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Abstract

In pioneering work from 2019, Barceló and coauthors identified logics that pre-
cisely match the expressive power of constant iteration-depth graph neural net-
works (GNNs) relative to properties definable in first-order logic. In this article,
we give exact logical characterizations of recurrent GNNs in two scenarios: (1) in
the setting with floating-point numbers and (2) with reals. For floats, the formal-
ism matching recurrent GNNs is a rule-based modal logic with counting, while for
reals we use a suitable infinitary modal logic, also with counting. These results
give exact matches between logics and GNNs in the recurrent setting without rel-
ativising to a background logic in either case, but using some natural assumptions
about floating-point arithmetic. Applying our characterizations, we also prove
that, relative to graph properties definable in monadic second-order logic (MSO),
our infinitary and rule-based logics are equally expressive. This implies that re-
current GNNs with reals and floats have the same expressive power over MSO-
definable properties and shows that, for such properties, also recurrent GNNs with
reals are characterized by a (finitary!) rule-based modal logic. In the general case,
in contrast, the expressive power with floats is weaker than with reals. In addition
to logic-oriented results, we also characterize recurrent GNNs, with both reals and
floats, via distributed automata, drawing links to distributed computing models.

1 Introduction

Graph Neural Networks (GNNs) [11, 30, 34] have proven to be highly useful for processing graph
data in numerous applications that span a remarkable range of disciplines including bioinformat-
ics [35], recommender systems [33], traffic forecasting [21], and a multitude of others. The success
of GNNs in applications has stimulated lively research into their theoretical properties such as ex-
pressive power. A landmark result is due to Barceló et al. [5] which was among the first to charac-
terize the expressive power of GNNs in terms of logic, see [12, 8, 6, 26] and references therein for
related results. More precisely, Barceló et al. show that a basic GNN model with a constant number
of iterations has exactly the same expressive power as graded modal logic GML in restriction to
properties definable in first-order logic FO.

In this article, we advance the analysis of the expressive power of GNNs in two directions. First,
we study the relation between GNN models based on real numbers, as mostly studied in theory, and
GNN models based on floating-point numbers, as mostly used in practice. And second, we focus
on a family of basic recurrent GNNs while previous research has mainly considered GNNs with a
constant number of iterations, with the notable exception of [26]. The GNNs studied in the current
paper have a simple and natural termination (or acceptance) condition: termination is signaled via
designated feature vectors and thus the GNN “decides” by itself about when to terminate. We
remark that some of our results also apply to constant iteration GNNs and to recurrent GNNs with
a termination condition based on fixed points, as used in the inaugural work on GNNs [11]; see the
conclusion section for further details.
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We provide three main results. The first one is that recurrent GNNs with floats, or GNN[F]s, have the
same expressive power as the graded modal substitution calculus GMSC [24, 1, 3]. This is a rule-
based modal logic that extends the modal substitution calculus MSC [24] with counting modalities.
MSC has been shown to precisely correspond to distributed computation models based on automata
[24] and Boolean circuits [1]. GMSC is related to the graded modal µ-calculus, but orthogonal in
expressive power. The correspondence between GNN[F]s and GMSC is as follows.

Theorem 3.2. The following have the same expressive power: GNN[F]s, GMSC, and R-simple
aggregate-combine GNN[F]s.

Here R-simple aggregate-combine GNN[F]s mean GNN[F]s that use basic aggregate-combine func-
tions as specified by Barceló et al. [5] and the truncated ReLU as the non-linearity function, see
Section 2.1 for the formalities. The theorem shows that an R-simple model of GNN[F]s suffices,
and in fact GNN[F]s with a more complex architecture can be turned into equivalent R-simple ones.
We emphasize that the characterization provided by Theorem 3.2 is absolute, that is, not relative to
a background logic. In contrast, the characterization by Barceló et al. [5] is relative to first-order
logic. Our characterization does rely, however, on an assumption about floating-point arithmetics.
We believe that this assumption is entirely natural as it reflects practical implementations of floats.

Our second result shows that recurrent GNNs with reals, or GNN[R]s, have the same expressive
power as the infinitary modal logic ω-GML that consists of infinite disjunctions of GML-formulas.

Theorem 3.4. GNN[R]s have the same expressive power as ω-GML.

Again, this result is absolute. As we assume no restrictions on the arithmetics used in GNN[R]s,
they are very powerful: with the infinitary logic ω-GML it is easy to define even undecidable graph
properties. We regard the theorem as an interesting theoretical upper bound on the expressivity of
GNNs operating in an unrestricted, recurrent message passing scenario with messages flowing to
neighbouring nodes. We note that GNN[R]s can easily be shown more expressive than GNN[F]s.

Our third result considers GNN[R]s and GNN[F]s relative to a very expressive background logic,
probably the most natural choice in the recurrent GNN context: monadic second-order logic MSO.

Theorem 4.3. Let P be a property expressible in MSO. Then P is expressible as a GNN[R] if and
only if it is expressible as a GNN[F].

This result says that, remarkably, for the very significant and large class of MSO-expressible proper-
ties, using actual reals with unrestricted arithmetic gives no more expressive power than using floats,
by Theorem 3.2 even in the R-simple aggregate-combine setting. Thus, for this class of properties,
the theoretical analyses from the literature do not diverge from the practical implementation! Taken
together, the above results also imply that in restriction to MSO-expressible properties, GNN[R]s
are equivalent to the (finitary!) graded modal substitution calculus GMSC.

We also develop characterizations of GNNs in terms of distributed automata. These are in fact
crucial tools in our proofs, but the characterizations are also interesting in their own right as they
build links between GNNs and distributed computing. We study a class of distributed automata
called counting message passing automata (CMPAs) that may have a countably infinite number of
states. Informally, these distributed automata update the state of each node according to the node’s
own state and the multiset of states received from its out-neighbours. We also study their restriction
that admits only a finite number of states (FCMPAs) and, furthermore, bounded FCMPAs. In the
bounded case the multiplicities of states in the received multisets are bounded by some constant
k ∈ N. A summary of our main results, both absolute and relative to MSO, is given in Table 1.

Table 1: A summary of our main results. The first row contains the results obtained without relativis-
ing to a background logic and the second row contains results relative to MSO. Here x ≡ y means
that x and y have the same expressive power while x < y means that y is strictly more expressive
than x. Further, “bnd.” stands for “bounded” and “AC” for “aggregate-combine”.

Absolute: GNN[F]≡R-simple AC-GNN[F]≡GMSC≡bnd. FCMPA<GNN[R]≡ω-GML ≡CMPA

MSO: GNN[F]≡R-simple AC-GNN[F]≡GMSC≡bnd. FCMPA≡GNN[R]≡ω-GML ≡CMPA

Related Work. Barceló et al. [5] study aggregate-combine GNNs with a constant number of itera-
tions. They characterize these GNNs—in restriction to properties expressible in first-order logic—in
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terms of graded modal logic GML and show that a global readout mechanism leads to a model equiv-
alent to the two-variable fragment of first-order logic with counting quantifiers FOC2. Our work
extends the former result to include recurrence in a natural way while we leave studying global read-
outs as future work; see the conclusion section for further details. Grohe [13] connects the guarded
fragment of first-order logic with counting GFO + C and polynomial-size bounded-depth circuits,
linking (non-recurrent) GNNs to the circuit complexity class TC0. Grohe’s characterization utilises
dyadic rationals rather than floating-point numbers. Benedikt et al. [6] use logics with a generalized
form of counting via Presburger quantifiers to obtain characterizations for (non-recurrent) GNNs
with a bounded activation function. The article also investigates questions of decidability concerning
GNNs—a topic we will not study here. As a general remark on related work, it is worth mentioning
that the expressive power of (basic) recurrent GNN-models is invariant under the Weisfeiler-Leman
test. This link has been recently studied in numerous articles [25, 36, 12, 5].

Pfluger et al. [26] investigate recurrent GNNs with two kinds of termination conditions: one based
on reaching a fixed point when iteratively generating feature vectors, and one where termination
occurs after a number of rounds determined by the size of the input graph. They concentrate on
the case of unrestricted aggregation and combination functions, even including all uncomputable
ones. Their main result is relative to a logic LocMMFP introduced specifically for this purpose,
extending first-order logic with a least fixed-point operator over unary monotone formulas. The
characterization itself is given in terms of the graded two-way µ-calculus. We remark that MSO
significantly generalizes LocMMFP and that the graded two-way µ-calculus is incomparable in
expressive power to our GMSC. In contrast to our work and to Barcelo et al. [5], Pfluger et al. do
not discuss the case where the aggregation and combination functions of the GNNs are R-simple
or restricted in any other way. We view our work as complementing yet being in the spirit of both
Barceló et al. [5] and Pfluger et al. [26].

GNNs are essentially distributed systems, and logical characterizations for distributed systems have
been studied widely. A related research direction begins with Hella et al. [16], Kuusisto [24] and
Hella et al. [17] by results linking distributed computation models to modal logics. The articles [16]
and [17] give characterizations of constant-iteration scenarios with modal logics, and [24] lifts the
approach to recurrent message-passing algorithms via showing that the modal substitution calculus
MSC captures the expressivity of finite distributed message passing automata. This generalizes the
result from [16] that characterized the closely related class SB(1) of local distributed algorithms with
modal logic. Later Ahvonen et al. [1] showed a match between MSC and circuit-based distributed
systems. Building on the work on MSC, Reiter showed in [27] that the µ-fragment of the modal µ-
calculus captures the expressivity of finite message passing automata in the asynchronous scenario.

2 Preliminaries

We let N, Z+ and R denote the sets of non-negative integers, positive integers, and real numbers
respectively. For all n ∈ Z+, we let [n] := {1, . . . , n} and for all n ∈ N, we let [0;n] := {0, . . . , n}.
With |X| we denote the cardinality of the set X , with P(X) the power set of X and with M(X)
the set of multisets over X , i.e., the set of functions X → N. With Mk(X) we denote the set of
k-multisets over X , i.e., the set of functions X → [0; k]. Given a k-multiset M ∈ Mk(X) and
x ∈ X , intuitively M(x) = n < k means that there are exactly n copies of x and M(x) = k means
that there are k or more copies of x.

We work with node-labeled directed graphs (possibly with self-loops), and simply refer to them as
graphs. Let LAB denote a countably infinite set of node label symbols, representing features. We
denote finite sets of node label symbols by Π ⊆ LAB. Given any Π ⊆ LAB, a Π-labeled graph is
a triple G = (V,E, λ) where V is a set of nodes, E ⊆ V × V is a set of edges and λ : V → P(Π)
is a node labeling function. Note that a node can carry multiple label symbols. A pointed graph
is a pair (G, v) with v ∈ V . Given a graph (V,E, λ), the set of out-neighbours of v ∈ V is
{w | (v, w) ∈ E }. Unless stated otherwise, we only consider finite graphs, i.e., graphs where the
set of nodes is finite. A node property over Π is a class of pointed Π-labeled graphs. A graph
property over Π is a class of Π-labeled graphs. A graph property G over Π corresponds to a node
property N over Π if the following holds for all Π-labeled graphs G: G ∈ G iff (G, v) ∈ N for
every node v of G. Henceforth a property means a node property. We note that many of our results
hold even with infinite graphs and infinite sets of node label symbols. Our results easily extend to
graphs that admit labels on both nodes and edges.
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2.1 Graph neural networks

A graph neural network (GNN) is a neural network architecture for graph-structured data. It may
be viewed as a distributed system where the nodes of the (directed, node-labeled) input graph cal-
culate with real numbers and communicate synchronously in discrete rounds. More formally, a
recurrent graph neural network GNN[R] over (Π, d), with Π ⊆ LAB and d ∈ Z+, is a tu-
ple G = (Rd, π, δ, F ). A recurrent graph neural network computes in a (node-labeled) directed
graph as follows. In any Π-labeled graph (V,E, λ), the initialization function π : P(Π) → Rd
assigns to each node v an initial feature vector or state x0v = π(λ(v)).1 In each subsequent
round t = 1, 2, . . . , every node computes a new feature vector xtv using a transition function
δ : Rd ×M(Rd) → Rd, δ(x, y) = COM(x,AGG(y)), which is a composition of an aggregation
function AGG: M(Rd) → Rd (typically sum, min, max or average) and a combination function
COM: Rd × Rd → Rd such that xtv = COM

(
xt−1
v ,AGG

(
{{xt−1

u | (v, u) ∈ E }}
))

where dou-
ble curly brackets {{...}} denote multisets.2 The recurrent GNN G accepts a pointed Π-labeled
graph (G, v) if v visits (at least once) a state in the set F ⊆ Rd of accepting feature vectors, i.e.,
xtv ∈ F for some t ∈ N. When we do not need to specify d, we may refer to a GNN[R] over (Π, d)
as a GNN[R] over Π. A constant-iteration GNN[R] is a pair (G, N) where G is a GNN[R] and
N ∈ N. It accepts a pointed graph (G, v) if xNv ∈ F . Informally, we simply run a GNN[R] for
N iterations and accept (or do not accept) based on the last iteration. We say that G (resp., (G, N))
expresses a node property P over Π, if for each pointed Π-labeled graph (G,w): (G,w) ∈ P iff G
(resp., (G, N)) accepts (G,w). A node property P over Π is expressible as a GNN[R] (resp. as a
constant-iteration GNN[R]) if there is a GNN[R] (resp. constant-iteration GNN[R]) expressing P .

One common, useful and simple possibility for the aggregation and combination functions,
which is also used by Barceló et al. (see [5], and also the papers [25, 15]) is defined by
COM

(
xt−1
v ,AGG

(
{{xt−1

u | (v, u) ∈ E }}
))

= f(xt−1
v · C +

∑
(v,u)∈E x

t−1
u · A + b), where

f : Rd → Rd is a non-linearity function (such as the truncated ReLU also used by Barceló et al.
in [5], defined by ReLU∗(x) = min(max(0, x), 1) and applied separately to each vector element),
C,A ∈ Rd×d are matrices and b ∈ Rd is a bias vector. We refer to GNNs that use aggrega-
tion and combination functions of this form and ReLU∗ as the non-linearity function as R-simple
aggregate-combine GNNs (here ‘R’ stands for ReLU∗).

Example 2.1. Given Π and p ∈ Π, reachability of node label symbol p is the property P over Π that
contains those pointed Π-labeled graphs (G, v) where a path exists from v to some u with p ∈ λ(u).
An R-simple aggregate-combine GNN[R] over (Π, 1) (where C = A = 1, b = 0 and 1 is the only
accepting feature vector) can express P: In round 0, a node w’s state is 1 if p ∈ λ(w) and else 0. In
later rounds, w’s state is 1 if w’s state was 1 or it gets 1 from its out-neighbours; else the state is 0.

Remark 2.2. Notice that unrestricted GNN[R]s can express, even in a single iteration, node prop-
erties such as that the number of immediate out-neighbours of a node is a prime number. In fact, for
any U ⊆ N, including any undecidable set U , a GNN[R] can express the property that the number l
of immediate out-neighbours is in the set U . See [6] for related undecidability results.

Informally, a floating-point system contains a finite set of rational numbers and arithmetic operations
· and +. Formally, if p ∈ Z+, n ∈ N and β ∈ Z+ \ {1}, then a floating-point system is a tuple
S = ((p, n, β),+, ·) that consists of the set DS of all rationals accurately representable in the form
0.d1 · · · dp×βe or −0.d1 · · · dp×βe where 0 ≤ di ≤ β−1 and e ∈ {−n, . . . , n}. It also consists of
arithmetic operations + and · of type DS ×DS → DS . We adopt the common convention where +
and · are defined by taking a precise sum/product w.r.t. reals and then rounding to the closest float in
DS , with ties rounding to the float with an even least significant digit, e.g., 0.312 + 0.743 evaluates
to 1.06 if the real sum 1.055 is not in the float system. Thus, our float systems handle overflow by
capping at the maximum value instead of wrapping around. We typically just write S for DS .

Consider GNNs using floats in the place of reals. In GNNs, sum is a common aggregation function
(also used in R-simple GNNs), and the sum of floats can depend on the ordering of floats, since it

1In [5, 26] an initialization function is not explicitly included in GNNs; instead each node is labeled with an
initial feature vector in place of node label symbols. However, these two approaches are essentially the same.

2In GNNs here, messages flow in the direction opposite to the edges of graphs, i.e., an edge (v, u) ∈ E
means that v receives messages sent by u. This is only a convention that could be reversed via using a modal
logic that scans the inverse relation of E instead of E.
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is not associative. In real-life implementations, the set V of nodes of the graph studied can typically
be associated with an implicit linear order relation <V (which is not part of the actual graph). It is
then natural to count features of out-neighbours in the order <V . However, this allows float GNNs
to distinguish isomorphic nodes, which violates the desire that GNNs should be invariant under
isomorphism. For example, summing 1, −1 and 0.01 in two orders in a system where the numbers
must be representable in the form 0.d1d2 × 10e or −0.d1d2 × 10e: first (1 + (−1)) + 0.01 =
0 + 0.01 = 0.01 while (1 + 0.01) + (−1) = 1 + (−1) = 0, since 1.01 is not representable in the
system. A float GNN could distinguish two isomorphic nodes with such ordering of out-neighbours.

To ensure isomorphism invariance for GNNs with floats that use sum, it is natural to order the floats
instead of the nodes. For example, adding floats in increasing order (of the floats) is a natural and
simple choice. Summing in this increasing order is also used widely in applications, being a reason-
able choice w.r.t. accuracy (see, e.g., [32],[29], [18]). Generally, floating-point sums in applications
have been studied widely, see for example [19]. Summing multisets of floats in increasing order
leads to a bound in the multiplicities of the elements of the sum; see Proposition 2.3 for the formal
statement. Before discussing its proof, we define the k-projection of a multiset M as M|k where
M|k(x) = min{M(x), k}. Given a multiset N of floats in float system S, we let SUMS(N) denote
the output of the sum f1 + · · · + fℓ where (1) fi appears N(fi) times (i.e., its multiplicity) in the
sum, (2) the floats appear and are summed in increasing order and (3) + is according to S.
Proposition 2.3. For all floating-point systems S, there exists a k ∈ N such that for all multisets M
over floats in S, we have SUMS(M) = SUMS(M|k).

Proof. (Sketch) See also in Appendix A.2. Let u = 0.0 · · · 01×βe and v = 0.10 · · · 0×βe+1. Now
notice that for a large enough ℓ, summing u to itself m > ℓ times will always give v.

Due to Proposition 2.3, GNNs with floats using sum in increasing order are bounded in their ability
to fully count out-neighbours. Thus, it is natural to assume that floating-point GNNs are bounded
GNNs, i.e., the aggregation function can be written as Mk(U

d) → Ud for some bound k ∈ N, i.e.,
for every multiset M ∈ M(Ud), we have AGG(M) = AGG(M|k), where M|k is the k-projection
of M (and Ud is the set of states of the GNN). We finally give a formal definition for floating-
point GNNs: a floating-point graph neural network (GNN[F]) is simply a bounded GNN where
the set of states and the domains and co-domains of the functions are restricted to some floating-
point system S instead of R (note that S can be any floating-point system). In R-simple GNN[F]s,
SUMS replaces the sum of reals as the aggregation function, and their bound is thus determined
by the choice of S. A GNN[F] obtained by removing the condition on boundedness is called an
unrestricted GNN[F]. Note that by default and unless otherwise stated, a GNN[R] is unbounded,
whereas a GNN[F] is bounded. Now, it is immediately clear that unrestricted GNN[F]s (with an
unrestricted aggregation function) are more expressive than GNN[F]s: expressing the property that
a node has an even number of out-neighbours is easy with unrestricted GNN[F]s, but no bounded
GNN[F] with bound k can distinguish the centers of two star graphs with k and k+1 out-neighbours.

2.2 Logics

We then define the logics relevant for this paper. For Π ⊆ LAB, the set of Π-formulae of graded
modal logic (GML) is given by the grammar φ ::= ⊤ | p | ¬φ | φ ∧ φ | ♢≥kφ, where p ∈ Π
and k ∈ N. The connectives ∨, →, ↔ are considered abbreviations in the usual way. Note that node
label symbols serve as propositional symbols here. A Π-formula of GML is interpreted in pointed
Π-labeled graphs. In the context of modal logic, these are often called (pointed) Kripke models. Let
G = (V,E, λ) be a Π-labeled graph and w ∈ V . The truth of a formula φ in a pointed graph (G,w)
(denotedG,w |= φ) is defined as usual for the Boolean operators and ⊤, while for p ∈ Π and ♢≥kφ,
we define that G,w |= p iff p ∈ λ(w), and G,w |= ♢≥kφ iff G, v |= φ for at least k out-neighbours
v of w. We use the abbreviations ♢φ := ♢≥1φ, □φ := ¬♢¬φ and ♢=nφ := ♢≥nφ ∧ ¬♢≥n+1φ.
The set of Π-formulae of ω-GML is given by the grammar φ ::= ψ |

∨
ψ∈Ψ ψ, where ψ is a

Π-formula of GML and Ψ is an at most countable set of Π-formulae of GML. The truth of infinite
disjunctions is defined in the obvious way: G,w |=

∨
ψ∈Ψ ψ ⇐⇒ G,w |= ψ for some ψ ∈ Ψ.

We next introduce the graded modal substitution calculus (or GMSC), which extends the modal
substitution calculus [24, 1, 3] with counting capabilities. Define the set VAR = {Vi | i ∈ N }
of schema variable symbols. Let T = {X1, . . . , Xn} ⊆ VAR. The set of (Π, T )-schemata of
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GMSC is defined by the grammar φ ::= ⊤ | p | Xi | ¬φ | φ∧φ | ♢≥kφ where p ∈ Π, Xi ∈ T
and k ∈ N. A (Π, T )-program Λ of GMSC consists of two lists of expressions

X1(0) :− φ1 · · · Xn(0) :− φn X1 :− ψ1 · · · Xn :− ψn

where φ1, . . . , φn are Π-formulae of GML and ψ1, . . . , ψn are (Π, T )-schemata of GMSC. More-
over, each program is associated with a set A ⊆ T of appointed predicates. A program of modal
substitution calculus MSC is a program of GMSC that may only use diamonds ♢ of the standard
modal logic. The expressions Xi(0) :− φi are called terminal clauses and Xi :− ψi are called
iteration clauses. The schema variable Xi in front of the clause is called the head predicate and
the formula φi (or schema ψi) is called the body of the clause. The terminal and iteration clauses are
the rules of the program. When we do not need to specify T , we may refer to a (Π, T )-program as a
Π-program of GMSC. Now, the nth iteration formula Xn

i of a head predicate Xi (or the iteration
formula of Xi in round n ∈ N) (w.r.t. Λ) is defined as follows. The 0th iteration formula X0

i is φi
and the (n+1)st iteration formula Xn+1

i is ψi where each head predicate Y in ψi is replaced by the
formula Y n. We write G,w |= Λ and say that Λ accepts (G,w) iff G,w |= Xn for some appointed
predicateX ∈ A and some n ∈ N. Moreover, for all (Π, T )-schemata φ that are not head predicates
and for n ∈ N, we let φn denote the formula (w.r.t. Λ) where each Y ∈ T in φ is replaced by Y n.

Recall that monadic second-order logic MSO is obtained as an extension of first-order logic FO
by allowing quantification of unary relation variables X , i.e., if φ is an MSO-formula, then so are
∀Xφ and ∃Xφ, see e.g. [9] for more details. Given a set Π ⊆ LAB of node label symbols, an FO-
or MSO-formula φ over Π is an FO- or MSO-formula over a vocabulary which contains exactly a
unary predicate for each p ∈ Π and the edge relation symbol E. Equality is admitted.

Let φ be an ω-GML-formula, GMSC-schema, GMSC-program, or a rule of a program. The modal
depth (resp. the width) of φ is the maximum number of nested diamonds in φ (resp. the maximum
number k ∈ N that appears in a diamond ♢≥k in φ). If an ω-GML-formula has no maximum depth
(resp., width), its modal depth (resp., width) is ∞. If an ω-GML-formula has finite modal depth
(resp., width), it is depth-bounded (resp., width-bounded). The formula depth of a GML-formula
or GMSC-schema is the maximum number of nested operators ¬, ∧ and ♢≥k. Given a Π-program
of GMSC or a Π-formula of ω-GML φ (respectively, a formula ψ(x) of MSO or FO over Π, where
the only free variable is the first-order variable x), we say that φ (resp., ψ(x)) expresses a node
property P over Π, if for each pointed Π-labeled graph (G,w): (G,w) ∈ P iff G,w |= φ (or resp.
G |= ψ(w)). A node property P over Π is expressible in GMSC (resp., in ω-GML, FO or MSO)
if there is a Π-program of GMSC (resp., a Π-formula of ω-GML, FO or MSO) expressing P .
Example 2.4. Recall the property reachability of node label symbol p over Π defined in Exam-
ple 2.1. It is expressed by the Π-program of GMSCX(0) :− p,X :− ♢X , whereX is an appointed
predicate. The ith iteration formula of X is Xi = ♢ · · ·♢p where there are exactly i diamonds.
Example 2.5 ([24]). A pointed Π-labeled graph (G,w) has the centre-point property P over Π if
there exists an n ∈ N such that each directed path starting from w leads to a node with no out-
neighbours in exactly n steps. It is easy to see that the Π-program X(0) :− □⊥, X :− ♢X ∧□X ,
where X is an appointed predicate, expresses P . In [24], it was established that the centre-point
property is not expressible in MSO and that there are properties expressible in µ-calculus and MSO
that are not expressible in MSC (e.g., non-reachability), with the same proofs applying to GMSC.
Proposition 2.6. Properties expressible in GMSC are expressible in ω-GML, but not vice versa.

Proof. A property over Π expressed by a Π-program Γ of GMSC is expressible in ω-GML by the
Π-formula

∨
Xi∈A, n∈NX

n
i , where Xn

i is the nth iteration formula of appointed predicate Xi of
Γ. Like GNN[R]s, ω-GML can express undecidable properties (cf. Remark 2.2). Clearly GMSC-
programs Λ cannot, as configurations defined by Λ in a finite graph eventually loop, i.e., the truth
values of iteration formulae start repeating cyclically.

While GMSC is related to the graded modal µ-calculus (µGML), which originates from [22] and is
used in [26] to characterize a recurrent GNN model, µGML and GMSC are orthogonal in expres-
sivity. Iteration in GMSC need not be over a monotone function and does not necessarily yield a
fixed point, and there are no syntactic restrictions that would, e.g., force schema variables to be used
only positively as in µGML. The centre-point property from Example 2.5 is a simple property not
expressible in µGML (as it is not even expressible in MSO, into which µGML translates). Con-
versely, GMSC offers neither greatest fixed points nor fixed point alternation. In particular, natural
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properties expressible in the ν-fragment of µGML such as non-reachability are not expressible in
GMSC; this is proved in [24] for the non-graded version, and the same proof applies to GMSC.
However, the µ-fragment of the graded modal µ-calculus translates into GMSC (by essentially the
same argument as the one justifying Proposition 7 in [24]). We also note that GMSC translates into
partial fixed-point logic with choice [28], but it is not clear whether the same holds without choice.

3 Connecting GNNs and logics via automata

In this section we establish exact matches between classes of GNNs and our logics. The first
main theorem is Theorem 3.2, showing that GNN[F]s, R-simple aggregate-combine GNN[F]s and
GMSC are equally expressive. Theorem 3.4 is the second main result, showing that GNN[R]s and
ω-GML are equally expressive. We begin by defining the concept of distributed automata which we
will mainly use as a tool for our arguments but they also lead to nice additional characterizations.
Informally, we consider a model of distributed automata called counting message passing automata
and its variants which operate similarly to GNNs. These distributed automata update the state of
each node according to the node’s own state and the multiset of states of its out-neighbours.

Formally, given Π ⊆ LAB, a counting message passing automaton (CMPA) over Π is a tuple
(Q, π, δ, F ) whereQ is an at most countable set of states and π, δ and F are defined in a similar way
as for GNNs: π : P(Π) → Q is an initialization function, δ : Q×M(Q) → Q a transition function
and F ⊆ Q a set of accepting states. Computation of a CMPA over Π is defined in a Π-labeled
graphG analogously to GNNs: for each nodew inG, the initialization function gives the initial state
forw based on the node label symbols true inw, and the transition function is applied to the previous
state of w and the multiset of states of out-neighbours of w. Acceptance is similar to GNNs: the
CMPA accepts (G,w) if the CMPA visits (at least once) an accepting state at w in G. A bounded
CMPA is a CMPA whose transition function can be written as δ : Q × Mk(Q) → Q for some
k ∈ N (i.e., δ(q,M) = δ(q,M|k) for each multiset M ∈ M(Q) and state q ∈ Q). A finite CMPA
(FCMPA) is a CMPA with finite Q. We define bounded FCMPAs similarly to bounded CMPAs.
A CMPA A over Π expresses a node property P over Π if A accepts (G,w) iff (G,w) ∈ P . We
define whether a node property P is expressible by a CMPA in a way analogous to GNNs.

For any Π, a Π-object refers to a GNN over Π, a CMPA over Π, a Π-formula of ω-GML or a Π-
program of GMSC. Let C be the class of all Π-objects for all Π. Two Π-objects in C are equivalent
if they express the same node property over Π. SubsetsA,B ⊆ C have the same expressive power,
if each x ∈ A has an equivalent y ∈ B and vice versa. It is easy to obtain the following.

Proposition 3.1. Bounded FCMPAs have the same expressive power as GMSC.

Proof. (Sketch) Details in Appendix B.2. To obtain a bounded FCMPA equivalent to a GMSC-
program Λ, we first turn Λ into an equivalent program Γ where the modal depth of terminal clauses
(resp., iteration clauses) is 0 (resp., at most 1). Then from Γ with head predicate set T ′, we construct
an equivalent FCMPAA as follows. The set of states of A is P(Π∪T ′) and A enters in round n ∈ N
in node w into a state that contains precisely the node label symbols true in w and the predicates X
whose iteration formula Xn is true at w. For the converse, we create a head predicate for each state
in A, and let predicates for accepting states be appointed. The terminal clauses simulate π using
disjunctions of conjunctions of non-negated and negated node label symbols. The iteration clauses
simulate δ using, for each pair (q, q′), a subschema specifying the multisets that take q to q′.

We are ready to show equiexpressivity of GMSC and GNN[F]s. This applies without relativising to
any background logic. The direction from GNN[F]s to GMSC is trivial. The other direction is more
challenging, in particular when going all the way to R-simple GNN[F]s. While size issues were
not a concern in this work, we observe that the translation from GNN[F]s to GMSC involves only
polynomial blow-up in size; the related definitions and proofs are in appendices A.1, B.2 and B.3.
We also conjecture that a polynomial translation from GMSC to R-simple GNN[F]s is possible by
the results and techniques in [3], taking into account differences between GNN[F]s and R-simple
GNN[F]s w.r.t. the definition of size. A more serious examination of blow-ups would require a
case-by-case analysis taking other such details into account.

Theorem 3.2. The following have the same expressive power: GNN[F]s, GMSC, and R-simple
aggregate-combine GNN[F]s.

7



Proof. (Sketch) Details in Appendix B.3. By definition, a GNN[F] is just a bounded FCMPA and
translates to a GMSC-program by Proposition 3.1. To construct an R-simple aggregate-combine
GNN[F] G for a GMSC-program Λ with formula depthD, we first turn Λ into an equivalent program
Γ, where each terminal clause has the body ⊥, the formula depth of each body of an iteration clause
is D′ (linear in D) and for each subschema of Γ that is a conjunction, both conjuncts have the
same formula depth if neither conjunct is ⊤. We choose a floating-point system that can express all
integers up to the width of Γ. We define binary feature vectors that are split into two halves: the 1st
half intuitively calculates the truth values of the head predicates and subschemata of Γ one formula
depth at a time in the style of Barceló et al. [5]. The 2nd half records the current formula depth under
evaluation. G simulates one round of Γ in D′+1 rounds, using the 2nd half of the features to accept
nodes only everyD′+1 rounds: the truth values of head predicates are correct in those rounds. Note
that the choice of floating-point system in G depends on Λ and thus no single floating-point system is
used by all GNNs resulting from the translation. In fact, fixing a single floating-point system would
trivialize the computing model as only finitely many functions could be defined.

To show that GNN[R]s and ω-GML are equally expressive, we first prove a useful theorem.
Theorem 3.3. CMPAs have the same expressive power as ω-GML.

Proof. (Sketch) Details in Appendix B.4. To construct a CMPA for each ω-GML-formula χ, we
define a GML-formula called the “full graded type of modal depth n” for each pointed graph (G,w),
which expresses all the local information of the neighbourhood of w up to depth n (with the maxi-
mum out-degree ofG plus 1 sufficing for width). We show that each ω-GML-formula χ is equivalent
to an infinite disjunction ψχ of types. We then define a CMPA that computes the type of modal depth
n of each node in round n. Its accepting states are the types in the type-disjunction ψχ. For the con-
verse, to show that each CMPA has an equivalent ω-GML-formula, we first show that two pointed
graphs satisfying the same full graded type of modal depth n have identical states in each round
ℓ ≤ n in each CMPA. The ω-GML-formula is the disjunction containing every type T such that
some (G,w) satisfying T is accepted by the automaton in round n, where n is the depth of T .

Next we characterize GNN[R]s with ω-GML without relativising to a background logic. As the
theorems above and below imply that GNN[R]s and CMPAs are equally expressive, it follows that
GNN[R]s can be discretized to CMPAs having—by definition—an only countable set of states.
Theorem 3.4. GNN[R]s have the same expressive power as ω-GML.

Proof. (Sketch) Details in Appendix B.5. For any GNN[R], we build an equivalent ω-GML-formula
using the same method as in the proof of Theorem 3.3, where we show that for each CMPA, we
can find an equivalent ω-GML-formula. For the converse, we first translate an ω-GML-formula to a
CMPA A by Theorem 3.3 and then translate A to an equivalent CMPA A′ with maximal ability to
distinguish nodes. Then we build an equivalent GNN[R] for A′ by encoding states into integers.

Remark 3.5. It is easy to show that unrestricted GNN[F]s have the same expressive power as
FCMPAs. Moreover, the proof of Theorem 3.4 is easily modified to show that bounded GNN[R]s
have the same expressive power as width-bounded ω-GML. See Appendix B.6 for the proofs.

In Appendix B.7 we show that our model of constant-iteration GNN[R]s is equivalent to the one
in Barceló et al. [5]. Thus Theorem 3.6 (proven in Appendix B.8) generalizes the result in [5]
saying that any property P expressible by FO is expressible as a constant-iteration GNN[R] iff it is
expressible in GML. Furthermore, any such P is expressible in GML iff it is expressible in ω-GML.
Theorem 3.6. Constant-iteration GNN[R]s have the same expressive power as depth-bounded
ω-GML.

4 Characterizing GNNs over MSO-expressible properties

In this section we consider properties expressible in MSO. The first main result is Theorem 4.1,
where we show that for properties expressible in MSO, the expressive power of GNN[R]s is captured
by a finitary logic. In fact, this logic is GMSC and by Theorem 3.2, it follows that relative to MSO,
GNN[R]s have the same expressive power as GNN[F]s (Theorem 4.3 below). Our arguments in this
section work uniformly for any finite set ΣN of node label symbols.
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Theorem 4.1. Let P be a property expressible in MSO. Then P is expressible as a GNN[R] if and
only if it is expressible in GMSC.

Theorem 4.1 is proved later in this section. The recent work [26] relates to Theorem 4.1; see the
introduction for a discussion. The proof of Theorem 4.1 can easily be adapted to show that a property
P expressible in MSO is expressible as a constant-iteration GNN[R] iff it is expressible in GML.
This relates to [5] which shows the same for FO in place of MSO. However, in this particular
case the MSO version is not an actual generalization as based on [10], we show the following in
Appendix C.1.

Lemma 4.2. Any property expressible in MSO and as a constant-iteration GNN[R] is also FO-
expressible.

Uniting Theorems 4.1 and 3.2, we see that (recurrent) GNN[R]s and GNN[F]s coincide relative to
MSO. It is easy to get a similar result for constant-iteration GNNs (the details are in Appendix C.3).

Theorem 4.3. Let P be a property expressible in MSO. Then P is expressible as a GNN[R] if and
only if it is expressible as a GNN[F]. The same is true for constant-iteration GNNs.

To put Theorem 4.3 into perspective, we note that by Example 2.5, the centre-point property is
expressible in GMSC, but not in MSO. From Theorem 3.2, we thus obtain the following.

Proposition 4.4. There is a property P that is expressible as a GNN[F] but not in MSO.

Theorem 3.6 shows that constant-iteration GNN[R]s and depth-bounded ω-GML are equally expres-
sive. The proof of Proposition 2.6 shows that already depth-bounded ω-GML can express properties
that GMSC cannot, in particular undecidable ones. Thus, by Theorem 3.2 we obtain the following.

Proposition 4.5. There is a property expressible as a constant-iteration GNN[R] but not as a
GNN[F].

We next discuss the proof of Theorem 4.1. We build upon results due to Janin and Walukiewicz
[31, 20], reusing an automaton model from [31] that captures the expressivity of MSO on tree-
shaped graphs. With a tree-shaped graph we mean a potentially infinite graph that is a directed tree.
The out-degree of nodes is unrestricted (but nevertheless finite), different nodes may have different
degree, and both leaves and infinite paths are admitted in the same tree.

We next introduce the mentioned automaton model. Although we are only going to use it on tree-
shaped ΣN -labeled graphs, in its full generality it is actually defined on unrestricted such graphs.
We nevertheless call them tree automata as they belong to the tradition of more classical forms
of such automata. In particular, a run of an automaton is tree-shaped, even if the input graph is
not. Formally, a parity tree automaton (PTA) is a tuple A = (Q,ΣN , q0,∆,Ω), where Q is a
finite set of states, ΣN ⊆ LAB is a finite set of node label symbols, q0 ∈ Q is an initial state,
∆: Q× P(ΣN ) → F is a transition relation with F being the set of all transition formulas for A
defined below, and Ω : Q→ N is a priority function. A transition formula for A is a disjunction of
FO-formulas of the form

∃x1 · · · ∃xk
(
diff(x1, . . . , xk) ∧ q1(x1) ∧ · · · ∧ qk(xk) ∧ ∀z( diff(z, x1, . . . , xk) → ψ)

)
where k ≥ 0, diff(y1, . . . , yn) shortens an FO-formula declaring y1, . . . , yn as pairwise distinct,
qi ∈ Q are states used as unary predicates and ψ is a disjunction of conjunctions of atoms q(z),
with q ∈ Q. A PTA A accepts a language L(A) consisting of (possibly infinite) graphs G. We have
G ∈ L(A) if there is an accepting run of A on G, and runs are defined in the spirit of alternating
automata. While details are in Appendix C.2, we mention that transition formulas govern transitions
in the run: a transition of a PTA currently visiting node v in state q consists of sending copies of
itself to out-neighbours of v, potentially in states other than q. It is not required that a copy is sent to
every out-neighbour, and multiple copies (in different states) can be sent to the same out-neighbour.
However, we must find some (q, λ(v), ϑ) ∈ ∆ such that the transition satisfies ϑ in the sense that ϑ
is satisfied in the graph with one element for each out-neighbour of v and unary predicates (states of
A) are interpreted according to the transition. This specific form of PTAs is interesting to us due to
the following.

Theorem 4.6. Let P be a property expressible in MSO and in ω-GML. Then there is a PTA A such
that for any graph G: (G,w) ∈ P iff the unraveling of G at w is in L(A).
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Proof. Let φ(x) be the MSO-formula over ΣN that expresses P . Theorem 9 in [20] states that
for every MSO-sentence ψ, there is a PTA A such that for every tree-shaped ΣN -labeled graph G
we have that G ∈ L(A) iff G |= ψ. To obtain a PTA for φ(x), we start from the MSO-sentence
ψ := ∃x (φ(x) ∧ ¬∃yE(y, x)) and build the corresponding PTA A. Then A is as desired. In fact,
(G,w) ∈ P iff G |= φ(w) iff U |= φ(w) with U the unraveling of G at w since P is expressible
by an ω-GML-formula which is invariant under unraveling (defined in Appendix C.1). Moreover,
U |= φ(w) iff U |= ψ iff U ∈ L(A).

Since GMSC-programs are invariant under unraveling, we may now prove Theorem 4.1 by consid-
ering PTAs obtained by Theorem 4.6 and constructing a ΣN -program Λ of GMSC for each such
PTA A = (Q,ΣN , q0,∆,Ω) so that the following holds: For every tree-shaped ΣN -labeled graph
G with root w, we have G ∈ L(A) iff G,w |= Λ. We then say that A and Λ are tree equivalent.

For a state q ∈ Q, let Aq be the PTA defined like A but with q as its initial state. For a tree-shaped
graph T , set QT = {q ∈ Q | T ∈ L(Aq)}. We say that Q ⊆ P(Q) is the universal set for
P ⊆ ΣN if Q consists precisely of the sets QT , for all tree-shaped graphs T , whose root is labeled
exactly with the node label symbols in P . Let T = (V,E, λ) be a tree-shaped graph with root w and
k ∈ N, and let Vk be the restriction of V to the nodes on level at most k (the root being on level 0).
A k-prefix decoration of T is a mapping µ : Vk → P(P(Q)) such that the following conditions
hold: (1) for each S ∈ µ(w): q0 ∈ S; (2) for all v ∈ V on the level k, µ(v) is the universal set
for λ(v); (3) for each v ∈ V on some level smaller than k that has out-neighbours u1, . . . , un and
all S1 ∈ µ(u1), . . . , Sn ∈ µ(un), µ(v) contains the set S that contains a state q ∈ Q iff we have
∆(q, λ(v)) = ϑ such that ϑ is satisfied in the following graph: the universe is {u1, . . . , un} and
each unary predicate q′ ∈ Q is interpreted as {ui | q′ ∈ Si}. Intuitively, a k-prefix decoration of T
represents a set of accepting runs of A on the prefix Tk of T . As these runs start in universal sets,
for each extension of Tk obtained by attaching trees to nodes on level k, we can find a run among
the represented ones that can be extended to an accepting run of A on that extension. In fact T is
such an extension. The following crucial lemma is proved in Appendix C.2.

Lemma 4.7. For every tree-shaped ΣN -labeled graph T : T ∈ L(A) if and only if there is a k-prefix
decoration of T , for some k ∈ N.

Using the above, we sketch the proof of Theorem 4.1; the full proof is in Appendix C.2.

Proof of Theorem 4.1. By Lemma 4.7, given a PTA A obtained from Lemma 4.6, we get a tree
equivalent GMSC-program Λ by building Λ to accept the root of a tree-shaped graph G iff G has a
k-prefix decoration for some k. This requires care, but is possible; the details are in Appendix C.2.
A crucial part of the proof is transferring the set of transition formulas of A into the rules of Λ.

5 Conclusion

We have characterized the expressivity of recurrent GNNs with floats and reals in terms of modal
logics, both in general and relative to MSO. Particularly, in restriction to MSO, GNNs with floats
and with reals have the same expressiveness. We mention two interesting directions for future re-
search. The first one is to extend our GNN model, e.g., with global readouts. On the GML side, these
correspond to the (counting) global modality [7]. Interestingly, it can be proved—via showing that
fixed points can be defined—that this extension makes non-reachability expressible, cf. Example 2.5.
The second direction is to consider other acceptance conditions for recurrent GNNs. Intuitively, it
should be possible to establish Theorem 3.2 for virtually any GNN acceptance condition, as long as
the acceptance condition of GMSC is changed accordingly. Both of these directions are explored
in [4]. In particular, it is shown there (and in Appendix D.1) that Theorem 3.2 also holds for recur-
rent GNNs where termination is based on fixed points, studied under the name “RecGNN” in [26].
These fixed points require only that a round is reached where the examined node does not exit the
set of accepting states which is closely related to but different from the fixed point condition in the
inaugural works [30, 11] which requires all nodes in the network to reach a stable state.

Limitations: For our acceptance condition (and for many others such as those based on fixed
points), training and applying a recurrent GNN brings questions of termination. These are very
important from a practical perspective, but not studied in this paper. A particularly interesting ques-
tion is whether termination can be learned in a natural way during the training phase.
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A Appendix: Preliminaries

A.1 Notions of size

We start this appendix by presenting definitions for the sizes of GMSC-programs, GNN[F]s and
bounded FCMPAs.

The size of a Π-program of GMSC is here defined as the size of Π plus the number of occurrences
of node label symbols, head predicates and logical operators in the program, with each ♢≥k adding
k to the sum instead of just 1.

The size of a GNN[F] or bounded FCMPA over Π is defined here as follows. For FCMPAs define
U := Q, and for GNN[F]s define U := Sd where S is the floating-point system and d the dimension
of the GNN[F]. In both cases, let n := |U | and let k be the bound. Note that the cardinality of a
multiset Mk(U) is the number (k + 1)n of different functions of type U → [0; k]. Then the size of
the GNN[F] or bounded FCMPA is |P(Π)| plus n · (k+1)n, i.e., the sum of the cardinality |P(Π)|
of its initialization function P(Π) → U and the cardinality n · (k + 1)n of its transition function
U ×Mk(U) → U as look-up tables.

We note that there is no single way to define the sizes of the objects above. For example, counting
each node label symbol, head predicate or state into the size just once may be naïve, as there may
not be enough distinct symbols in practice. To account for this, we could also define that the size of
each node label symbol, head predicate and state is instead log(k), where k is the number of node
label symbols, head predicates or states respectively. Likewise, the size of a diamond ♢≥ℓ could be
considered log(k), where k is the maximum ℓ appearing in a diamond in the program. However,
this happens to not affect the size of our translation from GNN[F]s to GMSC. As another example,
defining the size of a single floating-point number as one may be naïve; one could define that the
size of a single floating-point number is the length of the string that represents it in the floating-point
system instead of one.

A.2 Proof of Proposition 2.3

We recall Proposition 2.3 and give a more detailed proof.

Proposition 2.3. For all floating-point systems S, there exists a k ∈ N such that for all multisets M
over floats in S, we have SUMS(M) = SUMS(M|k).

Proof. Consider a floating-point system S = ((p, n, β),+, ·) and a multiset M ∈ M(S). We
assume f = 0.d1 · · · dp × βe ∈ S (the case where f = −0.d1 · · · dp × βe is symmetric). Assume
that the sum of all numbers smaller than f in M in increasing order is s ∈ S. Let s + f0 denote s
and let s+f ℓ+1 denote (s+f ℓ)+f for all ℓ ∈ N. It is clear that s+f ℓ+1 ≥ s+f ℓ, and furthermore,
if s+ f ℓ+1 = s+ f ℓ, then s+ f ℓ

′
= s+ f ℓ for all ℓ′ ≥ ℓ. If s+ f ℓ+1 = s+ f ℓ, then we say that

the sum s+ f ℓ has stabilized.

Let β′ := β − 1. We may assume that s ≥ −0.β′ · · ·β′ × βn. Since s + f ℓ+1 ≥ s + f ℓ for
each ℓ ∈ N and S is finite, there must exist some k ∈ Z+ such that either s + fk = s + fk−1 or
s+ fk = 0.β′ · · ·β′ × βn but then s+ fk+1 = s+ fk. Clearly, k = |S| is sufficient for each s and
f , and thus satisfies the condition of the proposition.

A smaller bound can be found as follows. Assume without loss of generality that d1 ̸= 0 (almost all
floating-point numbers in S can be represented in this form and the representation does not affect
the outcome of a sum; we consider the case for floats not representable in this way separately).
Now, consider the case where s = −0.β′ · · ·β′ × βe

′
for some e′ ∈ [−n, n], as some choice of

e′ clearly maximizes the number of times f can be added. Now it is quite easy to see that that
s + fβ

p−βp−1 ≥ −0.10 · · · 0 × βe
′
, unless the sum stabilizes sooner. This is because there are

exactly βp − βp−1 numbers in S from −0.β′ · · ·β′ × βe
′

to −0.10 · · · 0 × βe
′
. After this another

2βp−1 additions ensures that s + fβ
p+βp−1 ≥ 0. (Consider the case where p = 3 and β = 10 and

we add the number f = 0.501× 100 to −0.100× 103 repeatedly. We first get −0.995× 102, then
−0.990 × 102, etc. Each two additions of f is more than adding f ′ = 0.001 × 103 once, and f ′
can be added exactly βp−1 times to −0.100 × 103 until the sum surpasses 0, meaning that f can
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be added at most 2βp−1 times. On the other hand, if f were 0.500 × 100 or smaller, then the sum
would have never reached −0.100× 103 in the first place.)

Let ℓ := βp + βp−1. Let s′ := s+ f ℓ and assume the sum s′ has not yet stabilized. Next, it is clear
that for any i ∈ [p] we have s′ + fβ

i ≥ 0.10 · · · 0 × βe+i because d1 ≥ 1. For d1 ≤ β
2 , we have

that s′ + fβ
p

= 0.10 · · · 0 × βe+p which is where the sum stabilizes. If on the other hand d1 > β
2 ,

we have that s′ + fβ
p+1

= 0.10 · · · 0 × βe+p+1, which is where the sum stabilizes (this is because
d1 >

β
2 causes the sum to round upwards until the exponent reaches the value e+ p+ 1). Thus, we

get a threshold of βp+1 + βp + βp−1.

The case where d1 = 0 for all representations of f is analogous; we simply choose one represen-
tation and shift our focus to the first i such that di ̸= 0 and perform the same examination. The
position of i does not affect the overall analysis.

We conjecture that a smaller bound than βp+1+βp+βp−1 is possible, but involves a closer analysis.

B Appendix: Connecting GNNs and logics via automata

B.1 An extended definition for distributed automata

We give a more detailed definition for distributed automata. Given Π ⊆ LAB, a counting message
passing automaton (or CMPA) over Π is a tuple (Q, π, δ, F ), where

• Q is an at most countable non-empty set of states,

• π : P(Π) → Q is an initialization function,

• δ : Q×M(Q) → Q is a transition function, and

• F ⊆ Q is a set of accepting states.

If the set of states is finite, then we say that the counting message passing automaton is finite and
call it an FCMPA. Note that in the context of FCMPAs, finiteness refers specifically to the number
of states. We also define a subclass of counting message passing automata: a k-counting message
passing automaton (k-CMPA) is a tuple (Q, π, δ, F ), where Q, π and F are defined analogously
to CMPAs and the transition function δ can be written in the form Q ×Mk(Q) → Q, i.e., for all
multisets M ∈ M(Q) we have δ(q,M) = δ(q,M|k) for all q ∈ Q. A k-FCMPA naturally refers
to a k-CMPA whose set of states is finite; this is truly a finite automaton. For any k ∈ N, each
k-CMPA (respectively, each k-FCMPA) is called a bounded CMPA (resp., a bounded FCMPA).

Let G = (V,E, λ) be a Π-labeled graph. We define the computation of a CMPA formally. A
CMPA (or resp. k-CMPA) (Q, π, δ, F ) over Π and a Π-labeled graph G = (V,E, λ) define a
distributed system, which executes in ω-rounds as follows. Each round n ∈ N defines a global
configuration gn : V → Q which essentially tells in which state each node is in round n. If n = 0
and w ∈ V , then g0(w) = π(λ(w)). Now assume that we have defined gn. Informally, a new state
for w in round n+ 1 is computed by δ based on the previous state of w and the multiset of previous
states of its immediate out-neighbours. More formally, let w be a node and v1, . . . , vm its immediate
out-neighbours (i.e., the nodes v ∈ V s.t. (w, v) ∈ E). Let S denote the corresponding multiset of
the states gn(v1), . . . , gn(vm). We define gn+1(w) = δ(gn(w), S). We say that gn(w) is the state
of w at round n.

A CMPA (or resp. k-CMPA) accepts a pointed graph (G,w) if and only if gn(w) ∈ F for some
n ∈ N. If gn(w) ∈ F , then we say that the CMPA accepts (G,w) in round n. The computation
for FCMPAs is defined analogously (since each FCMPA is a CMPA).

B.2 Proof of Proposition 3.1

Note that extended definitions for automata are in Appendix B.1.

First we recall Proposition 3.1.

Proposition 3.1. Bounded FCMPAs have the same expressive power as GMSC.
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To prove Proposition 3.1 (in the end of this subsection), we first prove an auxiliary Lemma B.1
that informally shows that we can translate any GMSC-program into an equivalent program, where
the modal depth of the terminal clauses is zero and the modal depth of the iteration clauses is at
most one. Then in Lemma B.2 we show with the help of Lemma B.1 that for each GMSC-program
we can construct an equivalent bounded FCMPA. Finally, we show in Lemma B.3 that for each
bounded FCMPA we can construct an equivalent GMSC-program.

We start with an auxiliary result.
Lemma B.1. For every Π-program of GMSC, we can construct an equivalent Π-program Γ of
GMSC such that the modal depth of each terminal clause of Γ is 0, and the modal depth of each
iteration clause of Γ is at most 1.

Proof. The proof is similar to the proof of Theorem 11 in [1] (or the proof of Theorem 5.4 in
[2]). We consider an example and conclude that the strategy mentioned in the cited papers can be
generalized to our framework.

For simplicity, in the example below we consider a program where the modal depth of each terminal
clause is zero, since it is easy to translate any program of GMSC into an equivalent GMSC-program,
where the modal depth of the terminal clauses is zero. Then from the program of GMSC, where
the modal depth of each terminal clause is zero, it is easy to obtain an equivalent GMSC-program
where the modal depth of each terminal clause is zero and the modal depth of each iteration clause
is at most one.

Consider a {q}-program Λ, with the rulesX(0) :− ⊥,X :− ♢≥3(¬♢≥2♢≥1X∧♢≥3q). The modal
depth of the iteration clause of Λ is 3. The program Λ can be translated into an equivalent program
of GMSC where the modal depth of the iteration clauses is at most one as follows. First, we define
the following subprogram called a “clock”:

T1(0) :− ⊤ T1 :− T3
T2(0) :− ⊥ T2 :− T1
T3(0) :− ⊥ T3 :− T2.

We split the evaluation of each subformula between corresponding head predicates X1,1, X1,2, X2

andX3 and define their terminal clauses and iteration clauses as follows. The body for each terminal
clause is ⊥ and the iteration clauses are defined by

• X1,1 :− (T1 ∧ ♢≥1X3) ∨ (¬T1 ∧X1,1),

• X1,2 :− (T1 ∧ ♢≥3q) ∨ (¬T1 ∧X1,2),

• X2 :− (T2 ∧ ♢≥2X1,1) ∨ (¬T2 ∧X2),

• X3 :− (T3 ∧ ♢≥3(¬X2 ∧X1,1)) ∨ (¬T3 ∧X3).

The appointed predicate of the program is X3.

Let us analyze how the obtained program works. The program works in a periodic fashion: a single
iteration round of Λ is simulated in a 3 step period by the obtained program. The clock (i.e. the head
predicates T1, T2 and T3) makes sure that each level of the modal depth is evaluated once during
each period in the correct order. For example, if T2 is true, then the truth of X2 depends on the
truth of ♢≥2X1,1 and when T2 is false, then the truth of X2 stays the same. The head predicate
X3 essentially simulates the truth of X in Λ in the last round of each period. It is easy to show by
induction on n ∈ N that for all pointed {q}-labeled graphs (G,w) and for all k ∈ [0; 2]: G,w |= Xn

iff G,w |= Xn3+k
3 .

With Lemma B.1, it is easy to construct an equivalent bounded FCMPA for any GMSC-program.
Lemma B.2. For each Π-program of GMSC, we can construct an equivalent bounded FCMPA
over Π.

Proof. Let Λ be a (Π, T )-program of GMSC. By Lemma B.1 we obtain an equivalent (Π, T ′)-
program Γ where the modal depth is 0 for each terminal clause and at most 1 for each iteration
clause. Let k be the width of Γ. We create an equivalent k-FCMPA AΓ as follows.
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We create a state for each subset q ⊆ Π ∪ T ′; these form the state set Q = P(Π ∪ T ′).

We formulate the initialization function π as follows: π(P ) = q if Π ∩ q = P and for each head
predicate X ∈ T ′ (with the terminal clause X(0) :− φ) we have that X ∈ q if and only if φ is true
when exactly the node label symbols in P are true. (Here it is vital that the terminal clauses have
modal depth 0.)

Before we define the transition function, we define an auxiliary relation ⊩ for schemata with modal
depth at most 1. Let N ∈ M(Q) be a multiset of states and let q be a state. Given a (Π, T )-schema
ψ with modal depth at most 1, we define the relation (q,N) ⊩ ψ recursively as follows: (q,N) ⊩ ⊤
always, (q,N) ⊩ p iff p ∈ q, (q,N) ⊩ X iff X ∈ q, (q,N) ⊩ ¬φ iff (q,N) ̸⊩ φ, (q,N) ⊩ φ ∧ θ
iff (q,N) ⊩ φ and (q,N) ⊩ θ, and (q,N) ⊩ ♢≥ℓφ iff there is a set Q′ ⊆ Q of states such that∑
q′∈Q′ N(q′) ≥ ℓ and (q′, ∅) ⊩ φ for all q′ ∈ Q′ (note that φ has modal depth 0).

Now we shall formulate the transition function δ as follows. Let N ∈ M(Q) be a multiset of states
and let q be a state. For each node label symbol p ∈ Π, p ∈ δ(q,N) iff (q,N) ⊩ p (i.e. p ∈ q). For
each head predicate X ∈ T ′ with the iteration clause X :− ψ we have that X ∈ δ(q,N) if and only
if (q,N) ⊩ ψ. (Here it is crucial that the iteration clauses have modal depth at most 1.)

The set of accepting states is defined as follows. If X ∈ q for some appointed predicate X of Γ then
q ∈ F ; otherwise q /∈ F .

If G is Π-labeled graph and v is a node in G, then we let vn denote the state of AΓ at v in round n.
Moreover, if N is the set of out-neighbours of v, we let Nn

v denote the multiset {{un | u ∈ N}}.
Then we prove by induction on n ∈ N that for any (Π, T ′)-schema φ of modal depth 1 and for each
pointed Π-labeled graph (G,w), we have (wn, Nn

w) ⊩ φ iff G,w |= φn.

If n = 0 we prove by induction on the structure of φ that (w0, N0
w) ⊩ φ iff G,w |= φ0.

• Case φ = p ∈ Π: Trivial, since (w0, N0
w) ⊩ p iff p ∈ w0 iff G,w |= p iff G,w |= p0.

• Case φ = X ∈ T ′: Let ψX be the body of the terminal clause of X . Now, (w0, N0
w) ⊩ X

iff X ∈ w0 iff G,w |= ψX iff G,w |= X0.

Now, assume that the induction hypothesis holds for (Π, T ′)-schemata ψ and θ with modal depth at
most 1.

• Case φ := ¬ψ: Now, (w0, N0
w) ⊩ ¬ψ iff (w0, N0

w) ̸⊩ ψ. By the induction hypothesis, this
is equivalent to G,w ̸|= ψ0 which is equivalent to G,w |= ¬ψ0.

• Case φ := ψ ∧ θ: Now, (w0, N0
w) ⊩ ψ ∧ θ iff (w0, N0

w) ⊩ ψ and (w0, N0
w) ⊩ θ. By the

induction hypothesis, this is equivalent to G,w |= ψ0 and G,w |= θ0, which is equivalent
to G,w |= ψ0 ∧ θ0.

• Case φ := ♢≥ℓψ: First it is easy to show that for every (Π, T ′)-schema ψ of modal
depth 0 and for every state q of AΓ that (q, ∅) ⊩ ψ iff (q,N) ⊩ ψ for every multiset
N of states of AΓ. Now, (w0, N0

w) ⊩ ♢≥ℓψ iff there is a set Q′ ⊆ Q of states such that∑
q′∈Q′ N0

w(q
′) ≥ ℓ and (q′, ∅) ⊩ ψ for every q′ ∈ Q′ iff there is a setN of out-neighbours

of w such that |N | ≥ ℓ and (u0, N0
u) ⊩ ψ for every u ∈ N . By the induction hypothesis

this is true iff there is a set N of out-neighbours of w such that |N | ≥ ℓ and G, u |= ψ0 for
every u ∈ N , which is equivalent to G,w |= ♢≥ℓψ

0.

Now, assume that the induction hypothesis holds for n and let us prove the case for n+1. Similarly to
the case n = 0, we prove by induction on structure of φ that (wn+1, Nn+1

w ) ⊩ φ iff G,w |= φn+1.
The proof by induction is almost identical, except in the case where φ = X ∈ T ′. Let χX be the
body of the iteration clause of X . Then (wn+1, Nn+1

w ) ⊩ X iff X ∈ wn+1 iff (wn, Nn
w) ⊩ χX . By

the induction hypothesis, this is equivalent to G,w |= χnX , which is equivalent to G,w |= Xn+1.

Thus, the result above implies that for all pointed Π-labeled graphs (G,w), the automaton AΓ is in
the state q at w in round n iff G,w |= Xn and G,w |= p for every X, p ∈ q, and G,w ̸|= Xn and
G,w ̸|= p for every p,X /∈ q. Therefore, by the definition of the set of accepting states we see that
AΓ is equivalent to Γ.
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The converse direction is easier. Note that the definitions for sizes of GMSC-programs and bounded
FCMPAs can be found in Appendix A.1.
Lemma B.3. For each bounded FCMPA over Π, we can construct an equivalent Π-program of
GMSC. The size of the constructed GMSC-program is polynomial in the size of the FCMPA.

Proof. The proof below is analogous to the proof of Theorem 1 in [24]. Let Π be a set of node label
symbols, and let A = (Q, π, δ, F ) be a k-FCMPA over Π. For each state q ∈ Q, we define a head
predicate Xq and the corresponding rules as follows. The terminal clause for Xq is defined by

Xq(0) :−
∨

P⊆Π, π(P )=q

( ∧
p∈P

p ∧
∧

p∈Π\P

¬p
)
.

To define the iteration clause for each Xq we first define some auxiliary formulae. Given q, q′ ∈ Q,
we let Mk(q, q

′) = {S ∈ Mk(Q) | δ(q, S) = q′ }. Notice that the number of multisets S specified
by the set Mk(q, q

′) is finite. Now, for each S ∈Mk(q, q
′) we define

φS :=
∧

q∈Q,S(q)=n, n<k

♢=nXq ∧
∧

q∈Q,S(q)=k

♢≥kXq.

Then the iteration clause for Xq is defined by Xq :−
∧
q′∈Q

(
Xq′ →

∨
S∈Mk(q′,q)

φS

)
. It is easy to

show by induction on n ∈ N that for every pointed Π-labeled graph (G,w) it holds that G,w |= Xn
q

if and only if w is in the state q in round n (see [24] for the details; the only difference is swapping
sets for multisets).

The size of A is |P(Π)| + |Q|(k + 1)|Q| by definition. The size of all terminal clauses of the
constructed program is altogether |Q| + O(|Π| · |P(Π)|), as there are |Q| terminal clauses that
altogether encode each element of P(Π) and each encoding is of size O(|Π|). The size of all iteration
clauses of the constructed program is altogether O(|Q|2+ k|Q|2(k+1)|Q|) = O(k|Q|2(k+1)|Q|),
as there are |Q| iteration clauses with |Q| conjuncts each, and they altogether encode every element
of Mk(Q) exactly |Q| times and each encoding is of size O(k|Q|). Note that the cardinality of
Mk(Q) is (k + 1)|Q|, i.e., the number of functions of type Q → [0; k]. Thus, the size of the
program is

|Π|+ |Q|+O(|Π| · |P(Π)|) +O(k|Q|2(k + 1)|Q|) = O(|Π| · |P(Π)|+ k|Q|2(k + 1)|Q|)

which is clearly less than O((|P(Π)| + |Q|(k + 1)|Q|)2) and therefore polynomial in the size of
A. If head predicates and states were encoded in binary, the result would still be polynomial, as it
would simply add a factor of log(|Π|) and log(|Q|) respectively to the sizes of terminal and iteration
clauses.

Proof of Proposition 3.1. Note that the proof uses auxiliary results that are introduced in this sub-
section. Lemma B.2 shows that for every Π-program of GMSC we can construct an equivalent
bounded FCMPA over Π. Lemma B.3 shows that for every bounded FCMPA over Π we can con-
struct an equivalent Π-program of GMSC. Thus, we conclude that GMSC has the same expressive
power as bounded FCMPAs.

B.3 Proof of Theorem 3.2

First we recall Theorem 3.2.

Theorem 3.2. The following have the same expressive power: GNN[F]s, GMSC, and R-simple
aggregate-combine GNN[F]s.

In the end of this appendix section, we formally prove Theorem 3.2. Informally, this is done in the
following steps. First, we note that it is easy to obtain an equivalent bounded FCMPA for a given
GNN[F] and by Proposition 3.1 we can translate the bounded FCMPA into an equivalent GMSC-
program. The converse direction is much more interesting. In Lemma B.5 we show that for each
GMSC-program we can construct an equivalent R-simple aggregate-combine GNN[F].

Before we show how to obtain an equivalent R-simple GNN[F] for each GMSC-program, we first
want to modify the programs so that they are easier to handle via R-simple GNN[F]s. In particular,
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the terminal clauses of a program may involve diamonds, the rules of a program may have differing
amounts of nested logical operators, and so may the two conjuncts of each conjunction. Thus we
prove a lemma which intuitively shows how to “balance” GMSC-programs such that this is not the
case. We let fdepth(φ) denote the formula depth of a schema φ (see the definition of formula depth
in Section 2.2). The formula depth of a terminal clause (resp., of an iteration clause) refers to the
formula depth of the body of the clause. The formula depth of a GMSC-program is the maximum
formula depth of its clauses.

Lemma B.4. For each Π-program Λ of GMSC with formula depth D, we can construct an equiv-
alent Π-program Γ of GMSC which has the following properties.

1. Each terminal clause is of the form X(0) :− ⊥.

2. Each iteration clause has the same formula depth max(3, D + 2).

3. If φ ∧ θ is a subschema of Λ such that neither φ nor θ is ⊤, then φ and θ have the same
formula depth.

Proof. First we define a fresh auxiliary predicate I with the rules I(0) :− ⊥ and I :− ⊤. Informally,
we will modify the rules of Λ such that the terminal clauses are simulated by the iteration clauses
with the help of I . Then for each head predicate of Λ with terminal clause X(0) :− φ and iteration
clause X :− ψ we define new rules in Γ as follows: X(0) :− ⊥ and X :− (¬I ∧ φ) ∨ (I ∧ ψ).
Now, the formula depth of Γ is max(3, D + 2).

First, we “balance” the formula depth of each iteration clause in Γ according to the second point
in the statement of the lemma. Let d be the formula depth of an iteration clause X :− ψ, let
D′ = max(3, D + 2) and let n = D′ − d. If n is even, then the new iteration clause for X is
X :− (¬)nψ, where (¬)n = ¬ · · · ¬ denotes n nested negations. If n is odd, then the new iteration
clause for X is X :− (¬)n−1(ψ ∧ ⊤). In either case, the new iteration clause for X has formula
depth D′.

Then we show how to “balance” each subschema of Γ according to the third point in the statement
of the lemma as follows. Let φ∧ψ be a subschema of Γ such that neither φ nor ψ is ⊤, and w.l.o.g.
assume that fdepth(φ) < fdepth(ψ) and let n = fdepth(ψ) − fdepth(φ). If n is even, then we
replace φ∧ψ in Γ with (¬)nφ∧ψ. If n is odd, then we replace φ∧ψ in Γ with (¬)n−1(φ∧⊤)∧ψ.

We have now obtained the desired Γ. It is easy to see that Γ is equivalent to Λ as follows. If X is
a head predicate that appears in both Λ and Γ, then for each n ∈ N and for each pointed Π-labeled
graph, we have G,w |= Xn w.r.t. Λ iff G,w |= Xn+1 w.r.t. Γ. In Γ, the auxiliary predicate I
makes sure that each head predicateX in Γ that appears in Λ simulates in round 1 the corresponding
terminal clause of X in Λ and in subsequent rounds simulates the corresponding iteration clause of
X in Λ. Furthermore, for each head predicate X in Γ and for each pointed Π-labeled graph (G,w),
we have G,w ̸|= X0 w.r.t. Γ. Thus, Γ and Λ are equivalent.

Now we are ready to show the translation from GMSC to R-simple aggregate-combine GNN[F]s.

Lemma B.5. For each Π-program of GMSC we can construct an equivalent R-simple aggregate-
combine GNN[F] over Π.

Proof. Let Λ be a Π-program of GMSC. Informally, an equivalent R-simple aggregate-combine
GNN[F] for Λ is constructed as follows. First from Λ we construct an equivalent Π-program Γ of
GMSC with Lemma B.4. Let D be the formula depth of Γ.

Intuitively, we build an R-simple aggregate-combine GNN[F] GΓ for Γ which periodically computes
a single iteration round of Γ in D + 1 rounds. The feature vectors used by GΓ are binary vectors
v = uw where:

• u has one bit per each (distinct) subschema of a body of an iteration clause in Γ as well as
for each head predicate, and v1 keeps track of their truth values, and

• w has D + 1 bits and it keeps track of the formula depth that is currently being evaluated.
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Therefore, GΓ is a GNN[F] over (Π, N +D+ 1), where N is the number of (distinct) subschemata
of the bodies of the iteration clauses of Γ as well as head predicates, and D is the maximum formula
depth of the bodies of the iteration clauses. In order to be able to compute values, the floating-point
system for GΓ is chosen to be high enough. More precisely, we choose a floating-point system S
which express all integers from 0 at least up to Kmax, where Kmax is the width of Γ. Note that 0s
and 1s are also represented in the floating-point system S. Note that although feature vectors exist
that have elements other than 1s and 0s, they are not used.

Next we define the functions π and COM, and the set F of accepting states for GΓ. (Note that
AGG is just the sum in increasing order.) We assume an enumeration SUB(Γ) := (φ1, . . . , φN )
of subschemata and head predicates in Γ such that if φk is a subschema of φℓ, then k ≤ ℓ. The
initialization function π of GΓ with input P ⊆ Π outputs a feature vector v ∈ {0, 1}N+D+1,
where the value of each component corresponding to a node label symbol is defined as follows: the
component for p is 1 iff p ∈ P . The other components are 0s (excluding the possible subschema ⊤
which is assigned 1, as well as the very last (N +D + 1)th bit which is also assigned 1).

Recall that S is the floating-point system for GΓ. The combination function (as per the definition of
R-simple GNNs) is COM(x,y) = σ(x · C + y · A+ b) where σ is the truncated ReLU (ReLU∗)
defined by ReLU∗(x) = min(max(0, x), 1), b ∈ SN+D+1 and C,A ∈ S(N+D+1)×(N+D+1),
where b, C and A are defined as follows. For k, ℓ ≤ N + D + 1, we let Ck,ℓ (resp. Ak,ℓ) denote
the element of C (resp. A) at the kth row and ℓth column. Similarly for ℓ ≤ N +D+1 and for any
vector v ∈ SN+D+1 including b, we let vℓ denote the ℓth value of v. Now, we define the top-left
N ×N submatrices of C and A and the first N elements of b in the same way as Barceló et al. [5].
For all ℓ ≤ N we define as follows.

• If φℓ ∈ Π ∪ {⊤}, then Cℓ,ℓ = 1.

• If φℓ is a head predicate X with the iteration clause X :− φk, then Ck,ℓ = 1.

• If φℓ = φj ∧ φk, then Cj,ℓ = Ck,ℓ = 1 and bℓ = −1.

• If φℓ = ¬φk, then Ck,ℓ = −1 and bℓ = 1.

• If φℓ = ♢≥Kφk, then Ak,ℓ = 1 and bℓ = −K + 1.

Next, we define that the bottom-right (D + 1)× (D + 1) submatrix of C is the (D + 1)× (D + 1)
identity matrix, except that the rightmost column is moved to be the leftmost column. More formally,
for all N +1 ≤ ℓ < N +D+1 we have Cℓ,ℓ+1 = 1 and also CN+D+1,N+1 = 1. Lastly, we define
that all other elements in C, A and b are 0s. Finally, we define that v ∈ F if and only if vℓ = 1
(i.e., the ℓth value of v is 1) for some appointed predicate φℓ and also vN+D+1 = 1.

Recall that the formula depth of Γ is D. Let v(w)ti denote the value of the ith component of the
feature vector in round t at node w. It is easy to show by induction that for all n ∈ N, for all pointed
Π-labeled graphs (G,w), and for every schema φℓ in SUB(Γ) of formula depth d, we have

v(w)
n(D+1)+d
ℓ = 1 if G,w |= φnℓ and v(w)

n(D+1)+d
ℓ = 0 if G,w ̸|= φnℓ .

Most of the work is already done by Barceló et al. (see [5] for the details), but we go over the proof
as there are some additional considerations related to recurrence.

For the base case, let n = 0. We prove the case by induction over the formula depth d of φℓ. First,
let d = 0.

• Case 1: φℓ ∈ Π ∪ {⊤}. Now v0
ℓ = 1 and G,w |= ⊤0 if φℓ = ⊤. If φℓ = p ∈ Π,

then by the definition of the initialization function π we have v(w)0ℓ = 1 iff p ∈ λ(w) iff
G,w |= p0, and v(w)0ℓ = 0 iff p /∈ λ(w) iff G,w ̸|= p0.

• Case 2: φℓ = X , where X is a head predicate of Γ. Now v(w)0ℓ = 0 due to the definition
of the initialization function π, and G,w ̸|= X0 because each head predicate of Γ has the
terminal clause ⊥.

Now, assume the claim holds for n = 0 for any formulae φj , φk with formula depth d−1. We show
that the claim holds for n = 0 for formulae φℓ of formula depth d.
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• Case 3: φℓ = φj ∧ φk for some φj , φk (recall that Γ only contains conjunctions where
both conjuncts have the same formula depth if neither of them are ⊤). This means we have
Cj,ℓ = Ck,ℓ = 1 and bℓ = −1. Moreover, Cm,ℓ = 0 for all m ̸= j, k and Am,ℓ = 0 for all
m. Now

v(w)dℓ = ReLU∗ (v(w)d−1
j + v(w)d−1

k − 1
)
.

Thus v(w)dℓ = 1 iff v(w)d−1
j = v(w)d−1

k = 1. By the induction hypothesis this is
equivalent to G,w |= φ0

j and G,w |= φ0
k which is equivalent to G,w |= (φj ∧ φk)

0.
Likewise, v(w)dℓ = 0 iff v(w)d−1

j = 0 or v(w)d−1
k = 0. By the induction hypothesis this

is equivalent to G,w ̸|= φ0
j or G,w ̸|= φ0

k which is equivalent to G,w ̸|= (φj ∧ φk)0.

• Case 4: φℓ = ¬φk for some φk. This means we have Ck,ℓ = −1 and bℓ = 1. Moreover,
Cm,ℓ = 0 for all m ̸= k and Am,ℓ = 0 for all m. Now

v(w)dℓ = ReLU∗ (−v(w)d−1
k + 1

)
.

Thus v(w)dℓ = 1 iff v(w)d−1
k = 0. By the induction hypothesis this is equivalent to

G,w ̸|= φ0
k which is further equivalent to G,w |= (¬φk)0. Likewise, v(w)dℓ = 0 iff

v(w)d−1
k = 1. By the induction hypothesis this is equivalent to G,w |= φ0

k which is
equivalent to G,w ̸|= (¬φk)0.

• Case 5: φℓ = ♢≥Kφk for some φk. This means we have Ak,ℓ = 1 and bℓ = −K + 1.
Moreover, Cm,ℓ = 0 for all m and Am,ℓ = 0 for all m ̸= k. Now

v(w)dℓ = ReLU∗ (SUMS

(
{{v(v)d−1

k | (w, v) ∈ E }}
)
−K + 1

)
,

where SUMS : M(S) → S is the sum of floating-point numbers in S in increasing order
(see Section 2.1 for more details) and E is the set of edges of G. Thus v(w)dℓ = 1 iff there
are at least K out-neighbours v of w such that v(v)d−1

k = 1. By the induction hypothesis,
this is equivalent to there being at least K out-neighbours v of w such that G, v |= φ0

k

which is further equivalent to G,w |= (♢≥Kφk)
0. Likewise, v(w)dℓ = 0 iff there are fewer

than K out-neighbours v of w such that v(v)d−1
k = 1. By the induction hypothesis, this is

equivalent to there being fewer than K out-neighbours v of w such that G, v |= φ0
k which

is equivalent to G,w ̸|= (♢≥Kφk)
0.

Next, assume the claim holds for n for all formulae of any formula depth. We show that it also
holds for n + 1. We once again prove the claim by structure of φℓ. Cases 3, 4 and 5 are handled
analogously to how they were handled in the case n = 0, so we only consider cases 1 and 2.

• Case 1: φℓ ∈ Π ∪ {⊤}. This means we have Cℓ,ℓ = 1 and bℓ = 0. Moreover, Cm,ℓ = 0
for all m ̸= ℓ and Am,ℓ = 0 for all m. Now

v(w)
(n+1)(D+1)
ℓ = ReLU∗

(
v(w)

n(D+1)+D
ℓ

)
.

Thus we see that v(w)(n+1)(D+1)
ℓ = v(w)

n(D+1)+D
ℓ and a trivial induction shows that

also v(w)
(n+1)(D+1)
ℓ = v(w)

n(D+1)
ℓ . Now v(w)

(n+1)(D+1)
ℓ = 1 iff v(w)n(D+1)

ℓ = 1. By
the induction hypothesis this is equivalent to G,w |= φnℓ which is equivalent to G,w |=
φn+1
ℓ because φn+1

ℓ = φnℓ . Likewise, v(w)(n+1)(D+1)
ℓ = 0 iff v(w)n(D+1)

ℓ = 0. By the
induction hypothesis this is equivalent to G,w ̸|= φnℓ which is equivalent to G,w ̸|= φn+1

ℓ .

• Case 2: φℓ = X , where X is a head predicate of Γ with the iteration clause φk of formula
depth D (recall that in Γ, each iteration clause has formula depth D). This means we have
Ck,ℓ = 1 and bℓ = 0. Moreover, Cm,ℓ = 0 for all m ̸= k and Am,ℓ = 0 for all m. Now

v(w)
(n+1)(D+1)
ℓ = ReLU∗

(
v(w)

n(D+1)+D
k

)
.

Thus v(w)
(n+1)(D+1)
ℓ = 1 iff v(w)

n(D+1)+D
k = 1. By the induction hypothesis

this is equivalent to G,w |= φnk which is equivalent to G,w |= Xn+1. Likewise,
v(w)

(n+1)(D+1)
ℓ = 0 iff v(w)n(D+1)+D

k = 0. By the induction hypothesis this is equiva-
lent to G,w ̸|= φnk which is equivalent to G,w ̸|= Xn+1.
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This concludes the induction.

We also know for all n ≥ 1 and all N + 1 ≤ ℓ < N + D + 1 that v(w)nℓ+1 = v(w)n−1
ℓ and

v(w)nN+1 = v(w)n−1
N+D+1. This is because Cℓ,ℓ+1 = 1, Cℓ′,ℓ+1 = 0 for all ℓ′ ̸= ℓ and bℓ+1 = 0

and thus
v(w)nℓ+1 = ReLU∗ (v(w)n−1

ℓ

)
,

and also CN+D+1,N+1 = 1, Cℓ′,N+1 = 0 for all ℓ′ ̸= N +D + 1 and bN+1 = 0 and thus

v(w)nN+1 = ReLU∗ (v(w)n−1
N+D+1

)
.

By the initialization this means for all 1 ≤ ℓ, ℓ′ ≤ D + 1 and all n ∈ N that v(w)n(D+1)+ℓ′

N+ℓ = 1

iff ℓ′ = ℓ and 0 otherwise. Specifically, this means that v(w)n(D+1)+ℓ′

N+D+1 = 1 iff ℓ′ = D + 1 and

v(w)
n(D+1)+ℓ′

N+D+1 = 0 otherwise.

Thus if φℓ is an appointed predicate X of Γ, then we know for all n ∈ N that G,w |= Xn iff
v(w)

n(D+1)
ℓ = 1 and we also know that v(w)n(D+1)

N+D+1 = 1 and thereby v(w)n(D+1) ∈ F . Thus GΓ

is equivalent to Γ.

Since GΓ is equivalent to Γ which is equivalent to Λ, we are done.

We note that the proof of Lemma B.5 generalizes for other types of GNN[F]s, such as the type
described below. Let S = ((p, n, β),+, ·) be the floating-point system, where p = 1, n = 1 and
β = Kmax + 1, where Kmax is again the maximum width of the rules of Γ in the proof above.
We believe that the proof generalizes for other floating-point systems which can represent all non-
negative integers up to Kmax. Recall that Kmax is the width of Γ in the proof of Lemma B.5.
Consider a class of GNN[F]s over S with dimension 2(N +D + 1) (twice that in the proof above)
where the aggregation function is SUMS : M(S) → S (the sum of floating-point numbers in S
in increasing order applied separately to each element of feature vectors) and whose combination
function COM: S2(N+D+1) × S2(N+D+1) → S2(N+D+1) is defined by

COM(x, y) = ReLU(x · C + y ·A+ b),

where C,A ∈ S2(N+D+1)×2(N+D+1) are matrices, b ∈ S2(N+D+1) is a bias vector and ReLU is
the rectified linear unit defined by ReLU(x) := max(0, x) as opposed to ReLU∗. The last 2(D+1)
elements of feature vectors function as they do above, counting the 2(D + 1) steps required each
time an iteration of Γ is simulated (here the computation takes twice as long compared to above).
The first 2N elements calculate the truth values of subformulae as before, but now each calculation
takes two steps instead of one as each subschema is assigned two elements instead of one. The first
of these elements calculates the truth value of the subschema as before. However, due to the use
of ReLU instead of ReLU∗ the value of the element might be more than 1 if the subschema is of
the form ♢≥Kφk. Thus, the second element normalizes the values by assigning a weight of Kmax

ensuring that each positive value becomes Kmax and then assigning the bias −Kmax + 1 to bring
them all down to 1. More formally, for each subschema φℓ, let ℓ be the first and N + ℓ the second
element associated with φℓ. In the initialization step we define that if φℓ ∈ P ⊆ Π or φℓ = ⊤, then
π(P )N+ℓ = 1 and other elements of π(P ) are 0s. Now we define as follows for all 1 ≤ ℓ ≤ N .

• If φℓ ∈ Π ∪ {⊤}, then CN+ℓ,ℓ = 1.
• If φℓ is a head predicate X with the iteration clause X :− φk, then CN+k,ℓ = 1.
• If φℓ = φj ∧ φk, then CN+j,ℓ = CN+k,ℓ = 1 and bℓ = −1.
• If φℓ = ¬φk, then CN+k,ℓ = −1 and bℓ = 1.
• If φℓ = ♢≥Kφk, then AN+k,ℓ = 1 and bℓ = −K + 1.

In each of the above cases we also define that Cℓ,N+ℓ = Kmax and bN+ℓ = −Kmax+1. Lastly for
all 2N+1 ≤ ℓ < 2(N+D+1) we define (as before) thatCℓ,ℓ+1 = 1 and alsoC2(N+D+1),2D+1 = 1.
All other elements of C, A and b are 0s. The set F of accepting feature vectors is defined such
that v ∈ F iff vN+ℓ = 1 for some appointed predicate φℓ and also v2(N+D+1) = 1. It is then
straightforward to prove for all n ∈ N, for all pointed Π-labeled graphs (G,w) and for every schema
φℓ ∈ SUB(Γ) of formula depth d that

v(w)
2n(D+1)+2d−1
ℓ ≥ 1 and v(w)

2n(D+1)+2d
N+ℓ = 1 if G,w |= φnℓ
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and
v(w)

2n(D+1)+2d−1
ℓ = v(w)

2n(D+1)+2d
N+ℓ = 0 if G,w ̸|= φnℓ .

The proof is similar to the above, but we also need to show that normalization works as intended,
i.e., v(w)2n(D+1)+2d−1

ℓ ≥ 1 implies v(w)
2n(D+1)+2d
N+ℓ = 1 and v(w)

2n(D+1)+2d−1
ℓ = 0 implies

v(w)
2n(D+1)+2d
N+ℓ = 0. To see this, observe that Cℓ,N+ℓ = Kmax and bN+ℓ = −Kmax + 1 and also

Cℓ′,N+ℓ = 0 for all ℓ′ ̸= ℓ and Aℓ′,N+ℓ = 0 for all ℓ′. Thus

v(w)
2n(D+1)+2d
N+ℓ = ReLU

(
Kmax · v(w)2n(D+1)+2d−1

ℓ −Kmax + 1
)
,

which is 0 if v(w)2n(D+1)+2d−1
ℓ = 0 and 1 if v(w)2n(D+1)+2d−1

ℓ ≥ 1 (because by the choice of S
we have Kmax · x = Kmax for all x ∈ S, x ≥ 1).

Having proved Lemma B.5, we are now ready to conclude the main theorem of this appendix section
expressed below.

Proof of Theorem 3.2. Note that the proof uses auxiliary results introduced in this subsection. Each
GNN[F] is trivial to translate into an equivalent bounded FCMPA with linear blow-up in size by
the fact that the definitions of GNN[F]s and bounded FCMPAs are almost identical. Lemma B.5
shows that each GMSC-program can be translated into an equivalent R-simple aggregate-combine
GNN[F]. The translation from GNN[F]s to GMSC-programs causes only polynomial blow-up in
size by Lemma B.3.

B.4 Proof of Theorem 3.3

Note that k-CMPAs are defined in Appendix B.1. First we recall Theorem 3.3.

Theorem 3.3. CMPAs have the same expressive power as ω-GML.

The proof of Theorem 3.3 is in the end of this subsection but we need some auxiliary results first. We
show in Lemma B.7 that we can construct an equivalent counting type automaton over Π for each
Π-formula of ω-GML. Informally, to do this, we first define a Π-formula of GML called the “full
graded type of modal depth n” for each pointed graph, which expresses all the local information of
its neighbourhood up to depth n. We show in Proposition B.6 that for each ω-GML-formula there
is a logically equivalent disjunction of types. We also define counting type automata that compute
the type of modal depth n of each node in every round n. The accepting states of the resulting
automaton are exactly those types that appear in the disjunction of types.

Then we show in Lemma B.9 that for each CMPA over Π we can construct an equivalent Π-formula
of ω-GML. Informally, to do this we first prove in Lemma B.8 that two pointed graphs that satisfy
the same full graded type of modal depth n also have identical states in each round ℓ ≤ n in each
CMPA. For each n ∈ N, we consider exactly those full graded types of modal depth n which are
satisfied by some pointed graph that is accepted by the automaton in round n. We obtain the desired
ω-GML-formula by taking the disjunction of all these types across all n ∈ N.

By similar arguments, we also obtain Theorem B.10 which is analogous to Theorem 3.3 but re-
stricted to bounded CMPAs and width-bounded ω-GML, which involves defining analogous width-
bounded concepts.

Now, we start formalizing the proof of Theorem 3.3. To show that for each ω-GML-formula
we can construct an equivalent CMPA, we need to define the concepts of graded Π-types, full
graded Π-types and counting type automata. The graded Π-type of modal depth n and width k of a
pointed Π-labeled graph (G,w) is a Π-formula of GML that contains all the information from the
n-neighbourhood of w (according to outgoing edges), with the exception that at each distance from
w we can only distinguish between at most k identical branches. The full graded Π-type of modal
depth n lifts this limitation and contains all the information from the neighbourhood of depth n of
w. A counting type automaton of width k is a k-CMPA that calculates the graded Π-type of modal
depth n and width k of a node in each round n. Likewise, we define counting type automata which
calculate the full graded Π-type of modal depth n of a node in each round n.

Let Π be a set of node label symbols, let (G,w) be a pointed Π-labeled graph and let k, n ∈ N. The
graded Π-type of width k and modal depth n of (G,w) (denoted τ (G,w)

k,n ) is defined recursively as
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follows. For n = 0 we define that

τ
(G,w)
k,0 :=

∧
pi∈λ(w)

pi ∧
∧

pi /∈λ(w)

¬pi.

Assume we have defined the graded Π-type of width k and modal depth n of all pointed Π-labeled
graphs, and let Tk,n denote the set of such types. The graded Π-type of (G,w) of width k and modal
depth n+ 1 is defined as follows:

τ
(G,w)
k,n+1 := τ

(G,w)
k,0 ∧

k−1∧
ℓ=0

{♢=ℓτ | τ ∈ Tk,n and G,w |= ♢=ℓτ }

∧ {♢≥kτ | τ ∈ Tk,n and G,w |= ♢≥kτ }.

Canonical bracketing and ordering is used to ensure that no two types are logically equivalent, and
thus each pointed Π-labeled graph has exactly one graded Π-type of each modal depth and width.

A counting type automaton of width k over Π is a k-CMPA defined as follows. The set Q of
states is the set

⋃
n∈N Tk,n of all graded Π-types of width k (of any modal depth). The initialization

function π : P(Π) → Q is defined such that π(P ) = τ
(G,w)
k,0 where (G,w) is any pointed Π-labeled

graph satisfying exactly the node label symbols in P ⊆ Π. Let N : Tk,n → N be a multiset of
graded Π-types of width k and modal depth n, and let τ be one such type (note that Tk,n is finite for
any k, n ∈ N). Let τ0 be the unique type of modal depth 0 in Tk,n that does not contradict τ . We
define the transition function δ : Q×M(Q) → Q such that

δ(τ,N) = τ0 ∧
k−1∧
ℓ=0

{♢=ℓσ | N(σ) = ℓ } ∧ {♢≥kσ | N(σ) ≥ k },

For other N and τ that do not all share the same modal depth, we may define the transition as we
please such that δ(q,N) = δ(q,N|k) for all q and N .

We similarly define the full graded Π-type of modal depth n of a pointed Π-labeled graph (G,w)

(denoted by τ (G,w)
n ) which contains all the local information of the n-depth neighbourhood of (G,w)

with no bound on width. For n = 0, we define that τ (G,w)
0 = τ

(G,w)
k,0 for any k ∈ N. Assume that

we have defined the full graded Π-type of modal depth n of all pointed Π-labeled graphs, and let Tn
be the set of such full types. The full graded Π-type of modal depth n + 1 of (G,w) is defined as
follows:

τ
(G,w)
n+1 := τ

(G,w)
0 ∧

∧
ℓ≥1

{♢=ℓτ | τ ∈ Tn, (G,w) |= ♢=ℓτ } ∧ ♢=|N (w)|⊤,

where N (w) is the set of out-neighbours of w. The formula tells exactly how many out-neighbours
of a node satisfy each full graded type of the previous modal depth; to keep the formulae finite (over
finite graphs), instead of containing conjuncts ♢=0τ it tells exactly how many out-neighbours a node
has.

A counting type automaton over Π is a CMPA defined as follows. The set of states is the set of all
full graded Π-types. The initialization function π : P(Π) → Q is defined such that π(P ) = τ

(G,w)
0

where (G,w) is any pointed Π-labeled graph satisfying exactly the node label symbols in P . Let
N : Tn → N be a multiset of full graded Π-types of some modal depth n, and let τ be one such
type. Let τ0 be the unique full type of modal depth 0 in Tn that does not contradict τ . We define the
transition function δ : Q×M(Q) → Q such that

δ(τ,N) = τ0 ∧
∧
ℓ≥1

{♢=ℓσ | N(σ) = ℓ } ∧ ♢=|N |⊤,

For other N and τ that do not all share the same modal depth, we may define the transition as we
please.

We prove the following useful property.

Proposition B.6. Each Π-formula φ of modal depth n and width k of GML has
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1. a logically equivalent countably infinite disjunction of full graded Π-types of modal depth
n and

2. a logically equivalent finite disjunction of graded Π-types of width k and modal depth n.

Proof. First we prove the case for graded types of width k, then we prove the case for full graded
types. Let Tk,n, as above, denote the set of all graded Π-types of width k and modal depth n. Let
Φ = { τ ∈ Tk,n | τ |= φ } and ¬Φ = { τ ∈ Tk,n | τ |= ¬φ }, and let

∨
Φ denote the disjunction

of the types in Φ. Note that this disjunction is finite since the set Tk,n is finite. Obviously we have
that Φ ∩ ¬Φ = ∅ and

∨
Φ |= φ. To show that φ |=

∨
Φ, it suffices to show that Φ ∪ ¬Φ = Tk,n.

Assume instead that τ ∈ Tk,n \ (Φ ∪ ¬Φ). Then there exist pointed Π-labeled graphs (G,w) and
(H, v) that satisfy τ such that G,w |= φ and H, v |= ¬φ. Since (G,w) and (H, v) satisfy the same
graded Π-type of modal depth n and width k, there can be no Π-formula of GML of modal depth at
most n and width at most k that distinguishes (G,w) and (H, v), but φ is such a formula, which is
a contradiction. Ergo,

∨
Φ and φ are logically equivalent.

In the case of full graded types we first observe that the set Tn of full graded Π-types of modal depth
n is countable. Thus the sets Φ = { τ ∈ Tn | τ |= φ } and ¬Φ = { τ ∈ Tn | τ |= ¬φ } are also
countable. Now, with the same proof as for graded types of width k, we can show that

∨
Φ and φ

are logically equivalent. Therefore, φ is also logically equivalent to a countably infinite disjunction
of full graded Π-types of modal depth n.

Now, we are ready to show the translation from ω-GML to CMPAs.
Lemma B.7. For each Π-formula of ω-GML, we can construct an equivalent counting type au-
tomaton over Π. If the formula has finite width k, we can also construct an equivalent counting type
automaton of width k.

Proof. Assume the class K of pointed Π-labeled graphs is expressed by the countable disjunction
ψ :=

∨
φ∈S φ of Π-formulae φ of GML.

First, we prove the case without the width bound. By Proposition B.6, each φ ∈ S is logically
equivalent with a countably infinite disjunction φ∗ of full graded Π-types of GML such that the
modal depth of φ∗ is the same as the modal depth of φ. We define a counting type automaton A
whose set F of accepting states is the set of types that appear as disjuncts of φ∗ for any φ ∈ S. Now
(G,w) ∈ K if and only if G,w |= ψ if and only if G,w |= τ for some τ ∈ F if and only if the state
of (G,w) is τ in round n in A, where n is the modal depth of τ . Ergo, A accepts exactly the pointed
Π-labeled graphs in K.

The case for the width bound is analogous. First with Proposition B.6 we transform each disjunct
φ ∈ S to a finite disjunction φ+ of graded Π-types with the same width and modal depth as φ.
Then, for ψ we construct an equivalent type automaton of width k, where the set of accepting states
is the set of graded types of width k that appear as disjuncts of φ+ for any φ ∈ S.

Before we prove Lemma B.9 we prove another helpful (and quite obvious) lemma.
Lemma B.8. Two pointed Π-labeled graphs (G,w) and (H, v) satisfy exactly the same full graded
Π-type of modal depth n (respectively, graded Π-type of width k and modal depth n) if and only if
they share the same state in each round up to n for each CMPA (resp., each k-CMPA) over Π.

Proof. We prove the claim by induction over n without the width bound, since again the case for
the width bound is analogous. Let n = 0. Two pointed Π-labeled graphs (G,w) and (H, v) share
the same full graded Π-type of modal depth 0 if and only if they satisfy the exact same node label
symbols if and only if each initialization function π assigns them the same initial state.

Now assume the claim holds for n. Two pointed Π-labeled graphs (G,w) and (H, v) satisfy the
same full graded Π-type of modal depth n + 1 if and only if 1) they satisfy the same full graded
Π-type of modal depth 0 and 2) for each full graded Π-type τ of modal depth n, they have the same
number of neighbors that satisfy τ . Now 1) holds if and only if (G,w) and (H, v) satisfy the same
node label symbols, and by the induction hypothesis 2) is equivalent to the neighbors of (G,w) and
(H, v) sharing (pair-wise) the same state in each round (up to n) for each CMPA. This is equivalent
to (G,w) and (H, v) satisfying the same full graded Π-type of modal depth 0, and receiving the
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same multiset of states as messages in round n in each CMPA. By the definition of the transition
function, this is equivalent to (G,w) and (H, v) sharing the same state in round n + 1 for each
CMPA.

Now, we are able to show the translation from CMPAs to ω-GML.

Lemma B.9. For each CMPA (respectively, each k-CMPA) over Π, we can construct an equivalent
Π-formula of ω-GML (resp., of width k).

Proof. We prove the claim without the width bound, since the case with the width bound is analo-
gous. Assume that the class K of pointed Π-labeled graphs is expressed by the counting message
passing automaton A over Π. Let T be the set of all full graded Π-types and let

Φ = { τ (G,w)
n ∈ T | A accepts the pointed Π-labeled graph (G,w) ∈ K in round n }.

We define the countable disjunction
∨
τ∈Φ τ and show that G,w |=

∨
τ∈Φ τ if and only if A accepts

(G,w). Note that Φ is countable since T is countable.

If G,w |=
∨
τ∈Φ τ , then G,w |= τ

(H,v)
n for some pointed Π-labeled graph (H, v) accepted by A in

round n. This means that (G,w) and (H, v) satisfy the same full graded Π-type of modal depth n.
By Lemma B.8, this means that (G,w) and (H, v) share the same state in A in each round ℓ ≤ n.
Since A accepts (H, v) in round n, A also accepts (G,w) in round n. Conversely, if A accepts
(G,w) in round n, then τ (G,w)

n ∈ Φ and thus G,w |=
∨
τ∈Φ τ .

Finally, we prove Theorem 3.3.

Proof of Theorem 3.3. Note that the proof uses auxiliary results that are introduced in this subsec-
tion. Lemma B.7 shows that for each Π-formula of ω-GML we can construct an equivalent CMPA
over Π and Lemma B.9 shows that for each CMPA over Π we can construct an equivalent Π-formula
of ω-GML.

By Lemma B.7 and Lemma B.9, it is also straightforward to conclude a similar result for bounded
CMPAs and width-bounded ω-GML-formulae.

Theorem B.10. Bounded CMPAs have the same expressive power as width-bounded ω-GML-
formulae.

B.5 Proof of Theorem 3.4

First we recall Theorem 3.4.

Theorem 3.4. GNN[R]s have the same expressive power as ω-GML.

Informally, Theorem 3.4 is proved as follows (in the end of this section we give a formal proof). We
first prove Lemma B.12 which shows that we can translate any GNN[R] into an equivalent ω-GML-
formula. To prove Lemma B.12, we need to first prove an auxiliary result Lemma B.11, which
shows that if two pointed graphs satisfy the same full graded type of modal depth n, then those two
pointed graphs share the same feature vector in each round (up to n) with any GNN[R]. For these
results, we need graded types which were introduced in Section B.4.

Informally, the converse direction (Lemma B.13) is proved as follows. We first translate the Π-
formula of ω-GML into an equivalent CMPA over Π by Theorem 3.3. Then we translate the equiv-
alent CMPA into an equivalent counting type automaton (again, see Section B.4 for the definition
of counting type automata). Then we prove that we can construct an equivalent GNN[R] for each
counting type automaton. Informally, we encode each state of the counting type automaton into an
integer and the GNN[R] can use them to mimic the type automaton in every step.

In both directions, we also consider the case where GNN[R]s are bounded and the ω-GML-formulae
are width-bounded.

Before proving Lemma B.12, we first establish the following useful lemma.
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Lemma B.11. Two pointed Π-labeled graphs (G,w) and (H, v) satisfy exactly the same full graded
Π-type of modal depth n (respectively the same graded Π-type of width k and modal depth n) if
and only if they share the same state in each round (up to n) for each unbounded GNN[R] (resp.,
GNN[R] with bound k) over Π.

Proof. The proof is analogous to that of Lemma B.8.

With the above lemma, we are ready to prove Lemma B.12.

Lemma B.12. For each GNN[R] G over Π, we can construct an equivalent Π-formula of ω-GML.
Moreover, if G is bounded with the bound k, we can construct an equivalent Π-formula of ω-GML
of width k.

Proof. Assume that G is a GNN[R] over (Π, d). Let K be the class of pointed Π-labeled graphs
expressed by G. Now let

Φ = { τ (G,w)
n | G accepts the pointed Π-labeled graph (G,w) ∈ K in round n },

where τ (G,w)
n is the full graded Π-type of modal depth n of (G,w) (see Section B.4). Note that there

are only countably many formulae in Φ since there are only countably many full graded Π-types.
Consider the counting type automaton A over Π, where Φ is the set of accepting states. We will
show that A accepts (G,w) if and only if G accepts (G,w).

If (G,w) is accepted by A, then G,w |= τ
(H,v)
n for some pointed Π-labeled graph (H, v) accepted

by G in round n. This means that (G,w) and (H, v) satisfy the same full graded Π-type of modal
depth n. By Lemma B.11, this means that (G,w) and (H, v) share the same state in G in each round
ℓ ≤ n. Since G accepts (H, v) in round n, G also accepts (G,w) in round n. Conversely, if G
accepts (G,w) in round n, then τ (G,w)

n ∈ Φ and thus (G,w) is accepted by A by the definition of
counting type automata. Thus A and G are equivalent. By Theorem 3.3 we can translate the type
automaton A into an equivalent Π-formula of ω-GML. Therefore, for G we can obtain an equivalent
ω-GML-formula.

Next consider the case where G is bounded. We follow the same steps as above with the following
modification: instead of constructing a set of full graded types, we construct a set of graded types
of width k: Φ = { τ (G,w)

k,n | G accepts the pointed Π-labeled graph (G,w) ∈ K in round n }. The
reasoning of the second paragraph is then modified to refer to graded types of width k and GNNs
with the bound k respectively using Lemma B.11. By Theorem B.10 we obtain an equivalent width-
bounded ω-GML-formula for the counting type automaton of width k.

We then show the other direction of Theorem 3.4 in the next lemma. We first define a graph neural
network model that is used as a tool in the proof that follows. A recurrent graph neural network
over natural numbers GNN[N] over (Π, d), is a GNN[R] over (Π, d) where the feature vectors
and the domains and co-domains of the functions are restricted to Nd instead of Rd.

Lemma B.13. For each Π-formula of ω-GML, we can construct an equivalent GNN[R] over (Π, 1).
Moreover, for each Π-formula of ω-GML of width k, we can construct an equivalent bounded
GNN[R] over (Π, 1) with the bound k.

Proof. We first give an informal description, and then we give a formal proof. We show that each
counting type automaton over Π can be translated into an equivalent GNN[N] over (Π, 1), which
suffices since counting type automata have the same expressive power as ω-GML and CMPAs by
Lemma B.9 and by Lemma B.7. Informally, each counting type automaton can be simulated by a
graph neural network as follows. Each full type has a minimal tree graph that satisfies the full type.
Each such tree can be encoded into a binary string (or more precisely into an integer) in a standard
way. These binary strings are essentially used to simulate the computation of the counting type
automaton. At each node and in each round, the GNN[N] simulates the counting type automaton
by combining the multiset of binary strings obtained from its out-neighbours and the local binary
string into a new binary string that corresponds to the minimal tree that satisfies the type that would
be obtained by the counting type automaton in the same round at the same node.
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Now, we formally prove the statement. Let A be a counting type automaton. Now we create an
equivalent GNN[N] G over (Π, 1) as follows. Each full graded type is converted into the unique
finite rooted tree graph (T , r) of the same depth as the modal depth of the full type. This graph is
encoded into a binary string (in a standard way) as follows.

• The first n bits of the string are 1s, telling the number of nodes in the tree; we choose
some ordering v1, . . . , vn for the nodes. (A natural ordering would be to start with the root,
then list its children, then its grandchildren, etc.. The children of each node can be ordered
in increasing order of magnitude according to the encodings of their generated subtrees.
Another option is to assume that the domain of the tree is always [n] for some n ∈ N and
use the standard ordering of integers.) This is followed by a 0.

• The next nk bits are a bit string b that tells which node label symbol is true in which node;
for each ℓ ∈ [n] and i ∈ [k], the ((ℓ− 1)k + i):th bit of b is 1 if and only if T , vℓ |= pi.

• Finally, the last n2 bits form a bit string b′, where for each i, j ∈ [n], the ((i− 1)n+ j):th
bit of b′ is 1 if and only if (vi, vj) ∈ E, i.e., there is an edge from vi to vj .

The GNN G operates on these binary strings (we can either use the integers encoded in binary by
the binary strings, or interpret the binary strings as decimal strings). In round 0, the initialization
function maps each set of node label symbols to the encoding of the unique one-node tree graph
where the node satisfies exactly the node label symbols in question. In each subsequent round n,
each node receives a multiset N of binary encodings of full graded types of modal depth n− 1. The
aggregation function calculates a binary string that encodes the following graph:

• The graph contains a node r where every node label symbol is false.

• For each copy of each element in the multiset N , the graph contains a unique copy of the
rooted tree encoded by that element.

• There is an edge from r to the root of each of these rooted trees; the result is itself a rooted
tree where r is the root.

The combination function receives a binary string corresponding to the node’s full graded type τ of
modal depth n − 1, as well as the string constructed above. It takes the above string and modifies
the bits corresponding to the node label symbols at the root; it changes them to be identical to how
they were in the root in τ . The obtained binary encoding is the feature of the node in round n.

It is clear that the constructed GNN[N] G calculates a node’s full graded type of modal depth n in
round n. This is because our construction is an embedding from full graded types to natural numbers.
Any other such embedding would also suffice, as the images of the aggregation and combination
function are always full graded types and GNN[R]s do not limit the aggregation and combination
functions. We can choose the accepting states to be the numbers that encode the accepting states
in the corresponding counting type automaton A, in which case the GNN accepts exactly the same
pointed graphs as A.

Now consider the case where A is a counting type automaton of width k. We follow similar steps as
above with the following modifications.

• We convert each graded type of width k and modal depth n to a corresponding rooted tree.
We choose the tree with depth n and the least amount of branches; in other words, each
node has at most k identical out-neighbours.

• The aggregation function of G constructs a graph in the same way as above, except that it
creates at most k copies of a graph encoded by an element in the multiset.

It is clear that the resulting GNN is bounded, as the aggregation function is bounded by k.

We have now shown that for each counting type automaton we can construct an equivalent GNN[R]
(or more precisely an equivalent GNN[N]) and respectively for each counting type automaton of
width k we can construct an equivalent bounded GNN[R] (or more precisely an equivalent bounded
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GNN[N]). Therefore, by Lemma B.9 and by Lemma B.7 for each formula of ω-GML (and re-
spectively for each CMPA) we can construct an equivalent GNN[R]. Analogously, for each width-
bounded formula of ω-GML (and resp., for each bounded CMPA) we can construct an equivalent
bounded GNN[R].

We are now ready to formally prove Theorem 3.4.

Proof of Theorem 3.4. Note that the proof uses auxiliary results that are introduced in this subsec-
tion. By Lemma B.12 we can construct an equivalent Π-formula of ω-GML for each GNN[R]
over Π. By Lemma B.13 we can construct an equivalent GNN[R] over Π for each Π-formula of
ω-GML.

B.6 Proof of Remark 3.5

In this section we formally prove the claims in Remark 3.5, expressed in Theorems B.15 and B.16.
Note that we do not require boundedness for FCMPAs in the statement of the lemma below.

First we prove an auxiliary result.

Lemma B.14. For each FCMPA over Π with state set Q, we can construct an equivalent unre-
stricted GNN[F] over (Π, |Q|2).

Proof. We encode the FCMPA fully into the GNN[F]. First we give an informal description. The
feature vectors encode which state a node is in using one-hot encoding, i.e., only the bit correspond-
ing to the occupied state is 1 and others are 0. For a received multiset M of feature vectors, the
aggregation function encodes the function δM : Q→ Q, δM (q) = δ(q,M) into a vector, i.e., it tells
for each state qi which state qj satisfies δ(qi,M) = qj . To encode such a function we need |Q|2
components in the feature vector. Finally, the combination function receives (the encodings of) q
and δM and computes (the encoding of) δM (q).

Now we define the construction formally. Let Π be a set of node label symbols. Let A = (Q, π, δ, F )
be an FCMPA over Π. Assume some arbitrary ordering <Q between the states Q. Let q1, . . . , q|Q|
enumerate the states of Q w.r.t. <Q. Given a multiset M ∈ M(Q) the function δM : Q → Q,
δM (q) = δ(q,M) specified by M is possible to encode to the binary string dM ∈ {0, 1}|Q|2 as
follows. If δM (qi) = qj , then the ((i − 1)|Q| + j):th bit of dM is 1; the other bits are 0. That is,
dM encodes the function δM in binary.

We construct a GNN over (Π, |Q|2) over a floating-point system S that includes at least 0 and 1 (that
is to say, small floating-point systems suffice). For all i ≤ |Q|, we let di ∈ S|Q|2 denote the one-hot
string where exactly the ith bit is 1 and the other bits are 0s.

• Let P ⊆ Π. The initialization function π′ is defined as π′(P ) = di where π(P ) = qi.

• The aggregation function AGG is defined as follows. Assume that the multiset M contains
only one-hot strings di, where i ≤ |Q|. Now M corresponds to a multiset M∗, where
each di is replaced by qi. Then AGG(M) is dM∗ . Otherwise, the aggregation function is
defined in an arbitrary way.

• The combination function COM is defined as follows. Let d,d′ ∈ S|Q|2 such that d = di
is a one-hot string for some i ≤ |Q| and d′ = dM for some multiset M ∈ M(Q). Then
we define that COM(d,d′) = COM(di,dM ) = dj if and only if δM (qi) = qj . Otherwise
COM is defined in an arbitrary way.

• The set F ′ of accepting states is defined as follows. If d = dj is a one-hot string, then
dj ∈ F ′ if and only if qj ∈ F . Otherwise F ′ is defined in an arbitrary way.

It is easy to show by induction over n ∈ N that for any pointed Π-labeled graph (G,w), the state of
A at w in round n is qi ∈ Q if and only if the state of G at w in round n is di.

We note that this proof is based only on providing two embeddings to Sd where S is the floating-
point system and d is the dimension of the GNN[F]. The first is an embedding from the set Q
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and the second is an embedding from the set of functions Q → Q, and the two embeddings need
not be related in any way. Thus, any choice of floating-point system S and dimension d, such that
there are at least |Q|2 expressible feature vectors, would suffice and we would be able to define such
embeddings and the subsequent aggregation and combination functions. In particular, dimension
|Q|2 suffices for any floating-point system S.

The first claim in Remark 3.5 is stated as follows.

Theorem B.15. FCMPAs have the same expressive power as unrestricted GNN[F]s.

Proof. It is straightforward to translate an unrestricted GNN[F] into an equivalent FCMPA. By
Lemma B.14 we can also construct an equivalent unrestricted GNN[F] for each FCMPA.

The second claim in Remark 3.5 is stated as follows.

Theorem B.16. Bounded GNN[R]s have the same expressive power as width-bounded ω-GML.

Proof. Note that this proof uses auxiliary results that are in Appendix B.5. By Lemma B.12 we can
construct an equivalent width-bounded Π-formula of ω-GML for each bounded GNN[R] over Π.
By Lemma B.13 we can construct an equivalent bounded GNN[R] over Π for each width-bounded
Π-formula of ω-GML.

B.7 Proof that multiple GNN layers can be simulated using a single layer

In the literature, GNNs are often defined as running for a constant number of iterations unlike our
recurrent GNN model, see for example [5, 13, 12]. Each iteration of the GNN is considered its
own layer, and each layer has its own aggregation and combination function. More formally for any
N ∈ N, anN -layer GNN[R] GN over (Π, d) is a tuple (Rd, π, (δi)i∈[N ], F ), where π : P(Π) → Rd
is the initialization function, δi : Rd×M(Rd) → Rd is the transition function of layer i of the form
δ(i)(q,M) = COMi(q,AGGi(M)) (where AGGi : M(Rd) → Rd is the aggregation function of
layer i and COMi : Rd × Rd → Rd is the combination function of layer i) and F ⊆ Rd is the set
of accepting feature vectors. We define the computation of GN in a Π-labeled graph G = (V,E, λ)
as follows. In round 0, the feature vector of a node v is x0v = π(λ(v)). In round i ∈ [N ] , the feature
vector of a node is

xiv = δi(xi−1
v , {{xi−1

u | (v, u) ∈ E }}) = COMi(xi−1
v ,AGGi({{xi−1

u | (v, u) ∈ E }})).

We say that GN accepts a pointed graph (G,w) if and only if xNw ∈ F . Concepts concerning node
properties, equivalence and same expressive power are defined as for other models of GNNs.

Proposition B.17. For each N -layer GNN[R], we can construct an equivalent constant-iteration
GNN[R].

Proof. Intuitively, we add a clock to the feature vectors of the N -layer GNN[R] that tells the transi-
tion function of the constant-iteration GNN[R] which layer to simulate.

Let GN = (Rd, π, (δi)i∈[N ], F ) be an N -layer GNN[R] over (Π, d). We construct a constant-
iteration GNN[R] (G, N) = ((Rd+N , π′, δ′, F ′), N) over (Π, d + N) as follows. In all feature
vectors used, exactly one of the last N elements is 1 and the others are 0s. For the initialization
function π′ we define for all P ⊆ Π that π′(P ) = (π(P )1, . . . , π(P )d, 1, 0, . . . , 0) ∈ Rd+N , where
π(P )i denotes the ith element of π(P ) ∈ Rd. Before specifying the transition function, we define
the following:

• For each feature vector x = (x1, . . . , xd+N ) ∈ Rd+N , we let x′ = (x1, . . . , xd) and
x′′ = (xd+1, . . . , xd+N ).

• Likewise, for each M ∈ M(Rd+N ), let M ′ be M where each x ∈M is replaced with x′.

• Let f : RN → RN be a function such that we have f(1, 0, . . . , 0) = (0, 1, 0, . . . , 0),
f(0, 1, 0, . . . , 0) = (0, 0, 1, 0, . . . , 0), and so forth until f(0, . . . , 0, 1) = (0, . . . , 0, 1).
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Now, assuming that x ∈ Rd+N andM ∈ M(Rd+N ) such that exactly the ith element of x′′ and each
y′′ in M is 1 and others are 0s, we define that δ′(x,M) = (δi(x′,M ′), f(x′′)) (i.e., we concatenate
δi(x′,M ′) and f(x′′)). For other inputs, we define δ′ arbitrarily. The set F ′ of accepting feature
vectors is the set of feature vectors (x1, . . . , xd, 0, . . . , 0, 1), where (x1, . . . , xd) is an accepting
feature vector of GN . It is easy to show that (G, N) accepts a pointed Π-labeled graph (G,w) if and
only if GN accepts (G,w) (note that for both N -layer GNN[R]s and constant-iteration GNN[R]s,
only the feature vector of a node in round N counts for acceptance).

B.8 Proof of Theorem 3.6

First we recall Theorem 3.6.

Theorem 3.6. Constant-iteration GNN[R]s have the same expressive power as depth-bounded
ω-GML.

Proof. Note that we heavily use the proofs of Lemma B.12 and Lemma B.13.

Assume that (G, N) is a constant-iteration GNN[R] over (Π, d). Let K be the class of pointed
Π-labeled graphs expressed by (G, N). Now let

Φ = { τ (G,w)
N | G accepts (G,w) ∈ K in round N }

where τ (G,w)
N is the full graded Π-type of modal depth N of (G,w) (see Section B.4). Consider the

counting type automaton A over Π, where Φ is the set of accepting states. It is easy to show with
an analogous argument as in the proof of Lemma B.12 that A accepts (G,w) if and only if (G, N)
accepts (G,w).

For the converse, assume that ψ is a depth-bounded ω-GML-formula over Π of modal depth D.
First by Lemma B.6 we translate ψ into an equivalent formula ψ∗ which is a disjunction of full
graded Π-types such that the modal depth of ψ∗ is the same as ψ. By Lemma B.7, ψ∗ is equivalent
to a counting type automaton A over Π whose accepting states are the types that appear as disjuncts
of ψ∗. Since the depth of each type is bounded by D, each pointed graph accepted by A is accepted
in some round r ≤ D. By the proof of Lemma B.13 we can construct an equivalent GNN[R] G over
Π such that for all pointed Π-labeled graphs (G,w) and for all n ∈ N: A accepts (G,w) in round n
iff G accepts (G,w) in round n. Now, it is easy to modify G such that if G accepts a pointed graph in
round m then it also accepts that pointed graph in every round m′ > m. Therefore, for all pointed
graphs (G,w) we have that (G, D) accepts (G,w) iff G,w |= ψ∗ iff G,w |= ψ.

C Appendix: Characterizing GNNs over MSO-expressible properties

C.1 Proof of Lemma 4.2

In the end of this subsection we give the formal proof of Lemma 4.2. First we give some preliminary
definitions.

Let G = (V,E, λ) be a graph and let w0 ∈ V be a node in G. A walk in G starting at w0 is a
sequence p = w0, . . . , wn of elements of V such that (wi, wi+1) ∈ E for all i ≤ n − 1. We use
tail(p) to denote wn. Now, the unraveling of G at w0 is the graph U = (V ′, E′, λ′) defined as
follows:

V ′ = the set of all walks in G starting at w0

E′ = { (p, p′) ∈ V ′ × V ′ | p′ = pw for some w ∈ V }
λ′(p) = λ(tail(p)) for all p ∈ V ′.

We say that a formula φ(x) is invariant under unraveling if for every graph G = (V,E, λ) and
every w ∈ V , we have G |= φ(w) iff U |= φ(w), with U the unraveling of G at w. Invariance
under unraveling is defined in the same way also for GNNs. The following is easy to prove, see for
example [7].

Lemma C.1. The following are invariant under unraveling: ω-GML, GMSC, GNN[F]s, GNN[R]s,
and their constant iteration depth versions.
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We recall Lemma 4.2 and prove it.

Lemma 4.2. Any property expressible in MSO and as a constant-iteration GNN[R] is also FO-
expressible.

Proof. We present two different proofs. The first one is independent from Theorem 4.1 and the
second one is not.

Assume that the MSO-formula φ(x) over ΣN expresses the same node property as the constant
iteration depth GNN[R] (G, k) over ΣN , where k ∈ N is the iteration depth of G. It is shown in [10]
that on every class of graphs of bounded treedepth, MSO and FO have the same expressive power.
The class C of all tree-shaped ΣN -labeled graphs of depth at most k has bounded treedepth. We thus
find an FO-formula ϑ(x) over ΣN that is logically equivalent to φ(x) on C, i.e., for all T ∈ C with
root w we have T |= ϑ(w) iff T |= φ(w).

We may manipulate ϑ(x) into an FO-formula ϑ̂(x) such that for any pointed graph (G,w), we have
G |= ϑ̂(w) if and only if Uk |= ϑ(w) with Uk the restriction of the unraveling of G at w to elements
on level at most k. More precisely, to construct ϑ̂(x) we do the following:

• First we define an auxiliary formula

ψ≤k(x, y) :=
∨

0≤ℓ≤k

∃y0 · · · ∃yℓ
(
y0 = x ∧ yℓ = y ∧

∧
0≤m<ℓ

E(ym, ym+1)
)

which intuitively states that y lies at distance at most k from x.

• Then ϑ̂(x) is obtained from ϑ(x) by recursively replacing subformulae of type ∃yψ with
∃y(ψ≤k(x, y) ∧ ψ) as follows. First, we simultaneously replace each subformula of quan-
tifier depth 1. Having replaced subformulae of quantifier depth ℓ, we then simultaneously
replace subformulae of quantifier depth ℓ+ 1.

We then have, for every graph G, the following where U is the unraveling of G at w and Uk denotes
the restriction of U to elements on level at most k (the root being on level 0):

G |= φ(w) iff Uk |= φ(w) iff Uk |= ϑ(w) iff G |= ϑ̂(w)

The first equivalence holds because φ is expresses the same property as G, the second one by choice
of ϑ, and the third one by construction of ϑ̂.

We also present an alternative proof which takes advantage of Theorem 4.1. By Theorem 3.6 (G, k)
is equivalent to some depth-bounded ΣN -formula ψ of ω-GML. On the other hand, by Theorem
4.1 G is equivalent to some GMSC-program Λ, since the property expressed by G is expressible
in MSO. By the proof of Proposition 2.6 Λ is equivalent to some width-bounded ΣN -formula ψ′

of ω-GML. Now, it is easy to show that ψ ∧ ψ′ is equivalent to some ΣN -formula ψ∗ of GML,
since ψ is depth-bounded and ψ′ is width-bounded. This can be seen by transforming ψ and ψ′ into
disjunctions of (non-full) graded types by applying Proposition B.6 (see also Appendix B.4 for the
definition of graded types). Since (G, k) is equivalent to the ΣN -formula ψ∗ of GML, it expresses a
node property also expressible in FO, since GML is a fragment of FO.

C.2 Proof of Theorem 4.1

First we recall Theorem 4.1.

Theorem 4.1. Let P be a property expressible in MSO. Then P is expressible as a GNN[R] if and
only if it is expressible in GMSC.

We recall some details of the proof sketch of Theorem 4.1. We use an automaton model proposed
in [31] that captures the expressive power of MSO on tree-shaped graphs. (Note that the automaton
model is defined in Section 4.) We then show that the automaton for an MSO-formula φ that
expresses the same property as a GNN[R] (and thus as a formula of ω-GML) can be translated into
a GMSC-program expressing the same property. To do this, we prove the important Lemma 4.7
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which shows that for all tree-shaped graphs T : the automaton for φ accepts T iff there is a k-prefix
decoration of T for some k ∈ N. Intuitively, a k-prefix decoration of T represents a set of accepting
runs of the automaton for φ on the prefix Tk of T (the formal definitions are in Section 4). Then
we build a GMSC-program that accepts a tree-shaped graph T with root w iff there is a k-prefix
decoration of T for some k ∈ N.

We next define in a formal way the semantics of parity tree automata (the definition of a parity tree
automaton (PTA) is in Section 4). For what follows, a tree T is a subset of N∗, the set of all finite
words over N, that is closed under prefixes. We say that y ∈ T is a successor of x in T if y = xn
for some n ∈ N. Henceforth we will call successors out-neighbours. Note that the empty word ε
is then the root of any tree T . A Σ-labeled tree is a pair (T, ℓ) with T a tree and ℓ : T → Σ a node
labeling function. A maximal path π in a tree T is a subset of T such that ε ∈ π and for each x ∈ π
that is not a leaf in T , π contains one out-neighbour of x.

Definition C.2 (Run). LetG be a ΣN -labeled graph withG = (V,E, λ) and A = (Q,ΣN , q0,∆,Ω)
a PTA. A run3 of A on G is a Q × V -labeled tree (T, ℓ) such that the following conditions are
satisfied:

1. ℓ(ε) = (q0, v) for some v ∈ V ;

2. for every x ∈ T with ℓ(x) = (q, v), the following graph satisfies the formula ∆(q, λ(v)):4

• the universe consists of all u with (v, u) ∈ E;
• each unary predicate q′ ∈ Q is interpreted as the set

{u | there is an out-neighbour y of x in T such that ℓ(y) = (q′, u) }.

A run (T, ℓ) is accepting if for every infinite maximal path π of T , the maximal i ∈ N, for which the
set {x ∈ π | ℓ(x) = (q, d) with Ω(q) = i} is infinite, is even. We use L(A) to denote the language
accepted by A, i.e., the set of ΣN -labeled graphs G such that there is an accepting run of A on G.

We remark that, in contrast to the standard semantics of FO, the graph defined in Point 2 of the above
definition may be empty and thus transition formulas may also be interpreted in the empty graph. A
transition formula is true in this graph if and only if it does not contain any existential quantifiers,
that is, k = 0. Note that a transition formula ϑ without existential quantifiers is a formula of the
form ∀z( diff(z) → ψ), where ψ is a disjunction of conjunctions of atoms q(z) which are unary
predicates for the states of the automaton. Such a formula may or may not be true in a non-empty
graph. For example, if ψ in ϑ is a logical falsity (the empty disjunction), then ϑ is satisfied only in
the empty graph.

Let P be a node property over ΣN which is expressible in MSO and also in ω-GML. Let
A = (Q,ΣN , q0,∆,Ω) be a PTA that is obtained by Theorem 4.6 from P . If ψ is the ω-GML-
formula expressing P , then we may simply say that A and ψ are equivalent. We identify a sequence
S1, . . . , Sn of subsets of Q with a graph struct(S1, . . . , Sn) defined as follows:

• the universe is {1, . . . , n};

• each unary predicate q′ ∈ Q is interpreted as the set {i | q′ ∈ Si}.

For a tree-shaped graph T , we let Tk denote the restriction of T to the nodes whose distance from
the root is at most k. An extension of Tk is then any tree-shaped graph T ′ such that T ′

k = Tk, that is,
T ′ is obtained from Tk by extending the tree from the nodes at distance k from the root by attaching
subtrees, but not from any node at distance ℓ < k from the root. Note that k-prefix decorations of T
and universal sets of states are defined in Section 4.

Lemma 4.7. For every tree-shaped ΣN -labeled graph T : T ∈ L(A) if and only if there is a k-prefix
decoration of T , for some k ∈ N.

3Often semantics for parity tree automata are given with parity games, for the details see for example [14].
Informally, parity games are played by two players called Eloise and Abelard, where Eloise tries to show that
the PTA accepts a given graph. Informally, the semantics introduced here represents a winning strategy of
Eloise in parity games and similar semantics are used for example in [23].

4Note that the graph is empty if and only if v is a dead end in G.
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Proof. “⇒”. Assume that T ∈ L(A). Let
∨
i ψi be the ΣN -formula of ω-GML that A is equivalent

to. Then T |= ψi for some i. Let k be the modal depth of ψi. Then T ′ |= ψi for every extension T ′

of Tk.

Next we construct a mapping µ : Vk → P(P(Q)) and show that µ is a k-prefix decoration of (T,w).
We construct µ as follows. For all v ∈ V on the level k, we define µ(v) as the universal set for λ(v).
Then analogously to the third condition in the definition of k-prefix decorations, we define µ(v) for
each node v on a level smaller than k. Now, all we have to do is show that the first condition in
the definition of k-prefix decorations is satisfied, i.e., for each S ∈ µ(w), q0 ∈ S. Then we may
conclude that µ is a k-prefix decoration.

Assume by contradiction that there exists a set S ∈ µ(w) such that q0 /∈ S. (Note that µ(v) ̸= ∅ for
all v ∈ Vk by the definition of k-prefix decorations.) By Condition 3 of k-prefix decorations, there
must exist sets S1

1 ∈ µ(u11), . . . , S
1
n1

∈ µ(u1n1
) (where u11, . . . , u

1
n1

are the nodes on level 1) such
that q ∈ S iff the transition formula ∆(q, (λ(w))) is satisfied in the graph where each u1i is labeled
S1
i for each 1 ≤ i ≤ n1. By the same logic, we find such sets Sm1 ∈ µ(um1 ), . . . , Smnm

∈ µ(umnm
)

(where um1 , . . . , u
m
nm

are the nodes on level m) for each m ≤ k (note that these nodes do not
necessarily share the same predecessor). Let T ′ be an extension of Tk that is obtained by attaching
to each node uki of Tk on level k some rooted tree T ′′ that is accepted by A precisely when starting
from one of the states in the set we chose for that node, i.e., QT ′′ = Ski .

Now, we can demonstrate that there is no accepting run rT ′ = (TT ′ , ℓ) of A on T ′. Any such run
has to begin with ℓ(ε) = (q0, w). Note that the out-neighbours of ε cannot be labeled with exactly
the labels (q, u1i ) such that q ∈ S1

i because ∆(q0, λ(w)) is not satisfied in the graph consisting of
the out-neighbours u1i of w labeled with S1

i for each 1 ≤ i ≤ n1. In fact, the out-neighbours of ε
cannot be labeled with any subset of such labels either, because by definition all transition formulae
ϑ are monotonic in the sense that

(V,E, λ) ̸|= ϑ =⇒ (V,E, λ′) ̸|= ϑ for all λ′ ⊆ λ.

Thus, there is an out-neighbour x1 of ε in TT ′ such that ℓ(x1) = (q, u1i ) where q /∈ S1
i , and we may

continue this examination starting from x1 in the same way. Inductively, we see that for any level
m we find a son xm of xm−1 such that ℓ(xm) = (q, umi ) where q /∈ Smi , including the level m = k
where we let ℓ(xk) = (q, uki ). Thus q /∈ Ski . However, we have Ski = QT ′′ and it is witnessed
by the run rT ′ that A accepts the tree T ′′ rooted at uki when started in state q. Thus, q ∈ Ski , a
contradiction.

“⇐”. Let µ : Vk → P(P(Q)) be a k-prefix decoration of T , for some k. We may construct from
µ an accepting run r = (T ′, ℓ) of A on T . For every node v in Tk on level k, let Tv denote the
subtree of T rooted at v. Let a semi-run be defined like a run except that it needs not satisfy the
first condition from the definition of runs (that is, it need not start in the initial state of the PTA). A
semi-run being accepting is defined exactly as for runs.

Take any node v in Tk on level k. Since µ(v) is universal for λ(v), we find an Sv ∈ µ(v) such that
q ∈ Sv if and only if Tv ∈ L(Aq). (Note that µ(v) ̸= ∅ for all v ∈ Vk by the definition of k-prefix
decorations.) Consequently, for each q ∈ Sv we find an accepting semi-run rv,q = (T ′

v,q, ℓv,q) of
A on Tv with ℓv,q(ε) = (q, v). We now proceed upwards across Tk, assembling all these semi-runs
into a run. In particular, we choose a set Su ∈ µ(u) for every node u in Tk and, for all q ∈ Su, a
semi-run ru,q = (T ′

u,q, ℓu,q) with ℓu,q(ε) = (q, u).

Let v be a node in Tk that has not yet been treated and such that its out-neighbours u1, . . . , un have
already been treated, that is, we have already selected a set Sui ∈ µ(ui) for 1 ≤ i ≤ n along with
the associated semi-runs. Due to Condition 3 of k-prefix decorations, we find a set Sv ∈ µ(v) such
that for each q ∈ Sv: ∆(q, λ(v)) is satisfied by the graph struct(Su1

, . . . , Sun
). Choose this set

Sv .5 As for the semi-runs, let q ∈ Sv . Then ∆(q, λ(v)) is satisfied by the above graph. We may
thus choose as rv,q the semi-run that is obtained as follows:

1. start with a fresh root ε and set ℓv,q(ε) = (q, v);

2. for each i ∈ {1, . . . , n} and each q′ ∈ Sui
, add the semi-run rui,q′ as a subtree, making the

root of rui,q′ an out-neighbour of the fresh root that we had chosen.
5Note that if v has no out-neighbours, then Sv is the set of states q such that ∆(q, λ(v)) is satisfied in the

empty graph.
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Note in step 2 that for each 1 ≤ i ≤ n, if Sui = ∅, then no semi-run rui,q′ is added as a subtree.
Let w be the root of T . In view of Condition 1 of k-prefix decorations, it is easy to verify that the
semi-run rw,q0 is in fact a run of A on T . Moreover, this run is accepting since we had started with
accepting semi-runs at the nodes v in Tk on level k and the finite initial piece that rw,q0 adds on top
of those semi-runs has no impact on which states occur infinitely often in infinite paths.

By Lemma 4.7, we may finish the proof of Theorem 4.1 by constructing a GMSC-program Λ such
that for every tree-shaped ΣN -labeled graph T with root w, we have T,w |= Λ iff there is a k-prefix
decoration of T , for some k. The definition of Λ follows the definition of k-prefix decorations. This
construction serves as the proof of Lemma C.4 below it.

We define a fresh schema variable XS for all S ⊆ Q. First, a set P ⊆ ΣN of node label symbols
can be specified with the formula

φP :=
∧
p∈P

p ∧
∧

p∈ΣN\P

¬p,

which states that the node label symbols in P are true and all others are false. Let QP denote the
universal set for P . For every XS , the program Λ contains the following terminal clause, reflecting
Condition 2 of k-prefix decorations:

XS(0) :−
∨

S∈QP

φP .

Note that if the disjunction is empty, we have XS(0) :− ⊥.

We also define a special appointed predicate A that is true when all the head predicates XS that do
not contain q0 are false, reflecting Condition 1 of k-prefix decorations. More formally A is the only
appointed predicate of the program, and it is defined as follows: A(0) :− ⊥ and

A :−
∧
q0 /∈S

¬XS .

For the iteration clauses of head predicatesXS , we need some preliminaries. LetK be the maximum
over all k such that ∆ mentions a transition formula

ϑ := ∃x1 · · · ∃xk
(
diff(x1, . . . , xk) ∧ q1(x1) ∧ · · · ∧ qk(xk) ∧ ∀z( diff(z, x1, . . . , xk) → ψ)

)
.

A counting configuration c ∈ MK+1(P(Q)) is a multiset of sets of states that contains each set of
states at most K +1 times. A sequence S1, . . . , Sn of subsets of Q realizes the counting configura-
tion c if for each S ⊆ Q, one of the following holds:

• c(S) ≤ K and the number of sets Si among S1, . . . , Sn with Si = S is c(S);

• c(S) = K + 1 and the number of sets Si among S1, . . . , Sn with Si = S exceeds K.

It is easy to prove the following lemma.

Lemma C.3. Let ϑ be a transition formula mentioned in ∆ and assume that S1, . . . , Sn and
S′
1, . . . , S

′
n′ realize the same counting configuration. Then struct(S1, . . . , Sn) satisfies ϑ iff

struct(S′
1, . . . , S

′
n′) satisfies ϑ.

By the above lemma, we may write c |= ϑ, meaning that struct(S1, . . . , Sn) satisfies ϑ for any
(equivalently: all) S1, . . . , Sn that realize c.

It is easy to see that we can specify a counting configuration c ∈ MK+1(P(Q)) in GMSC because
we can count out-neighbours; for example, we can write the following formula, which states that
for each set S of states there are exactly c(S) out-neighbours where the label includes S, unless
c(S) = K + 1, in which case it permits more such out-neighbours:

ψc :=
∧

c(S)=ℓ≤K

♢=kXS ∧
∧

c(S)=K+1

♢≥K+1XS .
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For each set P of node label symbols and set S of states, we can specify the set of counting con-
figurations in MK+1(P(Q)) that satisfy a formula ∆(q, P ) if and only if q ∈ S with the following
disjunction:

ΨS,P :=
∨

c∈MK+1(P(Q))
c|=∆(q,P ) iff q∈S

ψc.

Recall also that the formula φP specifies the set of node label symbols in P . The iteration clause for
XS must state that there is a set P of node label symbols that are true and for which ΨS,P is true.
This can be expressed as below:

XS :−
∨

P⊆ΣN

(
φP ∧ΨS,P

)
.

We prove that the GMSC-program Λ characterizes k-prefix decorations associated with A. A
pseudo k-prefix decoration µ is defined like a k-prefix decoration except that it needs not sat-
isfy the first condition of the definition of k-prefix decorations (that is, every set in the root given by
µ does not need to contain the initial state). Now, given ℓ ∈ N and a tree-shaped ΣN -labeled graph
T , let µℓT denote the pseudo ℓ-prefix decoration of T . For each ℓ ∈ N and each set S of states of
Λ, we show by induction on n ∈ [0; ℓ] that for every tree-shaped ΣN -labeled graph T and for each
node v in T on level ℓ− n, we have

T, v |= Xn
S ⇐⇒ S ∈ µℓT (v).

In the case n = 0, the claim holds trivially for the nodes v on level ℓ by definition of Λ, since then
T, v |= X0

S if and only if S is in the universal set for P , where P is the set of node label symbols
that appear in v.

Assume that the claim holds for n < ℓ; we will show that it also holds for n+ 1. Let v be a node of
T on the level ℓ− (n+ 1).

First assume that T, v |= Xn+1
S , that is, for some P ⊆ ΣN , we have T, v |= φnP and T, v |= ΨnS,P .

Therefore, there is a multiset c ∈ MK+1(P(Q)) such that c |= ∆(q, P ) iff q ∈ S and T, v |= ψnc .
Thus, for every set S′ of states of A we have that if c(S′) = m ≤ K, there are exactly m out-
neighbours v1, . . . , vm of v such that T, vi |= Xn

S′ for every i ∈ [m], and if c(S′) = K + 1, there
are at least K + 1 out-neighbours v1, . . . , vK+1 of v such that T, vi |= Xn

S′ for every i ∈ [K + 1].
By the induction hypothesis, for every set S′ of states of A we have that if c(S′) = m ≤ K, there
are exactly m out-neighbours v1, . . . , vm of v such that S′ ∈ µℓT (vi) for every i ∈ [m], and if
c(S′) = K+1, there are at least K+1 out-neighbours v1, . . . , vK+1 of v such that S′ ∈ µℓT (vi) for
every i ∈ [K+1]. Since c |= ∆(q, P ) iff q ∈ S and by the definition of pseudo k-prefix decorations,
we have S ∈ µℓT (v).

Then assume that S ∈ µℓT (v). Let {v1, . . . , vm} be the set of out-neighbours of v. By the induction
hypothesis for each i ∈ [m] and each set S′ of states of A, it holds that S′ ∈ µℓT (vi) iff T, vi |= Xn

S′ .
By the definition of pseudo k-prefix decorations there are sets S1 ∈ µℓT (v1), . . . , Sm ∈ µℓT (vm)
such that q ∈ S iff struct(S1, . . . , Sm) |= ∆(q, P ), where P is the set of node label symbols that
are true in v. Now, let c ∈ MK+1(P(Q)) be a counting configuration realized by S1, . . . , Sm. Now
since K is the maximum over all k such that ∆ mentions a transition formula

ϑ := ∃x1 · · · ∃xk
(
diff(x1, . . . , xk) ∧ q1(x1) ∧ · · · ∧ qk(xk) ∧ ∀z( diff(z, x1, . . . , xk) → ψ)

)
,

we have c |= ∆(q, P ). Therefore, T, v |= ψnc and trivially T, v |= φnP , and thus T, v |= Xn+1
S .

Now, if Λ accepts a ΣN -labeled tree-shaped graph (T,w), then by the result above it means that there
is a pseudo k-prefix decoration µ such that T,w |= Ak+1. Thus in round k we have T,w ̸|= Xk

S
for all S where q0 /∈ S. Therefore S /∈ µ(w) for all S where q0 /∈ S, i.e., µ is actually a k-prefix
decoration. Similarly if a tree-shaped graph (T,w) has a k-prefix decoration, then T,w |= Ak+1 by
the result above. Thus we have proved the lemma below.
Lemma C.4. For every tree-shaped ΣN -labeled graph T with root w: T,w |= Λ iff there is a
k-prefix decoration of T , for some k.

Now we are ready to prove Theorem 4.1.
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Proof of Theorem 4.1. Note that some of the results needed for this proof are given in this appendix
section and some are given outside the appendix. Let P be a node property expressible in MSO by
an MSO-formula φ(x) over ΣN .

Assume that P is expressible by a ΣN -program of GMSC. By Proposition 2.6 P is also expressible
ΣN -formula of ω-GML and thus by Theorem 3.4 as a GNN[R] over ΣN . For the converse, assume
that P is expressible as a GNN[R] over ΣN . Thus P is expressible by ΣN -formula of ω-GML
by Theorem 3.4. Therefore, there is a PTA A and a ΣN -program Λ of GMSC such that for any
ΣN -labeled graph G with root w:

G |= φ(w)
Theorem 4.6⇐⇒ the unraveling U of G at w is in L(A)

Lemma 4.7⇐⇒ there is a k-prefix decoration of U , for some k ∈ N
Lemma C.4⇐⇒ U,w |= Λ

Lemma C.1⇐⇒ G,w |= Λ.

Thus, we have proven Theorem 4.1.

C.3 Proof of Theorem 4.3

We recall and prove Theorem 4.3.

Theorem 4.3. Let P be a node property expressible in MSO. Then P is expressible as a GNN[R] if
and only if it is expressible as a GNN[F]. The same is true for constant-iteration GNNs.

Proof. Let P be an MSO-expressible property over ΣN . By Theorem 4.1, P is expressible as a
GNN[R] iff it is expressible in GMSC. Thus by Theorem 3.2 P is expressible as a GNN[R] iff it is
expressible as a GNN[F].

For constant-iteration GNNs we work as follows. First assume that P is expressible as a constant-
iteration GNN[R] over ΣN . Then by Lemma 4.2, P is also expressible in FO. Thus, by Theorem
4.2 in [5] P is expressible by a ΣN -formula of GML (trivially, each constant-iteration GNN (G, L)
is trivial to translate to an L-layer GNN; see Appendix B.7 for the definition of L-layer GNNs).
For a GML-formula it is easy to construct an equivalent constant-iteration GNN[F]; the technique
is essentially the same as in the proof of Lemma B.5 (omit the clock in the construction) and in the
proof of Theorem 4.2 in [5]. The converse direction is trivial.

D Appendix: Conclusion

D.1 A note on other termination conditions

A variant of our proofs gives a counterpart of Theorem 3.2 for recurrent GNNs with a termination
condition based on fixed points, studied under the name of “RecGNN” in [26] and closely related to
the termination condition in [30, 11].

We start by defining a fixed point acceptance condition for GNNs and for GMSC. Let G be a GNN
over Π, let (G,w) be a pointed Π-labeled graph, and let xtw denote the feature vector of w in round
t. We say that G fixed point accepts (G,w) if there is a round t ∈ N such that xTw ∈ F for all T ≥ t.

We define the same accepting condition for GMSC analogously. Let Λ be a Π-program of GMSC,
let A be the set of appointed predicates of Λ and let (G,w) be a pointed Π-labeled graph. We
say that Λ fixed point accepts (G,w) if there is a round t ∈ N such that for all T ≥ t we have
G,w |= XT for some X ∈ A.

Next we discuss how the proof of Theorem 3.2 is modified such that the same result holds with fixed
point acceptance.
Theorem D.1. The following three have the same expressive power relative to fixed point accep-
tance: GNN[F]s, GMSC, and R-simple aggregate-combine GNN[F]s.

Proof. We start by showing that each GNN[F] can be translated into an equivalent GMSC-program
relative to fixed point acceptance. First we note that it is easy to translate a GNN[F] G over (Π, d)
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into an equivalent bounded FCMPA A over Π such that the following holds. Let xtw denote the
feature vector of G in round t at node w and respectively let ytw denote the state of A in round t at
node w. Let FG and FA denote the accepting states of G and A respectively. Then for all pointed
Π-labeled graphs (G,w) and for all t ∈ N it holds that

xtw ∈ FG ⇐⇒ ytw ∈ FA.

Moreover, the construction in the proof of Lemma B.3 shows that we can construct a GMSC-
program Λ over Π for A with the set A of appointed predicates such that for all pointed Π-labeled
graphs (G,w) and for all t ∈ N we have

G,w |= Xt for some X ∈ A ⇐⇒ ytw ∈ FA.

Clearly, for all pointed Π-labeled graphs (G,w): G fixed point accepts (G,w) iff Λ fixed point
accepts (G,w).

Then we show that each GMSC-program Λ can be translated into an equivalent R-simple aggregate-
combine GNN[F] G relative to fixed point acceptance. We simply modify the proof of Lemma B.5
as follows: we add to the set of accepting feature vectors all feature vectors v where vN+D+1 ̸= 1.
Now it is clear for all pointed graphs (G,w) that Λ fixed point accepts (G,w) if and only if G fixed
points accepts (G,w).
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