’s input and output spaces:

L2
x := ⊕⊥

1≤k≤nisoL
2(k)
x , and L2

y := ⊕⊥
1≤k≤nisoL

2(k)
y , (60)

where L2(k)
x and L2(k)

y denote the k-th isotypic subspaces of L2
x and L2

y, respectively. Such that any
function in these spaces can be decomposed into a sum of its projections onto the isotypic subspaces:

f(x) =

niso∑
k=1

f (k)(x), h(y) =

niso∑
k=1

h(k)(y) with f (k) ∈ L2(k)
x , h(k) ∈ L2(k)

y . (61)

The orthogonal decomposition of the function spaces implies there exist unitary operators A : L2
x →

L2
x and B : L2

y → L2
y (with matrix formsA andB), that describe a change of basis from the canonical

basis to an isotypic basis, Iiso
L2
x
= ∪niso

k=1IL2(k)
x

= AIL2
x

and Iiso
L2
y
= ∪niso

k=1IL2(k)
y

= BIL2
y
, where the group’s

representations decompose into a direct sum of representations per isotypic subspace (see Def. I.4):

ρiso
L2

x
(·) := AρL2

x
(·)A∗ = ⊕niso

k=1ρL2(k)
x
(·) and ρiso

L2
y
(·) := BρL2

y
(·)B∗ = ⊕niso

k=1ρL2(k)
y
(·). (62)
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Then, denoting the matrix form of T in the isotypic basis by T iso = B∗TA, the G-equivariance of T
results in the matrix form of the operator in the isotypic basis being block-diagonal, with each block
being G-equivariant with respect to the group representations on the isotypic subspaces:

T iso = ρiso
L2

y
(g)T isoρiso

L2
x
(g−1)

= ⊕niso
k=1ρL2(k)

y
(g)T iso ⊕niso

k=1 ρL2(k)
x
(g−1) s.t. Eqs. (57) and (62)

T (k) = ρL2(k)
y
(g)T (k)ρL2(k)

x
(g−1), ∀ k = 1, . . . , niso T iso = ⊕niso

k=1T
(k) =

 T (1)

. . .
T (niso)

. (63)

Each T (k) represents the matrix form of the operator T(k) : L2(k)
x 7→ L2(k)

y in the isotypic basis, acting
on the isotypic subspaces of type k in the input and output spaces. This shows that G-equivariant
operators preserve the structure of isotypic subspaces without mixing functions from different types.

This property is crucial for the finite-rank approximation of the operator T, as it reduces the problem
to approximating lower-rank operators T(k) : L2(k)

x 7→ L2(k)
y , for k ∈ [1, niso]. Moreover, the block

diagonal structure of T iso allows us to rewrite Eq. (55) in the isotypic basis in terms of the action of
each T(k) on the projection f (k) of the function onto the kth isotypic subspace, see (61), such that:

[Tfα](y) =

niso∑
k=1

[T(k)f (k)](y) ≡
niso∑
k=1

(T (k)α(k))⊤ψ(k)(y). ψ(k)(·) = [ψ(k)

j (·)]j∈N, ∀ ψ(k)

j ∈ IL2(k)
y
. (64)

In the isotypic basis Iiso
L2
x
= ∪niso

k=1IL2(k)
x

, the expansion coefficient vector α = ⊕niso
k=1α

(k) is formed

from the projections of f onto each isotypic subspace: α(k) = [⟨ϕ(k)

i , f⟩Px
]i∈N. The block-diagonal

structure of T iso is only one of the algebraic constraints imposed on the matrix form of T by the
G-equivariance condition. The next section describes the further structural constraints on each block.

K.1.3 Structure of operators between isotypic subspaces

In this section, we shift the focus from the input and output function spaces, L2
x and L2

y; and the
operator T : L2

x 7→ L2
y, to their individual isotypic subspaces, L2(k)

x and L2(k)
y for k ∈ [1, niso], and the

operators T(k) : L2(k)
x 7→ L2(k)

y (Eq. (60)).

Recall from Thm. I.8, that each isotypic subspace possesses unitary group representations that
decompose into direct sums of (infinitely many) multiplicities of the irreducible representation of
type k; that is:

ρL2(k)
x
(g) ∼ ⊕∞

p=1ρ̄k(g) and ρL2(k)
y
(g) ∼ ⊕∞

p=1ρ̄k(g). (65)

This implies that each isotypic subspace further decomposes into (infinitely many) finite-dimensional
G-stable subspaces: L2(k)

x := ⊕∞
p=1L2k,p

x and L2(k)
y := ⊕∞

p=1L2k,p
y . Each subspace L2k,p

x (and simi-
larly L2k,p

y ) has finite dimension dk ≤ ∞ and its elements transform according to the irreducible
representation ρ̄k of the group G.

The modular structure of the isotypic subspaces implies that the G-equivariant operator T(k) fur-
ther decomposes into G-equivariant components acting between finite-dimensional, G-stable sub-
spaces: T(k,i,j) : L2k,i

x 7→ L2k,j
y for i, j ∈ N. This is advantageous since—by Schur’s lemma

(Lem. I.12)—the space of G-equivariant maps between irreducible subspaces is one-dimensional,
i.e., dim(HomoG(L2k,i

x ,L2k,j
y )) = 1 for all i, j ∈ N.

To reveal the modular structure of T(k) in matrix form, we select bases for the isotypic subspaces
L2(k)
x and L2(k)

y that separate the basis functions by irreducible subspace, i.e., IL2(k)
x

= ∪∞
p=1IL2k,p

x
and

IL2(k)
y

= ∪∞
p=1IL2k,p

y
, so that ρL2(k)

x
(g) = ⊕∞

p=1ρ̄k(g) and ρL2(k)
y
(g) = ⊕∞

p=1ρ̄k(g). In these bases, each

map T(k,i,j) reduces to a scalar multiple of the identity, namely, T(k,i,j) = θ(k)i,j Ik, where θ(k)i,j ∈ R
captures the only degree of freedom (see (43c)). Consequently, the matrix representation of T(k)

consists of blocks that are scalar multiples of the identity.

T (k) =


θ
(k)
1,1Ik θ

(k)
1,2Ik ···

θ
(k)
2,1Ik

. . . ···

...
...

. . .

 = Θ(k) ⊗ Ik, s.t.

rank(Ik) = dk,

ρL2(k)
y
(g)T (k) = T (k)ρL2(k)

x
(g), ∀ g ∈ G

(⊕∞
p=1ρ̄k(g))T

(k) = T (k)(⊕∞
p=1ρ̄k(g)),

(66)
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where the (infinite-dimensional) matrix Θ(k) parameterizes the degrees of freedom of T (k).

Eq. (66) reveals the Kronecker product structure of G-equivariant operators between isotypic sub-
spaces when the appropriate input and output basis sets are chosen. To illustrate, consider a function
f (k)
α ∈ L2(k)

x with basis coefficients given by α = ⊕∞
p=1αp, where each αp = [⟨ϕ(k,p)i , f (k)⟩Px

]dki=1 ∈
Rdk represents the projection of f (k) onto the pth irreducible subspace L2k,p

x . Then, if h(k)

β = T(k)f (k)
α ,

the coefficients are computed as β = Θ(k)α.

β︷ ︸︸ ︷

⟨ψ(k,1)
1 ,T(k)f (k)⟩

Py

⟨ψ(k,1)
2 ,T(k)f (k)⟩

Py

...
⟨ψ(k,1)

dk
⟩
Py

T(k)f (k)

⟨ψ(k,2)
1 ,T(k)f (k)⟩

Py

⟨ψ(k,2)
2 ,T(k)f (k)⟩

Py

...
⟨ψ(k,2)

dk
,T(k)f (k)⟩

Py

...



=

T (k)=Θ(k)⊗Ik︷ ︸︸ ︷

θ
(k)
1,1 0 ··· 0

0 θ
(k)
1,1 ··· 0

...
...

. . .
...

0 0 ··· θ(k)1,1

θ
(k)
1,2 0 ··· 0

0 θ
(k)
1,2 ··· 0

...
...

. . .
...

0 0 ··· θ(k)1,2

· · ·

θ
(k)
2,1 0 ··· 0

0 θ
(k)
2,1 ··· 0

...
...

. . .
...

0 0 ··· θ(k)2,1

. . . · · ·

...
...

. . .



α︷ ︸︸ ︷

⟨ϕ(k,1)
1 ,f (k)⟩

Px

⟨ϕ(k,1)
2 ,f (k)⟩

Px

...
⟨ϕ(k,1)

dk
,f (k)⟩

Px

⟨ϕ(k,2)
1 ,f (k)⟩

Px

⟨ϕ(k,2)
2 ,f (k)⟩

Px

...
⟨ϕ(k,2)

dk
,f (k)⟩

Px

...



(67)

This structure can be interpreted as a constraint on the dimensionality of the singular spaces of the
operator T to be of dimension larger than dk, as summarized in the following proposition:

Proposition K.3 (Minimum dimensionality of singular space of G-equivariant operators between
isotypic subspaces). Let T(k) : L2(k)

x 7→ L2(k)
y be a G-equivariant operator between isotypic subspaces

L2(k)
x and L2(k)

y of type k. Then, the minimum dimension of a singular space of the operator is dk.

Proof. Let IL2(k)
x

= ∪∞
p=1IL2k,p

x
and IL2(k)

y
= ∪∞

p=1IL2k,p
y

be the basis sets that expose the Kronecker
structure of the matrix form T (k) = Θ(k) ⊗ Ik, as per Eq. (66). Then the singular value decomposition
of the matrix form inherits the Kronecker product structure such that T (k) = U (k)Σ(k)(V (k))∗ =
(W (k) ⊗ Ik)(Σ(k) ⊗ Ik)((Q(k))∗ ⊗ Ik), where Θ(k) = W (k)Σ(k)(Q(k))∗. The Kronecker structure
of the diagonal singular value matrix (Σ(k) ⊗ Ik) implies that each singular value has a minimum
multiplicity of dk. While the Kronecker strucuture of the change of bases U (k) and V (k) encodes the
dk orthogonal basis vectors of the singular spaces.

K.2 Finite-rank approximation of G-equivariant operators

In practical applications, infinite-dimensional operators are approximated by finite-dimensional
ones to enable computation. For any linear integral operator T : L2

x 7→ L2
y, the optimal rank-r

approximation in the Hilbert-Schmidt norm is obtained by truncating its SVD to the top r singular
values and associated left/right singular functions. Let {σi}∞i=1 be the singular values of T in
decreasing order and let {ui}∞i=1 ⊂ L2

x, {vi}∞i=1 ⊂ L2
y be the corresponding singular functions

satisfying ⟨vi,Tui⟩Py
= σi for each i ∈ N and ⟨vi,Tuj⟩Py

= 0 when i ̸= j. The best rank-r
approximation of T is then given by [31]:

Trf =

r∑
i=1

σi⟨ui, f⟩Px
vi, ∀f ∈ L2

x, ⇐⇒ κ(x,y) ≈
r∑

i=1

σiui(x)vi(y). (68)

Since the left and right singular functions form orthonormal bases for L2
y and L2

x, a rank-r approxima-
tion reduces these infinite-dimensional spaces to the r-dimensional subspaces Fx = span({ui}ri=1)
and Fy = span({vi}ri=1).

When L2
x and L2

y are symmetric function spaces with group actions ▷L2
x

and ▷L2
y

of a compact group G,
and T is G-equivariant, the finite-rank approximation Tr : Fx → Fy must satisfy that for all f ∈ Fx,
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h ∈ Fy, and g ∈ G, both g ▷L2
x
f ∈ Fx and g ▷L2

y
h ∈ Fy. This ensures that g ▷L2

y
[Trf ] = Tr[g ▷L2

x
f ]

(see App. J).

Moreover, since L2
x and L2

y decompose orthogonally into isotypic subspaces, L2
x = ⊕⊥

1≤k≤niso
L2(k)
x and

L2
y = ⊕⊥

1≤k≤niso
L2(k)
y , the operator T is completely determined by the niso operators T(k) : L2(k)

x → L2(k)
y

(see App. K.1.2). Thus, the G-equivariance of Tr depends on that of each finite-rank operator
T(k)
rk : F (k)

x → F (k)
y , which requires the approximated subspaces F (k)

x and F (k)
y to be G-stable. For

simplicity, we assume |F (k)
x | = |F (k)

y | = rk, although this equality need not hold in general.

K.2.1 Finite-rank approximation of G-equivariant operators between isotypic subspaces

Each approximation of an isotypic subspace L2(k)
x (and similarly L2(k)

y ) is G-stable if the group
representation is defined using a truncated multiplicity mk <∞ for the kth irreducible representation,
i.e. ρF (k)

x
∼ ⊕mk

p=1ρ̄k and ρL2(k)
y

∼ ⊕mk
p=1ρ̄k. Consequently, the dimension of the approximated

subspaces is multiple of the irreducible representation’s dimension: rk = dkmk (see App. K.1.3).

Given this structure, by Prop. K.3 the singular spaces of the finite-rank operators T(k)
rk have a minimum

dimensionality of dk. Consequently, the SVD of T(k)
rk exhibits a Kronecker structure:

T(k)
rk = U (k)Σ(k)(V (k))∗ ∈ Rrk×rk ,

= (W (k) ⊗ Ik) (Σ(k) ⊗ Ik) ((Q(k))∗ ⊗ Ik)
s.t.

Θ(k) =W (k)Σ(k)(Q(k))∗ ∈ Rmk×mk ,

rank(Ik) = dk.

(69)
Here, Θ(k) accounts for the m2

k degrees of freedom of T(k)
rk , with each coefficient θ(k)i,j providing an

isotropic scaling between the subspaces L2k,i
y and L2k,j

x . Equation Eq. (69) constrains the finite-rank
approximation of G-equivariant operators between isotypic subspaces to approximate singular spaces
of minimal dimensionality dk.

This shows that the group representation on the isotypic basis also governs the singular (spectral)
basis sets. As summarized in the following corollary:
Corollary K.4 (Group action on the spectral basis). The group representation on the spectral basis of
each isotypic subspace L2(k)

x is given by its isotypic representation ρL2(k)
x

:= ⊕mk
p ρ̄k. Similarly for L2(k)

y .

Proof. Lets consider a single isotypic subspace L2(k)
x and its group representation in the basis of

singular functions:

ρsng
L2(k)

x
:= U∗(k)ρL2(k)

x
U (k) = (W ∗(k) ⊗ Idk)(Imk

⊗ ρ̄k)(W (k) ⊗ Idk)
= (W ∗(k) ⊗ ρ̄k)(W (k) ⊗ Idk)
= (W ∗(k)W (k))⊗ (ρ̄kIdk) = ⊕mk

p ρ̄k = ρL2(k)
x
.

(70)

K.2.2 Finite-rank approximation of a G-equivariant operator

Given the block-diagonal structure of the operator T in the isotypic basis (Eq. (63)), the truncated
SVD of T reduces to performing the truncated SVD of each per-isotypic operator T(k) (Eq. (69)).

Let Fx ⊂ L2
x and Fy ⊂ L2

y be the G-stable finite-dimensional approximations of the input/output
spaces of T, endowed with group representations ρFx

= ⊕niso
k=1ρF (k)

x
= ⊕niso

k=1 ⊕
mk
p=1 ρ̄k and ρFy

=
⊕niso
k=1ρF (k)

y
= ⊕niso

k=1⊕
mk
p=1 ρ̄k. Here, mk ∈ N denotes the multiplicity of the irreducible representation

of type k, and dk := |ρ̄k| is its dimension. Then, the structural constraints on the SVD of the restriction
of T to these spaces are summarized in the following theorem:

Theorem K.5 (Isotypic-spectral basis). Let T be a G-equivariant operator and let T⋆ : Fy → Fx

be its G-equivariant restriction in finite dimensions. Then, the singular value decomposition of the
restricted operator matrix representation T⋆ reduces to:

T⋆ = ⊕niso
k=1T

(k)
⋆ = ⊕niso

k=1W
(k)
⋆ S

(k)
⋆ M

(k)⊤
⋆ = ⊕niso

k=1(U
(k)
⋆ Σ(k)

⋆ V
(k)⊤
⋆ )⊗ Idk

Where Idk denotes the identity matrix in dk-dimensions andO(k) := U (k)
⋆ Σ(k)

⋆ V
(k)⊤
⋆ denotes the SVD

of the free parameters of T (k)
⋆ .
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Thm. K.5 shows that symmetries force each isotypic subspace’s singular space to have dimension at
least dk, which is the minimum required for a faithful representation of G(k) (see Def. I.7). Because
in practice our goal is to approximate the top r singular spaces of T, this result precisely characterizes
the constraints imposed by G-equivariance on the optimal rank-r truncation’s spectral basis and
corresponding kernel function in Eq. (13), as summarized in the following corollary:
Corollary K.6 (Symmetry constraints on the spectral basis). Let T be a G-equivariant operator and
let T⋆ : Fy → Fx be its G-equivariant restriction in r-dimensions. Then, the spectral basis of T⋆ is
given by:

κ⋆(x,y) =

niso∑
k=1

κ(k)
⋆ (x,y) =

niso∑
k=1

rk∑
s=1

σ(k)
s u

(k)

s,i(x)v
(k)

s,i(y), (71)

where {u(k)

s,i}i∈[dk] and {v(k)s,i}i∈[dk] are the left and right singular basis sets of the sth singular space
of T(k). Note that the truncated dimension is restricted by the dimensionality and multiplicities of the
individual irreducible representations r =

∑diso
k=1 rk =

∑diso
k=1 dkmk.

L Relevant G-equivariant operators in probability theory

In this section we study the properties of expectations and covariances of functions of symmetric
random variables in the presence our assumed symmetry priors Eq. (6). In a nutshell, we characterize
how expectations of observables of symmetric random variables are invariant to the group action, and
that the covariance and cross-covariance matrices in these spaces are G-equivariant and hence inherit
rich structural constraints that can aid in empirical estimation.

Let (x,y) be two vector-valued random variables over the probability spaces (X ,ΣX , Px) and
(Y,ΣY , Py), with L2

x and L2
y being the corresponding square-integrable function spaces and 1Px ∈ L2

x,
1Py ∈ L2

y the characteristic functions of sets with nonzero probability.

When L2
x and L2

y are symmetric function spaces (see App. J), denote their orthogonal isotypic
decompositions by L2

x := ⊕niso
k=1L

2(k)
x and L2

y := ⊕niso
k=1L

2(k)
y (cf. Thm. I.8). Any function f ∈ L2

x or
h ∈ L2

y decomposes as f =
∑niso
k=1 f

(k) and h =
∑niso
k=1 h

(k) (see Eq. (61)). By convention, the first
isotypic subspace corresponds to the trivial group action. Thus, we write L2inv

x := L21
x ⊂ L2

x and
denote the G-invariant component of f by f inv := f (1) (and similarly for L2

y).

L.1 The expectation operator

The expected value of a function f ∈ F := L2
x can be interpreted as the result of applying a linear

integral operator that projects each f ∈ F to a constant function evaluating to the function’s expected
value EPxf .
Definition L.1 (Expectation operator). Let F ⊆ L2

x be a function space. The expectation operator
Ex : F 7→ F is a linear integral operator defined by a constant kernel function kE(x,x

′) =
1Px(x)1Px(x

′) for all x,x′ ∈ X , such that this operator maps any function f to a constant function
that evaluates to the function’s expected value 1Px(·)EPxf , that is:

[Exf ](x
′) =

∫
X
kE(x,x

′)f(x)µ(dx) = 1Px(x
′)

∫
X
f(x)µ(dx) ≡ 1Px(x

′)EPxf. (72)

Whenever F is a symmetric function space, the operator Ex commutes with the group action and is
G-invariant (Def. I.10):
Proposition L.2 (G-invariant expectation operator). Let F be a symmetric function space with the
action ▷F of a compact symmetry group G. Then, the expectation operator commutes with the group
action and is a G-invariant operator Ex : F 7→ F inv ⊆ F:

Ex[g ▷F f ] = g ▷F [Exf ] and Exf = Ex[g ▷F f ] ∈ F inv, ∀ f ∈ F , g ∈ G. (73)

Proof. The operator Ex commutes with the group action as its kernel function kE is constant and
therefore G-invariant (Def. K.1). Furthermore since the image of the expectation operator are constant
functions, these functions belong to the subspace of G-invariant functions, F inv.
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As an operator that commutes with the group action, the expectation operator decomposes into
Ex := ⊕niso

k=1E
(k)
x , where E(k)

x : F (k) 7→ F (k) denotes the restriction of Ex to the isotypic subspace F (k)

(App. K.1.2). However, since the image of the operator lies in the subspace of G-invariant functions,
Im(Ex) ⊂ F inv, it follows that E(k)

x = 0 for every k ̸= inv. Consequently, we obtain the following:

Corollary L.3 (Expectation of a function depends only on its G-invariant component). For any
function f ∈ F , the expectation depends only on its G-invariant component:

[Exf ](·) =
niso∑
k=1

[E(k)
x f

(k)](·) = [Einv
x f

inv](·) := 1µ(·)Eµf inv. (74)

Corollary L.4 (Functions without a G-invariant component are centered). Any function f =∑niso
k=1 f

(k) ∈ L2
x without a G-invariant compoment, i.e., f inv = 0, is centered:

[Exf ](·) =
niso∑
k=2

[E(k)
x f

(k)](·) = 1µ(·)0, ⇐⇒ Eµf = 0, ∀ f ∈ L2inv
x

⊥. (75)

To better comprehend these concepts we refer the reader to Example J.4.

L.2 The cross-covariance operator

Given two vector-valued random variables (x = [x1, . . . , xn],y = [y1, . . . , ym]) defined on the
measure spaces (X ,ΣX , Px) and (Y,ΣY , Py), a key statistic assessing the linear relationship between
scalar components is the covariance:

Cov(xi, yj) = EPxy [(xi − Ex[xi])(yj − Ey[yj ])] = EPxy [xiyj ]− Ex[xi]Ey[yj ].

For vector-valued random variables, the cross-covariance matrix Cov(x,y) ∈ Rn×m is defined
entrywise by Cov(x,y)i,j := Cov(xi, yj). The cross-covariance operator is the extension of this
concept to the Hilbert spaces of functions L2

x and L2
y.

Definition L.5 (Cross-covariance operator [28]). Let Fx ⊆ L2
x and L2

y ⊆ L2
y be two Hilbert spaces

of functions defined on the random variables x and y, which take values in the measure spaces
(X ,ΣX , Px) and (Y,ΣY , Py), respectively. The cross-covariance operator Cxy : L2

y 7→ L2
x is a

linear integral operator defined by

⟨f,Cxyh⟩Px
:= Cov(f, h) = EPxy [f(x)h(y)]− Ex[f(x)]Ey[h(y)], ∀ f ∈ L2

x, h ∈ L2
y. (76)

Choosing separable basis sets for the two spaces, IL2
x
= {ϕi}i∈N and IL2

y
= {ψi}i∈N, the matrix rep-

resentation of the cross-covariance operator has entries [Cx,y]i,j := ⟨ϕi,Cxyψj⟩Px
= Cov(ϕi, ψj),

where the covariance is computed with respect to the joint measure Pxy and the marginals Px and
Py. Given a dataset of N samples from the joint distribution (x,y) ∼ Pxy, the empirical estimate of
the matrix form of the cross-covariance operator is

Ĉxy =
1

N

N∑
n=1

ϕ(xn)ψ(yn)
⊤ − Êx[ϕ(xn)] Êy[ψ(yn)]

⊤, ϕ(·) = [ϕ(·)]i∈N, ψ(·) = [ψ(·)]i∈N. (77)

Note that the adjoint of the operator is defined by C∗
xy = Cyx : L2

x 7→ L2
y. In the case L2

x = L2
y, the

cross-covariance operator reduces to the covariance operator, and has an analog definition to Def. L.5.

Covariance and cross-covariance operators of symmetric Hilbert spaces of functions Whenever
L2
x and L2

y are symmetric function spaces, and the joint probability measure is G-invaraint, the cross-
covariance operator Cxy commute with the group action and is G-equivariant (App. I.2):

Proposition L.6 (G-equivariant cross-covariance operator). Let L2
x ⊆ L2

x and L2
y ⊆ L2

y be symmetric
Hilbert spaces of functions endowed with the group actions ▷L2

x
and ▷L2

y
of a compact symmetry group

G. Then, whenever the joint probability measure is G-invariant, i.e., Pxy(B,A) = Pxy(g ▷X B, g ▷Y
A) for all g ∈ G,B ∈ ΣX ,A ∈ ΣY , the cross-covariance operator Cxy : L2

y 7→ L2
x (Def. L.5)

commutes with the group actions and is a G-equivariant operator (Def. K.1):

g ▷L2
x
[Cxyh] = Cxy[g ▷L2

y
h], ∀ h ∈ L2

y, g ∈ G. (78)
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Proof. To proof that the operator is G-equivariant we must show its kernel function is G-invariant
(see Def. K.1). The proof follows naturally in any regular basis of the input and output functions
spaces IL2

x
= {ϕi}i∈N and IL2

y
= {ψi}i∈N, in which the group action on basis functions acts by

permutations of basis functions, such that, g ▷L2
x
ϕi ≡ ϕg▷i ∈ IL2

x
and g ▷L2

y
ψj ≡ ψg▷j ∈ IL2

y
, where

g ▷ i, g ▷ j ∈ N. Then we must show that that:

k(x,y) = k(g−1 ▷X x, g
−1 ▷Y y) ∀ g ∈ G,x ∈ X ,y ∈ Y∑

i∈N

∑
j∈N

[Cx,y]i,jϕi(x)ψj(y) =
∑
i∈N

∑
j∈N

[Cx,y]i,j [g ▷L2
x
ϕi](x)[g ▷Y ψj ](y) s.t. Defs. J.1 and L.5

∑
i∈N

∑
j∈N

Cov(ϕi, ψj)ϕi(x)ψj(y) =
∑
i∈N

∑
j∈N

Cov(ϕi, ψj)ϕg▷i(x)ψg▷j(y).

(79)
Hence, the cross-covariance operator’s kernel function is G-invariant only if the covariance is
G-invariant:

Cov(ϕi, ψj) = Cov(g ▷L2
x
ϕi, g ▷Y ψj) ∀ g ∈ G, i, j ∈ N

EPxy [ϕi(x)ψj(y)] = EPxy [ϕi(g
−1 ▷X x)ψj(g

−1 ▷Y y)] Eµf = Eµg ▷ f∫
X×Y

ϕi(x)ψj(y)Pxy(dx, dy) =

∫
X×Y

ϕi(g
−1 ▷X x)ψj(g

−1 ▷Y y)Pxy(dx, dy)

=

∫
X×Y

ϕi(x)ψj(y)Pxy(g ▷ dx, g ▷ dy)

= Cov(ϕi, ψj).
(80)

An equivalent result follows for covariance operators of symmetric Hilbert spaces.

M Statistical Learning Theory

This section provides the development and proofs of the statistical learning guarantees in Thm. C.1
for regression and conditional probability estimation using our proposed model.

Recall that regression and conditional probabilities can be expressed in terms of the conditional
expectation operator Ey|x : L2

y → L2
x (see Eqs. (1) and (2)). Given that the operator is compact [37], it

admits a singular value decomposition. Hence, the kernel function defining the operator Eq. (1) can
be expanded in terms of the operator spectral basis:

κ(x,y) :=
dPxy(x,y)

d(Px(x)× Py(y))
=

∞∑
i=0

σiui(x)vi(y). (81)

Where (σi)i∈N denotes the operator’s singular values, and (ui)i∈N and (vi)i∈N denote the left and
right singular functions, which form complete orthonormal basis sets for L2

x and L2
y, respectively.

Given that the operator’s first singular value is σ0 = 1, associated with the constant functions
u0 = 1X , v0 = 1Y , the conditional expectation operator can be defined as:

Ey|x =

∞∑
i=1

σiui⟨vi, ·⟩Py
= 1X ⟨1Y , ·⟩Py

+

∞∑
i=1

σiui⟨vi, ·⟩Py︸ ︷︷ ︸
Dy|x

. (82)

Where Dy|x denotes the deflated operator, excluding the first eigen triplet (σ0, u0, v0). Leveraging
the SVD of Ey|x, we approximate the operator’s action for any h ∈ L2

y using a rank-r (1 < r <∞)
operator given by:

E[h(y)|x=x] = [Ey|xh](x) ≈ E[h(y)] +
r∑
i=1

σiu
θ
i (x)E[vθi (y)h(y)],

s.t. E[uθi (x)] = E[vθi (y)] = 0,∀ i ≥ 1.

(83)
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Where (uθi )
r
i=1 and (vθi )

r
i=1 denote parametrizations of the top-r left and right singular func-

tions. Given that the operator’s kernel Eq. (81) preserves the probability mass, that is∫
X×Y κ(x,y)dPx(x)dPy(y) = 1, every non-constant singular function is constrained to be centered,

as described in the r.h.s of Eq. (83).

In the context of symmetries, we note that Dy|x admits a block-diagonal structure w.r.t. to isotypic
basis of associated L2 spaces. Indeed we have the following from Thm. K.5.

Q∗
xDy|xQy = ⊕niso

k=1Q
(k)∗
x D(k)

y|xQ
(k)
y = ⊕niso

k=1

[
(U(k)S(k)V(k)∗)⊗ Idk

]
. (84)

Where the unitary operators Qx : L2
x → L2

x and Qy : L2
y → L2

y change the basis to the isotypic
decompositions IL2

x
= {ϕ(k)

i,j}k∈[niso], i∈[mk], j∈[dk] and IL2
y
= {ψ(k)

i,j}k∈[niso], i∈[mk], j∈[dk], with i
indexing each irreducible G-stable subspace and j indexing the dimensions within that subspace (see
App. K.2.2).

Further, by Thm. K.5, the SVD of Dy|x forces each isotypic subspace to have dimension at least
dk = ρ̄k for every k ∈ [niso].

Q(k)∗
x D(k)

y|xQ
(k)
y =

[
U(k) ⊗ Idk

][
S(k) ⊗ Idk

][
V(k) ⊗ Idk

]∗
, k ∈ [niso], (85)

where Q(k)
x Q(k)∗

x and Q(k)
y Q(k)∗

y are orthogonal projectors on k-th isotypic subspace, and

Q∗
xDy|xQy =

[
Iniso ⊗ U(k) ⊗ Idk

][
Iniso ⊗ S(k) ⊗ Idk

][
Iniso ⊗ V(k) ⊗ Idk

]∗
. (86)

Further, observe that the singular values of Dy|x are elements of positive diagonal operators S(k),
denoted as (S(k))i = σ(k)

i , while the left and right singular functions are u(k)

i ⊗ edkj and v(k)i ⊗ edkj ,
respectively, for i ∈ N, j ∈ [dk] and k ∈ [niso], where edj is j-th vector of standard basis of Rd.

Given the constraints on the spectral basis of G-equivariant operators (see Cor. K.6), our representation
learning procedure approach results in feature maps:

uθ(·) =
∑

k∈[niso],i∈[m],j∈[dk]

[eniso
k ⊗ emi ⊗ edkj ]uθ(k)

i,j (·) : X → Rrm

vθ(·) =
∑

k∈[niso],i∈[m],j∈[dk]

[eniso
k ⊗ emi ⊗ edkj ] vθ(k)

i,j (·) : X → Rrm ,
(87)

which can further be separated into niso orthogonal blocks u(k)

θ =
∑
i∈[m],j∈[dk]

ϕθ(k)

i,j and ψ(k)

θ =∑
i∈[m],j∈[dk]

ψθ(k)

i,j as

u(k)

θ =
∑

i∈[m],j∈[dk]

[emi ⊗ edkj ]uθ(k)

i,j (·) and v(k)

θ =
∑

i∈[m],j∈[dk]

[emi ⊗ edkj ] vθ(k)

i,j (·). (88)

In addition, the singular value matrices have a tensor form Sθ = diag(S
(1)
θ , . . . ,S

(niso)
θ ), where

S(k)

θ = diag(σθ(k)

1 , . . . , σθ(k)
m ) ⊗ Idk and σθ(k)

i ∈ [0, 1] , i ∈ [m], k ∈ [niso]. Thus, we obtain the
operator Dθ = Eθ − 1Px ⊗ 1Py in block form, Dθ = ⊕k∈[niso]D

(k)

θ , where each D(k)

θ acts on the k-th
isotypic subspace as

[D(k)

θ f ](x) := u
(k)

θ (x)⊤S(k)

θ Ey[v
(k)

θ (y)f (k)(y)], f ∈ L2
y, (89)

and hence
[Dθf ](x) := uθ(x)

⊤Sθ Ey[vθ(y)f(y)], f ∈ L2
y. (90)

Finally, we extend the definition of Dθ to vector-valued observables h : Y → Z via basis expansions.

[Dθh](x) :=
∑
ℓ

uθ(x)
⊤Sθ Ey[vθ(y)(⟨h(y), zℓ⟩Zzℓ)], h ∈ L2

y(Y,Z) (91)

where (zi)i∈[nZ ] is the orthonormal basis of Z .

By doing so, we ensure that Dθ and, consequently, Eθ are G-equivariant operators for both the scalar
map L2

y → L2
x and the vector-valued map L2

y(Y,Z) → L2
x(X ,Z). Moreover, a direct consequence of

(91) is as follows.
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Proposition M.1. Let with Z being a real Euclidean space endowed with symmetry group G, and let
Eθ : L2

Py
(Y,Z) 7→ L2

Px
(X ,Z) be given by Eθf = Ey[f(y)] + Dθf . Then for every G-equivariant

f ∈ L2
Py
(Y,Z) and every x ∈ X

[Eθf ](g ▷X x) = Ey[f(y)] + [Dθf ](g ▷X x) = Ey[f(y)] + g ▷Z [Dθf ](x) = g ▷Z [Eθf ](x). (92)

Proof. Since Dθ is G-equivaraint, for every g ∈ G we have that

[Dθh](g
−1 ▷X x) = [Dθ[h(g

−1 ▷Y ·)]](x) =
∑
i

uθ(x)
⊤Sθ Ey[vθ(y)⟨h(g−1 ▷Y y), zi⟩Zzi],

which, using g instead of g−1 and the assumption that f is G-equivariant, implies

[Dθh](g ▷X x)=
∑
i

(uθ(x)
⊤SθEy[vθ(y)⟨g ▷Z h(y),zi⟩Zzi]

=
∑
i

(uθ(x)
⊤Sθ Ey[vθ(y)⟨h(y), g−1 ▷Z zi⟩Z)zi.

Thus, changing the basis to (g−1
▷Z zi)i∈[nZ ] we obtain the result when Ey[h(y)] = 0. But since

1X (g ▷X x) = 1 for every x ∈ X and g ∈ G, the same holds for Eθ.

Recall that for the effective latent dimension m the true latent dimension is constrained by the
dimensionality of the singular spaces, i.e., rm =

∑
k∈[niso]

rk =
∑
k∈[niso]

mdk. Further, given
a measurable set A ⊆ X and collection of group elements G′ ⊆ G, let us define the following
symmetry index of a set A w.r.t. probability distribution of random variable x

γG′(A) = 1

|G′|(|G′| − 1)

∑
g1,g2∈G′

g1 ̸=g2

P[x ∈ g1 ▷ A ∩ g2 ▷ A]
P[x ∈ A]

, (93)

which in the case when G′ is a subgroup of G simplifies as

γG′(A) = 1

|G′| − 1

∑
g∈G′

g ̸=e

P[x ∈ A ∩ g ▷ A]
P[x ∈ A]

. (94)

Observe that always γG′(A) ∈ [0, 1], where extremes correspond to the cases γG′(A) = 1 when set
A is G′ invariant, and γG′(A) = 0 when A equals its coset w.r.t. G′, that is g ▷ A ∩ A = ∅ for all
g ∈ G′, meaning that the set is fully asymmetric w.r.t transformations g ∈ G′.

We first generalize the approximation error bound in Lemma 1 from [37] to the case of vector valued
functions in the presence of symmetries.

Theorem M.2 (Approximation error). Given a group of symmetries G, let X , Y and Z be Hilbert
spaces endowed with symmetry group G, and let Px, Py and Pxy be G-invariant probability
distributions on X , Y and X × Y . Then, for every h ∈ L2

y(Y,Z) it holds that

∥Ey[h(y) |x = ·]− Eθh∥L2
Px

(X ,Z) ≤
(
σ⋆rm+1 +

∥∥[[Dy|x]]rm − Dθ
∥∥) ∥h∥L2

y(Y,Z). (95)

Moreover, denoting

Eθ[f(y) |x ∈ A] = Ey[f ] +
Ex[1A(x)[Dθf ](x)]

P[x ∈ A]
, (96)

if h is either G′-invariant or G′-equivariant for some G′ ⊆ G, then for every measurable set A

∥E[h(y) |x ∈ A]−Eθ[h(y) |x ∈ A]∥Z≤
(
σ⋆
rm+1 +

∥∥[[Dy|x]]rm − Dθ
∥∥) ∥f∥L2

y(Y,Z)√
P[x∈A]

√
1+(|G′|−1)γG′ (A)

|G′| .

(97)

Proof. Start by observing that

∥E[h(y) |x = ·]− Eθh∥L2
Px

(X ,Z) ≤
∥∥Dy|x − Dθ

∥∥
L2
y(Y,Z)→L2

Px
(X ,Z)

∥h∥L2
y(Y,Z)

=
∥∥Dy|x − Dθ

∥∥
L2
Py

(Y)→L2
Px

(X )
∥h∥L2

y(Y,Z),

45



where the equality holds since we extended operators Dy|x and Dθ to vector valued setting as integral
operators with the same scalar kernel. Hence, (95) readily follows.

To prove (97), start with noting

E[h(y) |x ∈ A]− Eθ[h(y) |x ∈ A] =
Ex[1A(x)[(Dy|x − Dθ)h](x)]

P[x ∈ A]
.

Then, if h is G-equivariant, then, using that invariance of the probability distribution Px, G-
equivariance of Dy|x and, due to Proposition M.1, of Dθ, we have that for every g ∈ G′ ⊆ G

Ex[1A(x)[(Dy|x − Dθ)h](x)] = Ex[1A(g ▷X x)[(Dy|x − Dθ)h](g ▷X x)]

= Ex[1g−1▷XA(x) g ▷Z [(Dy|x − Dθ)h](x)]

= Ex[1g−1▷XA(x)ρ̄Z(g) [(Dy|x − Dθ)h](x)].

Hence, averaging over G′ we obtain
E[h(y) |x ∈ A]− Eθ[h(y) |x ∈ A] = Ex[H(x)z(x)],

where

H(x) =
1

|G′|P[x ∈ A]
∑
g∈G′

1g−1▷XA(x)ρ̄Z(g) and z(x) = [(Dy|x − Dθ)h](x).

Since due to Cauchy-Schwartz inequality we have

∥Ex[H(x)z(x)]∥2Z ≤ [Ex∥H(x)∥2Z→Z ][Ex∥z(x)∥2Z ] = ∥z∥2L2
Px

(X ,Z) [Ex∥H(x)∥2Z→Z ]

and ∥z∥L2
Px

(X ,Z) ≤
∥∥Dy|x − Dθ

∥∥
L2
y(Y,Z)→L2

Px
(X ,Z)

∥h∥2L2
y(Y,Z), it remains to bound

Ex∥H(x)∥2Z→Z . But, the group actions in the vector spaces are unitary, so using the G-invariance of
the distribution of x we obtain

Ex∥H(x)∥2Z→Z ≤ Ex

[ 1

|G′|P[x ∈ A]
∑
g∈G′

1g−1▷XA(x)
]2

=
1

|G′|2P[x ∈ A]2
∑

g,g′∈G′

Ex[1g−1▷XA(x)1g′−1▷XA(x)]

=
1

|G′|2P[x ∈ A]2
∑

g,g′∈G′

Ex[1g▷XA∩g′▷XA(x)]

=
1

|G′|2P[x ∈ A]
∑

g,g′∈G′

P[x ∈ g ▷X A ∩ g′ ▷X A]
P[x ∈ A]

=
1

P[x ∈ A]
1 + (|G′| − 1)γG′(A)

|G′|
,

which completes the proof of (97) for G′-equivariant functions. Finally, if f is G′-invariant, the proof
follows the same lines by replacing group actions (▷Z) by their respective group representation ρZ
(see Def. I.3) with identity.

Next we analyze the errors when, instead of applying learned operators Eθ, we apply their empirical
counterparts in inference tasks. To that end, we define now estimators of E[h(x)] and E[z(y)]
exploiting the G-invariance of the distributions of x and y. First, define the empirical G-invariant
distributions

P̂x :=
1

|G|N

N∑
i=1

∑
g∈g

δg▷xi(·), P̂y :=
1

|G|N

N∑
i=1

∑
g∈g

δg▷yi(·).

Hence we can define the equivariant empirical mean of any function f ∈ L2
x, h ∈ L2

y as

Êx[f ] =
1

|G|N

N∑
i=1

∑
g∈G

f(g ▷X xi), Êy[h] =
1

|G|N

N∑
i=1

∑
g∈G

h(g ▷Y yi). (98)
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This extends naturally to operator on a function space L2
y(Y,Z) where Z is endowed with an inner

product ⟨·, ·⟩ = ⟨·, ·⟩Z . If the distribution of y is G′-invariant, then for any h ∈ L2
y(Y,Z), we use

the estimator Êy[h(y)] in (98) as an estimator of E[h(y)]:

Êy[h] =
1

|G|N

N∑
i=1

∑
g∈G

h(g ▷Y yi). (99)

In this notation, we define our empirical estimators

[Eθh](x) ≈ [Êθh](x) = Êy[h(y)] +
∑

k∈[niso]

∑
i∈[m]

∑
j∈[dk]

σθ(k)

i uθ(k)

i,j (x)Êy[v
θ(k)

i,j h]

and

Eθ[h(y) |x ∈ A]≈ Êθ[h(y) |x ∈ A]= Êy[h] +
∑

k∈[niso]

∑
i∈[m]

∑
j∈[dk]

σθ(k)

i

Êx[u
θ(k)

i,j 1A]

Êx[1A]
Êy[v

θ(k)

i,j h].

and, by choosing h = 1B,

P [y∈B | x∈A] ≈ P̂θ[y∈B | x∈A]= Êy[1B] +
∑

k∈[niso]

∑
i∈[m]

∑
j∈[dk]

σθ(k)

i

Êx[u
θ(k)

i,j 1A]

Êx[1A]
Êy[v

θ(k)

i,j 1B].

Direct consequence of the above construction which ensures that P̂x and P̂y are G-invariant is the
following result.

Proposition M.3. Let Px and Py are G-invariant, and Dθ from (90) is G-equivariant model, and let
z ∈ L2

x(X ,R) and h ∈ L2
Px
(Y,Z) be arbitrary. If for every k ∈ [niso]{∥∥D(k)

y|x − D(k)

θ

∥∥,∥∥∥Ex[u
(k)

θ (1)
(x)u(k)

θ (1)
(x)⊤]− Im

∥∥∥,∥∥∥Ey[v
(k)

θ (1)
(y)v(k)

θ (1)
(y)⊤]− Im

∥∥∥} ≤ E (k)

θ

holds with u(k)

θ (1)
= [uθ(k)

1,1 | . . . |u
θ(k)

m,1]
⊤ ∈ Rm and v(k)

θ (1)
= [vθ(k)

1,1 | . . . |vθ(k)

m,1]
⊤ ∈ Rm, and if∥∥∥Êx[u

(k)

θ (1)
z(k)1 ]− Ex[u

(k)

θ (1)
(x)z(k)1 (x)]

∥∥∥∥∥∥z(k)1

∥∥∥
L2
x

≤ A(uθ, z),

∥∥∥Êy[v
(k)

θ (1)
⊗ h(k)

1 ]− Ey[v
(k)

θ (1)
(y)⊗ h(k)

1 (y)]
∥∥∥∥∥∥h(k)

1

∥∥∥
L2
y

≤ A(vθ,h),

(100)

where z =
∑
k∈[niso]

∑
j∈[dk]

z(k)j and h =
∑
k∈[niso]

∑
j∈[dk]

h(k)

j are isospectral decompositions,
then∥∥∥Eθh−Êθh

∥∥∥2
L2
Px

(X ,Z)
≤
∥∥∥Ey[h(y)− Êy[h]]

∥∥∥2
Z
+
[
1 + max

k∈[niso]
E (k)

θ

]3
∥h∥2L2

y(Y,Z) [A(vθ,h)]
2.

(101)
Moreover, the empirical estimation error is upper bounded by∥∥∥Ex[z(x)[Dθh](x)]−Êx[z[D̂

(k)

θ h]]
∥∥∥2
Z
≤

(1 + Eθ)3
[
A(uθ, z) +A(vθ,h) +A(uθ, z)A(vθ,h)

]2
∥z∥2L2

Px
(X )∥h∥

2
L2
y(Y,Z).

(102)

Proof. First, observe that due to G-invariance of distribution Pxy and G-equivaraince of Eθ and Dθ
we have that

Eθh = Ey[h
(1)(y)] +

∑
k∈[niso]

D(k)

θ h
(k), (103)
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and

Ex[z(x)[Eθh](x)] = Ex[z
(1)(x)]Ey[h

(1)(y)] +
∑

k∈[niso]

Ex[z
(k)(x)[D(k)

θ h
(k)](x)]. (104)

In the same way, since the empirical distributions P̂x and P̂y are G-invariant, we have that

Êθh = Êy[h
(1)] +

∑
k∈[niso]

D̂(k)

θ h
(k), (105)

and
Êx[z[Êθh]] = Êx[z

(1)]Êy[h
(1)] +

∑
k∈[niso]

Êx[z
(k)[D̂(k)

θ h
(k)]], (106)

where
[D̂(k)

θ h
(k)](x) = u(k)

θ (x)⊤S(k)

θ Êy[v
(k)

θ ⊗ h(k)]. (107)

Therefore, combining (103) and (105), we obtain that

[Eθh](x)− [Êθh](x) =
(
Ey[h

(1)(y)]− Êy[h
(1)]
)
1X (x)

+
∑

k∈[niso]

(
[D(k)

θ h
(k)](x)− [D̂(k)

θ h
(k)](x)

)
,

which after taking the norm in L2
Px
(X ,Z), due to orthonormality of isotypic subspaces gives∥∥∥Eθh− Êθ[h]

∥∥∥2
L2

Px
(X ,Z)

=
∥∥∥Ey[h

(1)(y)]− Êy[h
(1)]
∥∥∥2
Z

+
∑

k∈[niso]

∥∥∥[D(k)

θ h
(k)]− [D̂(k)

θ h
(k)]
∥∥∥2
L2

Px
(X ,Z)

.

Now, observe that, since

[D(k)

θ h
(k)](x)− [D̂(k)

θ h
(k)](x) = u(k)

θ (x)⊤S(k)

θ

(
Ey[v

(k)

θ ⊗ h(k)]− Êy[v
(k)

θ ⊗ h(k)]
)

applying the norm we have that
∥∥∥[D(k)

θ h
(k)]− [D̂(k)

θ h
(k)]
∥∥∥2
L2
Px

(X ,Z)
equals

(
Ey[v

(k)

θ ⊗h(k)]− Êy[v
(k)

θ ⊗h(k)]
)⊤
S(k)

θ

(
Ex[u

(k)

θ (x)u(k)

θ (x)⊤]
)
S(k)

θ

(
Ey[v

(k)

θ ⊗h(k)]− Êy[v
(k)

θ ⊗h(k)]
)

which using constraints within each isotypic block and

Ex[u
(k)

θ (m)
(x)u(k)

θ (m)
(x)⊤] ⪯

∥∥∥Ex[u
(k)

θ (m)
(x)u(k)

θ (m)
(x)⊤]

∥∥∥Im ≤ (1 + E (k)

θ )Im,

implies, due to (100), that∥∥∥D(k)

θ h
(k) − D̂(k)

θ h
(k)

∥∥∥2
L2

Px
(X ,Z)

≤ dk (1 + E (k)

θ ) (σθ(k)

1 )2

·
∥∥∥Ey[v

(k)

θ (1)
(y)⊗ h(k)

1 (y)]− Êy[v
(k)

θ (1)
⊗ h(k)

1 ]
∥∥∥2
Rm×Z

≤ dk (1 + E (k)

θ ) (σθ(k)

1 )2 [A(vθ,h)]
2
∥∥∥h(k)

1

∥∥∥2
L2
Px

(Y,Z)
.

Therefore, bounding σθ(k)

1 ≤ σ(k)

1 + |σ(k)

1 − σθ(k)

1 | ≤ 1 +
∥∥∥D(k)

y|x − D(k)

θ

∥∥∥ and summing over isotypic

components, since ∥h∥2L2
Px

(Y,Z) =
∑
k∈[niso],j∈[dk]

∥∥∥h(k)

j

∥∥∥2
L2
Px

(Y,Z)
=
∑
k∈[niso]

dk

∥∥∥h(k)

1

∥∥∥2
L2
Px

(Y,Z)
,

we complete the proof of (101).

To show (102), we combine (104) and (106), and obtain that Ex[z(x)[Dθh](x)]−Êx[z[D̂θh]] can be
written as∑
k∈[niso]

dk

[
Ex[u

(k)

θ (1)
(x)z(k)

1 (x)]⊤S(k)

θ Ey[v
(k)

θ (1)
(y)⊗h(k)

1 (y)]−Êx[u
(k)

θ z
(k)

1 ]⊤S(k)

θ Êy[v
(k)

θ (1)
⊗h(k)

1 ]

]
.
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Adding and subtracting mixed terms we then obtain for each isotypic component,
1
dk
Ex[z(x)[D

(k)

θ h](x)]− Êx[z[D̂
(k)

θ h]] can be expressed as

Ex[u
(k)

θ (1)
(x)z(k)1 (x)]⊤S(k)

(
Ey[v

(k)

θ (1)
(y)⊗h(k)

1 (y)]−Êy[v
(k)

θ (1)
⊗h(k)

1 ]

)

+

(
Ex[u

(k)

θ (1)
(x)z(k)1 (x)]−Êx[u

(k)

θ 1
z(k)1 ]

)⊤

S(k)Ey[v
(k)

θ (1)
(x)⊗h(k)

1 (y)]

+

(
Ex[u

(k)

θ (1)
(x)z(k)1 (x)]−Êx[u

(k)

θ 1
z(k)1 ]

)⊤

S(k)

(
Ey[v

(k)

θ (1)
(y)⊗h(k)

1 (y)]−Êy[v
(k)

θ (1)
⊗h(k)

1 ]

)
,

and consequently bounded using (100) as∥∥∥Ex[z(x)[D
(k)

θ h](x)]− Êx[z[D̂
(k)

θ h]]
∥∥∥
Z
≤ dkσ

θ(k)
1

[
A(uθ, z) +A(vθ,h)

+A(uθ, z)A(vθ,h)
]∥∥∥z(k)1

∥∥∥
L2

Px
(X )

∥∥∥h(k)
1

∥∥∥
L2

y(Y,Z)
.

Summing across isotypic components and bounding σθ(k)

1 as before, we complete the proof.

First note that coupling (101) with (95) ensures that we can prove regression bound via concentration
result ensuring (100). To obtain similar result for set-wise regression, we set z = 1A and use (102) to
obtain the following.

Proposition M.4. Under the assumptions of Proposition M.3, letA(uθ,1A)A(vθ,h) ≤ A(uθ,1A)+
A(vθ,h). If

|Ex[1A(x)]− Êx[1A]|/Ex[1A(x)] ≤ ηA (108)

and ηA < 1/2, then∥∥∥Eθ[h(y)|x ∈ A]− Êθ[h(y)|x ∈ A]
∥∥∥
Z
≤
∥∥∥Ey[h]− Êy[h]

∥∥∥
Z
+

2∥h∥L2
Px

(Y,Z)√
P [x ∈ A]

×
[
2(1 + Eθ)

(
A(uθ,1A) +A(vθ,h)

)
+ ηA

]
,

(109)

and for h = 1B

|P [y ∈ B | x ∈ A]−P̂θ[y ∈ B | x ∈ A]| ≤
∥∥∥Ey[h]−Êy[h]

∥∥∥
Z

+
2

Êx[h]

√
P [y ∈ B]
P [x ∈ A]

[
2(1 + Eθ)[A(uθ,1A)+A(vθ,1B)]+ηA

]
.

(110)

Proof. Leveraging the representations in (104) and (106) with z = 1A, we get

Eθ[h(y)|x∈A]− Êθ[h(y)|x∈A] = Ey[h]− Êy[h]+
Ex[1A(x)[Dθh](x)]

E[1A]
− Êx[1A[D̂θh]]

Êx[1A]
=

Ey[h]− Êy[h]+Ex[1A(x)[Dy|xh](x)]
(

1
E[1A(x)]

− 1

Êx[1A]

)
+

Ex[1A(x)[Dθh](x)]−Êx[1A[D̂θh]]

Êx[1A]
.

By triangular inequality applied to the norm in Z , we get∥∥∥Eθ[h(y)|x ∈ A]− Êθ[h(y)|x∈A]
∥∥∥
Z

≤
∥∥∥Ey[h]− Êy[h]

∥∥∥
Z
+∥E[1A(x)[Dθf(x)]]∥Z

∣∣∣ 1
E[1A(x)]

− 1

Êx[1A]

∣∣∣+∥Ex[1A(x)[Dθh](x)]−Êx[1A[D̂θh]]∥Z
Êx[1A]

≤
∥∥∥Ey[h]− Êy[h]

∥∥∥
Z
+∥E[1A(x)[Dθh](x)]∥Z

2ηA
P[x∈A] +

∥Ex[1A(x)[Dθh](x)]−Êx[1A[D̂θh]]∥Z
Êx[1A]

,

49



where we have used Condition (108) in the last line to get that∣∣∣∣∣ 1

P[x ∈ A]
− 1

Êx[1A]

∣∣∣∣∣ ≤ ηA
(1− ηA)P[x ∈ A]

≤ 2ηA
P[x ∈ A]

.

From Proposition M.3 and Condition (108) we get that

1

Êx[1A]

∥∥∥Ex[1A(x)[Dθh](x)]−Êx[1A(x)[D̂θh]]
∥∥∥
Z
≤

2(1+Eθ)

[
A(uθ,1A)A(vθ,h)

]
P(x∈A) ∥1A∥L2

Px

∥h∥L2
Py

(Y,Z)

Cauchy’s Schwarz’s inequality again and ∥Dθ∥ ≤ 1 give

∥E[1A(x)[Dθh](x)]∥Z ≤ ∥1A∥L2
Px

∥Dθ∥∥h∥L2
Py

≤ ∥1A∥L2
Px

∥h∥L2
Py

=
√

P[x ∈ A]∥h∥L2
Py

(Y,Z).

Combining the last four displays give the first result. The second result follows immediately for
h = 1B.

Consequence of this result is that we can bound the error in probability as we can derive concentration
inequalities on the terms in (100) and (108). Then an union bound gives the estimation result for
regression conditional on sets.

Next, we recall that Ey|x being (1/α)-Schatten class operator, implies:

Assumption M.5. Let there exist some constant c > 0 such that for α > 0, any i ≥ 1 and any
k ∈ [niso], we have σ(k)

i ≤ c i−α.

Further, for any h ∈ L2
y(Y,Z), we define h(y) = h(y)− E[h(y)] and

γG′(h) :=
1

|G′| − 1

∑
g∈G′

g ̸=e

E[⟨h(y),h(g ▷Y y)⟩]. (111)

In the following, we consider observables h satisfying the following condition (that is clearly satisfied
for an indicator of a set of positive measure)

Assumption M.6. Let there exists an absolute constant C0 ≥ 1 such that (|G′| − 1)γG′(h) ≤
C0 E[∥h(y)∥2Z ].

Define

ηA = ηA(δ) :=

(
1− P[x ∈ G ▷ A]
P[x ∈ G ▷ A]

)
log 2δ−1

N
+

√
2
log 2δ−1

N

√
1− P[x ∈ G ▷ A]
P[x ∈ G ▷ A]

.

Theorem M.7. Let Assumptions M.6 and M.5 be satisfied. Let Px and Py are G-invariant, and Dθ
from (90) is G-equivariant model, and let h ∈ L2

y(Y,Z) and f ∈ L2
x(X ,Z) (with values in Z) be

subGaussian random variables. Assume in addition that the event A is anti-symmetric for G and that
mk = m for all k ∈ [niso]. Assume that N ≥ |G|. Then for any δ ∈ (0, 1), it holds w.p.a.l 1− δ∥∥∥E[h(y) |x ∈ A]− Êθ[h(y)|x∈A]

∥∥∥
Z
≲C0

∥h∥L2
y(Y,Z)√

P[x∈G▷XA]

(
Eθ +

log(2nisoδ
−1)

(disoN)
α

1+2α

)
,

and

|P(y∈B | x∈A)− P̂θ(y∈B | x∈A)| ≲C0

√
P[y∈B]

P[x∈G▷XA]

(
Eθ +

log(2nisoδ
−1)

(disoN)
α

1+2α
+
√

|G|ηA
)
.

Proof. This result follows immediately from Propositions M.3 and M.4 combined with Lemmas M.9
and Lemma M.10. Set

A(uθ,f) := C
√

1
|G′|N

√
C0 ∨ |G′|

N log
(
2nisoδ

−1
)
,

A(vθ,h) := C

√
maxk∈[niso]

{mk}
|G′|N

√
C0 ∨ |G′|

N log
(
2nisoδ

−1
)
,
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for some large enough absolute constant C > 0.

Then an union bound based on Lemmas M.9 and M.10 guarantees that (109) is satisfied w.p.a.l. 1− δ
(up to a rescaling of the constant C):∥∥∥Eθ[h(y)|x ∈ A]− Êθ[h(y)|x ∈ A]

∥∥∥
Z
≤

C
∥h∥L2

x(X ,Z)√
P [x ∈ A]

[
2(1 + Eθ)

(√
maxk∈[niso]

{mk}
|G′|N

√
C0 ∨ |G′|

N
log
(
2nisoδ

−1))].
Next we use our bound on the representation bias in (97)

∥E[y(y) |x ∈ A]− Eθ[y(y) |x ∈ A]∥Z ≤
(
σ⋆rm+1 + Eθ

) ∥h∥L2
y(Y,Z)√

P[x ∈ A]

√
1+(|G′|−1)γG (A)

|G′| . (112)

Recall that Eθ = maxk∈[niso]{E
(k)

θ }. Under Assumption M.5, we have
∥∥[[Dy|x]]rm − Dθ

∥∥ ≤ 1
(disom)α .

In addition, (|G′| − 1)γG(A) ≤ C0 under Assumption M.6.

Combining the last two display gives w.p.a.l 1− δ∥∥∥E[h(y) |x ∈ A]− Êθ[h(y)|x∈A]
∥∥∥
Z
≲C0

∥h∥L2
y(Y,Z)√

P[x∈G▷XA]

(
Eθ + 1

(disom)α +
√

m
N log

(
2nisoδ

−1
))
.

Balancing the previous display w.r.t. dimension m, we get that m ≍ (d−2α
iso N)

1
1+2α and the first

result follows.

The bound for the conditional probability follows by picking y = 1B.

M.1 Quadratic error regression bound

Our goal is to estimate the conditional expectation function

z(x) = E[h(y)|x=x] = E[h(y)] + [Dy|xh](x).

Our estimator is
ẑθ(·) = Êy[y] + [D̂θh](·).

Theorem M.8. Assume that Y is a sub-Gaussian random vector. Let Assumption M.5 be satisfied.
Assume in addition that Eθ ≤ 1, mk = m for all k ∈ [niso]. Then for any δ ∈ (0, 1) such that
N ≥ (cu ∨ cv)2m log

(
eδ−1niso

)
∨ |G|, it holds w.p.a.l. 1− δ

∥z − ẑθ∥2L2
x(X ,Z) ≲ Tr(Cov(Y ))

(
E2
θ + (diso|G|N)

−2α
1+2α log2(δ−1niso)

)
. (113)

Discussion When the training of the NN is successful, we expect the statistical rate to dominate
the optimization error maxk∈[niso]{E

(k)

θ } for large enough sample size N . For distribution containing
symmetry invariants with large isotopic components (m is large), we observe that exploiting this
information in the construction of the NCP operator yields a substantial improvement in the statistical
error rate as we go from a rate N− α

1+2α for standard NCP to (N m)−
α

1+2α for eNCP.

Proof. Combining (101) with Lemma M.9 gives w.p.a.l. 1− δ∥∥∥Eθ y − Êθ y
∥∥∥2
L2

Px
(X )

≲ (1 + Eθ)3Tr(Cov(y))
m

|G|N log2(2nisoδ
−1)

≲ Tr(Cov(y))
m

|G|N log2(nisoδ
−1),

provide that Eθ ≤ 1. We derived in (95) an upper bound on the bias term∥∥Ey|x[y |x = ·]− Eθy
∥∥2
L2
Px

(X ,Z)
≤ Tr(Cov(y))

(
1

(disom)2α
+ E2

θ

)
. (114)

Balancing the two bounds in the last two displays w.r.t. m ≍ (|G|disoN)
1

1+2α , we get the result.
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M.2 Auxiliary results.

Consider the function space L2
y(Y,Z) where Z is endowed with an inner product ⟨·, ·⟩ = ⟨·, ·⟩Z . If

the distribution of y is G′-invariant, then for any h ∈ L2
y(Y,Z), we use the estimator Êy[h] in (98)

as an estimator of E[h(y)].
Lemma M.9. Assume that the distribution Py of y is G-invariant and let G′ ≤ G. Let there exists a
function h ∈ L2

y(Y,Z) such that h(y) is subGaussian. Then there exists an absolute constant C > 0
such that for any δ ∈ (0, 1), it holds w.p.a.l. 1− δ

∥∥∥Êy[h]− E[h(y)]
∥∥∥
Z
≤ C

√
log2 2δ−1

|G′|N

√
E[
∥∥h(y)∥∥2Z ] + (|G′| − 1)γG′(h) +

|G′|E[
∥∥h(y)∥∥2Z ]
N

.

Assume in addition that there exists an absolute constant C0 ≥ 1 such that (|G′| − 1)γG′(h) ≤
C0 E[∥h(y)∥2Z ]. Then for any δ ∈ (0, 1), it holds w.p.a.l. 1− δ

∥∥∥Êy[h]− E[h(y)]
∥∥∥
Z
≤ C

√√√√E[
∥∥h(y)∥∥2Z ]
|G′|N

√
(1 + C0) +

|G′|
N

log 2δ−1.

Note that similar bounds hold valid for the G-invariant distribution Px and any function f ∈
L2
Px
(X ,Z) such that f(x) is subGaussian.

Proof. We note that

Êy[h]− E[h(y)] =
1

N

N∑
i=1

Zi with Zi =
1

|G′|
∑
g∈G′

h(g ▷Y yi)− Eyi [h(g ▷Y yi)], ∀i ∈ [N ].

Define
Z :=

1

|G′|
∑
g∈G′

h(g ▷Y y)− Ey[h(g ▷Y y)], (115)

and, for brevity, set ∥z∥ = ∥z∥Z =
√

⟨z, z⟩Z for any z ∈ Z . We apply Proposition M.12, to get
w.p.a.l. 1− δ ∥∥∥Êy[h]− Ey[h(y)]

∥∥∥ ≤ 4
√
2√
N

√
Vary(∥Z∥) +

∥Z∥2ψ2

N
log

2

δ
.

Using the triangular inequality successively on ∥·∥ and ∥·∥ψ2
and the G′-invariance of Py,∥∥h(g ▷Y y)

∥∥
ψ2

=
∥∥h(y)∥∥

ψ2
for any g ∈ G′, we get that

∥∥Z∥∥ψ2
≲
∥∥∥∥h(y)∥∥∥∥

ψ2
.

We note next that
∥∥h(y)∥∥ is subGaussian. Consequently the well-known property of equivalence of

moments for subGaussian distributions gives ∥Z∥ψ2
≲
∥∥∥∥h(y)∥∥∥∥

ψ2
≲ E[

∥∥h(y)∥∥2]. We derive now

a control on Vary(∥Z∥) ≤ E[∥Z∥2]. Using the G′-invariance of Py, we get

Var(∥Z∥) ≤
E[
∥∥h(y)∥∥2]
|G′| +

1

|G′|
∑
g∈G′

g ̸=e

E[⟨h(y)− E[h(y)],h(g ▷Y y)− E[h(y)]⟩

=
E[
∥∥h(y)∥∥2]
|G′| +

(|G′| − 1)γG′(h)

|G′| ≤ (1 + C0)
E[
∥∥h(y)∥∥2]
|G′| . (116)

Hence we get the result.
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We focus now on a concentration bound for indicator functions z = 1A for any event A ∈ ΣX . We
define

ZA := Êx[1A]− P[x ∈ A] =
1

|G′|
∑
g∈G′

(1g−1▷XA(x)− E[1g−1▷XA(x)])

=
1

|G′|
∑
g∈G′

(
1g−1▷XA(x)− P[x ∈ A]

)
=

(
1

|G′|
∑
g∈G′

1g−1▷XA(x)

)
− P[x ∈ A]. (117)

Note that we always have |ZA| ≤ 1 but this bound can be quite conservative as we could get a
much sharper bound for some events A. We denote by γG′,∞(A) the smallest deterministic upper-
bound on 1

|G′|
∑
g∈G′ 1g−1▷XA(x) (For instance when A is an antisymmetric event, then we have

γG′,∞(A) = 1/|G′|). Then we have

−P[x ∈ A] ≤ ZA ≤ γG′,∞(A)− P[x ∈ A]. (118)

Define also

ΥG′,X(A) := P(x ∈ A)(1− P(x ∈ A)) + (|G′| − 1)
(
γG′(A)− P[x ∈ A]

)
P[x ∈ A]. (119)

Lemma M.10. Let the distribution of x be G′-invariant. Then for any A ∈ ΣX and any δ ∈ (0, 1),
it holds w.p.a.l. 1− δ∣∣∣Êx[1A]− E[1A(x)]

∣∣∣ ≤ ∣∣γG′,∞(A)− P[x ∈ A]
∣∣ log 2δ−1

N
+

√
ΥG′,x(A)

|G′|

√
2
log 2δ−1

N
.

Assume in addition that g ▷ A ∩ A = ∅ for all g ∈ G′ \ {e}. Then it holds w.p.a.l. 1− δ∣∣∣Êx[1A]− E[1A(x)]
∣∣∣

E[1A(x)]
≤
(
1− P[x ∈ G′

▷ A]
P[x ∈ G′ ▷ A]

)
log 2δ−1

N
+

√
2
log 2δ−1

N

√
1− P[x ∈ G′ ▷ A]
P[x ∈ G′ ▷ A]

.

If the distribution of y is G′-invariant, then an identical result is immediately available for y by the
same proof argument.

Remark M.11. Using the standard empirical mean estimator that does not take advantage of G-
invariance, we obtain a concentration bound with a slower rate. For example, for an antisymmetric
event A, we would achieve, w.p.a.l. 1− δ, the following result:∣∣∣Êx[1A]− E[1A(x)]

∣∣∣
E[1A(x)]

≤
(
1− P[x ∈ A]
P[x ∈ A]

)
log 2δ−1

N
+

√
2
log 2δ−1

N

√
1− P[x ∈ A]
P[x ∈ A]

.

Specifically, leveraging G′-invariance allows us to replace P[x ∈ A] with P[x ∈ G′
▷X A], which

represents the probability of the entire orbit of A under the action of G′. This becomes particularly
interesting when P[x ∈ A] ≪ P[x ∈ G′

▷X A], especially in the case of rare events where
P[x ∈ A] ≈ 0.

Proof. Since Px is G′-invariant, we have E[1g−1▷A(x)] = P[x ∈ A] and Var(1g−1▷A(x)) =
Var(1A(x)) = P[x ∈ A](1− P[x ∈ A]), for any g ∈ G′. Hence

Êx[1A]− E[1A(x)] =
1

N

N∑
i=1

Zi with Zi =
1

|G′|
∑
g∈G′

1g−1▷A(xi)− E[1g−1▷A(xi)], ∀i ∈ [N ].

The Zi’s are i.i.d. copies of Z = ZA. In view of (118), we can apply Hoeffding’s inequality Bercu
et al. [79, Theorem 2.16]. We get for any δ ∈ (0, 1) w.p.a.l 1− δ∣∣∣Êx[1A]− E[1A(x)]

∣∣∣ ≤ γG′,∞(A)
√

log 2δ−1

2N
. (120)
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We propose to prove another bound based on application of Bernstein’s inequality. We first prove an
improved bound on Var(Z) as compared to the standard empirical mean estimator which does not
exploit G-invariance. Indeed we have

Var(Z) =
1

|G′|2

∑
g∈G′

Var(1g−1▷A(x)) +
∑
g ̸=g′

Cov

(
1g−1▷A(x),1(g′)−1▷A(x)

)
=

P(x ∈ A)(1− P(x ∈ A))
|G′| +

1

|G′|2
∑
g ̸=g′

Cov

(
1g−1▷A(x),1(g′)−1▷A(x)

)
.

Next, using again that PX is G-invariant, we get for any g, g′ ∈ G′

Cov

(
1g−1▷A(x),1(g′)−1▷A(x)

)
= (121)

P[x ∈ g−1 ▷ A ∩ (g′)−1 ▷ A]− P[x ∈ g−1 ▷ A]P[x ∈ (g′)−1 ▷ A]
= P[x ∈ g−1 ▷ A ∩ (g′)−1 ▷ A]− P[x ∈ A]2. (122)

Using again the invariance assumption, we note that∑
g ̸=g′

Cov
(
1g−1▷A(x),1(g′)−1▷A(x)

)
= |G′|

( ∑
g∈G′,g ̸=e

P[x ∈ A ∩ g ▷ A]
)
− |G′|(|G′| − 1)P[x ∈ A]2

Consequently by definition of γG′(A) in (93) and (94), we get∑
g∈G′,g ̸=e

P[x ∈ A ∩ g ▷ A] = (|G′| − 1) γG′(A)P(x ∈ A).

Combining the last four displays, we get

Var(Z) =
P(x∈A)(1−P(x∈A))+(|G′|−1) (γG′ (A)−P[x∈A])P[x∈A]

|G′| =
ΥG′,x(A)

|G′|
. (123)

We note that for any p ≥ 3

N∑
i=1

E[
(
max(0, Zi)

)p
] ≤ p!

2
max

(
0, γG′,∞(A)− P[x ∈ A]

)p−2
N Var(Z).

Then Bercu et al. [79, Theorem 2.1] gives w.p.a.l. 1− δ

Êx[1A]− E[1A(x)] ≤ max
(
0, γG′,∞(A)− P[x ∈ A]

) log δ−1

N
+
√
Var(Z)

√
2
log δ−1

N
.

Applying the same reasoning to variables −Z1, . . . ,−ZN and an union bound gives gives w.p.a.l.
1− 2δ ∣∣∣Êx[1A]− E[1A(x)]

∣∣∣ ≤ ∣∣γG′,∞(A)− P[x ∈ A]
∣∣ log δ−1

N
+
√

Var(Z)

√
2
log δ−1

N
. (124)

Next, we note that when g ▷ A ∩ A = ∅ for all g ∈ G′ \ {e}, then γG′(A) = 0 and P[x ∈ A] =
P[x ∈ G′

▷ A]/|G′|. Consequently we get

ΥG′,x(A) = P[x∈G′
▷A](1−P[x∈G′

▷A])
|G′| and

γG′,∞(A)−P[x∈A]
P[x∈A] =

1

P[x ∈ G′ ▷ A]
− 1.

Hence under the additional assumptions, dividing by E[1A(x)] = P[x ∈ A] gives w.p.a.l. 1− 2δ∣∣∣Êx[1A]− E[1A(x)]
∣∣∣

E[1A(x)]
≤
(

1

P[x ∈ G′ ▷ A]
− 1

)
log δ−1

N
+

√
2
log δ−1

N

√
1− P[x ∈ G′ ▷ A]
P[x ∈ G′ ▷ A]

.

Replacing δ by δ/2 gives w.p.a.l. 1− δ∣∣∣Êx[1A]− E[1A(x)]
∣∣∣

E[1A(x)]
≤
(

1

P[x ∈ G′ ▷ A]
− 1

)
log 2δ−1

N
+

√
2
log 2δ−1

N

√
1− P[x ∈ G′ ▷ A]
P[x ∈ G′ ▷ A]

. (125)
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Proposition M.12. Let Ai, i ∈ [N ] be i.i.d copies of a random variable A in a separable Hilbert
space with norm ∥·∥. If there exist constants L > 0 and σ > 0 such that for every m ≥ 2,
E∥A∥m ≤ 1

2m!Lm−2σ2, then with probability at least 1− δ∥∥∥∥∥∥ 1

N

∑
i∈[N ]

Ai − EA

∥∥∥∥∥∥ ≤ 4
√
2√
N

√
σ2 +

L2

N
log

2

δ
. (126)

Lemma M.13 ((Sub-Gaussian random variable) Lemma 5.5. in [80]). Let Z be a random variable.
Then, the following assertions are equivalent with parameters Ki > 0 differing from each other by at
most an absolute constant factor.

1. Tails: P{|Z| > t} ≤ exp
(
1− t2/K2

1

)
for all t ≥ 0;

2. Moments: (E|Z|p)1/p ≤ K2
√
p for all p ≥ 1;

3. Super-exponential moment: E exp
(
Z2/K2

3

)
≤ 2.

A random variable Z satisfying any of the above assertions is called a sub-Gaussian random variable.
We will denote by K3 the sub-Gaussian norm.

Consequently, a sub-Gaussian random variable satisfies the following equivalence of moments
property. There exists an absolute constant c > 0 such that for any m ≥ 2,(

E|Z|m
)1/m ≤ cK3

√
m
(
E|Z|2

)1/2
.

Lemma M.14. Assume that Y is sub-Gaussian with sub-Gaussian norm K. We set σ2
θ(Y ) :=

Var(∥Y − E[y]∥). Then there exists an absolute constant C > 0 such that for any δ ∈ (0, 1), it holds
w.p.a.l. 1− δ ∥∥∥Êy[y]− E[y]

∥∥∥ ≤ C√
N

√
σ2(y) +

K2

N
log
(
2δ−1

)
.

Proof. Set Z := ∥y − Ey∥ and we recall that σ2(y) := Var(∥y − E[y]∥). We check that the
moment condition,

EZm ≤ 1

2
m!Lm−2σ2(y)2, ∀m ≥ 2,

for some constant L > 0 to be specified.

The condition is obviously satisfied for m = 2. Next for any m ≥ 3, the Cauchy-Schwarz inequality
and the equivalence of moment property give

EZm ≤
(
EZ2(m−2)

)1/2 (
EZ4

)1/2 ≤ 4K2
3σ

2
θ(Y )2

(
EZ2(m−2)

)1/2
.

Next, by homogeneity, rescaling Z to Z/K1 we can assume that K1 = 1 in Lemma M.13. We recall
that if Z is in addition non-negative random variable, then for every integer p ≥ 1, we have

EZp =
∫ ∞

0

P{Z ≥ t} ptp−1 dt ≤
∫ ∞

0

e1−t
2

ptp−1 dt =
(ep
2

)
Γ
(p
2

)
.

With p = 2(m − 2), we get that EZp ≤ e(m − 2)Γ
(
m − 2

)
= e(m − 2)! = em!/2. Using again

Lemma M.13, we can take L = cK for some large enough absolute constant c > 0. Then Proposition
M.12 gives the result.
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