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Abstract

Despite recent advancements in language and001
vision modeling, integrating rich multimodal002
knowledge into recommender systems contin-003
ues to pose significant challenges. This is pri-004
marily due to the need for efficient recommen-005
dation, which requires adaptive and interactive006
responses. In this study, we focus on sequential007
recommendation and introduce a lightweight008
framework called full-scale Matryoshka repre-009
sentation learning for multimodal recommen-010
dation (fMRLRec). Our fMRLRec captures011
item features at different granularities, learning012
informative representations for efficient recom-013
mendation across multiple dimensions. To in-014
tegrate item features from diverse modalities,015
fMRLRec employs a simple mapping to project016
multimodal item features into an aligned fea-017
ture space. Additionally, we design an efficient018
linear transformation that embeds smaller fea-019
tures into larger ones, substantially reducing020
memory requirements for large-scale training021
on recommendation data. Combined with im-022
proved state space modeling techniques, fM-023
RLRec scales to different dimensions and only024
requires one-time training to produce multiple025
models tailored to various granularities. We026
demonstrate the effectiveness and efficiency027
of fMRLRec on multiple benchmark datasets,028
which consistently achieves superior perfor-029
mance over state-of-the-art baseline methods.030

1 Introduction031

Recent advancements in language and multimodal032

modeling demonstrates significant potential for033

improving recommender systems (Touvron et al.,034

2023; Liu et al., 2023; OpenAI, 2023; Reid et al.,035

2024). Such progress can be largely attributed to:036

(1) language / vision features can provide addi-037

tional descriptive information for understanding038

user preference and item characteristics (e.g. item039

descriptions); and (2) generic language capabilities040

acquired through language and vision pretraining041

tasks could be transferred for use in recommenda- 042

tion systems. Consequently, language and multi- 043

modal representations provide a robust foundation 044

for enhancing the contextual relevance and accu- 045

racy of recommendations (Li et al., 2023a; Geng 046

et al., 2023; Yue et al., 2023a; Wei et al., 2024b). 047

Despite performance improvements, different 048

recommendation scenarios (e.g., centralized or fed- 049

erated recommender systems) often require varying 050

granularities (i.e., model / dimension sizes) in item 051

representations to achieve the balance between per- 052

formance and efficiency (Han et al., 2021; Luo 053

et al., 2022; Xia et al., 2023; Zeng et al., 2024). 054

For instance, larger dimensions are typically re- 055

quired to encode language and vision features for 056

fine-grained understanding and generation tasks, 057

although marginally lower performance can of- 058

ten be achieved using considerably smaller fea- 059

ture sizes (Kusupati et al., 2022). To identify the 060

optimal granularity for specific use cases in rec- 061

ommendation systems, methods like grid search or 062

adaptive search heuristics are frequently utilized 063

in training (Wang et al., 2024). However, such 064

searches can lead to substantial training expenses or 065

fail to identify the optimal model, particularly when 066

given a large configuration space and constrained 067

computational resources. Therefore, a train-once 068

and deploy-anywhere solution is optimal for the 069

efficient training of recommender systems, which 070

should ideally meet the following criteria: 071

1. Training is only need once to yield multiple 072

models of different sizes corresponding to var- 073

ious performance and memory requirements; 074

2. Training and inference should demand no 075

more computational costs than training a sin- 076

gle large model, allowing deployment of vari- 077

ous model sizes at inference time. 078

Inspired by Matryoshka Representation Learn- 079

ing (MRL) (Kusupati et al., 2022), we introduce 080
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a lightweight multimodal recommendation frame-081

work named full-scale Matryoshka Representation082

Learning for Recommendation (fMRLRec). fMRL-083

Rec embeds smaller vector/matrix representations084

in larger ones like Matryoshka dolls and is only085

trained once without additional computation costs.086

Different from MRL that only embeds smaller final-087

layer activations into larger ones during training,088

fMRLRec pushes the efficiency of MRL training089

by introducing an efficient linear transformation090

that embeds both smaller weights and activations091

into larger ones, thereby reducing memory costs092

associated with both aspects. This approach is par-093

ticularly effective for training recommender sys-094

tems on large-scale data, offering a highly effi-095

cient framework for multi-granularity model train-096

ing. Combined with further improvements in state-097

space modeling represented by (Yue et al., 2023b;098

Orvieto et al., 2023; Gu and Dao, 2023), the linear099

recurrence architecture in fMRLRec delivers both100

effectiveness and efficiency in recommendation per-101

formance across various benchmark datasets. We102

summarize our contributions below1:103

1. We introduce a novel training framework for104

multimodal sequential recommendation (fM-105

RLRec), which provides an efficient paradigm106

to learn models of varying granularities within107

a single training session.108

2. fMRLRec introduces an efficient linear trans-109

formation that reduces memory costs by em-110

bedding smaller features into larger ones.111

Combined with improved state-space model-112

ing, fMRLRec achieves both efficiency and113

effectiveness in multimodal recommendation.114

3. We show the effectiveness and efficiency of115

our fMRLRec on benchmark datasets, where116

the proposed fMRLRec consistently outper-117

forms state-of-the-art baselines with consider-118

able improvements in training efficiency and119

recommendation performance.120

2 Related Works121

2.1 Multimodal Recommendation122

Language and multimodal models are applied as123

recommender systems to understand user prefer-124

ences and item properties (Hou et al., 2022; Li125

et al., 2023a; He and McAuley, 2016b; Wei et al.,126

1We adopt publicly available datasets in our experiments
and will release our implementation upon publication.

2023). Current language-based approaches lever- 127

age pretrained models to improve item represen- 128

tations or re-rank retrieved items (Chen, 2023; Li 129

et al., 2023b; Luo et al., 2023; Yue et al., 2023a; 130

Xu et al., 2024). For example, VQ-Rec utilizes a 131

language encoder and vector quantization to im- 132

prove item features in cross-domain recommen- 133

dation (Hou et al., 2023). To further incorporate 134

visual data, existing methods focus on developing 135

strategies that extracts informative user / item repre- 136

sentations (Wei et al., 2019; Tao et al., 2020; Wang 137

et al., 2023; Wei et al., 2024a,b). For instance, 138

VIP5 leverages a pretrained transformer with addi- 139

tional vision encoder to learn user transition patters 140

and improve recommendation performance (Geng 141

et al., 2023). However, current models are not 142

tailored to accommodate flexible item attributes 143

or modalities, nor are they optimized for scalable 144

model sizes and efficient inference. Moreover, mul- 145

timodal approaches require substantial computa- 146

tional resources and separate training sessions for 147

each model, rendering them largely ineffective for 148

real-world applications. To address this, we intro- 149

duce a lightweight multimodal recommendation 150

framework in fMRLRec, offering multiple model 151

sizes within a single training session and efficient 152

inference capabilities across various scenarios. 153

2.2 Matryoshka Representation Learning 154

Matryoshka representation learning (MRL) con- 155

structs embeddings at different granularities us- 156

ing an identical model, thereby providing adapt- 157

ability to varying computational resources without 158

additional training (Kusupati et al., 2022). MRL 159

proposes nested optimization of vectors in mul- 160

tiple dimensions using shared model parameters, 161

demonstrating promising results on multiple down- 162

stream tasks and further applications (Cai et al., 163

2024; Hu et al., 2024; Li et al., 2024). Nevertheless, 164

training MRL models demands additional memory 165

for activations in its nested optimization, posing 166

challenges for training recommender systems with 167

large batches on extensive data. Furthermore, MRL 168

remains unexplored for sequential modeling and ef- 169

ficient multimodal recommendation. As such, our 170

fMRLRec aims to provide an adaptive framework 171

for learning recommender systems using arbitrary 172

modalities, delivering both efficacy and efficiency 173

in multimodal sequential recommendation. 174
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Figure 1: fMRLRec-based weight design, white cells
indicate zeros and arrows show vector-matrix multipli-
cation. Input slice [0 : m] is only relevant to weight
matrix slice [0 : m, 0 : km] during training, convenient
for variously-sized model weights extraction during in-
ference time.

3 Methodologies175

3.1 Problem Statement176

We present fMRLRec with a research focus in177

multimodal sequential recommendation. Formally,178

given a user set U = {u1, u2, ..., u|U |} and an item179

set V = {v1, v2, ..., v|V |}, user u’s interacted item180

sequence in chronological order is denoted with181

Su = [v
(u)
1 , v

(u)
2 , ..., v

(u)
n ], where n is the sequence182

length. The sequential recommendation task is to183

predict the next item v
(u)
n+1 that user u will interact184

with. Mathematically, our objective can be formu-185

lated as the maximization of the probability of the186

next interacted item v
(u)
n+1 given Su:187

p(v
(u)
n+1 = v|Su) (1)188

3.2 Full-Scale Matryoshka Representation189

Learning for Recommendation190

In this section, we elaborate on how we design191

the full-scale Matryoshka Representation Learning192

for multimodal sequential recommendation (fM-193

RLRec). The majority of model parameters in194

neural networks can be represented with a set of195

2-dimensional weights W = {W1,W2, . . . ,Wn}196

where Wi ∈ Rd1×d2 , i ∈ {1, 2, . . . , n}, regardless197

of specific model architecture. Intuitively, fMRL-198

Rec aims to design the Wi ∈ W s.t. models of dif-199

ferently sizes M = [2, 4, 8, 16, . . . , D] are trained200

only once at the same cost of only training size-D201

model. After training, any model sizes in M can be202

extracted from the size-D model to form indepen-203

dent small models for deployment. To achieve this204

goal, fMRLRec allows small models to be embed-205

ded in the largest model. Define sequential input as206

Xi ∈ RB×L×D to be processed by W , where B is 207

batch size, L is item sequence length and D is the 208

embedding size, there are three cases for the shape 209

of Wi ∈ Rd1×d2 , denoted as D(Wi), 210

D(Wi) =


D× kD if d1 < d2

kD×D if d1 > d2

D×D if d1 = d2

(2) 211

Here, we assume k ∈ Z+/{1} to ease the deriva- 212

tion since Wi often indicates linear up/down scal- 213

ing by an integer k times (e.g., post-attention MLPs 214

in transformer). 215

For case 1 where D(Wi) = D × kD and Xi ∈ 216

RB×L×D, XiWi indicates an up scale. We define 217

the j’s slice of Xi as X(j)
i = Xi[0 : M[j]] and the 218

j’s slice of Wi as 219

W
(j)
i =


Wi[0 : M[0], 0 : kM[0]] if j = 0

Wi[0 : M[j],kM[j − 1] if j > 0

: kM[j]]

220

For case 2 where D(wi) = kD×D and the cor- 221

responding input Xi ∈ RB×L×kD, XiWi indicates 222

a down scale. We define the j’s slice of sequential 223

input Xi as X(j)
i = Xi[0 : 2M[j]] and the j’s slice 224

of Wi as 225

W
(j)
i =


Wi[0 : kM[0], 0 : M[0]] if j = 0

Wi[0 : kM[j],M[j − 1] if j > 0

: M[j]]

226

For case3 where D(wi) = D×D, assign k = 1 227

for any of above two cases yields W(j)
i . 228

Then, we perform matrix multiplication between 229

X
(j)
i and W

(j)
i followed by concatenation along 230

dimension j to form the output 231

Yi = [X
(0)
i W

(0)
i , . . . ,X

(z)
i W

(z)
i ] (3) 232

where z = log(D/2). Refer to figure 1 for case 1 233

of this process. 234

The fMRLRec Operator Instead of comput- 235

ing equation 3, we would like the chunk/slice- 236

wise multiplication of X
(j)
i W

(j)
i for all j = 237

1, 2, . . . , log(D/2) is computed by one forward 238

pass to derive output Yi. Specifically, we create 239

a padding mask Pi(M) of the same size as Wi that 240

Pi(M) = {prs = 0|wrs ∈ Wi, wrs /∈ W
(j)
i }

(4) 241
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Figure 2: The overall architecture for fMRLRec.

Then we define the fMRLRec operator as:242

fMRLRec(Wi,M) = Pi(M)⊙Wi (5)243

Thus, Xi · fMRLRec(Wi, Pi(M)) is equivalent to244

perform equation 3 but only with one time multi-245

plication of Xi and masked Wi. See figure 1 for an246

illustration of the fMRLRec operator.247

In summary, given a neural network represented248

by W = {W1,W2, . . .Wn} where Wi ∈ Rd1×d2249

and a set of sizes M = {2, 4, 8, . . . , D}, we could250

find an fMRLRec-slicing of W such that the first251

M[j] elements of input Xi is only processed by252

corresponding chunks in Wi. After the model is253

trained, we take the first [0 : M[j], 0 : kM[j] or254

[0 : kM[j], 0 : M[j]] (depending on the cases in255

equation 2) slice for each Wi to form independent256

small models called fMRLRec-series models for257

inference. Also refer to the upper left of figure258

1 for the slicing process. For Wi ∈ Rd, one can259

leave it as is during training and naturally extract260

[0 : M[j]] of it during inference.261

3.3 Overall Framework262

The overall framework of fMRLRec is illustrated in263

fig. 2, including feature encodings, LRU-based rec-264

ommendation module, fMRLRec weight masking,265

etc.266

3.3.1 Language and Image Encoding267

We adopt textural item description as the language268

input source and image as visual input. Given a269

metadata dictionary M containing attributes for270

each item i, we extract its attributes Title, Price,271

Brand and Categories and perform concatenation272

of attributes:273

Texti = Titlei + Pricei + Brandi + Categoriesi274

We then encode these text attributes and image275

attributes using pretrained embedding models f .276

For each item i: 277

Elang,i = flang(Texti), Eimg,i = fimg(Imgi) (6) 278

We combine text and image embedding through 279

concatenation followed by a simple yet effective 280

linear projection: 281

E = (Concat(Elang,Eimg))Wproj + bproj (7) 282

where Wproj and bproj are the projection weights 283

and Wproj ∈ R(Dlang+Dimg)×D and bproj ∈ RD. 284

3.3.2 Linear Recurrent Units 285

We adopt Linear Recurrent Units (LRU) for se- 286

quence processing for its (1) superior performance 287

and (2) both low training and inference cost com- 288

pared with RNN and Self-Attention-based mod- 289

els (Orvieto et al., 2023; Yue et al., 2023b). Intu- 290

itively, LRU is capable of parallel training like Self- 291

Attention and inference like RNN, where inference 292

complexity can be performed incrementally. 293

Given input xk ∈ RB×Hin at time step k, hid- 294

den state hk−1 ∈ RB×Hin , learnable matrices 295

A ∈ RH×Hin , B ∈ RH×Hin , C ∈ RHout×Hin and 296

D ∈ RHout×Hin : 297

hk = Ahk−1 +Bxk, yk = Chk +Dxk, (8) 298

The input and output dimensions are denoted with 299

Hin and Hout (i.e., embedding size), and the hid- 300

den dimension size with H . Different from RNN 301

models (i.e., hk = σ(Ahk−1 +Bxk)), we discard 302

the non-linearity σ to enable parallelization: 303

hk = Ahk−1 +Bxk

= A2hk−2 +ABxk−1 +Bxk = . . .

=

k∑
i=1

Ak−iBxi with h1 = Bx1.

(9) 304

4



Therefore, LRU can be trained in parallel (via paral-305

lel scan) as Self-Attention (equation 9) and enable306

fast inference as RNN models (equation 8).307

3.3.3 Overall LRU-Based Recommendation308

Framework309

We first pad for the combined embeddings Ei out-310

put by equation 7 to maximum length of all se-311

quences. Then, the padded embeddings Ei are312

processed through N blocks. For each block313

i ∈ {1, . . . , N}, we first perform layer normal-314

ization to the input followed by a LRU layer:315

LayerNorm(X) = α⊙ X− µ√
σ2 + ϵ

+ β (10)316

LRUNorm(X) = LRU(LayerNorm(X)) (11)317

Due to the lack of non-linearity for LRU, we318

further process the output of LRU layer by a gated319

non-linear feed-forward network (FFN) to improve320

training dynamics and model performance. Specif-321

ically, our FFN is defined as:322

Gate = SiLU(XW(g) + b(g))323

FFN = (Gate ⊙ (XW(1) + b(1)))W(2) + b(2)324

As the network gets deeper, some signal of the in-325

put from the earlier layers might be forgotten. Thus,326

we add sub-layer connections in FFN by adding327

pre-layer normalization and residual connection:328

SubLayer(FFN,X) = FFN(LayerNorm(X))+X329

3.3.4 fMRLRec Plugin to Overall Framework330

Next, we apply fMRLRec-based weight design.331

Given a set of sizes M = {2, 4, 8, . . . , D}, any332

Wi ∈ Rd, we leave it as is. For Wi ∈ Rd1×d2 , we333

apply the fMRLRec operator defined in section 3.2334

to Wi as:335

W′
i = fMRLRec(Wi,M) (12)336

During inference time, independent models Q =337

{W ′(1),W ′(2), . . . ,W ′(|M|)} could be extracted as338

described in the last paragraph of section 3.2.339

Prediction Layer After the final layer N , we340

extract the activation at the last time step t of the341

final layer as z
(N)
t ∈ RD, and use it to compute342

the relevance ri,t ∈ R for all items in the pool vi ∈343

V . Specifically, we perform dot product between344

z
(N)
t with the input/shared embedding layer weight345

EW ∈ R|V|×D:346

ri,t =
(
z
(N)
t ET

w

)
i

(13)347

The higher ri,t, the more likely a user is to con- 348

sider item vi for the next time step. This way we 349

could generate recommendations by ranking the 350

relevance score ri,t. 351

3.3.5 Network Training 352

As we derive the relevance score of item i as ri,t(θ) 353

where θ stands for all parameters used to compute 354

r, we treat the relevance score as logits to compute 355

Cross-Entropy (CE) loss for entire network opti- 356

mization. While LRURec can be trained with CE 357

loss, it is not enough to yield performant models 358

of sizes M = {2, 4, 8, . . . , D} as traditional CE 359

loss only explicitly optimizes the largest model of 360

size D. We solve this issue by introducing explicit 361

loss terms as introduced in (Kusupati et al., 2022) 362

to pair with our fMRLRec-style weight matrix for 363

best performance: 364

LfMRLRec = min
θ

1

|V|

|V|∑
i=1

∑
m∈M

L (ri(θ[: m]),yi)

(14) 365

where L is a multi-class softmax cross-entropy loss 366

function based on ranking scores and the label item. 367

4 fMRLRec Memory Efficiency 368

In this subsection, we analyze fMRLRec model- 369

series memory efficiency by driving the number of 370

parameters plus activations needed to train model 371

sizes of M = {2, 4, 8, . . . , D} or M = {2j |j = 372

1, 2, . . . , k} as (1) A train-once fMRLRec model- 373

series and (2) Independent models. Define W (j) = 374

{w(j)
1 , w

(j)
2 , ·, w(j)

n } as the layer weights of model 375

size j and Xi ∈ RB×L×D as sequential input data 376

for wi, where B is the batch size, L is the sequence 377

length and D = 2j is the model size. We assume 378

every weight has the same scaling factor γ to sim- 379

plify notations. Thus, γ ·(2j)2 and γ ·2j are number 380

of parameters for 2d and 1d weight. Here, we only 381

consider 2d weights saves the most parameters. 382

Case 1: For fMRLRec-based training, number 383

of parameters needed N(W ) =
∑n

i=1 γ(·(2k)2), 384

which is n · γ · 2(2k); The number of activation 385

generated N(A) =
∑n

i=1 γ ·B ·L ·D. Empirically, 386

B ∈ {32, 64, 128} and L = 50, thus B ·L = δ ·2k, 387

δ > 1. Then, we have N(A) = n · γ · δ · 2(2k). 388

Case 2: For Independent training, the number of 389

parameters needed N(W ) =
∑k

j=1

∑n
i=1 γ ·(2j)2, 390

by summation of the geometric series, N(W ) = 391

n · γ · 4k+1−4
3 , the number of activation generated 392

N(A) =
∑k

j=1

∑n
i=1 γ · B · L · D. Empirically, 393
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Table 1: Statistics of the datasets.

Name #User #Item #Image #Inter. Density

Beauty 22,363 12,101 12,023 198k 0.073
Clothing 39,387 23,033 22,299 278k 0.031
Sports 35,598 18,357 17,943 296k 0.045
Toys 19,412 11,924 11,895 167k 0.072

B ∈ {32, 64, 128} and L = 50, thus B ·L = δ ·2j ,394

δ > 1. Then, we have N(A) =
∑k

j=1 n·γ ·δ ·2(2j),395

which is equivalent to N(A) = n · γ · δ · 4k+1−4
3 .396

In summary, the ratio of parameters and activa-397

tions between fMRLRec-based training and Inde-398

pendent training is R = (n·γ · 4k+1−4
3 )/(n·γ ·2(2k))399

or (n ·γ · δ · 4k+1−4
3 )/(n ·γ · δ ·2(2k)) ≈ 1.33. This400

indicates a parameter saving rate Rs of ≈ 0.33401

against the fMRLRec model. Empirically, for a402

common setting n = 4 linear layers with scaling403

factor γ = 2 and D = 512, the weights saved404

are approximately 4(n) × 0.33(R) × 512(D) ×405

1024(2D) ≈ 700K, the number of activation406

saved for four layer is approximately 4(n) ×407

0.33(R) × 32(B) × 50(L) × 1024(2D) ≈ 2M .408

This is to a great extent saving memory usage if in-409

dependent training is executed in parallel or saving410

training time if executed sequentially.411

5 Experimental Setup412

5.1 Datasets413

For evaluating our models, we select four com-414

monly used benchmarks from Amazon.com known415

for real-word sparsity, namely Beauty, Clothing,416

Shoes & Jewelry (Clothing), Sports & Outdoors417

(Sports) and Toys & Games (Toys) (McAuley et al.,418

2015; He and McAuley, 2016a). For preprocessing,419

we follow (Yue et al., 2022; Chen, 2023; Geng et al.,420

2023) to construct the input sequence in chrono-421

logical order and apply 5-core filtering to exclude422

users and items with less than five-time appear-423

ances. For textural feature selection, we choose424

title, price, brand and categories; For visual fea-425

tures, we use photos of the items. We also filter out426

items without above metadata. Detailed statistics of427

the datasets are reported in table 1 including users428

(#User), items (#Item), images (#Image), interac-429

tions (#Inter.) and dataset density in percentages.430

5.2 Baseline Methods431

For baseline models, we select a series of state-432

of-the-art recommendation models grouped as ID-433

based, Text-based and Multimodal. ID-based mod-434

els include SASRec, BERT4Rec, FMLP-Rec and 435

LRURec (Kang and McAuley, 2018; Sun et al., 436

2019; Zhou et al., 2022; Yue et al., 2023b). Text- 437

based methods include UniSRec, VQRec and Rec- 438

Former (Hou et al., 2022, 2023; Li et al., 2023a). 439

We also include multimodal baselines MMSSL, 440

VIP5 (Wei et al., 2023; Geng et al., 2023), More de- 441

tails about baselines is discussed in Appendix A.1. 442

5.3 Implementations 443

For training fMRLRec and all baseline models, we 444

utilize AdamW optimizer with learning rate of 1e- 445

3/1e-4 with maximum epochs of 500. Validation 446

is performed per epoch and the training is stopped 447

once validation performance does not improve for 448

10 epochs. The model with best validation perfor- 449

mance is saved for testing and metrics report. For 450

hyperparameters, we find (1) embedding/model 451

size, the number of fMRLRec-LRU layers, dropout 452

rate and weight decay be the most sensitive ones for 453

model performance. Specifically, we grid-search 454

the embedding/model size in [64, 128, 256, 512, 455

1024, 2048], the number of fMRLRec-LRU layers 456

in [1,2,4,8], dropout rate from [0.1,0,2,...,0.8] on a 457

0.1-stride and weight decay from [1e-6, 1e-4, 1e- 458

2]. The best hyper-parameters for each datasets are 459

reported in Appendix A.2; We follow (Geng et al., 460

2023) and set maximum length of input sequence 461

as 50. For validation and test, we adopt two metrics 462

NDCG@k and Recall@k, k ∈ {5, 10} typical for 463

recommendation algorithm evaluation. 464

6 Experimental Results 465

6.1 Main Performance Analysis 466

Here, we compare the performance of fMRLRec 467

with state-of-the-art baseline models in table 2. We 468

use SAS, BERT, FMLP, LRU, UniS., RecF., fM- 469

RLRec to abbreviate SASRec BERT4Rec, FMLP- 470

Rec LRURec, UniSRec, RecFormer and fMRL- 471

Rec. The best metrics are marked in bold and 472

the second best metrics are underlined. Overall, 473

fMRLRec outperforms all baseline models in al- 474

most all cases with exceptions of Recall@10 for 475

Toys. Specifically, We observe that: (1) fMRLRec 476

on average outperforms the second-best model by 477

19.46% across all datasets and metrics (2) fMRL- 478

Rec shows superior ranking performance by having 479

a more significant gain of NDCG which is rank- 480

ing sensitive than Recall. For example, fMRLRec 481

achieves NDCG@5 improvement of 25.08% over 482

the second best model, which is greater than the 483
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Table 2: Main performance results of fMRLRec and baselines.

Dataset Metric ID-Based Text-Based Multimodal

SAS BERT FMLP LRU UniS. VQRec RecF. MMSSL VIP5 fMRLRec

Beauty N@5 0.0274 0.0275 0.0318 0.0339 0.0274 0.0303 0.0258 0.0189 0.0339 0.0413
R@5 0.0456 0.0420 0.0539 0.0565 0.0484 0.0514 0.0428 0.0308 0.0417 0.0624
N@10 0.0364 0.0350 0.0416 0.0438 0.0375 0.0411 0.0341 0.0252 0.0367 0.0507
R@10 0.0734 0.0653 0.0846 0.0871 0.0799 0.0849 0.0686 0.0506 0.0603 0.0914

Cloth. N@5 0.0075 0.0062 0.0091 0.0104 0.0127 0.0104 0.0137 0.0089 0.0122 0.0191
R@5 0.0134 0.0100 0.0167 0.0192 0.0221 0.0197 0.0234 0.0146 0.0152 0.0359
N@10 0.0104 0.0084 0.0123 0.0140 0.0175 0.0149 0.0192 0.0122 0.0183 0.0265
R@10 0.0227 0.0169 0.0266 0.0304 0.0372 0.0336 0.0405 0.0249 0.0298 0.0590

Sports N@5 0.0143 0.0137 0.0194 0.0204 0.0141 0.0173 0.0127 0.0123 0.0136 0.0229
R@5 0.0267 0.0215 0.0329 0.0344 0.0237 0.0304 0.0211 0.0198 0.0264 0.0363
N@10 0.0210 0.0181 0.0252 0.0266 0.0195 0.0235 0.0173 0.0163 0.0213 0.0290
R@10 0.0474 0.0355 0.0508 0.0536 0.0408 0.0497 0.0350 0.0321 0.0315 0.0553

Toys N@5 0.0291 0.0241 0.0308 0.0366 0.0254 0.0314 0.0292 0.0173 0.0334 0.0465
R@5 0.0534 0.0355 0.0534 0.0601 0.0477 0.0577 0.0501 0.0286 0.0474 0.0659
N@10 0.0380 0.0299 0.0408 0.0463 0.0362 0.0423 0.0398 0.0224 0.0374 0.0542
R@10 0.0807 0.0535 0.0845 0.0901 0.0811 0.0915 0.0832 0.0445 0.0642 0.0900

Avg. N@5 0.0196 0.0179 0.0228 0.0253 0.0199 0.0224 0.0204 0.0144 0.0233 0.0283
R@5 0.0348 0.0273 0.0392 0.0426 0.0355 0.0398 0.0344 0.0235 0.0327 0.0493
N@10 0.0265 0.0229 0.0300 0.0327 0.0277 0.0305 0.0276 0.0191 0.0284 0.0369
R@10 0.0561 0.0428 0.0616 0.0653 0.0598 0.0649 0.0568 0.0381 0.0465 0.0758

Recall@5 gains of 19.73%. This is also true for484

NDCG@10 gains of 19.99% compared with re-485

call gains of 13.04%. (3) fMRLRec demonstrates486

significant benefits for sparse datasets, Clothing487

and Sports, by averaging 25.77% improvements.488

In contrast, the average gains is lower as 13.15%489

for relatively denser datasets as Beauty and Toys.490

(4) The subpar score of Recall@10 on Toys for491

fMRLRec might be attributed to the limitations of492

the retrieval model, LRU. The pure item-ID-based493

LRURec scores 0.0901 that falls short than the best494

score 0.0915 for VQRec. In summary, our results495

suggest fMRLRec can effectively leverage multi-496

modal item representation to rank items of user497

preference and improve recommendation perfor-498

mance.499

6.2 fMRLRec Model-Series Performance500

In this subsection, we analyze the performance of501

our full scale Matryoshka Representation Learn-502

ing (fMRLRec) by extracting from trained mod-503

els the differently-sized sub-models of M =504

{8, 16, 32, . . . , D}, where D = 512 here for best505

performance. Specific sub-model performance is506

shown in figure 3. Using NDCG for Clothing as507

an example, we observe that: (1) NDCG decrease508

rate for Clothing ranges from 4.31% to 29.62%509

(a) NDCG for Clothing (b) NDCG for Beauty

Figure 3: fMRLRec-model series performance curve
against model size. fMRLRec features a significantly
slower performance drop rate from 4.31% to 29.62%
compared to the model compression rate of 50%.

which is significantly lower than the exponential 510

model compressed by a rate of 50%. This is con- 511

sistent with the Scaling Law (Kaplan et al., 2020) 512

that doubling the model size usually does not mean 513

doubling performance. Despite statement of the 514

Scaling Law, the specific performance retained 515

varies for datasets/tasks and are expensive to tune. 516

Tackling this pain point, fMRLRec curve in figure 517

3 provides flexible options of how much metric 518

scores to retain for developers with limited compu- 519

tational resources. And obtaining fMRLRec such 520

patterns only requires a one-time training of the 521

largest model as introduced in section 3.2. 522
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Table 3: Ablation performance for fMRLRec by removing either of language (lang.) or visual features or both.

Variants / Dataset Beauty Clothing Sports Toys

Metric NDCG Recall NDCG Recall NDCG Recall NDCG Recall

fMRLRec @5 0.0413 0.0624 0.0191 0.0359 0.0229 0.0363 0.0465 0.0659
@10 0.0507 0.0914 0.0265 0.0590 0.0290 0.0553 0.0542 0.0900

fMRLRec w/ Lang. only @5 0.0370 0.0557 0.0162 0.0289 0.0223 0.0350 0.0436 0.0642
@10 0.0468 0.0860 0.0220 0.0468 0.0276 0.0515 0.0525 0.0919

fMRLRec w/ Image only @5 0.0373 0.0555 0.0162 0.0298 0.0197 0.0299 0.0439 0.0630
@10 0.0465 0.0840 0.0225 0.0493 0.0251 0.0468 0.0522 0.0889

fMRLRec w/o Lang. & Image @5 0.0386 0.0517 0.0122 0.0171 0.0222 0.0298 0.0457 0.0607
@10 0.0446 0.0700 0.0143 0.0235 0.0256 0.0405 0.0508 0.0764

Figure 4: fMRL features a one-time training of model
sizes M = {2, 4, . . . , 2n} that saves ≈ 33% parameters
compared to training every size independently.

6.3 Parameter Saving of fMRLRec523

Discussed in Section 4, the model parameter524

saving rate Rs between fMRLRec-model series525

and independently trained models is theoretically526

around 1/3 of the former. We demonstrate527

in figure 4 this behavior given model sizes of528

M = {27, 28, . . . , 211}. The green, blue and529

orange bar represents the number of parameters530

of fMRLRec-series, independently trained mod-531

els and ones saved, respectively. Empirically,532

Rs = [0, 25.16%, 31.39%, 32.90%, 33.25%] for533

M[j] ∈ M, which converges to ≈ 0.33 as j gets534

larger and is consistent with our theoretical analysis535

in Section 4.536

6.4 Ablation Study537

In this section, we further evaluate the designs of538

features and modules of fMRLRec by a series of539

ablation studies in table 3. Specifically, we con-540

struct different variants of fMRLRec as: (1) fM-541

RLRec w/ Language only: the fMRLRec model542

with only the text-based attributes of items such543

as Title, brand, etc. and their corresponding em-544

beddings. (2) fMRLRec w/ Image only: the fM- 545

RLRec model only with the image processor and 546

embeddings. (3) fMRLRec w/o Language & Im- 547

age: fMRLRec removing all the language and im- 548

age related feature processing and embeddings. A 549

randomly initialized embedding table is used as 550

item representations. We monitor the change of 551

NDCG and Recall of above variants. In particular, 552

(1) Language features shows a major contribution 553

for the performance as the performance drop is the 554

smallest as 8.41% as only language features are 555

removed. (2) Images also benefit performance of 556

fMRLRec as removing image features incurs a per- 557

formance drop of 10.97%; (3) Losing both image 558

and language features induces the largest perfor- 559

mance drop of 21.52% which justifies contributions 560

of both modalities; In summary, our ablation results 561

show that both language and image feature process- 562

ing and fusion are effective towards improving the 563

recommendation performance of fMRLRec. 564

7 Conclusions 565

In this work, we introduce a lightweight frame- 566

work fMRLRec for efficient multimodal recom- 567

mendation across multiple granularities. In particu- 568

lar, we adopt Matryoshka representation learning 569

and design an efficient linear transformation to em- 570

beds smaller features into larger ones. Moreover, 571

we incorporate cross-modal features and further 572

improves the state-space modeling for sequential 573

recommendation. Consequently, fMRLRec can 574

yield multiple model sizes with competitive perfor- 575

mance within a single training session. To validate 576

the effectiveness and efficiency of fMRLRec, we 577

conducted extensive experiments, where fMRLRec 578

consistently demonstrate the superior performance 579

over state-of-the-art baseline models. 580
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8 Limitations581

We have discussed the the ability of fMRLRec582

to perform one-time training and yield models583

in multiples sizes ready for deployment. How-584

ever, we have not experimented on other rec-585

ommendation tasks such as click rate prediction586

and multi-basket recommendation, etc. Even587

though we adopted LRU, a state-of-the-art recom-588

mendation module for fMRLRec, other types of589

sequential/non-sequential models needs to be tested590

for a more compete performance pattern. More591

broadly, The idea of full-Scale Matryoshka Repre-592

sentation Learning (fMRL) can be applied to other593

ML domains that utilize neural network weights;594

We have yet to explore behaviors of fMRL in those595

fields where the scale of models and data varies596

significantly. We plan to conduct more theoreti-597

cal analysis and experiments for above mentioned598

aspects in future works.599
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A Appendix796

A.1 Baselines797

We select multiple state-of-the-art baselines to798

compare with fMRLRec. In particular, we adopt799

ID-based SASRec, BERT4Rec, FMLP-Rec and800

LRURec (Kang and McAuley, 2018; Sun et al.,801

2019; Zhou et al., 2022; Yue et al., 2023b), text-802

based UniSRec, VQRec and RecFormer (Hou et al.,803

2022, 2023; Li et al., 2023a), and multimodal base-804

lines MMSSL, VIP5 (Wei et al., 2023; Geng et al.,805

2023). We report the details of baseline methods:806

• Self-Attentive Sequential Recommendation (SAS-807

Rec) is the first transformer-based sequential rec-808

ommender. SASRec uses unidirectional self-809

attention to capture transition patterns (Kang and810

McAuley, 2018).811

• Bidirectional Encoder Representations from812

Transformers for Sequential Recommendation813

(BERT4Rec) is similar to SASRec but utilizes814

bidirectional self-attention. BERT4Rec learns815

via masked training (Sun et al., 2019).816

• Filter-enhanced MLP for Recommendation817

(FMLP-Rec) also adopts an all-MLP architec-818

ture with filter-enhanced layers. FMLP-Rec also819

applies Fast Fourier Transform (FFT) to improve820

representation learning (Zhou et al., 2022).821

• Linear Recurrence Units for Sequential Recom-822

mendation (LRURec) is based on linear recur-823

rence and is optimized for parallelized training.824

LRURec thus provides both efficient training and825

inference speed (Yue et al., 2023b).826

• Universal Sequence Representation for Recom-827

mender Systems (UniSRec) is a text-based rec-828

ommender system. UniSRec leverage pretrained829

language models to generate item features for830

next-item prediction (Hou et al., 2022).831

• Vector-Quantized Item Representation for Se-832

quential Recommenders (VQRec) is also text-833

based sequential recommender. VQRec quan-834

tizes language model-based item features to im-835

prove performance (Hou et al., 2023).836

• Language Representations for Sequential Rec-837

ommendation (RecFormer) is language model-838

based architecture for recommendation. Rec-839

Former adopts contrastive learning to improve840

item representation (Li et al., 2023a).841

• Multi-Modal Self-Supervised Learning for Rec- 842

ommendation (MMSSL) is a multimodal recom- 843

mender using graphs and multimodal item fea- 844

tures for recommendation. MMSSL is trained in 845

a self-supervised fashion (Wei et al., 2023). 846

• Multimodal Foundation Models for Recommen- 847

dation (VIP5) is a multimodal recommender us- 848

ing item IDs and multimodal attributes for multi- 849

taks recommendation. VIP5 is trained via condi- 850

tional generation (Geng et al., 2023). 851

All models are trained according to the method- 852

ologies described in the original works, with un- 853

specified hyperparameters used as recommended. 854

All baseline methods and fMRLRec are evaluated 855

under identical conditions. 856

A.2 Implementations 857

We discuss further implementation details other 858

than data processing, evaluation metrics, early 859

stopping, etc., as already reported in section 5. 860

We adopt pretrained E5 (Wang et al., 2022) and 861

SigLip (Zhai et al., 2023) for language and image 862

encoding; The tuning phase basically lasts for 5-6 863

hours on a single NVIDIA-A100 (40GB) GPU. For 864

hyperparameters, we find the most sensitive ones 865

towards performance as follows and report the best 866

hyper-parameters found: 867

• Embedding/model size: We grid-search Em- 868

bedding/model size among [64, 128, 256, 869

512, 1024, 2048], the best values for datasets, 870

Beauty, Clothing, Sport and Toys are 512, 871

512, 256 and 512. This indicates a slightly- 872

compressed space is required for our rec- 873

ommendation task than the pretrained lan- 874

guage/image feature space of dimension 1024 875

in our case. 876

• The number of fMRLRec-based LRU layers: 877

We grid-search the number of layers among 878

[1,2,4,8]. The best performing value is 2 for 879

all datasets. 880

• Dropout rate: We grid-search the dropout rate 881

among [0.1,0,2, ..., 0.8] on a 0.1-stride. We 882

find small dropout rates as 0.1 and 0.2 (best) 883

are typically optimal for all dimensions from 884

128 to 1024 for multimodal-recommendation. 885

• Weight decay: We grid search the weight de- 886

cay among [1e-6, 1e-4, 1e-2] and finds 1e-2 887

to be the best performing value. 888
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