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Abstract
Large models have transformed various fields, particularly in forecasting, but their
effectiveness in classification remains limited, especially for specialized domains
like oil and gas drilling. This paper evaluates the performance of large models in
time series classification tasks, highlighting their challenges in handling real-world
univariate and multi-variates real-world time series data. Through comprehen-
sive experiments, we show that these models are outperformed by lightweight
convolutional baselines in both accuracy and efficiency. While large models like
Chronos and Moments demonstrate some success, they require significantly more
computational resources to achieve optimal classification performance. Our results
suggest that lighter CNNs are better suited for time series classification in industrial
applications, where both accuracy and computational efficiency are critical.

1 Introduction
Time series analysis has become a cornerstone in many domains, enabling the extraction of valuable
insights from sequential data. The rise of large models has brought about significant advancements in
time series forecasting (Ansari et al. [2024], Goswami et al. [2024], Götz et al. [2024], Zeng et al.
[2024], Li et al. [2024]). However, the applicability of these models to time series classification
remains less explored. In this paper, we explore this aspect for the drilling domain of the oil and gas
industry. Accurate classification is crucial for optimizing drilling performance and ensuring safety,
as demonstrated in prior work on automated quality control and anomaly detection in the drilling
domain Benzine et al. [2024a,b]. Specifically, here we focus on the classification of drilling activities
from sensor data, with the objective of monitoring and optimizing drilling performance.

Classifying time-series data in the drilling domain presents several technical challenges: (i) sensor
noise, often introduced by environmental factors, complicates accurate data interpretation; (ii) high
intra-class variance from diverse nature of drilling activities, further increases classification complex-
ity, while (iii) low inter-class variance leads to difficulties in distinguishing between classes, resulting
in false positives; (iv) data contains complex patterns that go beyond simple trends, periodicity, or
spike detection, requiring models to capture both short-and long-term dependencies; (v) the scarcity
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of labeled data requiring drilling SMEs for annotation; and last but not least (vi) the class imbalance
aspect, where the events of interest are rare and underrepresented in the dataset. All those technical
challenges created the need to assess state-of-the-art approaches on real-world drilling time-series
data; with a focus on Large Models for Time Series (LM4TS) - i.e., Chronos Ansari et al. [2024] and
Moment Goswami et al. [2024] - and Convolutional Neural Networks Kiranyaz et al. [2021].

Large models for time series are often seen as universal solutions due to their broad applicability
across domains. However, they face significant limitations when confronted with real-world, real-time
challenges. First, most of these models are optimized for forecasting rather than handling tasks like
time series classification, which involves recognizing complex patterns instead of predicting future
values. Additionally, these models often struggle to process the complex and noisy patterns commonly
found in industrial time series data, which limits their practical utility in real-time applications.

In this paper, we conducted a comparison study of convolutional neural netwerk (CNNs) models
and large models in time series (LM4TS), with a focus on classification of oil and gas drilling data.
We evaluated the approaches in two scenarios: (1) training from scratch and (2) fine-tuning on the
downstream task. Our study spans two classification tasks — one univariate and one multivariate
—reflecting the diverse challenges of real-world data. We also assess the impact of different amounts
of training data on final classification accuracy as well as the runtime of each model. The results
demonstrate that large models can be outperformed by lighter, more efficient convolutional baselines.
Not only do these simpler models achieve better accuracy, but they also exhibit significantly lower
computational overhead, faster running times, and greater robustness when dealing with limited data.
Through this series of experiments, we highlight that convolutional models offer a practical and
efficient solution for time series classification in industrial settings like oil and gas drilling.

The paper is organized as follows: Section 2 describes the drilling classification tasks and data.
Section 3 outlines the models evaluated. Section 4 presents the results of our empirical study.

2 Drilling classification tasks

Two tasks have been considered in this paper: (1) downlinking classification and (2) casing classifica-
tion. These are two important tasks of interest in drilling monitoring and are described below.

2.1 Downlinking classification task

Figure 1: Example of positive (left) and negative (most-right) downlinkings data.

The downlinking classification task is a uni-variate problem involving the analysis of Surface Pressure
Pulse signals to classify downlinking events during drilling operations. Downlinking, which typically
lasts a few minutes, involves sending commands from the surface to downhole tools via pressure
pulses in the drilling fluid (see appendix A.1 for more details). The task uses 8192 secs windows,
resampled to 512 steps, to identify these downlinking events within the standpipe pressure signal,
which is often noisy and mixed with other operational data. The dataset contains 46,825 windows
total, with 38% positive samples, split into train (62%), validation (20%), and test (19%) sets.

2.2 Running casing classification task

The running casing classification task is a multi-variate problem involving the analysis of various
drilling signals to detect and classify running casing events during drilling operations. Running
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Figure 2: Example of data (left) with positive (middle) and negative (most-right) Casing samples.

casing, which involves lowering and installing large-diameter pipes to stabilize the well, typically
lasts several hours (see appendix A.2 for more details). The task uses 40-hour windows at second
resolution, resampled to 512 steps, to identify these events within multiple signals including hook
load, block position, bit depth, hole depth, flow rate, and standpipe pressure. The dataset contains
17,751 windows total, with 33% positive samples, split into train (57%), validation (19%), and test
(24%) sets. This split maintains the integrity of longer time series to prevent information leakage
between sets, while improving class balance through selective sampling of negative class windows.

3 Benchmarked Methods

Baseline: A simple ML (i.e., Xgboost) classifier trained on top of raw data.

LM4TS - Chronos [Ansari et al., 2024] is a T5-based model for time series forecasting that tokenizes
univariate time series into a fixed vocabulary, transforming regression tasks into classification
problems.

LM4TS - MOMENT [Goswami et al., 2024] is a transformer encoder pre-trained on diverse datasets
for general-purpose analysis. It supports multiple tasks, handling univariate and multivariate data
with models ranging from 40M to 385M parameters.

The 1D Convolutional Neural Network (CNN) Model Kiranyaz et al. [2021] is a simpler
alternative to large models, designed for time series classification. It stacks Bottleneck1D blocks with
max pooling to capture key sequential features, using 1D convolutions, residual connections, global
average pooling, and a fully connected output layer. This lightweight model is easy to train and ideal
for quick benchmarking against more complex architectures (details in Appendix F).

4 Experimental Results

In this section, we present the results of several experiments to evaluate different time series models.

Model Weights Init. Params Donwlinking Casing Inference Time (ms)
(M) F1 (%) F1 (%) GPU CPU

XGboost n/a n/a 61.3 92 n/a 0.001*
CNN From Scratch 15.5 95.61 94.57* 3.4 3.2
Moments From Scratch 385 90.0 90.8 10 140
Chronos From Scratch 710 83.0 79.0 40 3154
Moments Pre-trained 385 94.0 88.0 10 140
Chronos Pre-trained 710 97.0* 93.0 40 3154

Table 1: Comparison of various models for downlinking and running casing tasks. Top: Baseline of
simple classfier (xgboost) trained on raw data. Middle: CNN vs LM4TS when trained from scratch.
Bottom: Fine-tunning of pre-trained LM4TS. Best score in bold and with star. 2nd best in bold.

4.1 Large Model For Time-Series (LM4TS) vs Convolutional Neural Networks (CNN)

In this comparison, we evaluate LM4TS against the CNN. The CNN outperformed most models
across all metrics, achieving an F1 score of 95.61% for the downlinking classification task and
94.57% for the running casing task. In particular, it outperforms all LM4TS models trained from
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scratch or with pre-trained weight initialization except in the downlinking task where it is beaten by
the Chronos-large model. Nevertheless, the CNN is more than 900x faster on CPU. This makes it the
most efficient and effective model in the evaluation, with fewer parameters and faster inference times.

4.2 Impact of Training Data Proportion

Figure 3: Comparison between LM4TS trained from scratch (white bars), CNN(magenta) and
pretrained LM4TS(black) on downlinking and casing tasks using different proportion of training data.

The plots in Figure 3 clearly demonstrate that the CNN baseline consistently outperforms all LM4TS
models trained from scratch, regardless of the training data proportion used. Remarkably, the CNN,
trained from scratch, achieves the same or even better accuracy compared to pre-trained LM4TS
models. When compared with Chronos-mini, which has a comparable number of parameters (20M),
the CNN outperforms this model both with and without pretraining, highlighting that even with equal
capacity, the CNN is a more effective and efficient choice. This comparison underscores the superior
performance of CNN architectures in both low-data and full-data scenarios, proving it to be the better
choice for time-series classification tasks. Appendix I contain more detailed results in particular for
MINIROCKET Dempster et al. [2021] and LSTM Hochreiter [1997].

5 Conclusion & Perspectives
In this paper, we evaluated the performance of large models, in time-series classification tasks within
the oil and gas drilling domain. While large models have shown success in time-series forecasting,
our findings demonstrate that they can be outperformed by lightweight CNN models in classification.
This superiority was evident in terms of accuracy, the amount of training data , and inference time.

Our experiments, conducted on two drilling classification tasks highlighted several key insights:
(1) CNN models trained from scratch consistently achieved better accuracy than Transformers
trained from scratch, with up to 5% higher performance on downstream tasks; (2) CNN models
were competitive, and in some cases, outperformed pre-trained Transformers, showcasing their
robustness in classification tasks – These findings suggest that CNNs offer a strong alternative to
large models, even without the benefit of pre-training; (3) CNN models demonstrated comparable
abilities to perform well with limited data when compared to pre-trained Transformers. This proves
their effectiveness in learning from smaller datasets, a valuable trait in practical applications where
extensive labeled data is often unavailable; (4) CNN architectures were up to 900x faster in inference
than the best-performing Transformer models. These results suggest that lightweight CNN models
are not only more accurate but also more efficient than large models for time-series classification in
the oil and gas drilling domain. Their balance of performance, reduced data requirements, and fast
inference time makes CNNs a more practical choice for real-world, real-time industrial applications.

Looking forward, future research will focus on expanding the evaluation to a broader set of time-series
tasks (segmentation, anomaly detection and forecasting) and more drilling events. Additionally,
as pre-training has been shown to be beneficial Tamaazousti et al. [2020], we aim to explore the
potential of pre-training CNNs on large time-series datasets to enable a fairer comparison with
LM4TS, particularly in scenarios where embeddings are frozen or fine-tuned. This will provide
deeper insights into the feature learning capabilities of each architecture.
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Figure 4: Example of a downlinking in fairly noisy data

Figure 5: Example of repeated downlinking signatures in the pressure signal

A Appendix - Use cases

A.1 Downlinking

Downlinking in drilling operations refers to the transmission of commands from the surface to
downhole tools, crucial for real-time control and optimization of the drilling process. Characterized
by specific patterns in drilling sensor data, such as repeated signatures in standpipe pressure or pipe
rotation speed, downlinking events can be challenging to distinguish from pressure anomalies (see fig
4 and figure 5).

A.2 Running casing

Casing is run after a section of the oil/gas well is drilled. Casing helps in protecting the well from
collapsing and provides zonal isolation when drilling subsequent deeper sections of the well is drilled.
Usually, a typical casing run can last from 24-50 hours. In addition, a single casing run might not
be continuous due to multiple stoppages during casing running. Parameters like bit depth increases
during casing run and hole depth stays constant. Other parameters like block position can indicate
the length of the pipes that are being run which can be indicative of casing pipes. Hook load is
another important parameter to consider since casing pipes could have different weights than drill
pipes. Typically, the flow rate is near zero during a casing run and hence flow rate is another indicator
for casing run. Behavior of all these indicators/features is shown in 6

B Appendix - Baseline - Linear Model

The Linear Model is a simple yet effective baseline, implemented as a single fully connected layer:

class BaselineModel(nn.Module):
def __init__(self , input_size):

super().__init__ ()
self.fc = nn.Linear(input_size , 1)

def forward(self , x):
x = x.reshape(x.size (0), -1)
return self.fc(x)

Listing 1: Implementation of the linear model class.
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Figure 6: Behavior of hole depth, bit depth, hook load, block position, stand pressure and flow rate
during and before running casing event

The training setup for this linear model utilized the Adam optimizer with default parameters (i.e.
learning rate of 0.001). The model was trained for a maximum of 20 epochs, with an early stopping
patience of 5 epochs for no improvement in validation loss. The loss function used was Binary
Cross-Entropy with Logits (BCEWithLogitsLoss).

B.1 Results and analysis

We conducted experiments using different proportions of the training data, ranging from 10% to
100%. We experimented with two distinct use cases, running casing and downlinking classification.

B.1.1 Downlinking

The Linear Model, with 513 trainable parameters using only stand pressure and a window length
of 512 steps, was surprisingly able to capture a significant portion of the downlinking signatures,
achieving a peak F1 score of 57% with only 30% of the training data. The model shows little
improvement in accuracy as the proportion of training data increases (figure 7). There is even a slight
reduction in F1 Score when 50% or more of the training data was included.

B.1.2 Running Casing

The Linear Model for Running Casing model has 3,073 trainable parameters and uses a window size
of 512 for input data. The features used include bit depth, hole depth, block position, hook load, stand
pressure, and flow rate. The model is trained with a fairly strict early stopping procedure to prevent
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Figure 7: Impact of Training Data Proportion on Accuracy and F1 Score for the Linear Model on
Downlinking classification.
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Figure 8: Impact of Training Data Proportion on Accuracy and F1 Score for Linear Model on Running
Casing classification.

overfitting. The results show good performance for running casing classification with the highest
accuracy of 89% and F1 score of almost 83% are achieved at 70% of the training data, suggesting
that some signatures are easily captured (see figure 8). A gradual improvement can be seen in both
accuracy and F1 score as the proportion of training data increases.

C Appendix - Baseline - LSTM

class LSTMModel(nn.Module):
def __init__(self , input_size , hidden_size =128, num_layers =1):

super(LSTMModel , self).__init__ ()
self.lstm = nn.LSTM(input_size , hidden_size , num_layers ,

batch_first=True)
self.fc = nn.Linear(hidden_size , 1)

def forward(self , x):
# x is of shape (batch_size , seq_length , input_size)
out , _ = self.lstm(x)
out = out[:, -1, :] # Take the output of the last time step
out = self.fc(out)
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return out

Listing 2: Implementation of the LSTM class.

The LSTM model employs a single-layer LSTM with a hidden size of 128, followed by a fully
connected layer for binary classification. The model captures temporal dependencies through recurrent
processing and outputs predictions based on the final time step. It was trained using the Adam
optimizer with a learning rate of 0.001 for a maximum of 20 epochs, with early stopping patience of
5 epochs. The loss function used was Binary Cross-Entropy with Logits (BCEWithLogitsLoss).

C.1 Results and analysis

We conducted experiments using different proportions of the training data, ranging from 10% to
100%. We experimented with two distinct use cases, running casing and downlinking classification.

C.1.1 Downlinking

10 30 50 70 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Training Data Proportion (%)

Sc
or

e

LSTM Performance on Downlinking classification

Accuracy
F1 Score

Figure 9: Impact of Training Data Proportion on Accuracy and F1 Score for the LSTM on Downlink-
ing classification.

The LSTM model shows improvement for the classification of downlinking signatures in both
accuracy and F1 score as training data increases, reaching a peak at 90% of the data (see figure 9).
Beyond that, performance slightly drops. With 67,201 trainable parameters, the model captures key
patterns but shows diminishing returns with larger data sets, similar to the behavior observed in the
linear model, but with two orders of magnitude more parameters.

C.1.2 Running Casing

The LSTM model for running casing classification initially struggles with a small fraction of the
data, failing to converge and producing an F1 score of 0 at 10% training data (see figure 10). As
the training data increases, both accuracy and F1 score improve, peaking at 70% of the data with an
accuracy of 90.2% and an F1 score of 85.1%. Beyond 70%, performance stabilizes, with only slight
reductions in the following data fractions. With 69,761 trainable parameters, the model captures key
patterns but shows diminishing returns with larger data sets.

D Appendix - Baseline - MINIROCKET

def train_minirocket(X_train_scaled , y_train):
from sklearn.linear_model import RidgeClassifierCV
from sktime.transformations.panel.rocket import MiniRocket

X_train_df = convert_to_dataframe(X_train_scaled)
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Figure 10: Impact of Training Data Proportion on Accuracy and F1 Score for LSTM on Running
Casing classification.

minirocket = MiniRocket ()
minirocket.fit(X_train_df)

X_train_transform = minirocket.transform(X_train_df)

y_train = y_train.ravel () if y_train.ndim > 1 else y_train

classifier = RidgeClassifierCV(alphas=np.logspace(-3, 3, 10))
classifier.fit(X_train_transform , y_train)

return minirocket , classifier

Listing 3: Implementation of the MINIROCKET class.

The MiniRocket pipeline provides an efficient approach for time-series classification. Using default
settings, MiniRocket extracts 9,996 features from the time-series data through convolutional opera-
tions, mapping the data to higher-dimensional which enables a Ridge Classifier to effectively model
a potential linear decision boundary. This combination efficiently captures temporal patterns while
exploiting the linear separability of the transformed feature space.

D.1 Results and analysis

We conducted experiments using different proportions of the training data, ranging from 10% to
100%. We experimented with two distinct use cases, running casing and downlinking classification.

D.1.1 Downlinking

The MINIROCKET pipeline demonstrates consistently high performance for downlinking classifica-
tion across all training data proportions (see figure 11). Accuracy starts of high and peaks at 30% of
the data (89.8%) and stabilizes with only minor variations thereafter. Similarly, the F1 score reaches
its highest value (85.1%) at 30% but remains steady across other proportions. MiniRocket efficiently
captures temporal patterns and achieves robust performance even with limited data, showing minimal
sensitivity to increasing training data.

D.1.2 Running Casing

MiniRocket performs exceptionally well for running casing classification, achieving over 95%
accuracy and 92.5% F1 score even at just 10% of the data (see figure 12). Both metrics peak at 70%
of the data, with an accuracy of 96.2% and an F1 score of 94.1%, before slightly declining at higher
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Figure 11: Impact of Training Data Proportion on Accuracy and F1 Score for the MINIROCKET on
Downlinking classification.
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Figure 12: Impact of Training Data Proportion on Accuracy and F1 Score for MINIROCKET on
Running Casing classification.

proportions. The model’s strong performance with limited data highlights the effectiveness of its
feature extraction and Ridge Classifier combination for this task.

E Appendix - Baseline - XGBoost Model

The XGBoost model serves as another robust baseline, utilizing default hyperparameters (i.e. 100
estimators and a maximum tree depth of 6). The windows were fed directly to the model. This model
leverages decision trees to capture complex patterns in the data.

def train_xgboost(X_train , y_train , X_val , y_val):

from xgboost import XGBClassifier

model = XGBClassifier(
objective="binary:logistic",
eval_metric="logloss",
use_label_encoder=False ,

)
eval_set = [(X_val , y_val)]
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model.fit(X_train , y_train , eval_set=eval_set , verbose=False)
return model

Listing 4: Implementation of the XGBoost model training.

E.1 Results and analysis

We conducted experiments using different proportions of the training data, ranging from 10% to
100%.

E.1.1 Downlinking
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Figure 13: Impact of Training Data Proportion on Accuracy and F1 Score for XGBoost on Downlink-
ing classification.

The XGBoost model for running casing classification shows gradual improvement as training data
increases. Starting with 68.6% accuracy and 54.9% F1 score at 10% data, it reaches peak performance
of 72.2% accuracy and 61.3% F1 score using 100% data (see figure 13). Notably, reasonable
performance is achieved even with limited data, indicating robust feature capture. Performance gains
diminish at higher data proportions, with only marginal improvements between 70% and 100%.

E.1.2 Running Casing

For the running casing task using the XGBoost model, the results improve in both accuracy and
F1 score as the proportion of training data increases (see figure 14). Notably, the model achieves
strong performance even with limited data, indicating that the features effectively capture relevant
patterns early on. The highest accuracy of almost 95% and F1 score of 92% at 100% of the training
data. This suggests that XGBoost is effective at identifying key patterns for the running casing task,
demonstrating robust performance with minimal data and delivering near-optimal results as more
data is introduced.

F Appendix - Baseline - CNN

The CNN Baseline model used in this study is a highly efficient time series classification architecture,
designed with 1D convolutions and residual connections to extract meaningful features from sequen-
tial data. It is specifically optimized for tasks such as downlinking and running casing classification
in the oil and gas drilling domain. The model’s simplicity and computational efficiency make it ideal
for real-time processing.

Architecture Overview: The CNN Baseline consists of several components that collectively
process the time series data in a hierarchical manner. The model primarily utilizes Bottleneck1D
blocks to capture local features and apply downsampling, ensuring computational efficiency.
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Figure 14: Impact of Training Data Proportion on Accuracy and F1 Score for XGBoost on Running
Casing classification.

Key Components and Hyperparameters:

• Bottleneck1D Block:
– Convolutional Layers:

* 1x1 Convolution: Reduces the dimensionality of the input and transforms features.
* 3x3 Convolution: Captures local patterns in the time series data.
* 1x1 Convolution: Restores the dimensionality post-processing.

– Batch Normalization: Applied after each convolution to stabilize training and normal-
ize the activations.

– ReLU Activation: A non-linear activation function applied after every convolution,
enabling the model to learn complex, non-linear patterns.

– Residual Connections: Used to add the input back into the output, improving gradient
flow and training speed.

Hyperparameters:
– Input Channels: Varies depending on the task (e.g., 5 for downlinking and 6 for

running casing).
– Expansion Factor: 2 (expands the output size after the bottleneck block).
– Kernel Size: 1x1, 3x3 for convolutions.
– Stride: 1 (for most layers, except for downsampling).
– Number of Bottleneck Blocks: 1 block in each layer.

• Encoder Architecture: The encoder progressively downsamples the input sequence through
a series of Bottleneck1D blocks and pooling operations. This downsampling allows the
model to focus on important features while reducing computational complexity.
Hyperparameters:

– Depth: 7 layers of bottleneck blocks.
– Max-Pooling: Applied after each bottleneck block to reduce temporal resolution and

capture high-level features.
– Number of Features: 256 (initial number of features processed by the first convolu-

tional layer).
– Kernel Size: 7x1 for the initial convolutional layer.
– Stride: 2 (to ensure downsampling at appropriate intervals).
– Pooling Kernel Size: 2 (for max-pooling).

• Global Average Pooling: After the encoder processes the sequence, global average pooling
is applied to reduce the high-dimensional feature map into a fixed-size vector. This vector is
then passed to a fully connected layer for final classification.
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Hyperparameters:

– Global Pooling: Adaptive, ensures that the output dimension is fixed, regardless of
input size.

• Fully Connected Layer: The pooled features are passed to a fully connected layer, which
outputs a single logit for binary classification (i.e., whether an event occurs or not).
Hyperparameters:

– Input Features: 512 (from the global pooling layer).
– Output Features: 1 (for binary classification).

Training and Optimization:

• Optimizer: Adam optimizer is used with an initial learning rate of 0.001.
• Batch Size: 32 (used during training).
• Epochs: 50 (early stopping is applied if no improvement is observed after 10 epochs).

G Appendix - Moment

MOMENT is a transformer encoder-based model designed for general-purpose time series analysis.
Pretrained on a wide variety of time series data, MOMENT is capable of handling multiple tasks,
including classification, forecasting, anomaly detection, and imputation. It is versatile in managing
both univariate and multivariate time series data. The model family varies in size, ranging from 40
million to 385 million parameters, making it adaptable to different computational and performance
needs.

from momentfm import MOMENTPipeline
from xgboost import XGBClassifier

model = MOMENTPipeline.from_pre -trained(
"AutonLab/MOMENT -1-large",
model_kwargs ={"task_name": "embedding"},
# We are loading the model in "embedding" mode

)
model.init()
train_embeddings , train_labels = get_embedding(model , train_dataloader

)
model_xgb = XGBClassifier(use_label_encoder=False ,eval_metric="logloss

")
model_xgb.fit(train_embeddings , train_labels)
\label{fig:embedding -moment}

Listing 5: Embeding Extraction Moment

from momentfm import MOMENTPipeline

model = MOMENTPipeline.from_pre -trained(
"AutonLab/MOMENT -1-large",
model_kwargs ={"task_name": "classification"},
# We are loading the model in "classification" mode

)
model.init()

Listing 6: Moment Full Finetuning

from momentfm import MOMENTPipeline
model = MOMENTPipeline.from_pre -trained(

"AutonLab/MOMENT -1-large",
model_kwargs ={"task_name": "classification"},
# We are loading the model in "classification" mode
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)
model.init()
for i,layer in enumerate(self.model.modules ()):

if hasattr(layer , "reset_parameters"):
layer.reset_parameters ()

Listing 7: Moment Full Finetuning Weights Reset

The training process employed the Adam optimizer with an initial learning rate of 1e-6, coupled with
a learning rate scheduler. The model was trained for a maximum of 20 epochs, with early stopping
implemented to prevent overfitting, using a patience of 3 epochs. Cross-entropy loss was used as the
loss function. For the Running Casing problem, a batch size of 20 was utilized, while a larger batch
size of 128 was employed for the Downlinking problem

G.1 Results and analysis

We conducted experiments using varying proportions of the training data, ranging from 10% to 100%,
to evaluate the performance of the MOMENT model on two distinct use cases: Downlinking and
Running Casing. For these experiments, we selected the largest variant of the MOMENT model, with
385 million parameters.

G.1.1 Downlinking

Moment Embedding experiment Embedding are extracted from the pre trained moments model
for downlinking use case for the we trained a Xgboost classifer to on top of the embeddings. In
this experiment we did not observe a significant increase in performance with the use of a larger
proportion of training data. Using only 10% of the data, the model achieved an F1-score of 72%.
When the training data was increased to 100%, the F1-score improved marginally to 76%.(Refer
Figure 15)
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Figure 15: Testing Accuracy and F1 score using Moments Embedding Based Classification on
Downlinking

Moment Full Fine tuning We fine-tuned the complete MOMENT model by updating the pre-
trained weights based on the Downlinking data, which is univariate. The results show a significant
improvement compared to the embedding-based classification mentioned earlier. After full fine-
tuning, the model achieved an F1-score of 94%, a substantial increase from the 76% F1-score
observed in the previous experiment with embedding-based classification. (Refer Figure 16)

Moment Full Finetuning after Weights Reset We fine-tuned the complete MOMENT model on
Downlinking data after reinitializing the weights of the layers. The results were comparable to those
achieved in the previous experiment with the fully pre-trained model. Notably, with the pre-trained
weights, the model performed well even with only 10% of the data, highlighting the advantage of
pre-training over starting with random weights. (Refer Figure 17)
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Figure 16: Testing Accuracy and F1score using Moments Full Fine tuning on Downlinking
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Figure 17: Testing Accuracy and F1score using Moments Full Fine tuning Weight Reset on Down-
linking

G.1.2 Running Casing

Moment Embedding Experiment We extracted the embedding for Running casing data which
is a multivariate problem In the case of Running casing, Results show a clear trend of improved
performance as the dataset size increases. Accuracy scores range from 85% to 89%, while F1 scores
improve from 75% to 83%. Notably, performance gains plateau around the 70% dataset mark, with
minimal improvements observed beyond this point. The 100% dataset yielded the best results with
an accuracy of 89% and an F1 score of 83%.(Refer Figure 18 )
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Figure 18: Testing Accuracy and F1 score using Moments Embedding Based Classification on
Running Casing
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Moment Full Fine tuning We conducted a full fine-tuning of the MOMENT model using the
Running Casing data. Performance metrics remained robust across all dataset proportions, with
accuracy consistently at or above 90% and F1-scores ranging from 84% to 88%. The use of pre-
trained weights contributed to achieving better results compared to the embedding-based architecture,
highlighting the effectiveness of full fine-tuning with pre-trained models.(Refer Figure 19)
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Figure 19: Testing Accuracy and F1score using Moments Full Fine tuning on Running Casing

Moment Full Finetuning after Weights Reset The performance of the MOMENT model with
random weights was considerably lower compared to using pre-trained weights, especially when
training with smaller amounts of data. With only 10% of the data, the model with pre-trained weights
achieved an F1-score close to 85%, whereas the model with random weights achieved only 76%.
While this performance gap narrowed as the data proportion increased, the model with pre-trained
weights consistently outperformed the model with random weights across all dataset sizes.(Refer
Figure 20)
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Figure 20: Testing Accuracy and F1score using Moments Full Fine tuning Weight Reset on Running
Casing

H Appendix - Chronos Model

The Chronos model is a open source large time series forecasting open source model Ansari et al.
[2024]. It is an encoder decoder architecture based on the T5 architecture. It comes with various
number of parameters i.e. mini (8 M), tiny (20 M), small (46 M), base (210 M) and large (710
M). The Chronos model was trained on forecasting and is primarily used for forecasting. However,
the model was adapted to perform classification task on both uni-variate and multivariate inputs.
Embedding, full model fine tuning with pre-trained weights and random weights based initialisation
were the different approaches experimented as with MoMeNt model. For full model fine-tuning in
the univariate version, a classification head is attached at the end of the model. In the multivariate
model full model finetuning 21 , all the covariates are passed through the encoder and the embeddings
summed up before passing them through a classification head.
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Figure 21: Chronos classification model accepting multivariate inputs

num_labels = 2
checkpoint = "amazon/chronos -t5-" + model_type
classfn_model = AutoModelForSequenceClassification.from_pre -trained(

checkpoint , num_labels=num_labels)
pipeline = ChronosPipeline.from_pre -trained(

checkpoint ,
device_map="cpu",
torch_dtype=data_type ,

)
tokenizer = pipeline.tokenizer

Listing 8: Implementation of the Chronos model (univariate input) for Classification

class ChronosMultiVariateModel(nn.Module):
def __init__(self , classfn_model , emb_agg_mode="last"):

super(ChronosMultiVariateModel , self).__init__ ()
self.encoder = classfn_model.transformer.encoder
self.classification_head = classfn_model.classification_head
self.emb_agg_mode = emb_agg_mode
self.sigmoid = nn.Sigmoid ()

def forward(self , input_ids):
# input_ids - N*feats* (window_len +1)
if input_ids.shape [1]!= len(features):

raise ValueError("Dim=1 must equal number of features")
if input_ids.shape [2]!= target_win_len +1:

raise ValueError("Dim=2 must equal target window length +1
")

emb_sum = 0
for feat_i in range(input_ids.shape [1]):

x = input_ids [:, feat_i , :]
# Forward pass
x = self.encoder(x)
if self.emb_agg_mode == "sum":

emb_sum += torch.sum(x["last_hidden_state"][:, :-1,
:], dim=1)

elif self.emb_agg_mode == "last":
emb_sum += x["last_hidden_state"][:, -1, :]

x = self.classification_head(emb_sum)
x = self.sigmoid(x)
return x

Listing 9: Implementation of the Chronos model (multivariate input) for Classification

Like other models mentioned before, it uses a window size of 512 for the input features: bit depth,
hole depth, block position, hook load, stand pressure, and flow rate.
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H.1 Results and analysis

We conducted experiments using different proportions of the training data, ranging from 10% to
100%. Stand pressure was used as the input feature to the model.

H.1.1 Downlinking

Chronos Embedding Experiment Embeddings were generated for downlinking using the frozen
Chronos model for the 6 features mentioned above on 512 length windows. A batch size of 64 was
used for generating embeddings. XGBoost classifier (with same configuration as mentioned before)
was trained on the embeddings. The embedding based classification showed gradual improvement in
accuracy and f1 score with increasing proportion of training data (22. The highest accuracy and f1
score were 85% and 78% respectively at 100% training data proportion.
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Figure 22: Impact of Training Data Proportion on Accuracy and F1 Score for Chronos-large embed-
dings on Downlinking classification. F1 scores are for the positive class

Chronos Full Fine Tuning Chronos-large model, accepting univariate input, adapted for classifica-
tion was fully fine tuned i.e. all weights of the model were updated during training. The initial values
of the weights in the model were kept the same as in the open source model and the classification
head was randomly initialised. The training setup utilized the Adam optimizer with learning rate
0.0001. The scheduler would decrease the learning rate by a factor of 0.8 after every epoch. The
batch size was 16. The model was trained for a maximum of 100 epochs, with an early stopping
patience of 6 epochs for less than 1% improvement in validation F1 score. The loss function used
was CrossEntropyLoss.

The full fine-tuning on Chronos-large with pre-trained weights yielded much improved performance
23 as compared to the embedding based classification. The accuracy and f1 score for pre-trained
weight full model fine-tuning showed less sensitivity to training data proportion as compared to the
embedding based classification.

Chronos Full Fine Tuning after Weights Reset In an attempt to assess the effect of using pre-
trained weights, experiments were run with randomly initialised weights for full Chronos-large model
fine-tuning 24 The training setup was the same as with the Chronos full fine tuning for downlinking
with pretrained weights based initialisation. The random weight initialisation reduced both f1 scores
and accuracy as compared to using pre-trained weights for full fine-tuning. The random weights
initialisation based full fine-tuning yielded comparable results to the embeddings based classification
method. Also, the sensitivity to proportion of training data used for training was noticeably higher
than that on using pre-trained weights for full fine-tuning.
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Figure 23: Impact of Training Data Proportion on Accuracy and F1 Score for Chronos-large full fine
tuning with pre-trained weights on Downlinking classification. F1 scores are for the positive class.
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Figure 24: Impact of Training Data Proportion on Accuracy and F1 Score for Chronos-large full fine
tuning with random weight initialisation on Downlinking classification. F1 scores are for the positive
class

H.1.2 Running Casing

Chronos Embedding Experiment For running casing classification task, the first set of experiments
were run using embeddings generated using the pre-trained Chronos-large model for six features
(hole depth, flow rate, bit depth, stand pressure, block position and hook load) using 512 length
windows. The batch size was 64 for generating the embeddings. The embeddings were summed on
which an XGBoost classification model (with configuration mentioned before) was trained.

The accuracy and f1 scores improve with increasing percentage of training data 25. The highest f1
score was 88% at 100% training data.

Chronos Full Fine Tuning Similar to downlinking, all weights in the Chronos-large model for
multivariate input classification weights were updated by training and the weights were initialised
with pre-trained weights for the encoder and random initialisation for the classification head. The
training setup utilized the Adam optimizer with learning rate 0.0001. The scheduler would decrease
the learning rate by a factor of 0.8 after every epoch. The batch size was 8. The model was trained for
a maximum of 100 epochs, with an early stopping patience of 6 epochs for less than 1% improvement
in validation F1 score. The loss function used was BinearyCrossEntropyLoss (BCELoss). The
Chronos-large full model fine tuning with pre-trained weights 26 showed less sensitivity to increasing
training data proportion compared to the embedding based classification. This is similar to what
was observed for downlinking use case. This could be implying that pre-trained weights are very
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Figure 25: Impact of Training Data Proportion on Accuracy and F1 Score for Chronos-large embed-
dings on Running Casing classification. F1 scores are for the positive class
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Figure 26: Impact of Training Data Proportion on Accuracy and F1 Score for Chronos-large full fine
tuning with pre-trained weights on Running Casing classification. F1 scores are for the positive class

suitable for the two use cases mentioned. In the running casing case, the full model fine-tuning did
not offer any large improvement over the embedding based approach unlike in the downlinking case.
Therefore, simpler and time effective embedding based approach might be useful for some use cases.

Chronos Full Fine Tuning after Weights Reset The training configuration was identical to the full
model fine-tuning with pre-trained weights for running casing use case. Similar to downlinking, the
Chronos-large model was fully fine-tuned with random weights initialisation for the running casing
use case. This approach yielded extremely poor results for running case in contrast with downlinking.
No convergence was observed and the f1 scores were 0% for different training data proportions 27

I Appendix - Quantitative Results

I.1 Comparing Frozen Embeddings vs. Raw Data for Classification (XGBoost)

In this analysis, we compare two approaches for classification using XGBoost:

1. Training XGBoost directly on raw features.

2. Using final-layer embeddings from pretrained LM4TS as input to XGBoost.
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Figure 27: Impact of Training Data Proportion on Accuracy and F1 Score for Chronos-large full fine
tuning with random weights initialisation on Running Casing classification. No convergence was
observed. F1 scores are for the positive class

For the second approach, we first pass the raw features through a pretrained large model (e.g.,
Chronos, Moments) to obtain embeddings from the final layers. These embeddings are then used as
input features for XGBoost classification. Importantly, the large models remain frozen during this
process, serving only to transform the raw features into a potentially more informative representation.

This comparison allows us to assess whether the pretrained embeddings from large models offer any
advantage over using the raw features directly for these specific classification tasks.

XGBoost, when trained on raw data, surpasses Chronos-Large in the downlinking task and outper-
forms all large models in the running casing task (see table 2). This suggests that large models and
their pretraining approaches do not add more information to the representation.

Backbone Weights Frozen Classifier Parameters
(M)

Downl.
F1 (%)

Casing
F1 (%)

Inference
Time
(ms)

Raw
Data

- No XGBoost - 61.3 92.0 0.001

Chronos Pre-
trained

Yes XGBoost 710 46.0 90.0 40

Moments Pre-
trained

Yes XGBoost 385 76.0 83.0 10

Table 2: Performance comparison of various models for downlinking and running casing classification
tasks. The table presents F1 scores for each task, the number of model parameters, and inference
times in milliseconds.

J Appendix - Qualitative results

J.1 Downlinking

J.1.1 Correct classifications across all models

Across the test set evaluation of all five downlinking classification models on over 8,700 windows,
58% were correct classified across all models. This suggests a moderate proportion of windows and
downlinking signatures were easily classified. See figure 28 for examples of downlinking signatures
that all models classified correctly.
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Figure 28: Examples of windows with downlinking signatures that all model predict correctly.

J.1.2 Wrong classification across all models

Only 0.5% of the windows were predicted wrongly by all models. Not much commonality was found
between these windows. See figure 29 for an example in which the downlinking signal (pressure dip
near the end) is short and not fluctuating.
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Figure 29: Example of a hard downlinking signature which all models classified incorrectly

J.1.3 Cases which only LM4TS got right

Only 0.54% of the windows in the test set only the LM4TS got right and the baselines got wrong (vice
versa only 0.16% only all the baselines were right). Surprisingly, it seems that LM4TS are especially
good at detecting downlinking signatures with relatively small drop in pressure and fluctuations
(figure 30).

J.1.4 Cases only CNN got right

For 0.39% of the classified windows in the test set only the best baseline, CNN, got it right comparing
to the large models. There are two commonalities found in those cases. First being windows which
have signatures that look like downlinking, but are not. The CNN was successfully able to classify
those as non-downlinking (see figure 31 left side). The second being windows which don’t have some
stable stand pressure to begin with, thus the stand pressure gradually moves over time, during which
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Figure 30: Examples of a downlinking signatures which only the large models classified correctly.
Note the subtle fluctuations (downlinkings) near the middle of the plots for all three.

downlinkings are sent. Interestingly, the large models are not able to pick this up, but the CNN is (see
figure 31 right side).

J.2 Running Casing

J.2.1 Correct classifications across all models

3233shows examples of correct classification by all models. The running casing exists near the
middle of the window. The block position and hook load exhibit very distinct patterns during running
casing as compared to other times in these examples.

J.2.2 Wrong classification across all models

34 show an example where all models made wrong prediction. The running casing event is at the
beginning of the window. The block position patterns are very similar at the beginning and end of the
window which could be the reason for the error.

J.2.3 Cases which only LM4TS got right

35 shows an example of running casing where only large models predicted correctly. The running
casing event is at the end of the window which might be confusing the simpler models since they
might not be capturing the long range temporal relationship across the whole window as effectively
as large models.
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Figure 31: Examples of a downlinking signatures which only the CNN classified correctly. Left three
graphs display windows with only a signature that have some resemblance to downlinking but is not.
Right three graphs show windows with downlinking signatures as part of a continually changing
pressure.

J.2.4 Case only CNN got right

36 shows an example of running casing where only large models predicted correctly. Again, the
running casing event is at the end of the window. But this time the CNN captures the casing event but
large models fail. This shows that CNN is also capable of capturing long time events.
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Figure 32: Example-1 of correct predictions by all models for running casing. Casing run extends
from around step=100 upto step=300
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Figure 33: Example-2 of correct predictions by all models for running casing. Casing runnng extends
from around step=280 upto step=340
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Figure 34: Example where all models made incorrect prediction for running casing. Casing running
extends from around step=2 upto step=100
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Figure 35: Example where only large models predicted correctly for running casing. Casing running
extends from around step=400 upto step=500
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Figure 36: Example where only CNN predicted correctly for running casing. Casing running extends
from around step=480 upto step=510
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